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Logarithmic functional and reciprocity laws

Askold Khovanskii

Abstract. In this paper, we give a short survey of results related to the
reciprocity laws over the field C. We announce a visual topological proof of
Parshin’s multidimensional reciprocity laws over C. We introduce the loga-
rithmic functional, whose argument is an n-dimensional cycle in the group
(C∗)n+1. It generalizes the usual logarithm, which can be considered as the
zero-dimensional logarithmic functional. It also generalizes the one-dimensio-
nal logarithmic functional that is a natural extension of the functional intro-
duced by Beilinson for a topological proof of the Weil reciprocity law over C.

1. One-dimensional case

1.1. Weil reciprocity law. Let Γ be a complete connected complex one-
dimensional manifold (in other words, Γ is an irreducible complex algebraic curve).
A local parameter u near a point a ∈ Γ is an arbitrary meromorphic function, whose
order at a is equal to one. The local parameter u is a coordinate function in a small
neighborhood of a. Let ϕ be a meromorphic function on Γ and let

∑
k≤m cmum

be its Laurent expansion at a. The leading monomial χ of ϕ is the first nonzero
term in the expansion, i.e. χ(u) = ckuk. The leading monomial is defined for any
meromorphic function ϕ not identically equal to zero. For each pair of meromorphic
functions f , g on a curve Γ not identically equal to zero and each point a ∈ Γ, one
defines the Weil symbol [f, g]a. It is a nonzero complex number given by the formula

[f, g]a = (−1)nman
mb−m

n ,

where amum and bnun are the leading monomials of the functions f and g at a,
with respect to the parameter u. The Weil symbol is defined with the help of
the parameter u but it does not depend on the choice of u. By definition, the
Weil symbol depends multiplicatively on functions f and g. The multiplicativity
with respect to f means that if f = f1f2, then [f, g]a = [f1, g]a[f2, g]a. The
multiplicativity with respect to g is defined similarly. The Weil symbol of functions
f, g can differ from 1 only at points in the supports of the divisors of f and g.
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The Weil reciprocity law. The product of the Weil symbols [f, g]a over
all points a of the curve Γ is equal to one

∏

a∈X

[f, g]a = 1.

Example. Take the Riemann sphere for Γ, an affine coordinate function x for
f , and a polynomial P = anxn + · · · + akxk of degree n for g. By the reciprocity
law,

∏
x(a) = [x, P ]−1

0 [x, P ]−1
∞ = (−1)−ka−1

k (−1)nan = (−1)n−kan/ak,

where the product is over all nonzero roots a of P . This formula coincides with the
Vieta formula.

1.2. Toric Surfaces and the reciprocity law (see [1]). Consider a com-
pact (possibly singular) toric surface M . Let D be a zero-dimensional positive
divisor in the union of one-dimensional orbits. Is there an algebraic curve on the
surface M that does not pass through zero-dimensional orbits and intersects one-
dimensional orbits at the given divisor D?

Let us fix an orientation in the plane of one-parameter subgroups of (C∗)2.
Thus we fix a parameterization πj : C∗ → Mj of each one-dimensional orbit Mj in
M . Consider the map π :

⋃
j Mj → C∗, whose restriction to Mj equals to π−1

j .

Theorem. If D =
∑

kiai is the divisor of the intersection of a curve not
passing through zero-dimensional orbits of M with the union of one-dimensional
orbits of M , then ∏

(−π(a))ki = 1

Sketch of the proof. Each curve in (C∗)2 is given by an equation P = 0,
where P is a Laurent polynomial. Let ∆ be the Newton polygon of P . On each
side nj of ∆, a polynomial Pnj in one variable is written. By the Vieta formula,
the product of all nonzero roots of all polynomials Pnj is equal to 1.

The reciprocity law follows from the previous theorem (see [1]).

1.3. Topological proof of the reciprocity law (see [2 - 4]). Consider
a complex algebraic curve Γ and a pair f, g of nonzero meromorphic functions on
Γ. Let A be the union of the supports of the principle divisors (f), (g), and let
U be Γ \ A. With the pair f, g, Beilinson associated a certain cohomology class
[f, g] ∈ H1(U,C∗). One can define this class using the Beilinson Integral.

Definition. The Beilinson Integral against a loop γ : I → U , γ(0) = γ(1),
for a pair of analytic functions f : U → C∗, g : U → C∗ is an element Iγ(f, g) of
the group C/Z defined by the formula

Iγ(f, g) =
(

1
2πi

)2 ∫

I

ln(γ∗f)
d(γ∗g)
(γ∗g)

− 1
2πi

degγ(f) ln g(γ(1)),

where ln(γ∗f) is a continuous branch of the multi-valued function ln(γ∗f) over the

interval 0 < t < 1, and degγ(f) is the mapping degree of the map
f

|f | : γ(I) → S1.
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One can prove that the Beilinson integral has the following properties. It is
invariant under orientation preserving reparameterizations of the loop γ. It is skew
symmetric, i.e. Iγ(f, g) = −Iγ(g, f), and additive, i.e. Iγ(f1f2, g) = Iγ(f1, g) +
Iγ(f2, g); Iγ(f, g1g2) = Iγ(f, g1) + Iγ(f, g1). On the diagonal, it is related to the
mapping degree: Iγ(f, f) = 1

2 degγ(f).
One can slightly extend the previous definition and define the Beilinson integral

Iγ(f, g) against a linear combination γ =
∑

kiγi of loops γi with integer coefficients
ki.

Theorem. The Beilinson integral Iγ(f, g) depends only on the homology class
of the cycle γ =

∑
kiγi in U and defines an element in H1(U,C/Z).

Theorem. The number [f, g, γ] = exp(2πiIγ(f, g)) depends only on the ho-
mology class of the cycle γ =

∑
kiγi in U and defines an element in H1(U,C∗).

It is skew-symmetric [f, g, γ] = [g, f, γ]−1 and multiplicative [f1f2, g, γ] = [f1, g, γ] ·
[f2, g, γ]; [f, g1g2, γ] = [f, g1, γ][f, g2, γ].

Theorem. Consider a small ball Ba centered at a point a ∈ X. Let γ be its
boundary γ = ∂B. Then [f, g, γ] is equal to the Weil symbol [f, g]a.

Now let us give a topological proof of the reciprocity law. Let A be the union
of supports of principle divisors (f), (g), and let U be Γ \A. Let B be the union of
small balls Ba centered at all points a ∈ A and let γ =

∑
a∈A ∂Ba be the boundary

of the domain B. Then γ = 0 in H1(U,Z) and [f, g, γ] =
∏

a∈A[f, g]a = 1. The
reciprocity law is proved.

2. Product of roots of a system of equations
with generic Newton polyhedra (see [5])

Consider a system of equations

(1) P1 = · · · = Pn = 0

in (C∗)n, where P1, . . . , Pn are Laurent polynomials. Let ∆1, . . . , ∆n be the Newton
polyhedra of P1, . . . , Pn.

Problem: Compute the product in the group (C∗)n of roots of system (1) as-
suming that the collection of Newton polyhedra ∆1, . . . , ∆n is generic.

2.1. Developed sets of polyhedra. Let ∆1, . . . , ∆n be convex polyhedra in
Rn, and let ∆ be their Minkowski sum. Each face Γ of the polyhedron ∆ can be
uniquely represented as a sum

Γ = Γ1 + · · ·+ Γn,

where Γi is a face of ∆i.
A collection of n polyhedra ∆1, . . . , ∆n is called developed if for each face Γ of

the polyhedron ∆, at least one of the terms Γi in its decomposition is a vertex.
For a developed collection of polyhedra ∆1, . . . , ∆n, a map f : ∂∆ → ∂Rn

+

of the boundary of ∆ =
∑

∆i into the boundary of the positive octant is called
characteristic if the component fi of the map f = (f1, . . . , fn) vanishes precisely
on the faces Γ, for which the i-th term Γi in the decomposition is a point (a vertex
of the polyhedron ∆i). The preimage of the origin under the characteristic map is
precisely the set of all vertices of the polyhedron ∆.
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The combinatorial coefficient CA of a vertex A of ∆ is the local degree of the
germ

f : (∂∆, A) → (∂Rn
+, 0)

of the characteristic map restricted to the boundary ∂∆ of ∆.

2.2. Parshin symbols see [5 - 9]. Consider n + 1 monomials c1xk1 , . . . ,
cn+1xkn+1 in n complex variables, where ci ∈ C∗, x = (x1, . . . , xn), ki ∈ (Z)n,ki =
(ki,1, . . . , ki,n), cixki = cix

ki,1
1 ·. . .·xki,n

n . The Parshin Symbol [c1xk1 , . . . , cn+1xkn+1 ]
of the sequence c1xk1 , . . . , cn+1xkn+1 is equal by definition to

(−1)D(k1,...,kn+1)c
− det(k2,...,kn+1)
1 . . . c

(−1)n+1 det(k1,...,kn)
n+1 =

= (−1)D(k1,...,kn+1) exp


−det




ln c1 k1,1 . . . k1,n+1

...
...

...
ln cn+1 kn+1,1 . . . kn+1,n+1





 ,

where D : (Zn)n+1 → Z/2Z is a function (see [9]) with the following properties.
The function D depends only on the images π(k1),. . . , π(kn+1) ∈ (Z/2Z)n of the
exponents k1, . . . ,kk+1 under the natural projection π : (Z)n → (Z/2Z)n. It is
the only nonzero multilinear function of n + 1 vectors in the n-dimensional space
over the field Z/2Z that is invariant under all linear transformations and vanishes
whenever the rank of n + 1 vectors is less than n.

Example. The Parshin symbol [c1x
k1 , c2x

k2 ] of two monomials c1x
k1 , c2x

k2

in one variable x equals to (−1)k1k2c−k2
1 ck1

1 . Thus it is equal to the Weil symbol
[c1x

k1 , c2x
k2 ]0 of these monomials at the origin x = 0.

By definition, the Parshin symbol is skew-symmetric, for example,

[c1xk1 , c2xk2 , . . . , cn+1xkn+1 ] = [c2xk2 , c1xk1 , . . . , cn+1xkn+1 ]−1,

and multiplicative, for example, if c1xk1 = a1b1xl1+m1 , then

[c1xk1 , . . . , cn+1xkn+1 ] = [a1xl1 , . . . , cn+1xkn+1 ][b1xm1 , . . . , cn+1xkn+1 ].

2.3. The value of a character at the product of roots. Let χk : (C∗)n →
C∗ be the character corresponding to a point k ∈ Zn, i.e. for k = (k1, . . . , kn) and
x = (x1, . . . , xn) the character χk(x) is equal to xk1

1 . . . xkn
n .

With every vertex A of the polyhedron ∆ = ∆1+· · ·+∆n, where ∆i is the New-
ton polyhedron of a Laurent polynomial Pi, we associate a number
[P1, . . . , Pn, χk]A ∈ C∗ in the following way: let A = A1 + · · · + An be the de-
composition of the vertex A ∈ ∆, Ai ∈ ∆i. Assume that the vertex Ai of the
polyhedron ∆i corresponds to a monomial cixki of the polynomial Pi. Then the
number [P1, . . . , Pn, χk]A is by definition the Parshin symbol [c1xk1 , . . . , cnxkn , χk].

Theorem. For a system of equations (1), the value of the character χk at the
product M(P1, . . . , Pn) of roots is given by

χk(M(P1, . . . , Pn)) =
∏

A∈∆

([P1, . . . , Pn, χk]A)(−1)nCA ,

where the product is over all vertices A of the polyhedron ∆ = ∆1 + · · ·+ ∆n, and
CA is the combinatorial coefficient at A.
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As an application of the theorem, one can compute all coordinates in (C∗)n of
the product M(P1, . . . , Pn) of roots: each coordinate xi can be considered as the
character χk for k = ei, where the vector ei is the i-th vector in the standard basis
of the lattice (Z)n. The proof of the theorem (see [5]) is based on simple geometry
and does not use Parshin theory.

3. Multidimensional case

Parshin generalized the Weil reciprocity law to a multidimensional case (see
[6 - 9]). Here we discuss this result and its topological proof due to Brylinski–
McLaughlin (see [10]).

3.1. Generalized Points, Parameters, Symbols, Flags and Reciprocity
Laws (see [6 - 8]). Let X be a complete irreducible complex n-dimensional alge-
braic variety (possibly very singular). A sequence Y0

π0−→ Y1
π1−→ . . .

πn−1−−−→ Yn
πn−→

X consisting of complete normal irreducible i-dimensional algebraic varieties Yi

with i = 0, . . . , n, equipped with a collection of maps π0, . . . πn is called a gener-
alized point of the variety X if for i = 0, . . . , n − 1, the map πi : Yi → Yi+1 is a
normalization of the image πi(Yi) ⊂ Yi+1 and πn : Yn → X is a normalization of
X. We identify two generalized points G1 = (Y0

π0−→ Y1
π1−→ . . .

πn−1−−−→ Yn
πn−→ X)

and G2 = (Z0
ρ0−→ Z1

ρ1−→ . . .
ρn−1−−−→ Zn

ρn−→ X) if for i = 0, . . . , n, there are
isomorphisms τi : Zi → Yi such that πi ◦ τi = τi+1 ◦ ρi.

Let us give an inductive definition for a set of parameters near a generalized
point. A collection of rational functions u1, . . . , un on X is called a set of parameters
near a generalized point G = (Y0

π0−→ Y1
π1−→ . . .

πn−1−−−→ Yn
πn−→ X) if the following

conditions hold:
1) each of the rational functions π∗nu1, . . . , π

∗
nun on Yn has no poles on Xn−1 =

πn−1(Yn−1);
2) the principal divisor (π∗nun) in the normal variety Yn contains the subvariety

Xn−1 with coefficient 1;
3) if n > 1, then the set of restrictions of π∗nu1, . . . , π

∗
nun−1 to Xn−1 is a set

of parameters for the generalized point G̃ = (Y0
π0−→ Y1

π1−→ . . .
πn−2−−−→ Yn−1

πn−1−−−→
Xn−1) on the (n− 1)-dimensional variety Xn−1 .

With a rational function f and a generalized point G one can associate the
leading monomial fG using a set of parameters near G. Let us give an inductive
definition of the leading monomial. Let the order of the function π∗nf at Xn−1 be
kn. Then the restriction ϕ of (π∗nf)u−kn to Xn−1 is well-defined. Consider the
generalized point G̃ = (Y0

π0−→ Y1
π1−→ . . .

πn−2−−−→ Yn−1
πn−1−−−→ Xn−1) of the (n − 1)-

dimensional variety Xn−1. Let c(π∗nu1)k1 . . . (π∗nun−1)kn−1 be the leading monomial
of ϕ at the generalized point G̃ with parameters (π∗nu1), . . . , (π∗nun−1). Then, by
definition, the leading monomial fG is equal to cuk1

1 . . . u
kn−1
n−1 ukn

n .
Let f1, . . . , fn+1 be a sequence of (n+1) rational functions on an n-dimensional

algebraic variety X. With a generalized point G, one can associate the Parshin
symbol [f1, . . . , fn+1]G: by definition, it is equal to the Parshin symbol of a sequence
of leading monomials of the functions with respect to a set of parameters near the
generalized point G. One can prove that the Parshin symbol is independent of a set
of parameters and depends only on the sequence of rational functions f1, . . . , fn+1

and on the generalized point G.
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Consider a flag F = (C0 ⊂ C1 ⊂ · · · ⊂ Cn−1) in X consisting of complete
irreducible k-dimensional algebraic subvarieties Ck of X with k = 0, 1, . . . , n − 1.
A generalized point G = (Y0

π0−→ Y1
π1−→ . . .

πn−1−−−→ Yn
πn−→ X) is a generalized

point over the flag F if for j = 0, . . . , n − 1, the image π̃j(Yj) of Yj under the
map π̃j = πn ◦ πn−1 ◦ · · · ◦ πj is equal to Cj . Over each flag F , there are finitely
many different generalized points. Consider a flag F = C0 ⊂ · · · ⊂ Cn−1 on
X and take a collection f1, . . . , fn+1 of rational functions on X. The Parshin
symbol [f1, . . . , fn+1]F of the collection f1, . . . , fn+1 at the flag F is by definition
the product of

∏
[f1, . . . , fn+1]G over all generalized points G over the flag F .

Example. Let X be an irreducible algebraic curve. With a generalized point
G = (Y0

π0−→ Y1
π1−→ X) in X, one can associate the flag F = (a) in X, where

a = π1 ◦ π0(Y0), and the point b = π0(Y0) on the normalization Y1 of the curve
X. A rational function u on X is a parameter near G if π∗1u is a parameter near
b on Y1. For a pair of rational functions f1, f2 on X, the Parshin symbol [f1, f2]G
coincides with the Weil symbol [π∗1f1, π

∗
1f2]b. The Parshin symbol [f1, f2]F at the

flag F is equal to the product
∏

[π∗1f1, π
∗
1f2]c over all points c ∈ π−1

1 a.

Fix a flag L = (C0 ⊂ · · · ⊂ Cn−1) on X. For each 0 < i < n, denote by Ψi(L)
the set of all flags F = (C̃0 ⊂ · · · ⊂ C̃n−1), where C̃j = Cj if j 6= i, and C̃i is any
i-dimensional irreducible subvariety such that Ci−1 ⊂ C̃i ⊂ Ci+1. Denote by Ψ0(L)
the set of all flags F = C̃0 ⊂ C1 · · · ⊂ Cn−1 such that C̃0 is a point in C1.

Parshin’s reciprocity laws (see [6 - 8]). Fix a collection f1, . . . , fn+1 of
rational functions on X, a flag L in X and a number 0 ≤ i < n. Then the symbol
[f1, . . . , fn+1]F is different from 1 for only finitely many flags F ∈ Ψi(L), and the
following relation holds

∏

F∈Ψi(L)

[f1, . . . , fn+1]F = 1.

3.2. The Brylinski–McLaughlin topological version of the Parshin
theory (see [10]). Consider a sequence f1, . . . , fn+1 of (n + 1) rational functions
on an n-dimensional complete complex algebraic variety X. Let A be the union
of the supports of the principle divisors (f1), . . . , (fn+1) and of the singular locus
S(X) of the variety X. Denote by U the domain X \A.

Brylinski and McLaughlin defined a certain cohomology class (f1, . . . , fn+1) ∈
Hn(U,C∗). The class (f1, . . . , fn+1) is skew symmetric in f1, . . . , fn+1 and is mul-
tiplicative in each argument.

Let F = (C0 ⊂ C1 ⊂ · · · ⊂ Cn−1) be a flag of irreducible complete algebraic
subvarieties of X such that dim Ck = k. With the flag F , Brylinski and McLaughlin
associated a flag-localized homology class γF ∈ Hn(U,Z). They had proved the
following results.

Theorem (Topological reciprocity laws). Fix a flag L in X and a
number 0 ≤ i < n. Then the flag-localized homology class γF ∈ Hn(U,Z) is different
from zero for only finitely many flags F ∈ Ψi(L), and in the group Hn(U,Z), the
following relation holds ∑

F∈Ψi(L)

γF = 0.
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Theorem. The Parshin symbol [f1, . . . , fn+1]F can be obtained by the pairing
of the cohomology class (f1, . . . , fn+1) ∈ Hn(U,C∗) with the flag-localized homology
class γF ∈ Hn(U,Z).

Using these results one can immediately obtain Parshin’s reciprocity laws.
So Brylinski and McLaughlin gave a topological proof of the multidimensional
reciprocity laws over complex numbers and found a topological generalization of
Parshin symbols. Their topological constructions make a heavy use of sheaf theory
and are not visual at all.

The search for a formula for the product of the roots of a system of equations
(see [5]) convinced me that, over complex number, there should be an intuitive
geometric explanation of the Parshin symbols and reciprocity laws. The multidi-
mensional logarithmic functional provides such an explanation.

4. A Logarithmic Functional (see [11])

4.1. Definitions and examples. Consider the group (C∗)n+1 with coor-
dinate functions x1, . . . , xn+1. The group (C∗)n+1 is homotopy equivalent to the
torus Tn+1 ⊂ (C∗)n+1 defined by equations |x1| = · · · = |xn+1| = 1. On the group
(C∗)n+1, there is a remarkable (n + 1)-form

ω =
(

1
2πi

)n+1
dx1

x1
∧ · · · ∧ dxn+1

xn+1
.

Restriction of the form ω to the torus Tn+1 is the real (n + 1)-form

ω|T n+1 =
1

(2π)n
d(arg x1) ∧ · · · ∧ d(arg xn+1).

The integral of ω over the torus Tn+1 oriented by the form ω|T n+1 is equal to 1.
Denote by E the subset of (C∗)n+1 consisting of all points (x1, . . . , xn+1), one

of whose coordinates is equal to 1, i.e. (x1, . . . , xn+1) ∈ E ⇔ {∃j, 1 ≤ j ≤ n + 1} :
{xj = 1}.

Let X be an n-dimensional simplicial complex and let γ =
∑

kj∆j , where
kj ∈ Z and ∆j is an oriented n-dimensional cell in X, be an n-dimensional cy-
cle, i.e. ∂γ = 0. Consider a piecewise-smooth mapping f : X → (C∗)n+1,
f = (f1, . . . , fn+1), of the complex X into the group (C∗)n+1.

The logarithmic functional is the functor that takes a map f : X → (C∗)n+1

and an n-dimensional cycle γ =
∑

kj∆j on X to the element ln(f , γ) of C/Z defined
by the formula

ln(f , γ) =
∫

σ

ω,

where σ is an (n + 1)-dimensional chain in (C∗)n+1, whose boundary ∂σ is equal
to the difference of the image f∗(γ) of γ under the map f∗ and some cycle γ1 lying
in E.

The logarithmic functional has the following obvious properties:
1) The value of the logarithmic functional is a well-defined element of the group

C/Z.
2) The logarithmic functional depends skew-symmetrically on the components

of the map f , for example

ln(f1, f2, . . . , fn+1, γ) = − ln(f2, f1, . . . , fn+1, γ).
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3) The logarithmic functional depends multiplicatively on the components of
the map f , for example,

ln(ϕ1ψ1, f2, . . . , fn+1, γ) = ln(ϕ1, f2, . . . , fn+1, γ) + ln(ψ1, f2, . . . , fn+1, γ)

Example (logarithmic function as logarithmic functional). Let X
be a point {a} and γ the point {a} with coefficient 1. Then for a map f : X → C∗,
we have

ln(f , γ) =
1

2πi
ln f(a),

where f = f .

Example (The Beilinson integral as the logarithmic functional
[3]). Consider a complex algebraic curve X and two nonzero meromorphic func-
tions f and g on X. Let A be the union of the divisors (f) and (g), and let U be
X \A. Take a loop γ in U . Then for a map (f, g) : γ → (C∗)2, we have

ln(f , γ) = Iγ(f, g),

where f = (f, g).

4.2. Topology and the logarithmic functional. The logarithmic func-
tional has the following topological property. Let M be a real manifold and
f : M → (C∗)n+1 a smooth map. An n-dimensional cycle γ̃ on M can be considered
as the image under a piecewise smooth map φ : X → M of some n-dimensional
cycle γ on some n-dimensional complex X. With the cycle γ̃ on M , associate the
element ln(f ◦ φ, γ) of C/Z. The n-dimensional co-chain thus obtained gives an n-
dimensional cohomology class of M with coefficients in the group C/Z if and only
if f∗ω ≡ 0.

Theorem. If the form f∗ω is identically equal to zero on M , then the func-
tional that takes a cycle φ : γ → M to the element ln(f ◦φ, γ) ∈ C/Z is a cohomology
class in Hn(M,C/Z).

Main Example. Let X be an n-dimensional complex algebraic variety, f1, . . . ,
fn+1 a sequence of (n + 1) rational functions on X, and S(X) the singular locus
of X. Consider the manifold M = X \ ((f1) ∪ · · · ∪ (fn+1) ∪ S(X)) and the map
f : M → (C∗)n+1, f = (f1, . . . , fn+1). Then f∗ω ≡ 0. So, by the theorem, f gives
rise to a cohomology class in Hn(M,C/Z). Denote by {ln(f , γ)} its value on a
cycle γ.

4.3. Multiplicative version of the logarithmic functional. One can
define a multiplicative version of the logarithmic functional that takes a map f
and a cycle γ to the number exp(2πi ln(f , γ)). By the construction, the functional
exp(2πi ln(f , γ)) takes values in C∗ and has the following properties:

1) it depends skew-symmetrically on the components of f , for example

exp(2πi ln(f1, f2, . . . , fn+1, γ)) = (exp(2πi ln(f2, f1, . . . , fn+1, γ)))(−1);

2) it depends multiplicatively on the components of f , for example

exp(2πi ln(ϕ1ψ1, f2, . . . , fn+1, γ)) =
= exp(2πi ln(ϕ1, f2, . . . , fn+1, γ) exp 2πi ln(ψ1, f2, . . . , fn+1, γ)).



LOGARITHMIC FUNCTIONAL AND RECIPROCITY LAWS 9

Theorem. If the form f∗ω is identically equal to zero on M , then the co-
chain, whose value on a cycle γ equals to exp(2πi{ln(f , γ)}), is a cohomology class
in Hn(M,C∗).

Theorem. Let X ⊂ (C∗)n be the real n-dimensional torus |y1| = · · · = |yn| = 1
and γ the fundamental cycle of X. Consider n+1 monomials c1yk1 , . . . , cn+1ykn+1 .
Let f : X → (C∗)n+1 be the restriction of the map (c1yk1 , . . . , cn+1ykn+1) : (C∗)n →
(C∗)n+1 to X. Then exp(2πi{ln(f , γ)}) is equal to the Parshin symbol
[c1yk1 , . . . , cn+1ykn+1 ].

Theorem. Consider n + 1 rational functions f = (f1, . . . , fn+1) on an n-
dimensional complete complex algebraic variety X. Let F be a flag on X and
γF ∈ Hk(U,Z) the flag-localized homology class. Then exp 2πi{ln(f , γF )} is equal
to the Parshin symbol [f1, . . . , fn+1]F .

The author would like to thank A.N. Parshin for his comments and T.V. Be-
lokrinitskaya, V. Kirichenko and V.A. Timorin for their help in preparation of this
paper.
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