
MULTIPLICITY OF A NOETHERIAN INTERSECTION

Andrei Gabrielov and Askold Khovanskii

October 28, 1997

To Vladimir Igorevich Arnol’d on his 60th birthday

Abstract. A differential ring of analytic functions in several complex variables is called a
ring of Noetherian functions if it is finitely generated as a ring and contains the ring of all
polynomials. In this paper, we give an effective bound on the multiplicity of an isolated so-
lution of a system of n equations fi = 0 where fi belong to a ring of Noetherian functions in
n complex variables. In the one-dimensional case, such an estimate is known and has appli-
cations in number theory and control theory. Multi-dimensional case presented in this paper
provides a solution of a rather old problem concerning finiteness properties of transcendental
functions defined by algebraic partial differential equations.

Introduction

1. The main result. A ring K of analytic functions in an open domain U ⊂ Cn is called
a ring of Noetherian functions in U if
1) K contains the ring C[x1, . . . , xn] of polynomials and is finitely generated over that ring;
2) K is closed under differentiation. In other words, for each f ∈ K, all partial derivatives

∂f/∂xi belong to K. In particular, K is a Noetherian ring, which is the origin of the
notation “Noetherian function” introduced by Tougeron [T].
A set of m functions ψ = {ψ1, . . . , ψm} is called a Noetherian chain of order m if these

functions generate K over C[x1, . . . , xn]. A function φ in K is called a Noetherian function
of degree β relative to a Noetherian chain ψ if there exists a polynomial P of degree not
exceeding β in n + m variables such that φ = P (x, ψ(x)). The Noetherian chain ψ has
degree not exceeding α if each partial derivative ∂ψi/∂xj is a Noetherian function of degree
α relative to ψ.

Standard Noetherian arguments allow one to prove that the multiplicity of an isolated
intersection of Noetherian functions is bounded by a certain function of discrete parameters
n, m, α, and β. As usual, these arguments do not provide any effective method of
computation of such function. This computation is done in the present paper. The main
result of this paper is the following
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Theorem 1. Let φ1, . . . , φn belong to a ring K of Noetherian in U ⊂ Cn. Suppose that
all φi have degree not exceeding β relative to a common Noetherian chain ψ of order m
and degree α ≥ 1. Then the multiplicity of any isolated solution of the system of equations
φ1 = · · · = φn = 0 does not exceed maximum of the following two numbers:

1
2
Q

(
(m + 1)(α− 1)[2α(n + m + 2)− 2m− 2]2m+2 + 2α(n + 2)− 2

)2(m+n)
,

1
2
Q

(
2(Q + n)n(β + Q(α− 1))

)2(m+n)
, where Q = en

(
e(n + m)√

n

)ln n+1 ( n

e2

)n

.

2. Pfaff systems with polynomial coefficients. Rings of Noetherian functions and
Noetherian chains can be defined in terms of systems of Pfaff equations. This approach is
more geometric, and will be used in the proof of the main result.

Definition 1. An analytic n-dimensional distribution in an open domain U ⊂ Cn+m is
defined by

(1) dzi =
n∑

j=1

gij(x, z)dxj , for i = 1, . . . , m

where x ∈ Cn, z ∈ Cm, and gij are analytic functions in U . An integral manifold of an
analytic distribution (1) is a n-dimensional submanifold Λ ⊂ U tangent to (1), i.e.,

(
dzi −

n∑

j=1

gij(x, z)dxj

)∣∣∣
Λ
≡ 0, for i = 1, . . . , m.

Locally, an integral manifold can be represented as a graph of an analytic vector-function
z = ψ(x) = (ψ1(x), . . . , ψm(x)) satisfying

(2)
∂ψi

∂xj
= gij(x, ψ(x)), for i = 1, . . . ,m and j = 1, . . . , n.

A Noetherian chain of order m and degree α is an analytic function ψ(x) satisfying (2)
where gij(x, z) are polynomials in (x, z) ∈ Cn+m of degree not exceeding α ≥ 1. A
Noetherian function of degree β relative to a Noetherian chain ψ is an analytic function
φ(x) = P (x, ψ(x)), where P (x, z) is a polynomial in (x, z) of degree not exceeding β.

3. Theory of fewnomials and local conjectures. Suppose that the system (2) of
Pfaff equations is triangular, i.e., that functions gij(x, ψ) depend only on x and ψ1, . . . , ψi

(but do not depend on ψi+1, . . . , ψm). Suppose, in addition, that all functions ψi and
polynomials gij are real. In this case, ψ is called a Pfaffian chain, and Noetherian functions
P (x, ψ(x)) where P is a real polynomial are called Pfaffian functions relative to ψ. Real
solutions of systems of equations with Pfaffian functions have global finiteness properties
resembling the finiteness properties of real algebraic sets [Kh1]. These systems, studied in
[Kh2, Kh3], have many applications in real algebraic geometry, computational complexity,
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control theory, and model theory. For these finiteness properties, both requirements (that
system (2) is triangular and all functions are real) are essential. For example, the simplest
Noetherian functions sin and cos have infinite number of real zeros, and a simple Pfaffian
function exp x− 1 has infinite number of complex zeros.

In the beginning of the 80-ies, Khovanskii conjectured that local finiteness properties
remain valid for non-triangular systems, also in the complex domain. Here are three
variants of this conjecture, in decreasing order of generality.

Let φ1(x, a), . . . , φl(x, a) be a set of l analytic functions in a vicinity of a point (x0, a0) ∈
Cn+k. Suppose that, for each value of parameters a, functions φi(x, a), considered as
analytic functions in x, belong to a ring K of Noetherian functions. Let us fix a Noetherian
chain of order m and degree α in K, and let φ1(., a), . . . φl(., a) be Noetherian functions of
degree not exceeding β relative to this Noetherian chain, for all values of a.

Conjecture 1. There exists an explicit function F (n,m, α, β, l) with the following prop-
erty. For any small positive ε, there exists a positive δ such that, for any fixed value of a
with |a− a0| < δ, the sum of Betti numbers of the set

φ1(x, a) = · · · = φl(x, a) = 0, |x− x0| < ε

does not exceed F (n,m,α, β, l).

Conjecture 2. Let φ1(., a) = . . . , φn(., a) = 0 be a system of n equations in n variables
depending on parameters a. Suppose that, for a fixed value of a, functions φi are Noetherian
of degree not exceeding β relative to a Noetherian chain of order m and degree α. The
number of isolated solutions of this system converging to x0 as a → a0 can be effectively
estimated from above in terms of n, m,α, β. Note that x0 can be a non-isolated solution of
φ1(., α0) = · · · = φn(., a0) = 0.

Conjecture 3. Multiplicity of an isolated solution of a system of equations with Noether-
ian functions with a common Noetherian chain can be effectively estimated from above in
terms of the number of variables, order and degree of the Noetherian chain, and degrees of
the Noetherian functions.

Theorem 1 of this paper proves Conjecture 3. Conjectures 1 and 2 remain open prob-
lems. In fact these two conjectures are equivalent. For Pfaffian functions (triangular
systems (2), also in the complex domain) proof of Conjecture 2 was given in [G1]. For this
paper, it is important that Conjectures 2 and 3 are true in one-dimensional case.

One-dimensional case. The problem in one-dimensional case was first formulated and
solved by Nesterenko [N]. His motivation came from number theory, and his results have
important applications in this area (see [W]). Later this problem was re-discovered by Risler
[R], in connection with non-holonomic dynamics and control theory. He was interested
in degree of nonholonomy of control systems. Solution of this problem was given by
Gabrielov [G2]. Later, Gabrielov found a new solution [G3], more simple and with a
better estimate. In this paper, we use bounds on degree of nonholonomy from [G2] and
[G3]. Gabrielov’s solution was further simplified by Khovanskii, using integration over
Euler characteristics. This made solution so simple that it could be generalized to several
variables. This generalization is presented in this paper.
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To prove Theorem 1, we need four preliminary steps:
(1) One-dimensional case. For n = 1, a Noetherian function is a restriction of a

polynomial on a trajectory of a vector field ∂/∂x+
∑

i gi(x, z)∂/∂zi with polynomial
coefficients, and the statement of Theorem 1 follows from [G3]. We recall here
the arguments form [G3], because the proof in general case is based on the one-
dimensional case.

(2) Reduction to an integrable system. Union of all solutions of (2) for given
polynomials gij is an algebraic set. Complexity of this set is estimated.

(3) The Milnor fibers. For a one-parametric deformation of a (possibly non-isolated)
intersection, we define the “Milnor fiber” Zq as follows: For a small nonzero value
of parameter of the deformation, Zq consists of those points where the intersection
is isolated and its multiplicity is at least q. Multiplicity of an isolated intersection
equals the sum over q of the Euler characteristics of Zq.

(4) Maximal multiplicity in a generic family. We give an estimate for the maximal
value of q such that Zq is nonempty in a generic family. This allows to bound the
number of nonzero terms in the formula for the multiplicity in terms of Euler
characteristics, and the values of these nonzero terms.

1. One-dimensional case

Noetherian chains in one-dimensional case are exactly trajectories of vector fields with
polynomial coefficients, and Noetherian functions are polynomials restricted to trajectories
of such vector fields.

Let x ∈ C, z = (z1, . . . , zm) ∈ Cm, and let γ = {z = ψ(x)} be a germ of a trajectory
through 0 ∈ Cm+1 of a vector field ξ = ∂/∂x +

∑
i gi(x, z)∂/∂zi, where gi are germs of

analytic functions at 0 ∈ Cm+1. Let P (t, z) be a germ of an analytic function at 0 ∈ Cm+1,
and let φ(t) = P (t, ψ(t)) be a restriction of P (t, z) to γ. Suppose that φ(t) 6≡ 0, and let µ
be the order of a zero of φ at t = 0. Let S(t, z, ε) be a one-parametric deformation of P ,
i.e., a germ of an analytic function at 0 ∈ Cm+2 such that S(t, z, 0) = P (t, z). We write
Sε(t, z) for S(t, z, ε) considered as a function in Cm+1, with a fixed value of ε.

Definition 2. For a positive integer q, the Milnor fiber Zq(ξ, S) of the deformation S
relative to the vector field ξ is the intersection of a ball ‖(t, z)‖ ≤ δ in Cm+1 with a set
Sε = ξSε = · · · = ξq−1Sε = 0, for a small positive δ and a complex nonzero ε much smaller
than δ. According to [Le], the homotopy type of Zq depends only on the deformation S
and on the vector field ξ. Let χ(Zq) be the Euler characteristics of Zq.

Theorem 2. Let S be a one-parametric deformation of an analytic function P , and let
Zq = Zq(ξ, S) be the Milnor fibers of S relative to an analytic vector field ξ. Suppose
that P restricted to a trajectory of ξ through 0 has a zero of order µ < ∞ at 0. Let
Q = max{q : Zq 6= ∅}. Then

(3) µ =
Q∑

q=1

χ(Zq).
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Proof. (See also [G3, Theorem 1].) Let (t, y1, . . . , ym) be a system of coordinates in Cm+1

where ξ = ∂/∂t, and let π be projection Cm+1 → Cm along the t-axis. Let Br be a closed
ball of radius r in Cm centered at the origin. We can choose a norm ‖.‖ in Cm+1 so that
{‖(t, y)‖ ≤ δ} = {y ∈ Br, |t| ≤ δ}, where r = r(δ), and projection π : {Sε = 0} → Br(δ) is
a finite µ-fold ramified covering (counting the multiplicities).

For a small δ > 0 and a small nonzero ε much smaller than δ, projection π : Zq → Br is
finite. For y ∈ Br, a set π−1y∩Zq is finite. Hence its Euler characteristics ζq(y) = χ(π−1y∩
Zq) equals the number of points in it (not counting multiplicities). Then

∑Q
q=1 ζq(y) ≡ µ

does not depend on y. Standard “integration over Euler characteristic” arguments [V]
show that

∫

Br

ζq(y)dχ = χ(Zq), and
∫

Br

Q∑
q=1

ζq(y)dχ =
∫

Br

µdχ = µ.

This proves (3).

Lemma 1. Let c0, . . . , cm be a generic set of m + 1 complex numbers. For a deformation
S(t, z, ε) = P (t, z) + ε

∑m
i=0 cit

i, the sets Zq are nonsingular, for q = 1, . . . , m + 1, and
empty for q > m + 1.

Proof. This is a special case of Thom’s transversality theorem. See also [G3, Lemma 1].

Corollary. For the deformation in Lemma 1,

(4) µ = χ(Z1) + · · ·+ χ(Zm+1).

Theorem 3. Let ξ be a vector field defined by dzi/dt = gi(t, z) where gi are polynomials
of degree not exceeding α ≥ 1, and let P be a polynomial of degree not exceeding β ≥ m.
Suppose that P does not vanish identically on the trajectory γ of ξ through the origin. Then
the multiplicity µ of a zero of P |γ does not exceed

1
2

m∑

k=0

[2β + 2k(α− 1)]2m+2.

Proof. This follows from (4) and from an estimate [M] of the Euler characteristics of the
set Zq defined by polynomial equations of degree not exceeding β + (q − 1)(α− 1).

2. Reduction to an integrable system

Let x ∈ Cn, z ∈ Cm, and let gij(x, z) be analytic functions in U ⊂ Cn+m.

Lemma 2. The union of all integral manifolds of (1) is an analytic subset of U .

Proof. Let ξi, i = 1, . . . , n be the following vector fields tangent to the distribution (1):

(5) ξi =
∂

∂xi
+

m∑

j=1

gij(x, z)
∂

∂zj
.
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For c = (c1, . . . , cn) ∈ Cn, let ξc = c1ξ1 + · · ·+ cnξn, and let γc be a germ of a trajectory
of ξc through (x0, z0). Let Λ be the union of all γc. Then Λ is a germ of an n-dimensional
manifold.

If there exists an integral manifold of (1) through (x0, z0), it contains all trajectories γc

and its germ at (x0, z0) coincides with Λ. In this case, any bracket [ξj , ξk] at each point of
Λ belongs to the subspace generated by ξi.

Due to [G2, Lemmas 4, 5], the opposite is also true: if any bracket [ξj , ξk] at each point
of Λ belongs to the subspace generated by ξi, then Λ is an integral manifold of (1).

Let Ξjk = [ξj , ξk] ∧ ξ1 · · · ∧ ξn. If Λ is an integral manifold of (1) then Ξjk vanish at
each point of each trajectory γc, for all j and k. In particular,

(6) ξν
c Ξjk(x0, z0),

the value at (x0, z0) of the νth derivative of Ξjk along ξc, is zero for each j, k, and ν. In
the opposite case, when Ξjk does not vanish identically on γc, for some j, k, and c, there
exists a nonzero derivative (6).

Hence, (x0, z0) belongs to an integral manifold of (1) iff all derivatives (6) vanish. As
these derivatives are analytic in (x0, z0), their common zeroes constitute an analytic set.

Theorem 4. Let gij in (1) be polynomials of degree not exceeding α ≥ 1, and let Y be
the union of all integral manifolds of (1). Then Y can be defined by a system of algebraic
equations of degree not exceeding

(7) dY (m,n, α) =
(m + 1)(α− 1)

2
[2α(n + m + 2)− 2m− 2]2m+2 + α(n + 2)− 1.

Proof. ¿From the proof of Lemma 2, the set Y is defined by zeros of derivatives (6) of Ξij

along ξc, for all i, j, and c. Here ξc is a linear combination of the vector fields ξi defined
in (5), and Ξjk = [ξj , ξk] ∧ ξ1 · · · ∧ ξn.

As the coefficients of ξi are polynomials of degree not exceeding α, the coefficients of
Ξjk are polynomials of degree not exceeding B = α(n + 2)− 1. If (x0, z0) does not belong
to Y , some of these coefficients do not vanish identically on the trajectory γc of ξc through
(x0, z0). Due to Theorem 3, the multiplicity of zero at (x0, z0) of these coefficients restricted
to γc cannot exceed

N =
1
2

m∑

k=0

[2B + 2k(α− 1)]2m+2 ==
1
2

m∑

k=0

[2α(n + k + 2)− 2k − 2]2m+2.

This means that Y can be defined by zeroes of derivatives (6) with ν ≤ N . But these
derivatives are polynomials in (x0, z0) of degree not exceeding B + N(α− 1). Hence Y is
defined by a system of algebraic equations of degree not exceeding

α− 1
2

m∑

k=0

[2α(n + k + 2)− 2k − 2]2m+2 + α(n + 2)− 1.

As α ≥ 1, this does not exceed the right side of (7).
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3. The Milnor fibers

Let gij(x, z) be germs of analytic functions at 0 ∈ Cn+m, and let {z = ψ(x)} be a
germ of an integral manifold of (1) through 0. Let P (x, z) = (P1(x, z), . . . , Pn(x, z)) be
a germ of an analytic vector-function at 0, and let φi(x) = Pi(x, ψ(x)). Let S(x, z, ε) =
(S1(x, z, ε), . . . , Sm(x, z, ε)) be a one-parametric deformation of P (x, z), i.e., a germ of an
analytic vector-function at 0 ∈ Cn+m+1 such that S(x, z, 0) = P (x, z). We write Sε(x, z)
for S(x, z, ε) considered as a function in Cn+m, with a fixed value of ε.

Let Y be the union of all integral manifolds of (1). Due to Lemma 2, Y is a germ
of an analytic set. For (x, z) ∈ Y , let µε(x, z) be the multiplicity of the intersection
S1,ε|Λ = · · · = Sn,ε|Λ = 0 at (x, z), where Λ is an integral manifold of (1) through (x, z).

Definition 3. For a positive integer q, the Milnor fiber Zq of the deformation S relative
to the distribution (1) is the intersection of a closed ball Bδ = {‖(x, z)‖ ≤ δ} with a set of
those points (x, z) ∈ Y where µε(x, z) ≥ q, for a small positive δ and a complex nonzero
ε much smaller than δ. According to [Le] and Lemma 3 below, the homotopy type of Zq

depends only on the deformation S, and on the coefficients gij in (1). Let χ(Zq) be the
Euler characteristics of Zq.

Lemma 3. Let Wq be the set of small (x, z, ε) ∈ Cn+m+1 such that (x, z) ∈ Y , and
µε(x, z) ≥ q. Then Wq is a germ of an analytic set.

Proof. One can choose a system of coordinates (x, y) in the neighborhood of 0 ∈ Cn+m so
that each integral manifold of (1) through a point (x0, y0) ∈ Y is defined by y = y0.

Due to [AGV, Lemma 5.5], the condition µε(x0, y0) ≥ q depends only on the Taylor
expansion Ši in x of Si at (x0, y0, ε) of order q − 1. The coefficients of Ši are

(8)
∂|ν|Si

∂xν
(x0, y0, ε),

which are analytic in x0, y0, ε.
Let K =

(
q+n−1

n

)
be the number of monomials in n variables of degree less than q.

Consider Ši as a vector in CK . For any multi-index ν = (ν1, . . . , νn), with |ν| = ν1 + · · ·+
νn < q, consider (x − x0)ν Ši as a vector in CK , disregarding terms of order q and higher
in x− x0.

Condition µε(x0, y0) ≥ q means that rank of the set of Kn vectors xν Ši in CK is at most
K − q. This means vanishing of all (K − q + 1)-minors of a (K ×Kn)-matrix composed
of these vectors. As the elements of this matrix are the partial derivatives (8), which
are analytic in (x0, y0, ε), this, in combination with equations for Y , provides a system of
analytic equations for Wq.

Theorem 5. Let P = (P1(x, z), . . . , Pn(x, z)) be a germ of an analytic function at 0 in
Cn+m. Let ψ = (ψ1(x), . . . , ψm(x)) be a germ of an analytic function at 0 in Cn satisfying
(2), and let φi(x) = Pi(x, ψ(x)). Suppose that the intersection φ1(x) = · · · = φn(x) = 0 is
isolated at x = 0, with the multiplicity µ. Let S(x, z, ε) be a one-parametric deformation
of P , let Zq be the Milnor fibers of S relative to the distribution (1), and let Q = max{q :
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Zq 6= ∅}. Then

(9) µ =
Q∑

q=1

χ(Zq).

Proof. The arguments essentially repeat the arguments in the proof of Theorem 2, except
an additional restriction to the set Y of all integral manifolds of (1).

Let a system of coordinates (x, y) in Cn+m be chosen, as in the proof of Lemma 3, so
that each integral manifold of (1) through (x0, y0) ∈ Y is defined by y = y0. Let π be
projection Cn+m → Cn. Then π : {Sε = 0} ∩ Y → πY is a finite µ-fold ramified covering
(counting the multiplicities). Let ζq(y) = χ(π−1y ∩ Zq) be the number of preimages of a
point y in Zq, not counting multiplicities. Then

∑Q
q=1 ζq(y) ≡ µ does not depend on y.

We have
∫

πY

ζq(y)dχ = χ(Zq), and
∫

πY

Q∑
q=1

ζq(y)dχ =
∫

πY

µdχ = µ.

The last equality holds because πY is a closed contractible set, hence its Euler character-
istics equals 1.

Theorem 6. Let gij in (1) be polynomials of degree not exceeding α, and let Si be poly-
nomials in (x, z) of degree not exceeding β. Then the Milnor fiber Zq of S can be defined
by polynomial equations of degree not exceeding maximum of (7) and

(10) d(n, q, α, β) = (K − q + 1)[β + (q − 1)(α− 1)], where K =
(

q + n− 1
n

)
.

Proof. Let us fix a small nonzero ε. According to the arguments in the proof of Lemma 3,
condition (x0, z0) ∈ Zq is equivalent to vanishing of all (K − q + 1)-minors of a matrix
composed of the partial derivatives (8) of Sε of order ν < q, in a system of coordinates
(x, y) where integral manifolds of (1) are rectified.

Let us define a germ of the integral manifold Λ of (1) through (x0, z0) by a function ψ(x)
satisfying (2). Equations (2) allow one to represent a partial derivative (8) as a polynomial
in (x0, z0) of degree not exceeding β + ν(α − 1). Hence the elements of our matrix are
polynomials in (x0, z0) of degree not exceeding β+(q−1)(α−1), and its (K−q+1)-minors
are polynomials in (x0, z0) of degree not exceeding (K − q + 1)[β + (q − 1)(α− 1). These
polynomials, in combination with equations for Y , provide a system of equations for Zq.

Corollary. Under conditions of Theorem 6, the absolute value of the Euler characteristics
of Zq does not exceed

(11)
1
2

max
(
2dY (m,n, α), 2d(n, q, α, β)

)2(m+n)
,

where dY (m,n, α) and d(m,n, q) are defined in (7) and (10), respectively.

Proof. This follows from an estimate [M] of the Euler characteristics of the set Zq defined
by polynomial equations of degree not exceeding maximum of (7) and (10).
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5. Maximal multiplicity in a generic family

Theorem 7. For an analytic mapping P = (P1, . . . , Pn) : Cn → Cn and a nonnegative
integer r, let

(12) P c = (P c
1 , . . . , P c

n) where P c
j (x) = Pj(x) +

∑

i:|i|≤r

ci,jx
i.

Here i = (i1, . . . , in) is a sequence of nonnegative integers, |i| = i1 + · · · + in, and xi =
xi1

1 · · ·xin
n .

For 0 ≤ m ≤ r, the set of those (x, c) where the multiplicity of P c at x exceeds

(13) Q(m, n) =
(

n + m

1 + · · ·+ 1/n

)1+···+1/n n∏

k=1

(
(k − 1)!

k

)1/k

.

has codimension greater than n + m.

Corollary. Let Pz(x) = (Pz,1(x), . . . , Pz,n(x)) be a generic family of analytic mappings
Cn → Cn depending on parameters z ∈ Cm. Then the multiplicity of Pz, at any point
x ∈ Cn and for any z, is less than (13).

To prove Theorem 7 we need the following

Definition 4. For an analytic set V of codimension r, we define the order ordx0P |V of
an analytic function P on the set V at x0 ∈ V as a maximal integer ν such that, for
a generic (r+1)-dimensional plane L, P (x) = o(|x − x0|ν−1), for all x in at least one of
irreducible components of V ∩ L. If such a number does not exist (i.e., when P vanishes
identically on an irreducible component of V through x0) we define ordx0P |V = ∞. For
V = Cn, ordx0P |V = ordx0f is the usual vanishing order of P at x0.

For example, let V = {x2
1 = x3

2} and x0 = (0, 0). Then ord0x1|V = 2 and ord0x2|V = 1.

Lemma 4. Let r ≥ 0, and let P c be defined as in (12). For a sequence ν1 ≤ · · · ≤ νn ≤ r
of nonnegative integers, let Xν1,...,νn be the set of (x, c) where

ordxP c
1 = ν1, ordxP c

2 |P c
1 =0 = ν2, . . . , ordxP c

n|P c
1 =···=P c

n−1=0 = νn;

ordxP c
j ≥ ν1, for j > 1, ordxP c

j |P c
1 =0 ≥ ν2, for j > 2, . . . ,

ordxP c
n|P c

1 =···=P c
n−2=0 ≥ νn−1.

The codimension of Xν1,...,νn is not less than

(14) ν1

(
ν1 + n− 2

n− 1

)
+ ν2

(
ν2 + n− 3

n− 2

)
+ · · ·+ νn,

and the multiplicity of P c at any point of Xν1,...,νn is less than ν1 · · · νn.

Proof. The condition ordxP c
j ≥ ν1, for all j, means that the values of −ci,j , for |i| < ν1,

coincide with the coefficients of the Taylor expansion of Pj at x of the order ν1 − 1. This
gives n

(
ν1+n−1

n

)
independent conditions on ci,j .
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Let us fix P c
1 and consider a one-dimensional linear subspace l outside the tangent cone

to {P c
1 = 0} at x. We can choose coordinates so that l is the xn-axis. Let us fix all the terms

in P c
j , for j > 1, except those that do not contain xn. The condition ordxP c

j |P c
1 =0 ≥ ν2,

for j > 1, defines at most one possible value for each of the remaining terms. This gives
us at least (n − 1)

[(
ν2+n−2

n−1

)− (
ν1+n−2

n−1

)]
additional independent conditions on ci,j . The

same arguments allow one to prove that the codimension of Xν1,...,νd
is not less than

n

(
ν1 + n− 1

n

)
+ (n− 1)

[(
ν2 + n− 2

n− 1

)
−

(
ν1 + n− 2

n− 1

)]
+ · · ·+

[(
νn

1

)
−

(
νn−1

1

)]
.

Applying the identity k
(
νn−k+1+k−1

k

) − (k − 1)
(
νn−k+1+k−2

k−1

)
= νn−k+1

(
νn−k+1+k−2

k−1

)
, we

obtain (14).
To estimate the multiplicity µ of fc at a point x ∈ Xν1,...,νn , we have to count the number

of zeros (with their multiplicities) of a system of equations P c
1 = · · · = P c

n−1 = P c
n − ε = 0

converging to x as ε → 0. Due to the condition ordxP c
n|P c

1 =···=P c
n−1=0 = νn, this number

is less than νn multiplied by the multiplicity µ′ of {P c
1 = · · · = P c

n−1 = s = 0} at x,
where s is a generic linear function. The same arguments show that µ′ is less than νn−1

multiplied by the multiplicity of {P c
1 = · · · = P c

n−2 = s1 = s2 = 0} at x, where s1 and s2

are generic linear functions. Repeating these arguments, we obtain the necessary estimate
µ < ν1 · · · νn.

Proof of Theorem 7. Due to Lemma 4, we have to estimate maximal possible value of
ν1 · · · νn over the sequences (ν1, . . . , νn) such that (14) does not exceed n + r. Replacing(
νn−k+1+k−2

k−1

)
by νk−1

n−k+1/k − 1!, we see that (14) is not less than
∑n

k=1 νk
n−k+1/(k − 1)!.

Thus it is enough to maximize ν1 · · · νn when
∑n

k=1 νk
n−k+1/(k− 1)! = n + r. Substituting

uk = νk
n−k+1, we have to maximize

∏n
k=1 u

1/k
k when

∑n
k=1 uk/(k − 1)! = n + r. The

maximum (13) is achieved when

uk =
(k − 1)!(n + r)
k(1 + · · ·+ 1/n)

.

6. Proof of Theorem 1

Consider a deformation S(x, z, ε) of the polynomial P (x, z) defined by

Sj(x, z, ε) = Pj(x, z) + ε
∑

i:|i|≤m

ci,jx
i,

where ci,j are generic complex numbers. ¿From Theorem 7, the Milnor fibers Zq of this
deformation are empty for q ≥ Q(m,n), where Q(m,n) is defined in (13).

According to (9),

(15) µ =
Q(m,n)∑

q=1

χ(Zq) ≤ Q(m,n) max
q≤Q(m,n)

|χ(Zq)|.



MULTIPLICITY OF A NOETHERIAN INTERSECTION 11

¿From (11), the right side of (15) does not exceed

1
2
Q(m,n)max

(
2dY (m,n, α), 2d(n, Q(m,n), α, β)

)2(m+n)
,

where dY and d are defined in (7) and (10), respectively. The value of d(n, q, α, β) in (10)
does not exceed

(q + n− 1)n(β + (q − 1)(α− 1)) < (q + n)n(β + q(α− 1)).

The statement of Theorem 1 follows now from the following estimate for Q(m,n):

Proposition 1. The value of Q(m,n) in (13) does not exceed

(16) en

(
e(n + m)√

n

)ln n+1 ( n

e2

)n

.

Proof. The statement is obvious for n = 1.
Let n > 1. ¿From the obvious inequality

(17)
3
2
≤ 1 + · · ·+ 1

n
≤ ln n + 1,

we have

Q(m,n) ≤ 2
3
(n + m)ln n+1

n∏

k=1

(
(k − 1)!

k

)1/k

.

Next, we apply

(18) k! ≤ e
√

k

(
k

e

)k

,

to obtain

Q(m,n) <
2
3
(n + m)ln n+1e1+···+ 1

n n!e−n
n∏

k=1

k−
3
2k .

The inequality (18) follows from the inequality

ln(k!)− ln k

2
= ln 1 + · · ·+ ln k − ln k

2
≤

∫ k

1

ln xdx = n ln k − k + 1.

Applying once more (17) and (18), we obtain

(19) Q(m,n) <
2
3
e
√

n
(
e(n + m)

)ln n+1
( n

e2

)n n∏

k=1

k−
3
2k .
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To estimate the product in the right side of (19), we apply the inequality

(20)
n∑

k=1

ln k

k
>

ln2 n

2
− c, where c =

ln2 5
2

−
4∑

k=1

ln k

k
− ln 5

10
< 0.075.

To prove (20), we consider (lnx)/x, which is concave for x > e3/2 ≈ 4.48. Hence, for
n ≥ 5,

n∑

k=5

ln k

k
− ln 5

10
− ln n

2n
>

∫ n

5

ln x

x
dx =

ln2 n− ln2 5
2

.

This implies (20) for n ≥ 5, and it can be easily verified for n = 2, 3, 4. Exponentiating
(20), we have

n∏

k=1

k−
3
2k < e3c/2n−(ln n)/2 <

3
2
n−(ln n)/2.

Substituting this into (19), we obtain (16).
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