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MIXED VOLUME AND AN EXTENSION OF INTERSECTION

THEORY OF DIVISORS

KIUMARS KAVEH AND A.G. KHOVANSKII

Abstract. Let Krat(X) be the collection of all non-zero finite dimen-
sional subspaces of rational functions on an n-dimensional irreducible
variety X. For any n-tuple L1, . . . , Ln ∈ Krat(X), we define an inter-
section index [L1, . . . , Ln] as the number of solutions in X of a system
of equations f1 = · · · = fn = 0 where each fi is a generic function from
the space Li. In counting the solutions, we neglect the solutions x at
which all the functions in some space Li vanish as well as the solutions
at which at least one function from some subspace Li has a pole. The
collection Krat(X) is a commutative semigroup with respect to a natu-
ral multiplication. The intersection index [L1, . . . , Ln] can be extended
to the Grothendieck group of Krat(X). This gives an extension of the
intersection theory of divisors. The extended theory is applicable even
to non-complete varieties. We show that this intersection index enjoys
all the main properties of the mixed volume of convex bodies. Our pa-
per is inspired by the Bernstein–Kushnirenko theorem from the Newton
polytope theory.
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1. Introduction

The present paper is the first in a series of three papers in which we extend
the well-known Bernstein–Kushnirenko theorem to a far more general setting. It
is a revised and expanded version of the first half of the preprint [KKh1]. In this
introduction we discuss the content of the paper as well as a brief discussion of the
two coming papers.

The Bernstein–Kushnirenko theorem computes the number of solutions in (C∗)n

of a system of equations P1 = · · · = Pn = 0 where each Pi is a generic function
from a fixed finite dimensional vector space of functions spanned by monomials.
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The answer is given in terms of the mixed volume of the Newton polytopes of the
equations in the system (Section 2.2).

In this paper, instead of (C∗)n we take any irreducible n-dimensional complex
algebraic variety X ,1 and instead of a space of functions spanned by monomials, we
consider any non-zero finite dimensional vector space of rational functions on X .
For any n-tuple of such finite dimensional spaces L1, . . . , Ln of rational functions
on X we define an intersection index [L1, . . . , Ln] as the number of solutions in X
of a system of equations f1 = · · · = fn = 0 where each fi is a generic function from
the space Li. In counting the solutions, we neglect the solutions x at which all the
functions in some space Li vanish, as well as the solutions at which at least one
function from some space Li has a pole. As this intersection index only depends
on the birational type of X , we will also refer to it as the birationally invariant
intersection index.

Let Krat(X) denote the collection of all the non-zero finite dimensional sub-
spaces of rational functions on X . The set Krat(X) has a natural multiplication:
product L1L2 of two subspaces L1, L2 ∈ Krat(X) is the subspace spanned by all
the products fg, where f ∈ L1, g ∈ L2. With this multiplication, Krat(X) is a com-
mutative semigroup. As with any other commutative semigroup, there corresponds
a Grothendieck group to the semigroup Krat(X).2 We prove that the intersection
index [L1, . . . , Ln] is linear in each argument with respect to the multiplication in
Krat(X), and hence can be extended to the Grothendieck group of Krat(X).

With each space L ∈ Krat(X), one associates a rational Kodaira map ΦL : X 99K

P(L∗), the projectivization of the dual space L∗. Let x ∈ X be such that all the
f ∈ L are defined at x and not all of them vanish at x. To such x there corresponds
a non-zero functional in L∗ which evaluates f ∈ L at x. The Kodaira map sends
x to the image of this functional in P(L∗). It is a rational map, i.e., defined on a
Zariski open subset in X . The collection of subspaces in Krat(X) for which the
Kodaira map extends to a regular map everywhere on X , is a subsemigroup of
Krat(X) which we denote by KCart(X).

We show that if X is an irreducible normal projective variety then the Grothen-
dieck group of KCart(X) is naturally isomorphic to the group of Cartier divisors on
X (Section 6). Under this isomorphism the intersection index of subspaces corre-
sponds to the intersection index of Cartier divisors. Hence the intersection index of
subspaces introduced in the present paper can be considered as an extension of the
intersection theory of Cartier divisors to general varieties. For a (not necessarily
complete) variety X , the Grothendieck group of the semigroup Krat(X), equipped
with the intersection index, can be identified with the direct limit of groups of

1Throughout the paper, all the varieties are assumed to be over complex numbers, and a variety
is not automatically assumed to be irreducible.

2For a commutative semigroup K, the Grothendieck group G(K) is defined as follows: for
x, y ∈ K let us say x ∼ y if there is z ∈ K with xz = yz. Then G(K) consists of all the
formal quotients x/y, x, y ∈ K, where we identify x/y and z/w if xw = zy. One has a natural
homomorphism φ : K → G(K) with the following universal property: for any abelian group G′

and a homomorphism φ′ : K → G′, there exists a unique homomorphism ψ : G(K) → G′ such
that φ′ = ψ ◦ φ (Section 6).
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Cartier divisors on all the complete birational models of X . (Such limit is studied
from an algebraic point of view in [BFJ].)

The semigroup Krat(X), equipped with the intersection index, has an analogue
in convex geometry. This analogy is more evident in the toric case considered
by Bernstein and Kushnirenko. They deal with X = (C∗)n and the subsemi-
group Kmon ⊂ Krat(X) consisting of the finite dimensional subspaces spanned
by monomials. Each monomial zk = zk1

1 . . . zkn
n on (C∗)n corresponds to a point

k = (k1, . . . , kn) in the lattice Z
n (where z1, . . . , zn are the coordinates on (C∗)n).

A finite subset A ⊂ Zn gives a subspace LA in Kmon, namely, LA is the subspace
spanned by the monomials corresponding to the points in A. It is easy to see that
LA+B = LALB and thus the semigroup Kmon is isomorphic to the semigroup of
finite subsets of Zn with respect to the addition of subsets.

Let ∆1, . . . , ∆n be the convex hulls of finite subsets A1, . . . , An ⊂ Zn respec-
tively. According to the Bernstein–Kushnirenko theorem, the intersection index
[LA1 , . . . , LAn

] is equal to n! times the mixed volume of the convex polytopes
∆1, . . . , ∆n (when all the polytopes are the same this was proved by Kushnirenko
[Kush], and the general case is due to Bernstein [Ber]). Thus the intersection index
in the semigroup Kmon has all the properties of the mixed volume of convex bodies.
In the present paper, we prove that in general for any irreducible variety X , the
intersection index in the semigroup Krat(X) also enjoys all the main properties of
the mixed volume. These are listed in Section 2.1.

The semigroup of finite subsets in Zn does not have the cancellation property:
the equality A + C = B + C does not imply A = B. But the semigroup of convex
bodies in R

n does have the cancellation property. In fact, the Grothendieck group
of the semigroup of finite subsets in Zn is isomorphic to the group of virtual integral
polytopes in Rn, i.e., the formal differences of integral convex polytopes (see [Kh2]).
The isomorphism is induced by the map which sends a finite subset A ⊂ Zn to its
convex hull ∆(A). For a given subset A ⊂ Zn, among the sets B ⊂ Zn with ∆(A) =
∆(B), there is a biggest set A = ∆(A) ∩ Zn. The Bernstein–Kushnirenko theorem
implies that the space LA has the same intersection indices as the subspace LA.

In the semigroup Krat(X) of an irreducible variety X , there is a similar opera-
tion to taking convex hull. Let us say that spaces L1, L2 ∈ Krat(X) are equivalent
if there is M ∈ Krat(X) with L1M = L2M . One can show that among all the sub-
spaces equivalent to a given subspace L, there is a biggest subspace L ∈ Krat(X).
This subspace L is the integral closure or completion of L: it consists of all the ra-
tional functions which are integral over L (Section 6.1). The subspace L in Krat(X)
has the same intersection indices as L (Section 5).

To show the connection with the classical intersection index in topology and
algebraic geometry, in Section 7 we give alternative proofs of the main properties of
the intersection index (of subspaces of rational functions) using the usual topological
and algebro-geometric techniques. In particular, we prove an algebraic analogue of
the Alexandrov–Fenchel inequality from convex geometry using Hodge theory.

The algebraic analogue of Alexandrov–Fenchel inequality for the intersection
index of Cartier divisors has been proved in [Kh1] and [Tei]. Our proof of the
analogous inequality for the intersection index in Krat(X) is close to the proofs in
the above papers.
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The authors have found surprisingly simple arguments which simultaneously
prove the Alexandrov–Fenchel inequality in convex geometry as well as its alge-
braic analogue. These arguments are discussed in detail in a second paper [KKh2]
(preliminary version appeared in [KKh1]). The main construction there, associates
to any subspace L ∈ Krat(X) a convex body ∆(L) ⊂ R

n. The body ∆(L) is a
far-reaching generalization of the Newton polytope (of a Laurent polynomial). The
construction of the body ∆(L) depends on a choice of a Zn-valued valuation on the
field of rational functions on the variety X . We show that n! times the volume of
∆(L) is equal to the self-intersection index [L, . . . , L] (see [KKh2, Part IV]). The
proof is based on the description of the asymptotic behavior of semigroups in Zn+1.
This result is a direct generalization of the Kushnirenko theorem. Unfortunately,
in general the identity ∆(L1) + ∆(L2) = ∆(L1L2) does not hold, and hence we do
not get a generalization of the Bernstein theorem. Instead of equality, we have the
inclusion ∆(L1) + ∆(L2) ⊂ ∆(L1L2). This inclusion enables us to give a simple
proof of the Alexandrov–Fenchel inequality and its algebraic analogue.

In a third paper [KKh3] we address the case when the variety X is equipped with
an action of a reductive algebraic group G. We generalize the Bernstein theorem
to certain spherical G-varieties. The generalization of the Kushnirenko theorem
to projective spherical varieties is due to M. Brion [Bri] (see also [Kaz] and [Kir]).
But the Bernstein theorem can be extended only to certain classes of spherical
varieties.

After the submission of [KKh1] to arXiv, we learned that we were not the only
ones to have been working in this direction. Firstly, Okounkov was the first to
define (in passing) a generalization of the notion of Newton polytope [Ok1], [Ok2].
Although his case of interest was when X has a reductive group action. Secondly,
Lazarsfeld and Mustata, based on Okounkov’s previous works, and independently of
our preprint, came up with closely related constructions and results [LM]. Recently,
following [LM], similar results/constructions have been obtained for line bundles on
arithmetic surfaces [Yuan].

And a few words about location of the material: the main properties of mixed
volume are recalled in Section 2.1. In Section 2.2 the Bernstein–Kushnirenko the-
orem is discussed and in Section 3 we give a straightforward generalization of this
theorem to rational functions on (C∗)n. The intersection index for finite dimen-
sional subspaces of regular functions without common zeros and on a smooth variety
is defined in Section 4 and its main properties are established. Some of the prop-
erties, e.g., multi-linearity and invariance under the addition of integral elements,
are deduced from the special case when X is a curve. The Alexandrov–Fenchel
type inequality is deduced from the special case when X is a surface. In Section 5
we show that all the results in Section 4 for subspaces of regular functions easily
generalize to the finite dimensional subspaces of rational functions (possibly with
common zeros and poles) on a (possibly non-smooth) variety X . In Section 6.2
we show that for a projective variety X , the Grothendieck group of the subsemi-
group KCart(X) is isomorphic to the group of Cartier divisors on X preserving
the intersection index. Finally in Section 7 we give proofs of the main proper-
ties of the intersection index using usual techniques from topology and algebraic
geometry.
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2. Motivation and Preliminaries

2.1. Mixed volume of convex bodies and its properties. On the space of
convex bodies3 in Rn one has the following two operations:

1. (Minkowski sum of convex bodies): For any two subsets A, B ⊂ Rn, let A+B
denote the set consisting of all the points a+b, a ∈ A, b ∈ B. With this summation,
the collection of subsets of Rn becomes a commutative semigroup. In general, this
semigroup does not have the cancellation property: if for subsets A, B, C we have
A + C = B + C, it does not necessarily imply that A = B. The subset {0}, is
the identity element for the summation of subsets, i.e., for any A ⊂ Rn, we have
A+{0} = A. For two convex bodies ∆1, ∆2 in Rn, the set ∆1+∆2 is a convex body,
called the Minkowski sum of ∆1 and ∆2. With this summation, the collection of
convex bodies becomes a commutative semigroup with the cancellation property.
As for any commutative semigroup with the cancellation property, the collection of
formal differences ∆1 −∆2, forms an abelian group where two differences ∆1 −∆2

and ∆3 − ∆4 are considered equal if ∆1 + ∆4 = ∆2 + ∆3. This group is called the
group of virtual convex bodies.

2. (Multiplication of a convex body by a non-negative scalar): For a convex
body ∆ and λ > 0, the set {λa : a ∈ ∆} is a convex body denoted by λ∆. This
scalar multiplication can be extended to the virtual convex bodies and makes the
group of virtual convex bodies into a real (infinite dimensional) vector space.

Remark 2.1. It is important in the above definition of scalar multiplication (for
convex bodies) to assume that λ is non-negative. If we define λ∆ for any real λ as
above, then it will not agree with the Minkowski sum in a good way. For example,
if ∆ contains more than one point and λ > 0 then λ∆+(−λ)∆ contains more than
one point (i.e., is not zero).

Convex bodies form a convex cone in the vector space of virtual convex bodies.4

On this cone there is a volume function Vol which assigns to each convex body
∆, its volume Vol(∆) with respect to the standard Euclidean measure in Rn. The
function Vol is a homogeneous polynomial of degree n on the cone of convex bodies.
That is, its restriction to each finite dimensional section of the cone is a homoge-
neous polynomial of degree n. More precisely: let Rk

+ be the positive octant in Rk

consisting of all λ = (λ1, . . . , λk) with λ1 > 0, . . . , λk > 0. The polynomiality
of Vol means that for any choice of the convex bodies ∆1, . . . , ∆k, the function
P∆1,...,∆k

defined on Rk
+ by

P∆1,...,∆k
(λ1, . . . , λk) = Vol(λ1∆1 + · · · + λk∆k),

is a homogeneous polynomial of degree n.
By definition the mixed volume of V (∆1, . . . , ∆n) of an n-tuple (∆1, . . . , ∆n)

of convex bodies in Rn is the coefficient of the monomial λ1 . . . λn in the polynomial
P∆1,...,∆n

divided by n!.

3By a convex body in R
n we mean a compact convex subset of R

n.
4A cone in a (real) vector space is a subset which is closed under the addition and multiplication

by non-negative scalars.
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This definition implies that the mixed volume is the polarization of the volume
polynomial, that is, it is the unique function on the n-tuples of convex bodies which
satisfies the following:

(i) (Symmetry) V is symmetric with respect to permutations of the bodies
∆1, . . . , ∆n.

(ii) (Multi-linearity) It is linear in each argument with respect to the Minkowski
sum. The linearity in the first argument means that for any choice of convex
bodies ∆′

1, ∆′′
1 , ∆2, . . . , ∆n and for any λ1 > 0, λ2 > 0, we have:

V (λ1∆
′
1 + λ2∆

′′
1 , . . . , ∆n) = λ1V (∆′

1, . . . , ∆n) + λ2V (∆′′
1 , . . . , ∆n).

(iii) On the diagonal V coincides with the volume, i.e., for any convex body ∆
we have V (∆, . . . , ∆) = Vol(∆).

The above three properties characterize the mixed volume: it is the unique
function satisfying (i)–(iii).

By the multi-linearity, the volume and mixed volume functions can be extended
to the vector space of virtual convex bodies.

There are many interesting geometric inequalities known concerning the mixed
volume. The following two inequalities are easy to verify:

(1) Mixed volume is non-negative, that is, for any n-tuple ∆1, . . . , ∆n of convex
bodies, we have

V (∆1, . . . , ∆n) > 0.

(2) Mixed volume is monotone, that is, for two n-tuples of convex bodies ∆′
1 ⊂

∆1, . . . , ∆′
n ⊂ ∆n we have

V (∆1, . . . , ∆n) > V (∆′
1, . . . , ∆′

n).

The next inequality is far more complicated. It is known as the Alexandrov–Fenchel
inequality.

(3) For any n-tuple of convex bodies ∆1, . . . , ∆n ⊂ Rn one has:

V (∆1, ∆2, ∆3 . . . , ∆n)2 > V (∆1, ∆1, ∆3 . . . , ∆n)V (∆2, ∆2, ∆3 . . . , ∆n).

Below we mention some formal corollaries of the Alexandrov–Fenchel inequality. Let
us introduce a notation for the repetition of convex bodies in the mixed volume. Let
2 6 m 6 n be an integer and k1+ · · ·+kr = m a partition of m with ki ∈ N. Denote
by V (k1∗∆1, . . . , kr ∗∆r, ∆m+1, . . . , ∆n) the mixed volume of ∆1, . . . , ∆n, where
∆1 is repeated k1 times, ∆2 is repeated k2 times, etc. and ∆m+1, . . . , ∆n appear
once.

(4) With the notation as above, the following inequality holds:

V (k1 ∗ ∆1, . . . , kr ∗ ∆r, ∆m+1, . . . , ∆n)m >
∏

16j6r

V (m ∗ ∆j , ∆m+1 . . . , ∆n)kj .

(5) (Generalized Brunn–Minkowski inequality) Fix convex bodies ∆m+1, . . . ,
∆n. Then the function F which assigns to a body ∆, the number F (∆) =
V 1/m(m ∗ ∆, ∆m+1, . . . , ∆n), is concave, i.e., for any two convex bodies
∆1, ∆2 we have

F (∆1) + F (∆2) 6 F (∆1 + ∆2).
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The n = m case of the above Property (5) was discovered by H. Brunn at the end
of the 19th century. It is called the Brunn–Minkowski inequality. This inequality
was discovered before the Alexandrov–Fenchel inequality, and its proof is much
simpler than that of the Alexandrov–Fenchel.

2.2. Mixed volume and the Bernstein–Kushnirenko theorem. The beau-
tiful Bernstein–Kushnirenko theorem computes the number of solutions in (C∗)n

of a sufficiently general system of n equations P1 = · · · = Pn = 0, where the Pi are
Laurent polynomials, in terms of the Newton polytopes of these polynomials. In
this section we discuss this theorem.

Let us identify the lattice Z
n with Laurent monomials in (C∗)n: to each integral

point k = (k1, . . . , kn) ∈ Zn, we associate the monomial zk = zk1
1 . . . zkn

n . A Laurent
polynomial P =

∑

ckz
k is a finite linear combination of Laurent monomials with

complex coefficients. The support supp(P ) of a Laurent polynomial P , is the set
of exponents k for which ck 6= 0. We denote the convex hull of a finite subset
A ⊂ Zn by ∆A ⊂ Rn. The Newton polytope ∆(P ) of a Laurent polynomial P is
the convex hull ∆supp(P ) of its support. To each non-empty finite subset A ⊂ Zn

one can associate a finite dimensional vector space LA consisting of the Laurent
polynomials P with supp(P ) ⊂ A.

Definition 2.2. We say that a property holds for a generic element of a vector
space L, if there is a proper algebraic set Σ such that the property holds for all the
elements in L \ Σ.

Problem. For a given n-tuple of non-empty finite subsets A1, . . . , An ⊂ Zn, find
the number [LA1 . . . , LAn

] of solutions in (C∗)n of a generic system of equations
P1 = · · · = Pn = 0, where P1 ∈ L1, . . . , Pn ∈ Ln (i.e., find a formula for the
number of solutions of a generic element (P1, . . . , Pn) ∈ LA1 × · · · × LAn

).

When the convex hulls of the sets Ai are the same and equal to a polytope ∆,
the problem was solved by A.G. Kushnirenko (see [Kush]). He showed that in this
case we have

[LA1 , . . . , LAn
] = n! Vol(∆),

where Vol is the standard n-dimensional volume in Rn. In other words, if P1, . . . , Pn

are sufficiently general Laurent polynomials with given Newton polytope ∆, the
number of solutions in (C∗)n of the system P1 = · · · = Pn = 0 is equal to n! Vol(∆).

When the convex hulls of the sets Ai are not necessarily the same, the answer
was given by D. Bernstein (see [Ber]). He showed that:

[LA1 , . . . , LAn
] = n!V (∆A1 , . . . , ∆An

),

where V is the mixed volume of convex bodies in Rn. In other words, if P1, . . . , Pn

are sufficiently general Laurent polynomials with Newton polytopes ∆1, . . . , ∆n

respectively, the number of solutions in (C∗)n of the system P1 = · · · = Pn = 0 is
equal to n!V (∆1, . . . , ∆n).

Next, let us discuss the Bernstein–Kushnirenko theorem from a point of view
which later will allow generalizations. For two non-zero finite dimensional sub-
spaces L1,L2 of regular functions in (C∗)n, define the product L1L2 as the subspace
spanned by the products fg, where f ∈ L1, g ∈ L2. Clearly the multiplication of



350 K. KAVEH AND A. KHOVANSKII

monomials corresponds to the addition of their exponents, i.e., zkzℓ = zk+ℓ. This
implies that LA1LA2 = LA1+A2 .

Among the subspaces of regular functions in (C∗)n, there is a natural family
consisting of subspaces stable under the action of the multiplicative group (C∗)n.
It is easy to see that any such non-zero subspace is of the form LA for some non-
empty finite subset A ⊂ Zn of monomials. As mentioned above, LALB = LA+B,
which implies that the collection of stable subspaces is closed under the product of
subspaces.

For a finite set A ⊂ Zn, let A = ∆A ∩ Zn. To a subspace LA we can associate
the bigger subspace LA. From the Bernstein–Kushnirenko theorem it follows that
for any (n− 1)-tuple of finite subsets A2, . . . An ∈ Zn we have

[LA, LA2 , . . . , LAn
] = [LA, LA2, . . . , LAn

].

That is, (surprisingly!) enlarging LA 7→ LA does not change any of the intersection
indices. In other words, in counting the number of solutions of a system, instead
of the support of a polynomial, its convex hull plays the main role. We denote the
subspace LA by LA, and call it the completion of LA.

Recall that the semigroup of convex bodies with Minkowski sum has the can-
cellation property. It implies that the following cancellation property holds for the

finite subsets of Zn: if for finite subsets A, B, C ∈ Zn we have A+ C = B + C then
A = B. And the same cancellation property holds for the corresponding semigroup

of subspaces LA. That is, if LA LC = LB LC then LA = LB.
The Bernstein–Kushnirenko theorem defines an intersection index on n-tuples

of subspaces of type LA (for non-empty finite subsets A ⊂ Zn), and computes it
in terms of the mixed volume of polytopes. It follows that this intersection in-
dex should enjoy the same properties as the mixed volume, namely: 1) positivity,
2) monotonicity, 3) multi-linearity, 4) the Alexandrov–Fenchel inequality and its
corollaries. Moreover, we have 5) the subspaces LA and LA have the same inter-
section indices.

3. Bernstein–Kushnirenko Theorem for Rational Functions and

Virtual Polytopes

Let R = P/Q be a rational function on (C∗)n.

Definition 3.1. We define the virtual Newton polytope ∆R of R to be ∆P − ∆Q,
the formal difference of the Newton polytopes of the polynomials P and Q.

The above definition is well-defined, that is, if P1/Q1 = P2/Q2 then ∆P1 +∆Q2 =
∆P2 + ∆Q1 and hence ∆P1 − ∆Q1 = ∆P2 − ∆Q2 .

Unlike the case of Laurent polynomials and Newton polytopes, the family of
rational functions with a given virtual polytope ∆ = ∆′ − ∆′′ usually can not be
described by finitely many parameters.

Example 3.2. Let n = 1 and take ∆ = {0}. For any k > 0 take two polynomials
(in one variable) P and Q such that deg(P ) = deg(Q) = k and P (0) 6= 0 and
Q(0) 6= 0. Then the Newton segments of P and Q are both equal to the segment
[0, k] and hence the rational function R = P/Q has {0} as its virtual segment. For
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each k, the rational function R = P/Q depends on 2k+ 1 parameters and k can be
chosen to be arbitrarily large.

Definition 3.3. For two non-empty finite subsets A, B ⊂ Zn, let the formal quo-
tient LA/LB denote the collection of all the rational functions R = P/Q where
P, Q are Laurent polynomials with P ∈ LA and Q ∈ LB. We call LA/LB a virtual
subspace.

Take finite subsets Ai, Bi ⊂ Z
n, i = 1, . . . , n. We want to associate a number

[LA1/LB1 , . . . , LAn
/LBn

]

to the virtual subspaces LAi
/LBi

which computes the intersection number of the
principal divisors of generic functions Ri ∈ LAi

/LBi
: take a partition of {1, . . . , n}

into two subsets I = {i1, . . . , ir} and J = {j1, . . . , js}. To this partition associate
the number

N(I) = [LAi1
, . . . , LAir

, LBj1
, . . . , LBjs

].

That is, N(I) is the number of solutions x ∈ (C∗)n of a generic system Pi1 = · · · =
Pir

= Qj1 = · · · = Qjs
= 0, with Pik

∈ LAik
and Qjk

∈ LBjk
.

Definition 3.4. For virtual subspaces LA1/LB1 , . . . , LAn
/LBn

, define the number
[LA1/LB1 , . . . , LAn

/LBn
] by

[LA1/LB1 , . . . , LAn
/LBn

] =
∑

I⊂{1,...,n}

(−1)n−|I|N(I).

If B1 = · · · = Bn = {0}, then each virtual subspace LAi
/LBi

is equal to LAi

and the number [LA1/LB1, . . . , LAn
/LBn

] is just the number of solutions in (C∗)n

of a generic system P1 = · · · = Pn = 0 of Laurent polynomials Pi ∈ LAi
. Unlike

[LA1 , . . . , LAn
], the number [LA1/LB1 , . . . , LAn

/LBn
] can be negative. But it

is still multi-linear, and symmetric i.e. invariant under the permutation of its
arguments.

The following theorem is the extension of Bernstein–Kushnirenko theorem to
rational functions and virtual polytopes. For each i, let ∆i denote the virtual
polytope ∆Ai

− ∆Bi
.

Theorem 3.5 (Bernstein–Kushnirenko for rational functions).

[LA1/LB1, . . . , LAn
/LBn

] = n!V (∆1, . . . , ∆n).

Proof. By multi-linearity of mixed volume for virtual convex bodies, we have:

n!V (∆1, . . . , ∆n) = n!V (∆A1 − ∆B1 , . . . , ∆An
− ∆Bn

)

= n!
∑

I⊂{1,...,n}

(−1)n−|I|V (∆Ai1
, . . . , ∆Air

, ∆Bj1
, . . . , ∆Bjs

), (∗)

where as above I = {i1, . . . , ir} and J = {j1, . . . , js} = {1, . . . , n} \ I. Now by
the Bernstein–Kushnirenko theorem

n!V (∆Ai1
, . . . , ∆Air

, ∆Bj1
, . . . , ∆Bjs

) = [LAi1
, . . . , LAir

, LBj1
, . . . , LBjs

],
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and from (∗) we have

n!V (∆1, . . . , ∆n) =
∑

I⊂{1,...,n}

(−1)n−|I|[LAi1
, . . . , LAir

, LBj1
, . . . , LBjs

],

which is just the definition of [LA1/LB1, . . . , LAn
/LBn

]. �

4. An Intersection Index for Subspaces of Regular Functions

4.1. Semigroup of subspaces of an algebra of functions. In this section
we define the intersection index of a collection of finite dimensional subspaces
L1, . . . , Ln of rational functions on an n-dimensional variety X , and prove its main
properties. Roughly speaking, this intersection index is the number of solutions of
a generic system f1 = · · · = fn, where fi ∈ Li.

For convenience, we restrict ourselves to regular functions and smooth varieties.
Later, we will generalize the situation to rational functions on arbitrary varieties.

We start with some general definitions. A set equipped with an algebra of func-
tions is a set X , with an algebra R(X) consisting of complex valued functions on
X , and containing all the constants. To a pair (X, R(X)) one can associate the set
V R(X) whose elements are vector subspaces of R(X).

Any subspace L ∈ V R(X) gives rise to a natural map Φ̃L : X → L∗, where L∗

denotes the vector space dual of L, as follows: for x ∈ X let Φ̃L(x) ∈ L∗ be the
linear function defined by

Φ̃L(x)(f) = f(x),

for all f ∈ L.
There is a natural multiplication in V R(X):

Definition 4.1. For any two subspaces L1, L2 ⊂ R(X) define the product L1L2

to be the linear span of the functions fg, where f ∈ L1 and g ∈ L2. With this
product the set V R(X) becomes a commutative semigroup. The space L1L2 can
be considered as a factor of the tensor product L1 ⊗ L2 and there is a natural
projection π : L1⊗L2 → L1L2: for v ∈ L1⊗L2, where v =

∑

i fi ⊗ gi with fi ∈ L1,
gi ∈ L2, define π(v) =

∑

i figi. The projection π is onto but can have non-zero
kernel.

Let us say that a subspace L has no base locus on X if for each x ∈ X there is
a function f ∈ L with f(x) 6= 0. The following is easy to verify:

Proposition 4.2. Let L1, L2 be vector subspaces of R(X). If L1, L2 are finite
dimensional (respectively, if L1, L2 have no base locus on X), then the space L1L2

is finite dimensional (respectively, has no base locus on X).

According to Proposition 4.2, the finite dimensional subspaces of R(X) with no
base locus, form a semigroup in V R(X) which we will denote by KR(X).

Assume that Y ⊂ X and that the restriction of every function f ∈ R(X) to Y
belongs to an algebra R(Y ). We will denote the restriction of a subspace L ⊂ R(X)
to Y again by L. Clearly, if L ∈ KR(X) then L ∈ KR(Y ).

In this paper we will not use general sets equipped with algebras of functions.
Instead, the following case plays the main role.
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Definition 4.3. Let X be a variety and let R(X) = O(X) be the algebra of regular
functions onX . In this case to simplify the notation we will not mention the algebra
R(X) explicitly and the semigroup KR(X) will be denoted by Kreg(X).

As above any subspace L ∈ Kreg(X) gives a natural map Φ̃L : X → L∗. Since

by assumption L has no base locus, for all x ∈ X , we have Φ̃L(x) 6= 0.

Definition 4.4 (Kodaira map). For any x ∈ X , let ΦL(x) be the point in P(L∗)

represented by Φ̃L(x) ∈ L∗. We call ΦL : X → P(L∗), the Kodaira map of the
subspace L. It is a morphism from X to P(L∗).

Fix a basis {f1, . . . fd} for L. One verifies that, in the homogeneous coordinates
in P(L∗) corresponding to the dual basis to the fi, the map ΦL is given by

ΦL(x) = (f1(x) : · · · : fd(x)).

Finally let us define the notion of an integral element.

Definition 4.5. Let us say that a regular function f ∈ O(X) is integral over a
subspace L ∈ Kreg(X), if f satisfies an equation

fm + a1f
m−1 + · · · + am = 0,

where m > 0 and ai ∈ Li, for each i = 1, . . . , m.

4.2. Preliminaries on algebraic varieties. In this section, we discuss some
well-known results which we need to define an intersection index in the semigroup
Kreg(X). We will need the particular cases of the following results:

(1) An algebraic variety has a finite topology.
(2) There are finitely many topologically different varieties in an algebraic fam-

ily of algebraic varieties.
(3) In such a family the set of parameters for which the corresponding members

have the same topology, is a complex semi-algebraic subset in the space of
parameters.

(4) A complex semi-algebraic subset in a vector space either covers almost all
of the space, or covers only a very small part of it.

Let us give precise statements of these results and their particular cases we will use.
Let X , Y be algebraic varieties and let π : X → Y be a morphism. Consider the
family of algebraic varieties Xy = π−1(y) parameterized by the points y ∈ Y . The
following is well-known.

Theorem 4.6. Each variety Xy has the homotopy type of a finite CW -complex.
There is a finite stratification of the variety Y into complex semi-algebraic strata
Yα such that for any two points y1, y2 in the same stratum Yα, the varieties Xy1 ,
Xy2 , are homeomorphic. (In particular, in the family Xy there are only finitely
many topologically different varieties.)

When X , Y are real algebraic varieties and π : X → Y is a (real) morphism, a
similar statement holds. There are also extensions of the above to some other cases
(see [Dri]). We will need only the following simple corollary of this theorem.

Let L1, . . . , Ln be finite dimensional subspaces of regular functions on an n-
dimensional algebraic variety X . For f = (f1, . . . , fn) ∈ L = L1 × · · · ×Ln, let Xf
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denote the subvariety of X , defined by the system of equations f1 = · · · = fn = 0.
In the space L of parameters consider the subset F consisting of all the parameters
f for which the set Xf consists of isolated points only.

Corollary 4.7. (1) For every f ∈ F the set Xf is finite.
(2) Denote the number of points in Xf by k(f ), then there is a finite stratification

of the set F with complex semi-algebraic strata Yα such that the function k(f ) is
constant on each stratum. In particular, the subset F max ⊂ F where k(f ) attains
its maximum is a complex semi-algebraic set.

The above corollary can be proved without using Theorem 4.6. The semi-
algebraicity of the set F and its subsets F m = {f ∈ F : k(f ) = m} follow from
the complex version of the Tarski theorem. An analogous fact in the real case can
also be proved using the (real) Tarski theorem. An elementary proof of the Tarski
theorem and its complex version can be found in [BK]. An elementary theory of
real algebraic varieties can be found in [Whi].

We will need the following simple property of complex semi-algebraic sets.

Proposition 4.8. Let F ⊂ L be a complex semi-algebraic subset in a (complex)
vector space L. Then either there is an algebraic hypersurface Σ ⊂ L which contains
F , or F contains a Zariski open set U ⊂ L.

We will use this proposition in the following form.

Corollary 4.9. Let F ⊂ L be a complex semi-algebraic subset in a (complex )
vector space L. In either of the following cases, F contains a Zariski open subset
U ⊂ L: (1) F is an everywhere dense subset of L, or (2) F does not have zero
measure.

4.3. An intersection index in semigroup Kreg(X)

Definition 4.10. LetX be a smooth (not necessarily connected) complex n-dimen-
sional variety and let L1, . . . , Ln ∈ Kreg(X). The intersection index [L1, . . . , Ln]
is the maximum number of roots of a system f1 = · · · = fn = 0 over all the points
f = (f1, . . . , fn) ∈ L1 × · · · × Ln = L for which the corresponding system has
finitely many solutions.

By Corollary 4.7 the maximum is attained and the previous definition is well-
defined. The following is a straightforward corollary of the definition.

Theorem 4.11 (Obvious properties of the intersection index). Let L1, . . . , Ln ∈
Kreg(X), then:

(1) [L1, . . . , Ln] is a symmetric function of the n-tuple L1, . . . , Ln (i.e., takes
the same value under a permutation of L1, . . . , Ln).

(2) The intersection index is monotone (i.e., if L′
1 ⊆ L1, . . . , L

′
n ⊆ Ln, then

[L1, . . . , Ln] > [L′
1, . . . , L

′
n]).

(3) The intersection index is non-negative (i.e., [L1, . . . , Ln] > 0).

Let X be a smooth (not necessary connected) complex n-dimensional variety,
and let L1, . . . , Lk ∈ Kreg(X). Put L(k) = L1 × · · · × Lk.
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Proposition 4.12. There is a non-empty Zariski open set U in L(k) such that
either for any point f = (f1, . . . , fk) in U the system of equations f1 = · · · = fk = 0
has no solution in X, or the system is consistent5 and non-degenerate (i.e., at every
root of the system the differentials df1, . . . , dfk are linearly independent).

Proof. Fix a basis {gij} for each of the spaces Li. Consider all the k-tuples gj =
(g1j1 , . . . , gkjk

), where j = (j1, . . . , jk), containing exactly one vector from each of
the bases {gij} for the Li. Denote by Vj the Zariski open subset in X defined by the
system of inequalities g1,j1 6= 0, . . . , gk,jk

6= 0. (Note that since X can be reducible,
the set Vj might be empty.) Since L1, . . . , Lk are in Kreg(X), the union of the sets
Vj equals X . When the set Vj is non-empty, rewrite the system f1 = · · · = fk = 0
as follows: represent each function fi in the form fi = f̄i + cigiji

, where f̄i belongs
to the linear span of the gij excluding giji

. Now, in Vj , the system can be rewritten

as f̄1

g1,j1
= −c1, . . . , f̄k

gk,jk

= −ck. According to Sard’s theorem, for almost all the

c = (c1, . . . , ck) the system is non-degenerate. Denote by Wj the subset in L(k),
consisting of all the f for which the system f1 = · · · = fk = 0 is non-degenerate
in Vj . The set Wj splits into the union of the complex semi-algebraic subsets W 1

j

and W 2
j , containing the consistent or non-consistent systems respectively. Thus by

Corollary 4.9, exactly one of the sets W 1
j or W 2

j contains a non-empty Zariski open

subset U j . The intersection U of the sets U j is a Zariski open subset in L(k)
which satisfies all the requirements of the proposition. �

Proposition 4.13. The number of isolated roots, counted with multiplicity, of a
system f1 = · · · = fn = 0, where fi ∈ Li, is less than or equal to [L1, . . . , Ln].

Proof. Suppose A is a subset of the isolated roots of the system such that k(A),
the sum of multiplicities of the roots in A, is bigger than [L1, . . . , Ln]. According
to Proposition 4.12 one can slightly perturb the system to make it non-degenerate.
Under such a perturbation the roots belonging to the set A will split into k(A) >
[L1, . . . , Ln] simple roots while all other roots are also simple. But by Corollary 4.7
the number of these roots can not be bigger than [L1, . . . , Ln]. The contradiction
proves the proposition. �

Now we prove that if a system of equations is in general position then in Proposi-
tion 4.13, instead of inequality we have an equality. As before let L = L1×· · ·×Ln.

Proposition 4.14. There is a non-empty Zariski open set U in L such that for
any point f = (f1, . . . , fn) in U the system of equations f1 = · · · = fn = 0 on X
is non-degenerate and has exactly [L1, . . . , Ln] solutions.

Proof. Firstly, if the number of isolates roots of a system is equal to [L1, . . . , Ln]
then it is non-degenerate (otherwise its number of roots, counting with multiplicity,
would be bigger than [L1, . . . , Ln], which is impossible by Proposition 4.13). So
there must be a non-degenerate system which has [L1, . . . , Ln] roots. Secondly,
any system which is close enough to this system has exactly the same number of
isolated roots and almost all such systems are non-degenerate. So the set of non-
degenerate systems which have exactly [L1, . . . , Ln] roots is not a set of measure

5A system is consistent if its set of solutions is non-empty.
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zero. But since this set is complex semi-algebraic, by Corollary 4.9, it should contain
a (non-empty) Zariski open subset. �

Let Y be an m-dimensional quasi-projective smooth subvariety of X . For any
m-tuple of subspaces L1, . . . , Lm ∈ Kreg(X) let [L1, . . . , Lm]Y denote the inter-
section index of the restrictions of these subspaces to Y .

Consider an n-tuple L1, . . . , Ln ∈ Kreg(X). As before, for k 6 n put L(k) =
L1 × · · · × Lk. According to Proposition 4.12, there is a non-empty Zariski open
subset U(k) in L(k) such that for f(k) = (f1, . . . , fk) ∈ U(k), either the system
f1 = · · · = fk = 0 has no solutions or it defines a smooth subvariety Xf(k) in X .

Theorem 4.15. If the system f1 = · · ·= fk = 0 has no solution then [L1, . . . , Ln] =
0. If the system is consistent, then the following holds:

(1) For any point f(k) ∈ U(k) we have:

[L1, . . . Ln]X > [Lk+1, . . . Ln]Xf(k)
. (∗∗)

(2) Moreover, there is a Zariski open subset V (k) ⊂ U(k) such that for any
f(k) ∈ V (k), the inequality (∗∗) is in fact an equality.

Proof. The statement about non-consistent systems is obvious. Let us prove the
other statements. (1) If (∗∗) does not hold for a point f(k), then there are fk+1 ∈
Lk+1, . . . , fn ∈ Ln such that the system f1 = · · · = fn = 0 has more isolated so-
lution on X than the intersection index [L1, . . . , Ln], which is impossible. (2) Ac-
cording to Proposition 4.12 the collection of systems f = (f1, . . . , fn) ∈ L which
belong to the Zariski open set U in Proposition 4.14 and for which the subsystem
f1 = · · · = fk = 0 is non-degenerate, contains a Zariski open set V ⊂ U . Let
π : L → L(k) be the projection (f1, . . . , fn) 7→ (f1, . . . , fk). Now we can take
V (k) to be any (non-empty) Zariski open subset in L(k) contained in π(V ). �

Theorem 4.15 allows us to reduce the computation of the intersection index on
a higher dimensional smooth quasi-projective variety to the computation of the
intersection index on a lower dimensional smooth subvariety. As we will see, it is
not hard to establish the main properties of the intersection index for affine curves.
Using Theorem 4.15 we then easily obtain the corresponding properties for the
intersection index on smooth varieties of arbitrary dimension.

4.4. Preliminaries on algebraic curves. Here we recall some basic facts about
algebraic curves which we will use later. Let X be a smooth quasi-projective curve
(not necessarily irreducible or complete).

Theorem 4.16 (Normalization of algebraic curves). There is a unique (up to
isomorphism) smooth compactification X of X. The complement A = X \X, is a
finite set, and any regular function on X has a meromorphic extension to X.

One can find a proof of this classical result in most of the text books in algebraic
geometry (e.g., [Har, Chapter 1]). This theorem allows us to find the number of
zeros of a regular function g on X with a prescribed behavior at infinity, i.e., X \X .
Indeed if g is not identically zero on some irreducible component of the curve X ,
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then the order orda(g) of its meromorphic extension at a point a ∈ X is well-
defined. The function g on the projective curve X has the same number of roots
as the number of poles (counting with multiplicity). Thus we have the following:

Proposition 4.17. For every regular function g on a smooth quasi-projective curve
X (which is not identically zero on any irreducible component of X) the number of
roots, counting with multiplicity, is equal to −

∑

a∈A orda(g), where orda(g) is the

order of the meromorphic extension of the function g to X at the point a.

4.5. Intersection index in semigroup Kreg(X) of an algebraic curve X.
Let L ∈ Kreg(X) and let B = {fi} be a basis for L such that none of the fi

are identically zero on any irreducible component of the curve X . For each point
a ∈ A = X \ X denote by orda(L) the minimum, over all functions in B, of the
numbers orda(fi). Clearly, for every g ∈ L we have orda(g) > orda(L). The
collection of functions g ∈ L whose order at the point a is strictly bigger than
orda(L) form a proper subspace La of L.

Definition 4.18. Define the degree of a subspace L ∈ Kreg(X) to be
∑

a∈A

− orda(L),

and denoted it by deg(L).

For each irreducible component Xi of the curve X , denote the subspace of L,
consisting of all the functions identically equal to zero on Xi, by LXi

. The subspace
LXi

is a proper subspace of L because L has no base locus.
The following is a corollary of Proposition 4.17.

Proposition 4.19. If a function f ∈ L does not belong to the union of the subspaces
LXi

, then f has finitely many roots on X. The number of roots of the function f
(counting with multiplicity) is less than or equal to deg(L). If f is not in the union
of the subspaces La, a ∈ A, then the equality holds.

Proposition 4.20. For L, M ∈ Kreg(X) we have [L] + [M ] = [LM ].

Proof. For any point a ∈ A and any two functions f ∈ L, g ∈ M the identity
orda(f)+orda(g) = orda(fg) holds. Thus we have orda(L)+orda(M) = orda(LM),
which implies deg(L) + deg(M) = deg(LM), and hence [L] + [M ] = [LM ]. �

Consider the map −Ord which associates to a subspace L ∈ Kreg(X) an integer
valued function on the set A: the value of −Ord(L) at a ∈ A equals − orda(L).
The map −Ord is a homomorphism from the multiplicative semigroup Kreg(X) to
the additive group of integer valued functions on the set A. Clearly the number
[L] can be computed in terms of the homomorphism −Ord because [L] = deg(L) =
∑

a∈A −orda L.

Proposition 4.21. Assume that a regular function g on the curve X is integral
over a subspace L ∈ Kreg(X). Then at each point a ∈ A we have

orda g > orda L.
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Proof. Let gn +f1g
n−1 + · · ·+fn = 0, where fi ∈ Li. Suppose orda g = k < orda L.

Since gn = −f1g
n−1 − · · · − fn we have nk = orda(gn) > min{orda(f1g

n−1), . . . ,
orda(fn)}. That is, for some i, nk > orda(fi) + k(n − i). But for every i,
orda(fig

n−i) = orda(fi) + orda(gn−i) > i · orda(L) + k(n − i) > nk. The con-
tradiction proves the claim. �

Corollary 4.22. Assume that a regular function g on the curve X is integral over
a subspace L ∈ Kreg(X). Consider the subspace M ∈ Kreg(X) spanned by g and
L. Then:

(1) At each point a ∈ A the equality orda(L) = orda(M) holds.
(2) [L] = [M ].
(3) For each subspace N ∈ Kreg(X) we have [LN ] = [MN ].

4.6. Properties of the intersection index which can be deduced from the
curve case.

Theorem 4.23 (Multi-linearity). Let L′
1, L

′′
1 , L2, . . . , Ln ∈ Kreg(X) and put L1 =

L′
1L

′′
1 . Then

[L1, . . . , Ln] = [L′
1, . . . , Ln] + [L′′

1 , . . . , Ln].

Proof. Consider three n-tuples (L′
1, . . . , Ln), (L′′

1 , . . . , Ln) and (L′
1L

′′
1 , . . . , Ln) of

elements of the semigroup Kreg(X). If a generic system f2 = · · · = fn = 0,
where f2 ∈ L2, . . . , fn ∈ Ln is non-consistent then the three indices appeared in
the theorem are equal to zero. Thus the theorem holds in this case. Otherwise,
according to Theorem 4.15 there is an (n−1)-tuple f2 ∈ L2, . . . , fn ∈ Ln such that
the system f2 = · · · = fn = 0 is non-degenerate and defines a curve Y ⊂ X such that
[L′

1, . . . , Ln] = [L′
1]Y , [L′′

1 , . . . , Ln] = [L′′
1 ]Y and [L′

1L
′′
1 , . . . , Ln] = [L′

1L
′′
1 ]Y . Using

Proposition 4.20 we obtain [L′
1L

′′
1 ]Y = [L′

1]Y + [L′′
1 ]Y and theorem is proved. �

Corollary 4.24. Let L1, L2, . . . , Ln ∈ Kreg(X), then for any k > 0 we have

[Lk
1 , L2, . . . , Ln] = k[L1, L2, . . . , Ln].

By the above corollary, given some k > 0, if we know the intersection index of
the space Lk

1 and any (n − 1)-tuple of subspaces L2, . . . , Ln, we can recover the
intersection index of L1 and L2, . . . Ln. The computation of the intersection index
of Lk

1 might be easier since it contains more functions.

Theorem 4.25 (Addition of integral elements). Let L1 ∈ Kreg(X) and let M1 ∈
Kreg(X) be a subspace spanned by L1 ∈ Kreg(X) and a regular function g which
is integral over L1. Then for any (n− 1)-tuple L2, . . . , Ln ∈ Kreg(X) we have

[M1, L2, . . . , Ln] = [L1, L2, . . . , Ln].

Proof. Consider two n-tuples (L1, L2, . . . , Ln), (M1, L2, . . . , Ln) of Kreg(X). If
a generic system f2 = · · · = fn = 0, where f2 ∈ L2, . . . , fn ∈ Ln is non-consistent,
then the two indices appearing in the theorem are equal to zero. Thus the theorem
holds this case. Otherwise, according to Theorem 4.15 there is an (n − 1)-tuple
(f2, . . . , fn), fi ∈ Li such that the system f2 = · · · = fn = 0 is non-degenerate
and defines a curve Y ⊂ X with [L1, L2, . . . , Ln] = [L1]Y and [G1, L2, . . . , Ln] =
[G1]Y . Using Corollary 4.22 we obtain [L1]Y = [M1]Y as required. �
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4.7. Properties of the intersection index which can be deduced from the
surface case. Motivated by the terminology of line bundles, let us say that a
subspace L ∈ Kreg(X) is very ample if the Kodaira map ΦL : X → P(L∗) is an
embedding. Note that L is very ample if and only if for any k > 0, Lk is very
ample. The very ample subspaces form a subsemigroup of Kreg(X). Let Y ⊂ X
be a smooth algebraic subvariety of a smooth variety X and let L ∈ Kreg(X) be
a very ample subspace. Then the restriction of L to Y is a very ample space in
Kreg(Y ).

Theorem 4.26 (A version of the Bertini–Lefschetz theorem). Let X be a smooth
irreducible n-dimensional quasi-projective variety and let L1, . . . , Lk ∈ Kreg(X),
k < n, be very ample subspaces. Then there is a Zariski open set U(k) in L(k) =
L1×· · ·×Lk such that for each point f(k) = (f1, . . . , fk) ∈ U(k) the variety defined
in X by the system of equations f1 = · · · = fk = 0 is smooth and irreducible.

A proof of the Bertini–Lefschetz theorem can be found in [Har, Theorem 8.18]

Theorem 4.27 (A version of Hodge inequality). Let X be a smooth irreducible sur-
face and let L1, L2 ∈ Kreg(X) be very ample subspaces. Then we have [L1, L2]

2 >

[L1, L1][L2, L2].

To make the present paper self-contained we give a proof of Theorem 4.27 using
the usual Hodge theory in the appendix. Also as mentioned in the introduction,
the authors have found an elementary proof of Theorem 4.27 using only the isoperi-
metric inequality for planar convex bodies and the Hilbert theorem on degree of
a subvariety in the projective space. This has appeared in a separate paper (see
[KKh1, Theorem 5.9] for a preliminary version, and [KKh2, Part IV] for the detailed
version).

Theorem 4.28 (Algebraic analogue of the Alexandrov–Fenchel inequality). Let X
be an irreducible n-dimensional smooth quasi-projective variety and let L1, . . . , Ln ∈
Kreg(X) be very ample subspaces. Then the following inequality holds

[L1, L2, L3, . . . , Ln]2 > [L1, L1, L3, . . . , Ln][L2, L2, L3, . . . , Ln].

Proof. Consider n-tuples (L1, L2, L3, . . . , Ln), (L1, L1, L3, . . . , Ln) and (L2, L2,
L3, . . . , Ln) of subspaces in the semigroup Kreg(X). According to the Bertini–
Lefschetz theorem and Theorem 4.15 there is an (n − 2)-tuple of functions f3 ∈
L3, . . . , fn ∈ Ln such that the system f3 = · · · = fn = 0 is non-degenerate and
defines an irreducible surface Y ⊂ X for which we have:

[L1, L2, L3, . . . , Ln] = [L1, L2]Y ,

[L1, L1, L3, . . . , Ln] = [L1, L1]Y ,

[L2, L2, L3, . . . , Ln] = [L2, L2]Y .

By Theorem 4.27,

[L1, L2]
2
Y > [L1, L1]Y [L2, L2]Y ,

which proves the theorem. �
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The above theorem, in a slightly different form, was proved at the beginning of
1980’s by Teissier and the second author. A survey and a list of references can be
found in [Kh1].

Similar to Section 2.1, let us introduce a notation for the repetition of subspaces
in the intersection index. Let 2 6 m 6 n be an integer and k1 + · · · + kr = m a
partition of m with ki ∈ N. Consider the subspaces L1, . . . , Ln ∈ Kreg(X). Denote
by [k1 ∗ L1, . . . , kr ∗ Lr, Lm+1, . . . , Ln] the intersection index of these subspaces
where L1 is repeated k1 times, L2 is repeated k2 times, etc. and Lm+1, . . . , Ln

appear once. The following inequalities follow from Theorem 4.28 exactly in the
same way as the analogous geometric inequalities follow from the Alexandrov–
Fenchel inequality.

Corollary 4.29 (Corollaries of the algebraic analogue of Alexandrov–Fenchel in-
equality). Let X be an n-dimensional smooth irreducible quasi-projective variety.

(1) Let 2 6 m 6 n and k1 + · · ·+kr = m with ki ∈ N. Take very ample subspaces
of regular functions L1, . . . , Ln ∈ Kreg(X). Then

[k1 ∗ L1, . . . , kr ∗ Lr, Lm+1, . . . , Ln]m >
∏

16j6r

[m ∗ Lj, Lm+1, . . . , Ln]kj .

(2) (Generalized Brunn–Minkowski inequality) For any fixed very ample sub-
spaces Lm+1, . . . , Ln ∈ Kreg(X), the function

F : L 7→ [m ∗ L, Lm+1, . . . , Ln]1/m,

is a concave function on the semigroup of very ample subspaces.

5. Intersection Index for Subspaces of Rational Functions

In this section we extend the definitions and results in the previous section to
the following general situation: instead of a smooth n-dimensional quasi-projective
variety we take any quasi-projective variety X (possibly singular) such that all
its irreducible components have the same dimension n. And instead of a finite
dimensional subspace of regular functions with no base locus, we take any finite
dimensional subspace of rational functions on X such that its restriction to any
irreducible component of X is a non-zero subspace.

Let us start with the following lemma dealing with subspaces of regular functions.
Recall that Kreg(X) denotes the collection of all the finite dimensional subspaces
of regular functions on X with no base locus.

Lemma 5.1. Let X be an n-dimensional quasi-projective variety (not necessarily
smooth) and let L1, . . . Ln ∈ Kreg(X). Then for any subvariety Σ ⊂ X with
dim(Σ) < n, there is a non-empty Zariski open subset UΣ ⊂ L = L1 × · · · × Ln

such that for any f = (f1, . . . , fn) ∈ UΣ the system f1 = · · · = fn = 0 has no
solution in Σ.

Proof. As in Proposition 4.12 let us fix a basis gij for each subspace Li. Consider
all the n-tuples gj = (g1j1 , . . . , gnjn

), where j = (j1, . . . , jn), which contain one
function from each basis {gij}. Let Vj be the Zariski open subset in X defined by
the inequalities giji

6= 0, i = 1, . . . , n. Since L1, . . . , Ln ∈ Kreg(X), the union of



MIXED VOLUME AND AN EXTENSION OF INTERSECTION THEORY OF DIVISORS 361

the sets Vj is X . Represent each function fi in the form fi = f̄i + cigiji
, where

f̄i is the linear combination of all the basis functions gik except gi,ji
. When Vj is

non-empty the system can be written as

f̄1
g1,j1

= −c1, . . . ,
f̄n

gn,jn

= −cn.

In other words in the open set Vj each solution of the system f1 = · · · = fn = 0 is
a preimage of the point −c = (−c1, . . . , −cn) in Cn under the map φj : Vj → Cn

given by

φj =

(

f̄1
g1,j1

, . . . ,
f̄n

gn,jn

)

.

Let Σj = Σ ∩ Vj . The set φ(Σj), has dimension smaller than n and hence there
is a Zariski open subset U j ∈ L such that for f = (f1, . . . , fn) ∈ U j the system
f1 = · · · = fn = 0 has no solutions in Σj . Now take UΣ to be the intersection of
all the U j . �

Definition 5.2. Let X be a quasi-projective variety such that all its irreducible
components have the same dimension n. Denote by Krat(X) the collection of all the
finite dimensional subspaces L of rational functions on X such that the restriction
of L to any irreducible component of X is a non-zero subspace.

A rational function is not necessarily defined everywhere on X . Nevertheless we
can still define a multiplication on Krat(X) exactly as we did for Kreg(X), and
with this multiplication Krat(X) becomes a (commutative) semigroup. We now
define a birationally invariant intersection index on the semigroup Krat(X).

Definition 5.3. Let L ∈ Krat(X). We say that a closed subvariety Σ ⊂ X is said
to be admissible for (X, L) if it satisfies the following properties:

(i) Σ contains the singular locus of X and hence X \ Σ is smooth.
(ii) dim(Σ) < n.
(iii) Σ contains the supports of all the irreducible divisors on which a function

from L has a pole.
(iv) Σ contains the base locus of L, i.e., the set of points where all the functions

in L vanish.

A closed subvariety Σ ⊂ X is said to be admissible for a finite collection
L1, . . . , Lk ∈ Krat(X) if it is admissible for each Li, i = 1, . . . , k.

Remark 5.4. Take a subspace L ∈ Krat(X) and an admissible subvariety Σ for
L. The Kodaira map ΦL is defined and regular on X \ Σ. Thus for L ∈ Krat(X),
we can talk about the Kodaira map ΦL as a rational map from X to P(L∗).

Let X be a quasi-projective variety such that all its irreducible components have
dimension n. Consider L1, . . . , Ln ∈ Krat(X). Take any subvariety Σ which is
admissible for X and L1, . . . , Ln.

Definition 5.5. Let L1, . . . , Ln ∈ Krat(X). The birationally invariant intersec-
tion index (or for short the intersection index ) of the subspaces L1, . . . , Ln is the
intersection index [L1, . . . , Ln]X\Σ of the restrictions of the subspaces Li to the
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smooth variety X \ Σ. We denote it by the symbol [L1, . . . , Ln]X , or simply by
[L1, . . . , Ln] when there is no confusion about the variety X .

Proposition 5.6. The birationally invariant index is well-defined.

Proof. The index [L1, . . . , Ln]X\Σ is defined because Li are finite dimensional sub-
spaces of regular function without base locus on X \Σ. Let us show that the index
[L1, . . . , Ln]X\Σ is independent of the choice of an admissible set Σ. Let Σ1, Σ2 be
two admissible subvarieties and put Σ = Σ1 ∪ Σ2. Then Σ is also admissible. Now
by Lemma 5.1 we have:

[L1, . . . , Ln]X\Σ1
= [L1, . . . , Ln]X\Σ,

and

[L1, . . . , Ln]X\Σ2
= [L1, . . . , Ln]X\Σ,

which proves the proposition. �

Let τ : X → Y be a birational isomorphism between the n-dimensional varieties
X and Y .

Proposition 5.7. For each n-tuple L1, . . . , Ln ∈ Krat(Y ) we have

[L1, . . . , Ln]Y = [τ∗L1, . . . , τ
∗Ln]X .

Proof. Since τ is a birational isomorphism one can find subvarieties Σ ⊂ X and
Γ ⊂ Y such that τ is an isomorphism from X \ Σ to Y \ Γ. By enlarging Σ and Γ
we can assume that they are admissible for τ∗L1, . . . , τ

∗Ln on X and L1, . . . , Ln

on Y respectively. It is clear that [L1, . . . , Ln]Y \Γ = [τ∗L1, . . . , τ
∗Ln]X\Σ. Since

[L1, . . . , Ln]Y = [L1, . . . , Ln]Y \Γ,

and

[τ∗L1, . . . , τ
∗Ln]X = [τ∗L1, . . . , τ

∗Ln]X\Σ,

we are done. �

Proposition 5.8. Let L1 ∈ Krat(X) be a one dimensional subspace of rational
functions. Then for any (n− 1)-tuple of subspaces L2, . . . , Ln ∈ Krat(X) we have

[L1, . . . , Ln] = 0.

Proof. Suppose L1 is spanned by a rational function f . An admissible subvariety
Σ for L1, . . . , Ln contains the hypersurface {f = 0}. But then no function in L1

vanishes on X \ Σ and hence

[L1, . . . , Ln] = [L1, . . . , Ln]X\Σ = 0. �

Theorem 5.9. (1) [L1, . . . , Ln] is symmetric function of L1, . . . , Ln ∈ Krat(X)
(i.e., takes the same value under a permutation of the elements L1, . . . , Ln).

(2) The birationally invariant index is monotone (i.e., if L′
1 ⊆ L1, . . . , L

′
n ⊆ Ln,

then [L1, . . . , Ln] > [L′
1, . . . , L

′
n]).

(3) The birationally invariant index is non-negative (i.e., [L1, . . . , Ln] > 0).

Proof. Follows from Theorem 4.11. �
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Theorem 5.10 (Multi-linearity). Let L′
1, L

′′
1 , L2, . . . , Ln ∈ Krat(X) and put L1 =

L′
1L

′′
1 . Then

[L1, . . . , Ln] = [L′
1, . . . , Ln] + [L′′

1 , . . . , Ln].

Proof. Follows from Theorem 4.23. �

Corollary 5.11. Let L1, . . . , Ln ∈ Krat(X). Take 1-dimensional subspaces L′
1, . . . ,

L′
n ∈ Krat(X). Then

[L1, . . . , Ln] = [L′
1L1, . . . , L

′
nLn].

Proof. Follows from Proposition 5.8 and Theorem 5.10. �

Definition 5.12. As before let us say that f ∈ C(X) is integral over a subspace
L ∈ Krat(X) if f satisfies an equation

fm + a1f
m−1 + · · · + am = 0,

where m > 0 and ai ∈ Li, for each i = 1, . . . , m.

Theorem 5.13 (Addition of integral elements). Let L1 ∈ Krat(X) and let M1 ∈
Krat(X) be the subspace spanned by L1 and a rational function g integral over L1.
Then for any (n− 1)-tuple L2, . . . , Ln ∈ Krat(X) we have

[L1, L2, . . . , Ln] = [M1, L2, . . . , Ln].

Proof. Follows form Theorem 4.25. �

Definition 5.14. It is well-known that the collection of all integral elements over
L is a vector subspace containing L. Moreover if L is finite dimensional then L is
also finite dimensional (see [ZS, Appendix 4]). It is called the completion of L and
denoted by L.

One can also give a description of the completion L of a subspace L ∈ Krat(X)
purely in terms of the semigroup Krat(X) (see Theorem 6.2).

Corollary 5.15 (Intersection index and completion). Let L1 ∈ Krat(X) and L1

its completion as defined above. Then for any (n− 1)-tuple L2, . . . , Ln ∈ Krat(X)
we have

[L1, L2, . . . , Ln] = [L1, L2, . . . , Ln].

Proof. Follows form Theorem 5.13 and the fact that L1 is finite dimensional and
hence can be spanned by L1 together with a finite number of extra integral elements
over L1. �

Let us say that a subspace L ∈ Krat(X) is very big if the Kodaira rational map
ΦL is an embedding restricted to a Zariski open set. We say L is big if Lk is very
big for some k > 0.

Theorem 5.16 (A birationally invariant version of Hodge inequality). Let X be an
irreducible (possibly singular) surface and let L1, L2 ∈ Krat(X) be big subspaces.
Then we have

[L1, L2]
2 > [L1, L1][L2, L2].
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Proof. It follows from the multi-linearity of the intersection index that if we replace
each Li with any power Lki

i the inequality does not change. Thus it is enough to
prove the theorem for very big subspaces, in which case it follows from Theorem
4.27. �

Theorem 5.17 (Analogue of the Alexandrov–Fenchel inequality for birationally
invariant index). Let X be an irreducible n-dimensional (possibly singular) variety
and let L1, . . . , Ln ∈ Krat(X) be big subspaces. Then the following inequality holds:

[L1, L2, L3, . . . , Ln]2 > [L1, L1, L3, . . . , Ln][L2, L2, L3, . . . , Ln].

Proof. As above, by the multi-linearity it is enough to prove the theorem for very
big subspaces, and the theorem in this case follows from Theorem 4.28. �

The same inequalities as in Corollary 4.29 hold for the birationally invariant
index.

6. Grothendieck Group of Subspaces of Rational Functions and

Cartier Divisors

6.1. Generalities on semigroups of rational functions. Let K be a com-
mutative semigroup (whose operation we denote by multiplication). K is said to
have the cancellation property if for x, y, z ∈ K, the equality xz = yz implies
x = y. Any commutative semigroup K with the cancellation property can be ex-
tended to an abelian group G(K) consisting of formal quotients x/y, x, y ∈ K. For
x, y, z, w ∈ K we identify the quotients x/y and w/z, if xz = yw.

Given a commutative semigroup K (not necessarily with the cancellation prop-
erty), we can get a semigroup with the cancellation property by considering the
equivalence classes of a relation ∼ on K: for x, y ∈ K we say x ∼ y if there is
z ∈ K with xz = yz. The collection of equivalence classes K/∼ naturally has
structure of a semigroup with cancellation property. Let us denote the group of
formal quotients of K/∼ again by G(K). It is called the Grothendieck group of the
semigroup K. The map which sends x ∈ K to its equivalence class [x] ∈ K/∼ gives
a natural homomorphism φ : K → G(K).

The Grothendieck group G(K) together with the homomorphism φ : K → G(K)
satisfies the following universal property: for any other group G′ and a homomor-
phism φ′ : K → G′, there exists a unique homomorphism ψ : G(K) → G′ such that
φ′ = ψ ◦ φ.

Definition 6.1. For two subspaces L, M ∈ Krat(X), we write L ∼rat M if L and
M are equivalent as elements of the multiplicative semigroup Krat(X), that is, if
there is N ∈ Krat(X) with LN = MN .

From multi-linearity of the intersection index it follows that the intersection
index is invariant under the equivalence of subspaces, namely if L1, . . . , Ln and
M1, . . . , Mn ∈ Krat(X) are n-tuples of subspaces and for each i, Li ∼rat Mi then

[L1, . . . , Ln] = [M1, . . . , Mn].
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Hence, generalizing the situation in Section 3, one can extend the intersection
index to the Grothendieck group of Krat(X). We denote this Grothendieck group
by Grat(X).

For L ∈ Krat(X) recall that the completion L is the collection of all ratio-
nal functions integral over L (Definition 5.14). The following result describes the
completion L of a subspace L as the largest subspace equivalent to L (see [ZS,
Appendix 4] for a proof).

Theorem 6.2. For L ∈ Krat(X), the completion L is the largest subspace which
is equivalent to L. That is,

(1) L ∼rat L and
(2) if for M ∈ Krat(X) we have M ∼rat L then M ⊂ L.

Theorem 6.2 readily implies that the intersection indices of subspace L ∈ Krat(X)
and its completion L are the same (Corollary 5.15).

Remark 6.3. Let us call a subspace L, complete if L = L. If L and M are com-
plete subspaces, then LM is not necessarily complete. For two complete subspaces
L, M ∈ Krat(X), define

L ∗M = LM.

The collection of complete subspaces together with ∗ is a semigroup with the can-
cellation property. Theorem 6.2 in fact shows that L 7→ L gives an isomorphism
between the quotient semigroup Krat(X)/∼rat and the semigroup of complete sub-
spaces (with ∗).

In analogy with the linear equivalence of divisors, we define the linear equivalence
for subspaces of rational functions.

Definition 6.4. Given L, M ∈ Krat(X), we say L is linearly equivalent to M if
there is a rational function which is not identically zero on any irreducible compo-
nent of X and L = fM . We then write L ∼lin M . For two classes of subspaces
[L], [M ] ∈ Krat(X)/∼rat we say [L] is linearly equivalent to [M ] and again write
[L] ∼lin [M ] if there are L′ ∼rat L and M ′ ∼rat M such that L′ is linearly equivalent
to M ′.

The following is easy to verify. Part 2 is just Corollary 5.11.

Proposition 6.5. (1) The linear equivalence ∼lin is an equivalence relation on
Krat(X) which respects the semigroup operation. Similarly, ∼lin is an equivalence
relation on the factor semigroup Krat(X)/∼rat and it respects the semigroup op-
eration. Hence it extends to an equivalence relation on the Grothendieck group
Grat(X).

(2) The birationally invariant index is preserved under the linear equivalence.
and thus induces an intersection index on the factor group Grat(X)/∼lin.

The intersection index [L1, . . . , Ln]X can be computed separately on each ir-
reducible component of the variety X . So without lost of generality we can only
consider irreducible varieties.
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6.2. Cartier divisor associated to a subspace of rational functions with
a regular Kodaira map. A Cartier divisor on a projective irreducible variety
X is a divisor which can be represented locally as a divisor of a rational function.
Any rational function f defines a principal Cartier divisor denoted by (f). The
Cartier divisors are closed under the addition and form an abelian group which
we will denote by Div(X). A dominant morphism Φ: X → Y between varieties
X and Y gives a pull-back homomorphism Φ∗ : Div(Y ) → Div(X). Two Cartier
divisors are linearly equivalent if their difference is a principle divisor. The group
of Cartier divisors modulo linear equivalence is called the Picard group of X and
denoted by Pic(X). One has an intersection theory on Pic(X): for given Cartier
divisors D1, . . . , Dn on an n-dimensional projective variety there is an intersection
index [D1, . . . , Dn] which obeys the usual properties (see [Ful]).

Now let us return back to the subspaces of rational functions. For a subspace
L ∈ Krat(X), in general, the Kodaira map ΦL is a rational map, possibly not
defined everywhere on X .

Definition 6.6. We denote the collection of subspaces L ∈ Krat(X) for which
the rational Kodaira map ΦL : X 99K P(L∗) extends to a regular map defined
everywhere on X , by KCart(X). A subspace L ∈ KCart(X) is called a subspaces
with regular Kodaira map.

One can verify that the collection KCart(X) is closed under the multiplication
and under the linear equivalence, i.e., if L ∈ KCart(X) and f is a rational function
which is not identically equal to zero on any irreducible component of X , then
fL ∈ KCart(X). Moreover, ΦL = ΦfL.

Definition 6.7. To a subspace L ∈ KCart(X) there naturally corresponds a Cartier
divisor D(L) as follows: each rational function h ∈ L defines a hyperplane H =
{h = 0} in P(L∗). The divisor D(L) is the difference of the pull-back divisor Φ∗

L(H)
and the principal divisor (h).

Theorem 6.8. Let X be an irreducible projective variety. Then:

(1) For any L ∈ KCart(X) the divisor D(L) is well-defined, i.e., is independent
of the choice of a function h ∈ L.

(2) The map L 7→ D(L) is a homomorphism from the semigroup KCart(X) to
the semigroup Div(X) which respects the linear equivalence.

(3) Let GCart(X) denote the Grothendieck group of the semigroup KCart(X).
The map L 7→ D(L) extends to a homomorphism ρ : GCart(X) → Div(X).

(4) The map L 7→ D(L) preserves the intersection index, i.e., for L1, . . . , Ln ∈
KCart(X) we have

[L1, . . . , Ln] = [D(L1), . . . , D(Ln)],

where the right-hand side is the intersection index of Cartier divisors.

Proof. Statements 1 and 2 are obvious. Statement 3 follows from 2. Let us prove 4.
Since both intersection indices for subspaces and for Cartier divisors are multi-
linear, it is enough to prove the equality when L1 = · · · = Ln = L. The divisor
D(L) is linearly equivalent to the pull-back of any hyperplane section in p(L∗). So
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the self-intersection index of D(L) is equal to the intersection index of the pull-back
of n-generic hyperplanes, i.e., [D(L), . . . , D(L)] = [Φ∗

L(H1), . . . , Φ∗
L(Hn)], where

the Hi are arbitrary hyperplanes in P(L∗). We can choose the hyperplanes Hi in
such a way that the divisors Φ∗

L(Hi) intersect transversally and the intersection
points do not belong to the base locus of L as well as the poles of the functions in
L. In this case, by the definition, [L1, . . . , Ln] is equal to the right-hand side in 4)
and the proof of theorem is finished. �

Definition 6.9. The subspace L(D) associated to a Cartier divisor D is the col-
lection of all rational functions f such that the divisor (f) + D is effective (by
definition 0 ∈ L(D).)

The following well-known fact can be found in [Har, Chap. 2, Theorem 5.19].

Theorem 6.10. When X is projective L(D) is finite dimensional.

The next proposition is a direct corollary of the definition.

Proposition 6.11. Let L ∈ KCart(X) and put D = D(L). Then L ⊂ L(D) and
L(D) ∈ KCart(X).

A Cartier divisor D is very ample if the Kodaira map of the space L(D) gives rise
to an embedding of X into the projective space. One verifies that this is equivalent
to D(L(D)) = D. According to the following well-known theorem, the group of
Cartier divisors is generated by very ample divisors (see [Laz, Example 1.2.6]).

Theorem 6.12. Let X be a projective variety. Given a very ample Cartier divisor
D and a Cartier divisor E, there is an integer N such that for any k > N the
divisor Ek = kD + E is a very ample divisor. Thus any Cartier divisor E is the
difference of two very ample divisors, namely, E = Ek − kD.

For a subspace L ∈ KCart(X) we would like to describe the subspace L(D(L)).
The answer is based on the following theorem. It can be found in slightly different
forms in [Har, Chap. 2, Proof of Theorem 5.19] and [ZS, Appendix 4].

Theorem 6.13. Let X be an irreducible projective variety and let L ∈ KCart(X)
be such that the Kodaira map ΦL → P(L∗) is an embedding. Then:

(1) Every element of L(D(L)) is integral over L, i.e., L(D(L)) ⊂ L,
(2) Moreover if X is normal then L(D(L)) = L.

We use Theorem 6.13 to describe L(D(L)) in terms of the semigroup KCart(X).
For L, M ∈ KCart(X) we will write L ∼Cart M if there is N ∈ KCart(X) with
LN = MN .

Corollary 6.14. Let X be an irreducible projective variety and L ∈ KCart(X).
Also assume that ΦL : X → P(L∗) is an embedding. Then:

(1) L(D(L)) ∼Cart L,
(2) if M ∼Cart L then M ⊂ L(D(L)).
(3) Finally, let L1, L2 ∈ KCart(X) and assume that ΦL1 , ΦL2 are embeddings.

Then L1 ∼Cart L2 if and only if L(D(L1)) = L(D(L2)).
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Proof. (1) Let f ∈ L(D(L)). By Theorem 6.19 we know that f is integral over L.
So, there are elements ai ∈ Li such that fm+a1f

m−1+· · ·+am = 0. Denote by L(f)
the vector space spanned by L and f . Denote by P a space P = fm−1L+ · · ·+Lm.
It is easy to see that: (a) the spaces L(f) and P belong to KCart(X), (b) the
map ΦL(f) : X → PF ∗ is am embedding, (c) the inclusion fP ⊂ LP holds. From
(c) we have LP = L(f)P . Because P, L(f) ∈ KCart(X) we showed that L ∼Cart

L(f). Now fix basis f1, . . . , fn for L(D). Denote by L1 the space L(f1). As we
proved L1 ∼Cart L and the Kodaira map ΦL1 is an embedding. Applying the
same arguments to L2 = L1(f2) we get that L2 ∼Cart L1 ∼Cart L and ΦL2 is an
embedding. Continuing this process we see that L ∼Cart L(D(L)).

(2) If M ∼Cart L then D(M) = D(L) (see Theorem 6.8)). Since M ⊂ L(D(M))
we have that M ⊂ L(D(L)).

Part 3 of the corollary follows from (1) and (2). �

The last statement in the corollary shows that the spaces L for which the Kodaira
map is an embedding behave especially well with respect to the map L 7→ D(L).
One easily verifies the following.

Lemma 6.15. Let P ∈ KCart(X) be such that the Kodaira map ΦP is an embed-
ding. If M ∈ KCart(X) and P ⊂ M , or if L ∈ KCart(X) and M = PL, then ΦM

is also an embedding.

Let X be a projective variety. Consider the group homomorphism ρ from the
Grothendieck group GCart(X)) to the group Div(X) (see Theorem 6.8).

Theorem 6.16. For an irreducible projective variety X the homomorphism

ρ : GCart(X) → Div(X),

is an isomorphism which preserves the intersection index.

Proof. By Theorem 6.8 we know that ρ is a homomorphism which preserves the
intersection index. The group Div(X) is generated by very ample divisors which
belong to the image of KCart(X) under the map ρ (see Theorem 6.12). So the
homomorphism ρ is onto. Take two spaces L1 and L2 from KCart(X) for which
the Kodaira maps ΦL1 , ΦL2 are embeddings. According to the last statement in
Corollary 6.14 the map ρ(L1) = ρ(L2) if and only if the subspaces L1 and L2 define
the same element in the Grothendieck group GCart(X). From this and Lemma 6.15
one can see that ρ has no kernel. �

Recall that for two subspaces L, M we write L ∼lin M if there is a rational
function f which is not identically equal to zero on any irreducible component of
X with L = fM .

Corollary 6.17. For an irreducible projective variety X the isomorphism ρ induces
the isomorphism

ρ̃ : GCart(X)/∼lin → Pic(X),

which preserves the intersection index.
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Remark 6.18. Theorem 6.16 shows that for a projective variety X the Grothen-
dieck group of the semigroup KCart(X) can naturally be identified with the group
Div(X) of Cartier divisors. From this one can show that the Grothendieck group
Grat(X), of the semigroup Krat(X), can naturally be identified with the direct
limit of the groups Div(Y ) of Cartier divisors on projective birational models Y of
X .

Remark 6.19. If X is not only projective but also normal then using Theorem 6.13
one proves that: (a) KCart(X) is closed under completion, i.e., if L ∈ KCart(X)
then L ∈ KCart(X) and moreover L ∼Cart L. (b) Let L, M ∈ KCart(X). Then
L ∼rat M if and only if L ∼Cart M .

7. Topological and Algebro-Geometric Proofs of Properties of

Intersection Index

In this section we provide alternative proofs for the main properties of the bira-
tionally invariant intersection index. The proofs are essentially based on differential
geometry techniques. These techniques fit into the context of differential geometry
in a specially nice way when the variety X is smooth and compact (or more gen-
erally if it is normal and complete) and when the subspaces of rational functions
Li ∈ Krat(X), appearing in the intersection index, give rise to regular Kodaira
maps ΦLi

: X → P(L∗
i ). But as we will see the topological arguments are also ap-

plicable in the general case. Note that a similar construction allows one to prove
the properties of the intersection index (for subspaces of rational functions) using
standard intersection theory for Cartier divisors on a complete variety.

We also provide a proof of the Hodge inequality for the birationally invariant
index which relies on Hodge theory and other well-known methods of algebraic
geometry. In particular, the proof of algebraic analogue of the Alexandrov–Fenchel
inequality mostly follows its proof in [Kh1]. (As mentioned in the introduction we
recently found an elementary and unusual proof of this inequality; see [KKh1] for
a preliminary version.)

We first recall the necessary statements from complex geometry.
All smooth complex varieties have standard orientation coming from the complex

structure. Let Y be a complete n-dimensional algebraic subvariety in a smooth
projective algebraic varietyM . Let Y sm be the locus of smooth points of the variety
Y . It is possible to apply the results in differential geometry to singular algebraic
varieties because of the following: the variety Y sm defines a 2n-dimensional cycle
in the manifold M .

Theorem 7.1 (see [GH]). For every smooth 2n-form τ on M its integral along
the manifold Y sm with its complex orientation is well defined. Moreover, for exact
forms τ this integral vanishes.

The complex projective space has a standard Kaehler 2-form. We recall its
definition: take a positive definite hermitian form H on a complex vector space L.
Then we can define a form ω̃H on L \ {0} by the formula

ω̃H =
i

2π
∂∂̄ logH.
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Let π : L \ {0} → P(L) be the canonical projection. The following is well-known.

Theorem 7.2 (see [GH]). There exists a unique form ωH on P(L) such that ω̃H =
π∗ωH . This form ωH is closed and its cohomology class generates the cohomology
ring of P(L). The integral of ωH on any projective line P1 ⊂ P(L) is equal to 1.
The form ωH is the Poincaré dual to any hyperplane in P(L).

The form ωH is called the Kähler form on P(L) associated to the Hermitian form
H on L. (The Hermitian form H on L also defines the Fubini–Study metric on
P(L) and the form ωH can be recovered uniquely from the Fubini–Study metric.)
For a one-dimensional space L the form ωH is equal to zero as P(L) consists of a
single point.

We now go back to our case of interest. Let X be an irreducible n-dimensional
quasi-projective variety. A model of the variety X is a complete algebraic vari-
ety which is birationally isomorphic to X . For the topological description of the
intersection indices of n-tuples of subspaces in the semigroup Krat(X) we will con-
sider models of the variety X . For different n-tuples of elements of the semigroup
Krat(X) different models may be needed. In particular, when X is normal and
projective, and for all the subspaces L ∈ KCart(X) with regular Kodaira map, it
suffices to take X itself as a model.

In general, there exists a common model for all the n-tuples of subspaces chosen
from a fixed finite set. We now describe the construction of this model. Fix a finite
sequence L1, . . . , Lk of subspaces. For convenience we allow repetition of subspaces
in the sequence.

Let Σ be an admissible set for X and the sequence L1, . . . , Lk of subspaces from
the semigroup Krat(X). Let ΦLi

: X \ Σ → P(Li)
∗ be the Kodaira map associated

to Li. Let the quasi-projective variety X be embedded in PN . Denote the product
P(L∗

1) · · · × P(L∗
k) by P(L∗). Consider the mapping ΦL : X \ Σ → P(L∗) which

is the product of the Kodaira maps ΦLi
. Let Γ ⊂ PN × P(L∗) be the graph of

this mapping, i.e., Γ is the set of points (x, y1, . . . , yk), where x ∈ X \ Σ and
yi = ΦLi

(x), i = 1, . . . , k. Define Γ to be the closure of the graph Γ in PN ×P(L∗).
Let ρ : Γ → PN be the restriction of the projection PN × P(L∗) → PN to the
complete subvariety Γ. The mapping ρ is a birational isomorphism between the
complete variety Γ and the variety X .

Definition 7.3. The complete variety Γ ⊂ PN × P(L∗) is called the model of the
variety X associated to the sequence of spaces L1, . . . , Lk.

Lemma 7.4. If X is normal and complete and L1, . . . , Lk ∈ KCart(X) are sub-
spaces with regular Kodaira maps, then the model of X corresponding to L1, . . . , Lk

is isomorphic to X.

Proof. Under the assumptions of the lemma the graph Γ is defined over the whole
X . Since X is complete, Γ is closed and thus Γ = Γ is isomorphic to X . �

Remark 7.5. Using intersection theory of Cartier divisors on a model Γ of a variety
X corresponding to a sequence L1, . . . , Lk of subspaces of rational functions, one
can prove all the properties of the intersection index discussed before, for the n-
tuples Li1 , . . . , Lin

taken from the sequence L1, . . . , Lk.
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In the variety Γ there is a Zariski open subset W = ρ−1(X \ Σ) isomorphic to
X \ Σ. If we identify W with X \ Σ using the map ρ, then the restriction of the
projection πi : PN × P(L∗) → P(L∗

i ) to W is the Kodaira map ΦLi
.

Choose an arbitrary collection of n subspaces from the sequence L1, . . . , Lk.
Without loss of generality, assume that it is L1, . . . , Ln.

Below we will give an integral formula for the intersection index (see Corollary
7.7).

Recall basic facts from the topology of the product of projective spaces M =
PN × P(L∗). Since the Kähler form ωHi

on P(L∗
i ) is the Poincaré dual to the

hypersurface Pi ⊂ P(L∗
i ), the form π∗

i ωHi
on M is Poincaré dual to the hypersurface

π−1Pi, and the intersection Z = π−1
1 P1∩· · ·∩π

−1
n Pn is the Poincaré dual to the form

π∗
1ωH1 ∧ · · · ∧ π∗

nωHn
. It means that for an arbitrarily small tubular neighborhood

U of the manifold Z equipped with a smooth projection g : U → Z there is a closed
2n-form ΩU on the manifold M having the following properties:

(1) the support of the form ΩU is contained in the tubular neighborhood UZ .
(2) The form ΩU is cohomologous to the form π∗

1ωH1 ∧ · · · ∧ π∗
nωHn

.
(3) Let g : U → Z be the smooth projection in the definition of the tubular

neighborhood U , and let Fa = g−1a be the fiber of this projection over an
arbitrary point a ∈ Z, oriented compatible with the natural coorientation
of the submanifold Z in M . Then

∫

Fa
ΩU = 1.

Theorem 7.6. Let L1, . . . , Ln be an n-tuple of subspaces taken from a sequence
of k > n subspaces from Krat(X). Let Γ be a model of the variety X associated to
this sequence. Suppose that the cycle Z = π−1

1 P1 ∩ · · · ∩ π−1
n Pn does not intersect

the singular set O of the variety Γ, and intersects its non-singular part Y = Γ \O
transversally. Then the number #(Z ∩Y ) of intersection points of the cycle Z with
the manifold Y is

∫

Y

π∗
1ωH1 ∧ · · · ∧ π∗

nωHn
.

Proof. The variety Z does not intersect the closed set O, and hence the set Z ∩ Y
does not contain the limit points of O. It follows from the transversality condition
that the set Z ∩ Y is finite. Choose a sufficiently small tubular neighborhood U of
the cycle Z so that for every point a ∈ Z ∩ Y the connected component Ya of the
intersection of Y with the closure of the tubular neighborhood U defines the same
relative cycle in the homology group of the pair (U, ∂U) as the fiber Fa. Then

∫

Y

π∗
1ωH1 ∧ · · · ∧ π∗

nωHn
=

∫

Y

ΩU =
∑

a∈Z∩Y

∫

Ya

ΩU = #(Z ∩ Y ),

as required. �

This theorem not only gives an alternative proof of the well-definedness of the
definition of the intersection index [L1, . . . , Ln], but also gives an explicit formula
for it:
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Corollary 7.7. The birationally invariant index [L1, . . . , Ln] is well-defined and
is equal to

[L1, . . . , Ln] =

∫

Y

π∗
1ωH1 ∧ · · · ∧ π∗

nωHn

=

∫

X\Σ

(π1 ◦ ρ
−1)∗ωH1 ∧ · · · ∧ (πn ◦ ρ−1)∗ωHn

.

Proof. Every function fi ∈ Li defines a linear functional on the vector space L∗
i ,

and moreover, a non-zero fi defines a hyperplane Lfi
in L∗

i on which this functional
vanishes. Let Pfi

⊂ P(L∗
i ) be the projectivization of Lfi

. By the Bertini theorem
there is a Zariski open subset U ⊂ L1 × · · · × Ln consisting of f = (f1, . . . , fn)
such that the hyperplanes Pfi

⊂ P(L∗
i ) have the following properties:

(1) the cycle Z = π−1
1 Pf1 ∩· · ·∩π−1

n Pfn
satisfies the conditions of Theorem 7.6,

(2) all the intersection points of the cycle Z with the variety Γ belong to the
set ρ−1(X \ Σ) ⊂ Γ.

According to the theorem, for f ∈ U the system f1 = · · · = fn = 0 in X \ Σ
has only non-degenerate roots. Their number does not depend on the choice of
the set of equations f ∈ U and is equal to

∫

Y
π∗

1ωH1 ∧ · · · ∧ π∗
nωHn

. The latter

integral is equal to
∫

ρ−1(X\Σ) π
∗
1ωH1 ∧ · · · ∧ π∗

nωHn
(and hence the last integral is

well-defined). This proves the corollary. �

The above formula for the index provides a different proof of its multi-linearity.
Let L1, L2 be two spaces of regular functions on some algebraic variety and let
L1L2 be their product. The space L1L2 is a factor space of the tensor product
L1 ⊗ L2 and hence the space (L1L2)

∗ is a subspace of (L1 ⊗ L2)
∗. Denote by

τ : (L1L2)
∗ → (L1 ⊗ L2)

∗ the corresponding embedding. Let H1, H2 be positive-
definite Hermitian forms on the spaces L∗

1, L
∗
2 and H1 ⊗H2 be the positive-definite

form on (L1 ⊗ L2)
∗ whose value on the product l1 ⊗ l2 of two vectors l1, l2 is

H1(l1)H2(l2).

Definition 7.8. We call the form H1H2 on the space (L1L2)
∗, induced by the form

H1⊗H2 and the embedding τ : (L1L2)
∗ → (L1⊗L2)

∗, the product of the forms H1

and H2.

Lemma 7.9. Let L1, L2 ∈ Krat(X). Let H1, H2 be positive-definite Hermitian
forms on the spaces L∗

1, L
∗
2 respectively, and let H1H2 be their product defined on

(L1L2)
∗. Then

K̃∗
L1
ωH1 + K̃∗

L2
ωH2 = K̃∗

L1L2
ωH1H2 .

Proof. Since τ ◦ ΦL1L2 = ΦL1 ⊗ ΦL2 , for every x ∈ X we have H1H2(ΦL1L2(x)) =
H1(ΦL1(x))H2(ΦL2(x)). It follows that

i

2π
∂∂̄ logH1H2(ΦL1L2(x)) =

i

2π
∂∂̄ logH1(ΦL1(x)) +

i

2π
∂∂̄ logH2(ΦL2(x)). �

Corollary 7.10. The index [L1, . . . , Ln] is multi-linear. That is, if L1 = L′
1L

′′
2 ,

then

[L1, L2, . . . , Ln] = [L′
1, L2, . . . , Ln] + [L′′

1 , L2, . . . , Ln].
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Proof. Build a model Γ of the variety X associated to the sequence of subspaces
L′

1, L
′′
1 , L1, . . . , Ln. Let H ′

1, H
′′
1 , H2, . . . , Hn be Hermitian forms on the spaces

L′
1
∗
, L′′

1
∗
, L∗

2, . . . , L
∗
n respectively. Also let π′

1, π
′′
1 denote the projections corre-

sponding to the subspaces L′
1, L

′′
1 respectively. Let H1 = H ′

1H
′′
1 be the product

form on L∗
1. Denote by Y the set of non-singular points on the variety Γ. It follows

from the lemma that the restrictions of the forms π1
∗ωH1 and π′

1
∗
ωH′

1
+ π′′

1
∗
ωH′′

1

to the manifold Y coincide. Hence the restrictions to Y of the products of these
forms by the form π∗

2ωH2 ∧ · · · ∧ π∗
nωHn

also coincide. The claim now follows from
the integral formula for the index. �

We will need the following corollary from Hodge theory. Let Y be a smooth pro-
jective surface. Consider the symmetric form B(ω1, ω2) =

∫

Y ω1 ∧ ω2, defined on

the space of real-valued smooth (1, 1)-forms. Also, in the space H1,1(Y ), consider
the non-negative cone C consisting of the forms ω whose value at each point of the
surface Y on each pair of the vectors (v, iv) is non-negative.

Corollary 7.11 (Corollary of the Hodge index theorem). For any two forms
ω1, ω2 ∈ C the following inequality holds:

B2(ω1, ω2) > B(ω1, ω1)B(ω2, ω2). (1)

Proof. According to the Hodge index theorem, the quadratic form B(ω, ω), defined
on the (1, 1)-component of the cohomology of the surface Y , is positive-definite on
a one-dimensional subspace and negative-definite on its orthogonal compliment.
The positive closed (1, 1)-forms lie in a connected component B(ω, ω) > 0. Now
(as in the proof of the classical Cauchy–Schwartz inequality) consider the line ℓ =
{tω1 + ω2 : t ∈ R} passing through ω2 and parallel to ω1. The line ℓ does not
completely lie outside the positive cone C and hence the quadratic polynomial
Q(t) = B(tω1 + ω2, tω1 + ω2) attains both positive and negative (or possibly zero)
values. It follows that the discriminant of Q is non-negative. But discriminant of Q
is equal to 4(B(ω1, ω2)

2−B(ω1, ω1)B(ω2, ω2)), which proves the inequality (1). �

Finally, we recall the following classical theorem about the resolution of singu-
larities for surfaces:

Theorem 7.12 (Resolution of singularities for surfaces). For every complete pro-
jective surface Γ there exists a complete non-singular projective surface Y and a
morphism g : Y → Γ which is a birational isomorphism between Y and Γ.

Theorem 7.13 (A version of Hodge inequality). Let X be a quasi-projective irre-
ducible surface and L1, L2 ∈ Krat(X). Then the following inequality holds:

[L1, L2]
2 > [L1, L1][L2, L2].

Proof. Let Γ be a complete model for the surface X associated to the subspaces
L1, L2. Consider the non-singular projective surface Y with the morphism g : Y →
Γ from Theorem 7.12. Consider the subspaces F = (ρ◦g)∗L1 and G = (ρ◦g)∗L2 of
rational functions on the surface Y . We have Kodaira maps ΦF and ΦG correspond-
ing to these subspaces. Fix Kähler forms ωH1 , ωH2 on the spaces P(F ∗), P(G∗), then
we can associate non-negative smooth closed (1, 1)-forms ω1 = (π1 ◦ g)∗ωH1 and
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ω2 = (π2 ◦ g)
∗ωH2 (on the surface Y ) to the subspaces F and G respectively. From

the integral formula for the index we have [F, F ] =
∫

Y ω1 ∧ ω1,[F, G] =
∫

Y ω1 ∧ ω2

and [G, G] =
∫

Y
ω2 ∧ ω2. Corollary 7.11 now implies that [F, G]2 > [F, F ][G, G].

But [F, G] = [L1, L2], [F, F ] = [L1, L1], [G, G] = [L2, L2], so the theorem is
proved. �

From the version of Hodge inequality proved above we get an analogue of the
Alexandrov–Fenchel inequality for the intersection index (see [Kh1]).
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