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On the Continuability of Multivalued Analytic Functions
to an Analytic Subset*

A. G. Khovanskii UDC 517.9

In the paper it is shown that a germ of a many-valued analytic function can be continued
analytically along the branching set at least until the topology of this set is changed. This result
is needed to construct the many-dimensional topological version of the Galois theory. The proof
heavily uses the Whitney stratification.

Introduction

In the topological version of Galois theory for functions of one variable (see [1–4]) it is proved
that the character of location of the Riemann surface of a function over the complex line can prevent
the representability of this function by quadratures. This not only explains why many differential
equations cannot be solved by quadratures but also gives the sharpest known results on their
nonsolvability. I always thought that there is no many-dimensional topological version of Galois
theory of full value. The point is that, to construct such a version in the many-variable case, it
would be necessary to have information not only on the continuability of germs of functions outside
their branching sets but also along these sets, and it seemed that there is nowhere one can obtain
this information from. Only in spring of 1999 did I suddenly understand that germs of functions
are sometimes automatically continued along the branching set. Therefore, a many-dimensional
topological version of the Galois theory does exist. I am going to publish it in forthcoming papers.
In this paper, the property of continuability of functions along their branching sets is described,
which is also of independent interest in my opinion.

Let M be an analytic manifold and let Σ be an analytic subset of M . Let b ∈ M and let
fb be a germ of an analytic function at b that can be continued analytically along any curve
γ : [0, 1] → M , γ(0) = b, such that γ intersect the set Σ at the initial instant only. What can be
said about the continuability of the germ fb along the curves that belong to Σ starting from some
instant? This is just the subject of our investigation. In Sec. 1 we study the classical case in which
it is additionally assumed that the continuations of the germ fb define a single-valued analytic
function on the set M \ Σ. In this case, the only obstruction to the continuability of the germ fb Q1
is formed by the irreducible components of the set Σ that are of codimension one in M and whose
closures do not contain the given point b. (See Proposition 3, which is a version of the Riemann
and Hartogs theorems on the continuability of analytic functions.) The germ fb can be continued
to the complement of the union of these components, and it generally cannot be continued further.
However, as is shown by the following simplest example, this result cannot be extended immediately
to the case of multivalued functions.

Example. Consider the general cubic equation

y3 + py + q = 0

with zero coefficient of y2 . In the complement of the discriminant curve Σ, this equation defines
a three-valued analytic function y(p, q). The discriminant curve of this equation is a semicubical
parabola, that is, an irreducible curve that has a unique singular point, namely, at the origin, where
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all three roots of the cubic equation coincide, and this is the only point of the plane p, q with this
property. Over the set Σ\{0}, exactly two roots of the equation merge. Let b be an arbitrary point
of the plane belonging to the complement of the discriminant curve, let a be an arbitrary nonzero
point that belongs to the discriminant curve, and let γ : [0, 1]→ C

2 be an arbitrary curve starting
from the point b, ending at the point a, and intersecting Σ only at the last instant, which means
that γ(0) = b, γ(1) = a, and γ(t) /∈ Σ for t �= 1. Let us choose a germ of the function y(p, q)
over the point b that merges with none of the other germs under the continuation along the curve
γ as the point a is approached. There is exactly one germ of this kind. Denote it by fb . First,
the germ fb can be continued analytically along any curve not intersecting Σ. Second, this germ
can be continued up to the point a ∈ Σ along the curve γ . Third, the germ fa obtained by this
continuation can be continued analytically along any curve belonging to the set Σ and not passing
through the origin. At the origin, there is no analytic germ of the function y(p, q). In this example,
the obstruction to the continuability of a germ along the curve Σ is the point 0. At this point,
none of the other branches of the discriminant approaches the curve Σ, but the local topology of
the curve Σ is changed (the semicubical parabola Σ has a singularity at zero and is smooth at the
other points).

The above example suggests the following natural conjecture. Let B be a stratum (an analytic
submanifold) belonging to the set Σ and let a ∈ B . Let fa be a germ of an analytic function that
can be continued analytically along any curve such that it can intersect the set Σ at the initial
instant only. In this case, if the topology of the pair Σ, B is preserved along a curve γ(t) ∈ B ,
γ(0) = a, then the germ fa can be continued analytically along this curve. This conjecture turns
out to be true indeed. We first prove it in Sec. 3 for the functions f that are single-valued in M \Σ.
According to the result in Sec. 1, it suffices to show that the topology of the pair Σ, B changes
if the stratum B intersects the closure of an irreducible component of Σ of codimension one. In
the proof, we heavily use Whitney’s results on the existence of analytic stratifications of analytic
sets that are well compatible with the topology. These Whitney’s results are recalled in Sec. 2. The
case of a multivalued function f in M \ Σ can be reduced to that of a single-valued function f
by using a simple topological construction (see Sec. 6). This topological construction generalizes
the classical construction of a locally trivial covering (see Sec. 4) and also heavily uses Whitney’s
stratification (see Sec. 5).

1. Continuability of a Single-Valued Analytic Function to an Analytic Subset

Let us represent the space C
n as the direct product of an (n− 1)-dimensional space C

n−1 and
a complex line C

1 . We identify C
n−1 with the hyperplane z = 0, where z is a coordinate function

in C
n .
Lemma 1. Let a neighborhood U of the origin in the space C

n be the direct product U = U1×U2

of a connected neighborhood U1 in the space C
n−1 and a connected neighborhood U2 in the complex

line C
1. Then any function f that is analytic in the complement of the hyperplane z = 0 in the

neighborhood U and is bounded in a neighborhood of the origin can be continued analytically to the
entire neighborhood U .

Proof. The lemma follows from the Cauchy integral formula. Indeed, let us define a function
f̃ on the domain U by the Cauchy integral

f̃(x, z) =
1
2πi

∫
γ(x,z)

f(x, u) du
u− z ,

where x and z are points in the domains U1 and U2 , respectively, f(x, u) is the given function,
and γ(x, z) is an integration contour that belongs to complex line {x} × C

1 in the the domain U ,Q2
encloses the points (x, z) and (x, 0), and continuously depends on (x, z). The function f̃(x, z)
defines the desired analytic continuation. Indeed, the function f̃ is analytic in the entire domain
U . According to the Riemann theorem on a removable singularity, this function coincides with the
given function f in a neighborhood of the origin.
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Proposition 2. Let M be an n-dimensional complex analytic manifold, let Σ be an analytic
subset of M, and let a ∈ Σ be a point in Σ such that every (n−1)-dimensional irreducible component
of Σ contains the point a. In this case, any function f that is analytic in the complement M \Σ of
Σ in the manifold M and is bounded in a neighborhood of the point a can be continued analytically
to the entire manifold M .

Proof. Proposition 2 reduces to Lemma 1. Indeed, denote by ΣH a subset of Σ defined by
the following condition: in a neighborhood of any point of ΣH , the analytic set Σ is a nonsingular
(n − 1)-dimensional analytic hypersurface in the manifold M . The intersection of any irreducible
(n− 1)-dimensional component Di of Σ with ΣH is a connected (n− 1)-dimensional manifold. Let
us prove that the function f can be continued analytically to the set Di ∩ ΣH .

Denote by Ai the subset of Di ∩ ΣH to which the function f can be continued analytically.
Obviously, Ai is open in the topology of the set Di ∩ ΣH . The set Ai is nonempty because it
contains all nonsingular points of the component Di that are sufficiently close to a by the Riemann
theorem on the continuation of a holomorphic function (see [5]). Let us show that Ai is closed in
the topology of Di ∩ ΣH . Indeed, let b be a limit point of this set. By the definition of Di ∩ ΣH ,
one can choose a local system of coordinates in the vicinity of b in M in such a way that the set
Di ∩ ΣH coincides with a coordinate hyperplane in the corresponding neighborhood. The desired
property now follows from Lemma 1. Further, since Di ∩ ΣH is connected, it follows that the set
Ai coincides with Di ∩ ΣH , i.e., the function f can be continued analytically to the entire set Ai .
Therefore, f can be continued to the entire set ΣH =

⋃
(Di ∩ ΣH). However, the codimension of

the set Σ\ΣH in the manifold M is not less than two. By the Hartogs theorem (see [5]), this proves
Proposition 2.

Proposition 3. Let f be an analytic function in the complement of an analytic set Σ in an
n-dimensional analytic manifold M . If f is bounded in a neighborhood of a point a ∈ Σ, then f
can be continued analytically to the set M \Da, where Da is the union of all (n− 1)-dimensional
irreducible components of Σ that do not contain the point a.

Proof. Proposition 3 follows from Proposition 2 when applied to the manifold M \Da , to the
analytic subset Σ \Da , and to the function f .

2. Admissible Stratifications

Let Σ be a proper analytic subset in a complex-analytic manifold M . By a stratification of the
set Σ we mean its partition into disjoint submanifolds, the so-called strata (which in general have
different dimensions), having the following properties:

1) any stratum Σi is a connected analytic manifold;
2) for any stratum Σi , its closure Σi is an analytic subset of M and its boundary Σi \ Σi can

be represented as a union of some strata of lesser dimensions.
We say that a pair consisting of an analytic manifold M and its analytic subset Σ has constant

topology along a stratum B ⊂ Σ if the following two conditions hold.
Condition 1. For any point a ∈ B and any analytic submanifold L of M that is transversal

to the stratum B at the point a, there is a small neighborhood Va of a in L such that the topology
of the pair Va , Fa , where Fa = Va ∩Σ, depends neither on the choice of the point a nor on that of
the section L and is defined only by the stratum B and by the subset Σ.

Condition 2. The stratum B has a neighborhood U in M and a projection π : U → B such
that the restriction of π to B ⊂ U is the identity mapping and the pair π−1(a), π−1(a) ∩ Σ
is homeomorphic to the pair Va , Fa for any point a ∈ B . Moreover, any point a ∈ B has a
neighborhood Ka in B such that the pair π−1(Ka), π−1(Ka) ∩ Σ is homeomorphic to the pair
Va ×Ka , Fa ×Ka , and the homeomorphism between these two pairs takes the projection π to the
projection of the direct product Va×Ka to the factor Ka , and the restriction of this homeomorphism
to the set Ka ⊂ π−1(Ka) is the identity mapping (more exactly, this restriction sends any point
b ∈ Ka to the point a× b of the direct product Va ×Ka).
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We say that a stratification of an analytic set Σ ⊂ M is admissible if the pair M , Σ has
constant topology along any stratum Σi of this stratification.

As was discovered by Whitney, admissible stratifications exist for any complex-analytic set in
any complex-analytic manifold (see [6]). We use this result below.

3. Modification of the Topology of an Analytic Set
in the Vicinity of an Irreducible Component

According to Lemma 4 below, the number of connected components of a real topological sub-
manifold of M that belongs to an analytic hypersurface Σ and differs from this hypersurface by a
set of small dimension is equal to the number of irreducible (n− 1)-dimensional components of the
hypersurface Σ.

Lemma 4. Let a subset T of an (n− 1)-dimensional analytic set Σ belonging to an n-dimen-
sional analytic manifold M have the following properties.

1. The set T is a real topological submanifold of M of codimension two, i.e., any point a ∈ T
has a neighborhood Ua in M such that the set Ua ∩ T is a topological submanifold in the domain
Ua of real dimension 2n− 2.

2. The set Σ\T is a closed subset of Σ of real codimension � 2 (i.e., Σ\T is a union of finitely
many real topological submanifolds of M of dimension � 2n− 4).

Then any (n − 1)-dimensional irreducible component of Σ intersects exactly one connected
component of the topological manifold T . Moreover, any connected component of T is dense in the
corresponding irreducible (n− 1)-dimensional component of the analytic set Σ.

Proof. Lemma 4 is a consequence of the following facts: a) a set of codimension two cannot
separate a topological manifold, b) if all singular points are deleted from an irreducible component
of an analytic set, then the remaining manifold is connected.

Let us first show that any connected component T 0 of the set T intersects exactly one irreducible
component of the set Σ. Indeed, the set Σ \ ΣH is of real dimension � 2n − 4; therefore, this
set cannot separate the connected (2n − 2)-dimensional real manifold T 0 into parts. Thus, the
complement of the intersection of the sets T 0 and Σ \ ΣH in T 0 is covered by exactly one set
Di ∩ ΣH . Since the set Di \ ΣH is dense in the component Di and the set Di is closed, it follows
that T 0 is entirely contained in the irreducible component Di of the set Σ. Suppose that a point
a of T 0 belongs to another (n − 1)-dimensional component Dj , Dj �= Di , of Σ. However, by
assumption, the set T and hence its component T 0 are open in the topology of Σ. Since the set
Dj ∩ ΣH is dense in Dj , it follows that T 0 contains some points of the set Dj ∩ ΣH , which is
impossible. A contradiction. This proves the desired assertion.

Let us now show that different connected components of the manifold T cannot belong to the
same (n − 1)-dimensional irreducible component of the set Σ. Indeed, if all singular points and
all points not belonging to the manifold T are deleted from an irreducible (n − 1)-dimensional
component, then a connected manifold is obtained. Hence, it is covered by exactly one connected
component of the manifold T . This proves the lemma.

Proposition 5. Let a pair consisting of an n-dimensional analytic manifold and an analytic
subset Σ of this manifold have constant topology along a connected stratum B ⊂ Σ (see Sec. 2).
Then any (n− 1)-dimensional irreducible component of Σ is either disjoint with the stratum B or
entirely contains it.

Proof. We first consider the local case, i.e., assume that the manifold B coincides with the set
Ka and the manifold M coincides with the neighborhood π−1(Ka) (the set and the neighborhood
are those mentioned in Condition 2 of Sec. 2). Let us show that, in this case, the closure of every
irreducible (n− 1)-dimensional component of Σ coincides with the set Ka .

Let us use the notation of Sec. 2, and let F 0
a ⊂ Fa be the set consisting of the points of the

analytic set Fa with the following property: each of these points has a neighborhood in which the
set Fa is an analytic hypersurface in the manifold Va . The set F 0

a decomposes into the connected
components F 0,i

a . The complement Fa \ F 0
a has lesser complex dimension than the set Fa .
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The homeomorphism mentioned in Condition 2 takes the set F 0
a to the set Σ. It follows from

Lemma 4 that this homeomorphism takes the sets F 0,i
0 ×Ka to diverse irreducible (n− 1)-dimen-

sional components of the set Σ. Moreover, the image of each of the sets F 0,i
0 ×Ka is dense in the

corresponding irreducible component of the set Σ, and, for a given (n− 1)-dimensional component
of the set Σ, there is a set of the form F 0,i

a ×Ka mapped into this component.
Furthermore, for each connected component F 0,i

a , the point a is a limit point (the components
for which this is not the case are disjoint with a sufficiently small neighborhood of a and do not
belong to the set F 0

a ). Therefore, the closure of each of the sets F
0,i
0 × Ka contains Ka . Hence,

any irreducible (n − 1)-dimensional component of the set Σ contains Ka . (The homeomorphism
mentioned in Condition 2 of Sec. 2 is the identity on the base Ka .)

The local case is thus investigated. We now assume that the manifold M belongs to a small
neighborhood of the stratum B . Namely, let the manifold M coincide with a neighborhood U
of the stratum B mentioned in Condition 2. In this case, the stratum B is covered by domains
Kaj . The above argument can be applied to each of these domains. Therefore, if an irreducible
(n − 1)-dimensional component Di of the set Σ intersects the set π−1(Kaj ), then the closure of
Di contains the entire neighborhood Kaj . Thus, the set of limit points of the component Di that
belong to the stratum B is open in the topology of B . However, this set is obviously closed in the
topology of the stratum B . Therefore, since the stratum B is connected, it must be contained in
the closure of Di .

Let us now proceed with the general case. If an irreducible (n − 1)-dimensional component of
the set Σ is disjoint with the neighborhood U of the stratum B mentioned in Condition 2, then B
contains no limit points of this component. However, if this component intersects the domain U ,
then the above argument can be used, which proves that the closure of the component contains the
entire stratum B .

The proposition is proved.
Theorem 6. Let a pair consisting of an n-dimensional manifold M and an analytic subset

Σ of M have constant topology along a connected stratum B ⊂ Σ. Then any function f that is
analytic in the complement M \ Σ of Σ in M and is bounded in a neighborhood of a point a ∈ B
can be continued analytically to a neighborhood of B .

Proof. Any (n−1)-dimensional irreducible component Di of Σ that does not contain the point
a is disjoint with the stratum B (see Proposition 5). Therefore, the union Da of the irreducible
(n− 1)-dimensional components of Σ that do not contain the point a is a closed set disjoint with
the stratum B . The theorem now follows from Proposition 3.

4. Coverings over the Complement in the Entire Manifold
of a Subset of Hausdorff Codimension Higher than One

In the topological version of Galois theory, the role of fields is played by Riemann surfaces, and
the role of the Galois groups by the monodromy groups of the surfaces. In this case, one needs to
assume that the Riemann surfaces have reasonable topological properties. Riemann surfaces that
are locally trivial coverings do have these properties. However, the class of locally trivial coverings is
too narrow and insufficient for our purposes. In this section we describe a class of covering manifolds
over M \ Σ, where M is a manifold in which a subset Σ is distinguished that is small, in a sense.
In the one-dimensional topological version of Galois theory [1–4], the functions are discussed whose
Riemann surfaces are coverings over the complex line in which a countable (and possibly dense)
set Σ is distinguished. In the present paper, the key role is played by covering manifolds over a
complex manifold M in which an analytic subset Σ is distinguished (see Sec. 5).

Let M , Σ be a pair consisting of a connected real manifold M and a subset Σ ⊂M such that
the complement M \ Σ is locally arcwise connected and dense in M . For an example of such a
subset Σ one can take any subset of M whose Hausdorff codimension is strictly greater than one.
Let us distinguish a point b in the complement of Σ.
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Definition 7. A connected manifold R together with a distinguished point c and a projection
π : R→M is called a covering manifold over M \Σ with distinguished point b if, first, the mapping
π is a local homeomorphism, second, π takes the distinguished point c to the distinguished point
b, π(c) = b, and, third, for any curve γ in M \ Σ starting from b, γ : [0, 1] → M \ Σ, γ(0) = b,
there is a lifting γ̃ : [0, 1]→ R, π ◦ γ̃ = γ , of this curve starting from c, γ̃(0) = c.

For the convenience of our exposition, we assume that the manifold M is endowed with a
Riemannian metric.

Definition 8. A subgroup Γ of the fundamental group π1(M \ Σ, b) is said to be open if, for
any curve γ : [0, 1] → M \ Σ, γ(0) = γ(1) = b, belonging to Γ, there is a number ε > 0 such that
any curve γ̃ : [0, 1]→M \ Σ, γ̃(0) = γ̃(1) = b, for which the distance between the points γ(t) and
γ̃(t) does not exceed ε for any t, 0 � t � 1, also belongs to Γ, γ̃ ∈ Γ.

To any covering manifold π : (R, c) → (M, b) over the set M \ Σ we assign a subgroup of the
fundamental group of the set (M \ Σ, b). A curve γ : [0, 1] → M \ Σ, γ(0) = γ(1) = b, is said to
be admissible for the covering manifold (R, c) if the lifting γ̃ : [0, 1] → R of this curve (π ◦ γ̃ = γ)
starting from the point c, γ̃(0) = c, is a closed curve, i.e., if γ̃(1) = c. It is clear that all admissible
curves for the covering manifold form a subgroup of the fundamental group π1(M \ Σ, b). We say
that this subgroup corresponds to the covering manifold (R, c).

Definition 9. A covering manifold π : (R, c)→ (M, b) over a set M \ Σ is said to be maximal
if it cannot be embedded in any larger covering manifold. In other words, the existence of another
covering manifold π1 : (R1, c1)→ (M, b) over the setM\Σ and of an embedding i : (R, c)→ (R1, c1)
commuting with the projections π = π1 ◦ i implies that the embedding i is a homeomorphism.

Theorem 10. 1. If a subgroup Γ of the fundamental group of the set M \Σ with distinguished
point b corresponds to a covering manifold π : (R, c)→ (M, b) over M \Σ with distinguished point
c, where π(c) = b, then the subgroup Γ is open in π1(M \ Σ, b).

2. For any open subgroup Γ of the group π1(M \ Σ, b), there is a unique maximal covering
manifold π̃(Γ) : (R̃(Γ), c)→ (M, b) over the set M \ Σ to which the subgroup Γ corresponds.

3. In the manifold R̃(Γ), an arbitrary open set U , that contains the preimage of the set M \Σ
under the mapping π̃(Γ) and is endowed with the restriction of the projection π̃(Γ) : U → M is
a covering manifold over M \ Σ corresponding to the group Γ ⊂ π1(M \ Σ, b). Conversely, every
covering manifold over M \ Σ corresponding to the subgroup Γ can be obtained in this way.

Let us outline the proof of the theorem. We first prove assertion 1. Let a curve γ in the set
M \Σ be lifted to R as a closed curve starting and ending at the point c. The mapping π : R→M
is a local homeomorphism. Therefore, all closed curves γ̃ that are sufficiently close to the curve γ
and belonging to the manifold M can also be lifted to R as closed curves starting and ending at
the point c. (This holds even if a close curve γ̃ intersects the set Σ.) Therefore, the subgroup Γ
corresponding to the covering manifold over the set M \ Σ is an open subgroup of π1(M \ Σ, b).

To prove assertion 2, one must first construct a maximal covering manifold π̃(Γ) : (R̃(Γ), c)→
(M, b) over M \ Σ corresponding to an open subgroup Γ in the group π1(M \ Σ, b).

Definition 11. Let Γ be an open subgroup of π1(M \ Σ, b). A closed curve γ on M starting
and ending at the point b, γ : [0, 1]→ M , γ(0) = γ(1) = b, is said to be Γ-admissible if it has the
following property. There is a number ε > 0 such that any closed curve in the set M \ Σ starting
and ending at the point b, γ̃ : [0, 1] → M \ Σ, γ̃(0) = γ̃(1) = b, belongs to the group Γ if the
distance between the points γ(t) and γ̃(t) does not exceed ε for any t, 0 � t � 1.

Associated with any curve γ : [0, 1]→ M (in general nonclosed) such that γ(0) = b is a closed
twice passed curve that is the composition of the curves γ and γ−1 .

Definition 12. We say that a nonclosed curve γ : [0, 1]→M is Γ-nice if
1) the curve γ starts from the distinguished point, γ(0) = b;
2) the twice passed curve γγ−1 is Γ-admissible.
Denote by Π(Γ, b) the set of all Γ-nice curves and introduce the following equivalence relation

on the set Π(Γ, b). Two Γ-nice curves γ1 and γ2 are said to be Γ-equivalent if
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1) the curves γ1 and γ2 have the same right endpoints, γ1(1) = γ2(1);
2) the composition γ of the curves γ1 and γ−1

2 is Γ-admissible.
Let us now describe the set R̃(Γ) and the mapping π̃(Γ) : R̃(Γ)→M at the set-theoretic level.

The set R̃(Γ) is the quotient of the set Π(Γ, b) of all Γ-nice curves by the above equivalence relation.
The mapping π̃(Γ) assigns to any curve γ ∈ π(Γ, b) its right endpoint γ(1). The distinguished point
c̃ of the set R̃(Γ) is the equivalence class of the constant curve γ(t) ≡ b.

Let us now introduce a topology in the set R̃(Γ) as follows: R̃(Γ) is endowed with the weakest
topology for which the mapping π̃(Γ) : R̃(Γ)→M is continuous.

We can readily see that the resulting manifold R̃(Γ), together with the distinguished point c̃ and
the projection π̃(Γ), is actually a covering manifold over M \ Σ corresponding to the subgroup Γ.

Let us prove that R̃(Γ) is an extension of any other covering manifold π : (R, c)→ (M, b) over
M \ Σ corresponding to the subgroup Γ. Let γ : [0, 1] → R be an arbitrary curve on R starting
from the point c. Obviously, the projection π ◦ γ of this curve is Γ-nice in the manifold M .

To any point d of the manifold R we assign the set Π(c, d,R) of all curves γ : [0, 1] → R
on R starting from the point c and ending at the point d, γ(0) = c, γ(1) = d. It is clear that
the projections π ◦ γ of all curves γ in the set Π(c, d,R) are Γ̃-equivalent curves. Therefore, the
mapping that assigns to any point d of the manifold R the set of projections π ◦ γ of all curves γ
in Π(c, d,R) is an embedding of the manifold R in the above manifold R̃(Γ).

The verification of the other assertions of the theorem is quite easy, and we do not dwell on it.

5. Covering over the Complement of an Analytic Subset in a Manifold

Proposition 13. Let M be an analytic manifold, let Σ be an analytic subset of M , and let
b ∈M\Σ be a distinguished point. Let us choose a subgroup Γ of the fundamental group π1(M\Σ, b).
Assume that γ1 : [0, 1] → M , γ1(0) = b, is a Γ-nice curve (see Definition 12) such that it belongs
to M \Σ for 0 � t < 1 and its right end a = γ1(1) belongs to Σ. Consider an arbitrary admissible
stratification of the set Σ (see Sec. 2). Let B be the stratum of this stratification that contains the
point a and let γ2 : [0, 1] → B be an arbitrary curve in B starting from the point a, γ2(0) = a.
Then the composition of the curves γ1 and γ2 is a Γ-nice curve.

Proof. Let U be a sufficiently small neighborhood of the stratum B and let π : U → B be
the projections mentioned in Condition 2 (see Sec. 2). Denote by π(Γ) : (R(Γ), c) → (M \ Σ, b) a Q3
locally trivial covering corresponding to the subgroup Γ ⊂ π1(M \ Σ, b). By the definition of the
covering, the curve γ1 : [0, t1] → M \ Σ, where t1 is any number strictly less than 1, can be lifted
to the manifold R(Γ) in such a way that the lifting of this curve starts from the distinguished
point c ∈ R(Γ). Let us choose a value of the parameter t1 which is so close to 1 that the point
b1 = γ(t1) belongs to the set U . Denote by c1 the point on the lifting that corresponds to the
parameter t1 , π(c1) = b1 . Let R1 be a connected component of the preimage of the set U under the
mapping π(Γ) : R(Γ)→M \ Σ. The restriction ρ of the mapping π(Γ) to the manifold R1 defines
a locally trivial covering ρ : (R1, c1)→ (U \ Σ, b1). We denote by Γ1 the subgroup of π1(U \ Σ, b1)
corresponding to this covering.

Lemma 14. The group Γ1 contains the kernel of the homomorphism of the fundamental group
of the space U \Σ into the fundamental group of the stratum B induced by the projection π : U → B .

Proof. The restriction of the mapping π : U → B to the domain U \ Σ is a locally trivial
fibration (see Condition 2 in Sec. 2). Denote by a1 the image of the point b1 under the projection
π and by V \ F the fiber of the fibration over the point a1 . It follows from the segment

· · · → π1(V \ F, b1)→ π1(U \ Σ, b1)→ π1(B, a1)→ · · ·
of the exact homotopy sequence of this fibration that the kernel of the homomorphism under
consideration coincides with the image of the fundamental group π1(V \ F, b1) of the above fiber.
Therefore, we must show that the group Γ1 contains the image of the fundamental group of this
fiber. Let γ : [0, 1] → V \ F , where γ(0) = γ(1) = b1 , be an arbitrary closed loop in the fiber.
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Let us show that γ ∈ Γ1 . To this end, we must prove that the composition of the curves γ̃1 , γ ,
and γ̃−1

1 , where γ̃1 is the restriction of the curve γ1 to the interval [0, t1], belongs to the group
Γ ⊂ π1(M \Σ, b). However, the composition of these curves can be regarded as a small perturbation
of the twice passed curve γ1 . By assumption, the curve γ1 is Γ-nice, which precisely means that
if a small perturbation of the twice passed curve is disjoint with the set Σ, then it belongs to the
group Γ. This proves the lemma.

We come back to the proof of Proposition 13. Let γ be the composition of the curves γ1 and γ2

mentioned in the statement of the proposition. We must show that the curve γ is Γ-nice, i.e., any
small deformation of the twice passed curve γ belongs to the group Γ if it is disjoint with Σ. First,
let us prove this fact for special small deformations disjoint with the set Σ that have the following
form. The curve γ must be the composition of curves γ1 , γ2 , and γ3 that are small deformations of
the curves γ1 , γ2γ

−1
2 , and γ−1

1 , respectively, and the curve γ2 must be closed. Certainly, we assume
that the relations γ1(1) = γ2(0) = γ2(1) = γ3(0) hold because otherwise the composition is not
defined. Since γ2 is a closed curve that is close to the twice passed curve γ2 , it follows that the
projection of this curve to the stratum B defines the trivial element of the fundamental group of
the base. We consider the lifting of the curve γ1 to the space of the fibration R(Γ); let this lifting
start from a point c. Denote by c1 the right end of the lifting. By Lemma 14, the lifting of γ2 to
R(Γ) that starts from the point c1 ends at the same point c1 . Further, the lifting of γ3 to R(Γ)
that starts from the point c1 must end at the point c. Indeed, the composition of the curves γ1

and γ3 is a small deformation of the twice passed curve γ1 . The curve γ1 is Γ-nice. Therefore, the
lifting of the composition of γ1 and γ3 to R(Γ) that starts from the point c must end at the same
point.

Thus, if a lifting of the composition of the curves γ1 , γ2 , and γ3 to R(Γ) starts from a point
c, then it ends at the same point c. In other words, the composition of these curves belongs to
the group Γ. We thus proved the desired assertion for a specially perturbed curve that is the twice
passed composition of γ1 and γ2 . Obviously, any small perturbation of this curve, which belongs
to the domain M \ Σ, is homotopic in this domain to some special perturbation of this curve.

(The twice passed composition of the curves γ1 and γ2 is the composition of the curves γ1 ,
γ2γ

−1
2 , and γ−1

1 . A perturbation of this composition is the composition of three curves l1 , l2 , and
l3 , where the curve l2 is close to the curve γ2γ

−1
2 but is not necessarily closed. Obviously, this

composition is homotopy equivalent to the composition of close curves l̃1 , l̃2 , and l̃3 such that the
curve l̃2 is closed.)

This proves Proposition 13.

6. Main Theorem

We are now ready to state and prove the main theorem.
Theorem 15 (on the analytic continuation of a function along an analytic set). Let M be a

complex analytic manifold, let Σ be an analytic subset of M , and let fb be a germ of an analytic
function at a point b ∈M . Assume that the germ fb can be continued analytically along any curve
γ : [0, 1] → M , γ(0) = b, disjoint with Σ for t > 0. Suppose that the germ fb can be continued
analytically along some curve γ1 : [0, 1] → M , γ1(0) = b, whose right end a, a = γ1(1), belongs
to the set Σ, a ∈ Σ. Consider an arbitrary admissible stratification of Σ (see Sec. 2). Let B be
the stratum of this stratification whose closure contains the point a, and let γ2 : [0, 1] → M be an
arbitrary curve starting from a, γ2(0) = a, such that γ2(t) ∈ B for t > 0. Then the germ fb can
be continued analytically along the composition of the curves γ1 and γ2.

Proof. Suppose that the germ fb of the analytic function can be continued along a curve γ .
Consider an arbitrary point b̃ belonging to the domain of convergence of the Taylor series of the
germ fb . The germ at b̃ of the sum of this Taylor series can be continued along any curve that isQ4
sufficiently close to γ outside the domain of convergence of the Taylor series. Therefore, without
loss of generality, in the statement of the main theorem we can assume that the point b belongs to
the set M \Σ, the point a belongs to the stratum B, and the curve γ1 : [0, 1]→M , where γ1(0) = b
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and γ1(1) = a, is disjoint with the set Σ for 0 � t < 1. Let us prove the main theorem under these
very assumptions.

In the fundamental group of the domain M \Σ with the distinguished point b we introduce the
subgroup Γ that consists of the loops in M \Σ which start and end at the distinguished point and
for which the continuation of the germ fb along these loops results in the same germ. Consider the
maximal covering manifold π̃(Γ) : (R̃(Γ), c)→ (M, b) over M \Σ corresponding to this subgroup Γ
(see Definition 9). The manifold R̃(Γ) is endowed with the natural structure of a complex-analytic
manifold. This structure is inherited from the analytic structure on M under the mapping π̃(Γ)
(this mapping is a local homeomorphism). The set Σ̃ = π̃−1(Γ)(Σ) is an analytic subset of the
manifold R̃(Γ). By assumption, f̃c = π∗fb regarded as a germ of an analytic function at the point
c on the analytic manifold R̃(Γ) can be continued analytically to the entire manifold R̃(Γ) \ Σ̃,
and the germ f̃c defines there a single-valued analytic function f̃ . Any curve γ : [0, 1] → M ,
γ(0) = b, along which the germ fb can be continued analytically is a Γ-nice curve. Indeed, the
analytic continuations of the germ fb along the twice passed curve γ and along any closed curve
γ̃ : [0, 1]→M , γ̃(0) = γ̃(1) = b, that is close to γγ−1 obviously lead to the same original germ fb .

In particular, the curve γ1 : [0, 1]→M , where γ1(0) = b and γ1(1) = a ∈ Σ, which is mentioned
in the main theorem as a curve along which the germ fb is continued, is Γ-nice. Therefore, there
is a lifting of γ1 to R̃(Γ) that starts from the point c. Denote by ã the right end of the lifting. By
Proposition 13, for any curve γ2 starting from the point a and belonging to the stratum B , the
composition of the curves γ1 and γ2 is a Γ-nice curve. Hence, there is a lifting of this composition to
R̃(Γ) starting from the point c. In other words, this means that any curve belonging to the stratum
B and starting from the point a can be lifted to R̃(Γ) as a curve starting from the point ã.
Let B̃ , B̃ 
 ã, be the connected component of the preimage of the stratum B with respect to the
projection π̃(Γ). We have proved that the restriction of the mapping π̃(Γ) to B̃ defines a locally
trivial covering over the stratum B . It is clear that the pair consisting of the manifold R̃(Γ) and
the set Σ̃, where Σ̃ is the preimage of the set Σ under the projection π̃(Γ), has constant topology
along the stratum B̃ . Indeed, the triple R̃(Γ), Σ̃, B̃ is locally homeomorphic to the triple M , Σ,
B , and, by assumption, the topology of the pair M , Σ is constant along the stratum B .

We can now apply Theorem 6 to the germ f̃c = π∗fb of a single-valued analytic function on
R̃(Γ) \ Σ̃ that can be continued to a neighborhood of the point ã ∈ B̃ . This completes the proof of
the main theorem.
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