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Consider the system of equations P1 = · · · = Pn = 0 in (C\0)n, where P1, . . . , Pn

are Laurent polynomials with the Newtonian polyhedrons ∆1, . . . , ∆n. Let us as-
sociate each Laurent polynomial Q with the n-form

ω = Q/

(
P

dz1

z1
∧ · · · ∧ dzn

zn

)
,

where z1, . . . , zn are independent variables and P = P1 · . . . · Pn. For general sets
of the polyhedrons ∆1, . . . , ∆n the sum of the Grothendieck residues of the form ω
over all roots of the system of equations is evaluated. The results were reported at
workshops conducted by Arnol’d and Gel’fand at the Mittag-Leffler Institute and
at Maryland University in 1991–92. A detailed exposition is being prepared for
publication.

1. COMBINATORIAL COEFFICIENT

Let ∆1, . . . , ∆n be convex polyhedrons in Rn and ∆ be their Minkowski sum.
Each face of the polyhedron ∆ is the sum of faces of ∆i polyhedrons. A face Γ will
be called locked if its terms include at least one vertex. A vertex A ∈ ∆ will be
called critical if all faces adjacent to this vertex are locked.

Consider a continuous map F : ∆ → Rn, F = (f1, . . . , fn), such that each its
components fi is nonnegative and vanishes on those and only those faces Γ =
Γ1+· · ·+Γn whose term Γi is a point-vertex of the polyhedron ∆i. The restriction F̃
of the map F onto the boundary ∂∆ of the ∆ polyhedron transfers a neighborhood
of a critical vertex into a neighborhood of the zero point on the boundary ∂Rn

+ of
the positive octant.

The combinatorial coefficient kA of a critical vertex A ∈ ∆ is the local degree of
the germ of the map F̃ : (∂∆, A) → (∂Rn

+, 0). The coefficient kA is well-defined and
depends only on the orientations of the polyhedron ∆ and the positive octant Rn

+.
The set of the polyhedrons ∆1, . . . , ∆n is called developed if all faces of the sum

polyhedron ∆ are locked. Almost all sets of n polyhedrons in the space Rn are
developed.
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2. ORIENTATIONS

The sign of the form ω depends on the order of the independent variables
z1, . . . , zn. This order also determines the orientation of the linear space Rn that
contains me lattice of the monomials za and the Newton polyhedron ∆ = ∆+ · · ·+
∆n.

The order of the equations P1 = · · · = Pn = 0 (or their Newton polyhedrons
∆1, . . . , ∆n) determines the orientation of the space Rn

+, which is involved in the
definition of the combinatorial coefficient. The order of the equations also deter-
mines the sign of the Grothendieck residue in the roots of the system of equations.

Let us arbitrarily select the orders of the independent variables and the equations.
These determine the signs of the form ω, the Grothendieck residue [1], and the signs
of the combinatorial coefficients.

3. RESIDUE OF THE FORM IN A VERTEX OF A POLYHEDRON

For each vertex A of the Newton polyhedron ∆(P ) of the Laurent polynomial
P , we construct the Laurent series or the function Q/P , where Q is an arbitrary
Laurent polynomial.

The monomial za corresponding to the vertex A of the polyhedron ∆(P ) is
included in P with some nonzero coefficient CA; therefore, the free term of the
Laurent polynomial P̃ = P/(CAza) is equal to unity. Let us specify, the Laurent
series for 1/P̃ by the formula 1/P̃ = 1+(1− P̃ )+(1− P̃ )2 + . . . . Each monomial zb

is included with nonzero coefficients in only a finite number of the terms (1− P̃ )k.
Therefore, the coefficient of each monomial zb in this series is well-defined. The
formal product of the series obtained and the Laurent polynomial CAzaQ will be
called the Laurent series of the rational function Q/P at the vertex A of the Newton
polyhedron ∆(P ).

The residue resAω of the rational form ω =
Q

P

dz1

z1
∧ · · · ∧ dzn

zn
at the vertex A of

the Newton polyhedron ∆(P ) is the free term of the Laurent series of the function
Q/P at the vertex A. The residue res Aω can explicitly be written as a polynomial
of C−1

A and the coefficients of the Laurent polynomials P and Q.

4. ADMISSIBLE FORMS

Let ∆1, . . . , ∆n be polyhedrons in Rn such that the dimension of the polyhedron
∆ = ∆1 + · · · + ∆n is n. Each nonlocked face Γ ⊂ ∆ of highest dimension is
associated with a half-space LΓ containing the polyhedron ∆ and such that ∂LΓ ⊃
Γ. The extended sum of the polyhedrons ∆1, . . . , ∆n, is a (possibly, unbounded)
polyhedron ∆̃ equal to the intersection of the half-spaces LΓ over all nonlocked
faces F of highest dimension of the polyhedron ∆.

Examples. 1. If all polyhedrons ∆i coincide, then ∆̃ = ∆.
2. If the polyhedrons ∆1, . . . , ∆n are developed, then ∆̃ = Rn.

Let P1 = · · · = Pn = 0 be a ∆-regular [2] system of equations in (C \ 0)n

with Newton polyhedrons ∆1, . . . , ∆n. The form ω =
P

Q

dz1

z1
∧ · · · ∧ dzn

zn
is called

admissible for this system if the support of the Laurent polynomial Q lies strictly
inside the extended sum ∆̃ of the polyhedrons ∆1, . . . , ∆n.



NEWTONIAN POLYHEDRONS AND GROTHENDIECK RESIDUES 3

5. MAIN THEOREM

Theorem. The sum of the Grothendieck residues of an admissible form ω over all
roots in (C \ 0)n of a ∆-regular system of equations P1 = · · · = Pn = 0 is equal
to (−1)n

∑
kAres Aω, where the summation is over all critical vertices A of the

polyhedron ∆.

The proof of this theorem uses the technique of torus compacting [3]. After
compacting, the main theorem reduces to a special torus version of the theorem on
the equality to zero of the sum of residues on a compact manifold (cf. [4, 1]).

Corollary 1. (generalized Euler-Jacobi formula from [4]). If the support of the
Laurent polynomial Q lies strictly inside the polyhedron ∆(P ), then the sum of the
Grothendieck residues of the form ω is 0.

Indeed, all numbers res Aω = 0 then vanish. (All numbers res Aω = 0 also
vanish for Laurent polynomials Q with supports lying in a somewhat larger domain
depending on ∆i, which gives a generalization of Corollary 1.)

6. TORUS VERSION

Theorem. If the Newton polyhedrons of the equations in the system are developed,
then the sum of the Grothendieck residues can be evaluated for a form ω with any
Laurent polynomial Q.

Indeed, a system of equations with developed Newton polyhedrons is ∆i-regular.
The extended sum ∆̃ of developed polyhedrons is Rn; therefore, the form ω with
an arbitrary Laurent polynomial Q is admissible.

Corollary 2. The sum
∑

R(a)µ(a) of values of an arbitrary Laurent polyno-
mial R over roots a of a system of equations with developed Newton polyhedrons,
where the roots are evaluated while taking into account their multiplicities µ(a) is
(−1)n

∑
kAres Aω where

ω = R
dP1

P1
∧ · · · ∧ dPn

Pn
=

[
Rz1 . . . zn det

(
dP

dz

)
/(P1 . . . Pn)

]
dz1

z1
∧ · · · ∧ dzn

zn
.

7. GEOMETRIC APPLICATION

For each vertex A of the polyhedron ∆ = ∆1 + · · ·+∆n, a set of vertices Ai ∈ ∆i

such that A = A1+· · ·+An is determined. Put detA to be equal to the determinant
of the matrix formed by the vectors A1, . . . , An.

Theorem. For the mixed volume V of developed polyhedrons ∆1, . . . , ∆n with ra-
tional vertices,

n!V = (−1)n
∑

kAdetA.

For polyhedrons with integer vertices, this theorem is proved by comparing the
Bernstein formula for the number of the roots of the system of equations [5] with
Corollary 2 for R ≡ 1. It would be interesting to prove the theorem geometrically
and eliminate the condition that the vertices are rational.
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8. ALGEBRAIC APPLICATION

Corollary 2 makes it possible to construct an explicit theory of elimination for a
system of equations in (C\0)n with developed Newton polyhedrons. Let us explain,
for example, how an equation for the first coordinate z1 of the roots of the system is
obtained. For this purpose it is sufficient to evaluate the sums

∑
R(a)µ(a), where

R are polynomials equal to 1, z1, . . . , z
N
1 , with N = n!V − 1, and use the Newton

formulas expressing the coefficients in an equation in terms of the sums of powers
of its roots.

9. APFINE VERSION

A Newton polyhedron ∆ ⊂ Rn
+ will be called convenient if the set of its ver-

tices contains one point on each positive coordinate ray and the point 0. A set
of polyhedrons ∆1, . . . , ∆n will be called affinely developed if all polyhedrons are
convenient and each face of the polyhedron ∆ = ∆1 + · · · + ∆n, that does not lie
in the coordinate subspace is locked.

Theorem. All roots in Cn of a polynomial system P1 = · · · = Pn = 0 with affinely
developed Newton polyhedrons are isolated. The sum over all roots of the Grothen-
dieck residues of the form ω corresponding to an arbitrary polynomial Q divisible
by the monomial z1, . . . , zn is equal to (−1)n

∑
kAres Aω, where the summation is

over all critical vertices A of the polyhedron ∆.

If all roots of the system lie in (C \ 0)n, then this statement follows from the
main theorem. The general case reduces to the one considered by passing to the
limit. A corollary to this theorem is an explicit theory of elimination for polynomial
equations in Cn with affinely developed Newton polyhedrons (cf. Section 8). Only a
very special case of this theorem (for one nontrivial vertex A and kA = 1) has been
known [6] before. Note that in the theorem, it is possible to eliminate conditions
0 ∈ ∆i.

10. LOCAL VERSION

Consider a system of analytic equations p1 = · · · = pn = 0 in a neighborhood
of the point 0 ∈ Cn. Let the Newton diagrams of Γ1, . . . , Γn of these equations be
convenient [2]. The definitions of developed Newton diagrams and the combinatorial
coefficients of the vertices of the diagram of the sum Γ = Γ1 + · · · + Γn and the
residues res Aω almost literally repeat the definitions given above. The following
theorem is valid.

Theorem. For a system of analytic equations p1 = · · · = pn = 0 with developed
Newton diagrams, the point 0 is an isolated solution. The Grothendieck residue

at zero of the form ω =
q

p1 . . . pn

dz1

z1
∧ · · · ∧ dzn

zn
, where q is an arbitrary analytic

function divisible by zl·. . .·zn, is equal to (−1)n−1
∑

kAres Aω, where the summation
is over all vertices A of the Newton diagram Γ = Γ1+ · · ·+Γn that lie strictly inside
the positive octant.

The proof of this theorem is derived from the main theorem and the theorem
from Section 9.
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