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Newton polyhedra establish a relationship between algebraic geometry and the

geometry of polyhedra. In this paper we discuss this relationship and its applica-
tions in algebra and geometry.

§1. Computation of discrete invariants
in terms of Newton polyhedra

In this section we discuss the computation of discrete algebraic invariants in
geometric terms and, in particular, the computation of the number of roots of a
system of equations in terms of the mixed volumes of polyhedra. An outline of an
algebraic proof of the isoperimetric inequality will be given.

1.1. The ideology of general position. Suppose that the outcome of some
natural process, such as a physical experiment, is the graph of a function of one
variable over a closed interval of finite length. One feels that such a function
ought to have only finitely many roots. Can this be proved rigorously? “Classical
mathematics” answers this question with an univocal “no”: for any given closed
subset of a closed interval (such as a Cantor perfect set) there exists an infinitely
differentiable function whose set of zeroes is the given set. In the “mathematics
of general position”, however, the statement can be proved: The space of smooth
functions over a closed interval contains a dense open set of functions which have
finitely many zeroes, maxima, and minima. A “generic” function is a function from
a dense open set. “Non-generic” functions form a hypersurface of codimension one
in the space of functions. Various pathological effects, such as the existence of
infinitely many zeroes over a closed interval of finite length, may of course occur,
but for the overwhelming majority of functions no complications arise. It is natural
to expect that a function occurring in some natural context (and not constructed
specially as a counterexample) will be a function in general position.

For various classes of objects (functions, mappings, differential equations) one
can often single out those in general position, which, first, constitute the over-
whelming majority, and, second, behave in a much simpler way than an arbitrary
object.

The main task of singularity theory is to identify and investigate objects in
general position. To illustrate how fruitful this approach can be, let us compare
the following two assertions:

1) There is no algebraic algorithm that enables us to determine, using only the
coefficients of a differential equation, whether or not its equilibrium position is
stable.
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2) For “generic” differential equations there is an explicit (algebraic) procedure
that will tell us whether an equilibrium is stable or not.

Thus, the unsolvability of the stability problem, as declared by “classical math-
ematics”, pertains only to “special” equations, which should never be encountered
in real life except, of course, under special circumstances. Had mathematicians
unquestioningly accepted the quite convincing theorem that there is no algorithm
for the stability problem and failed to investigate the case of general position, we
would have remained ignorant of a remarkable criterion for stability which has in-
numerable applications and may be found in any textbook on differential equations.

1.2. Complex and real cases in the “mathematics of general position”. In
both complex and real cases, exceptional objects usually form a hypersurface. In
the complex case, however, the hypersurface is also complex and its real codimen-
sion is two (one complex equation can be considered as two real ones — a complex
number is zero if both its real and imaginary parts are zero). A subset of codi-
mension two does not divide the space into parts, and that is why, starting from
one generic complex object, one can reach any other without passing through de-
generate, nongeneric objects. Discrete invariants remain unchanged in the process
— hence the discrete invariants of any two complex generic objects are equal. Not
so in the real case: a generic real hypersurface divides the space into parts and
even discrete invariants of different generic real objects may be distinct. Here is a
simple example: in the space of polynomials of degree n in one complex variable,
the nongeneric polynomials having multiple roots form a complex hypersurface.
The number of complex roots of a generic complex polynomial of degree n does not
depend on the choice of the polynomial — it is n. On the other hand, the number
of real roots of a generic real polynomial depends on the choice of the polynomial
(it may be n, (n− 2), (n− 4), dots ).

1.3. Examples of computation with Newton polyhedra. Newton polyhedra
generalize the notion of the degree of a polynomial and playa similar role. The
Newton polyhedron of a polynomial of n variables is a polyhedron in the real
linear space Rn, defined as the convex hull of the points whose coordinates are the
exponents of the powers that occur in the polynomial with nonzero coefficients.

FIGURE 1.

Examples. 1. Consider the following polynomial p in x and y:

y2 + Q3(X) = y2 + a0 + a1x + a2x
2 + a3x

3.
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The Newton polygon ∆(p) of this polynomial is shown in Figure 1. The point (0, 2)
in this figure corresponds to the monomial y2, the points (0, 0), (0, 1), (0, 2), and
(0, 3) to the monomials a0, a1x, a2x

2, and a3x
3, respectively.

2. The Newton polyhedron of a generic polynomial of degree m in two variables
is the simplex with vertices (m, 0), (0,m), (0, 0).

The Newton polyhedron of a generic polynomial of degree m in n variables is the
n-dimensional simplex x1 ≥ 0, . . . , xn ≥ 0,

∑
xi ≤ m. Thus we see that Newton

polyhedra indeed generalize the notion of degree.
Discrete parameters of the complex variety defined by a generic equation P (x) =

0 with fixed Newton polyhedron ∆(P ) do not depend on the specific choice of the
equation; they depend only on ∆(P ).

Example. Consider a generic complex curve P (x, y) = 0 in the plane, with fixed
Newton polyhedron ∆. Its genus is equal to the number of points with integer
coordinates in the interior of the Newton polyhedron ∆ [1]. Thus, the curve
y2 + Q3(x) = 0, where Q3(x) is a sufficiently generic polynomial of third degree,
has genus 1, since its Newton poly- gon contains only one integral point (with co-
ordinates (1, 1); see Figure 1). Similarly, the genus g of a generic curve Pm(x, y)
of degree m, is g = (m − 1)(m − 2)/2, which is just the number of points in the
interior of the simplex x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ m.

The formula for the genus of a generic curve is well known. We see that compu-
tations with Newton polyhedra generalize the classical computations of invariants
of algebraic varieties, which are defined by generic equations of fixed degrees, and
give answers a geometrical meaning. Here is a multidimensional generalization of
the previous example.

Example. The arithmetical genus of the hypersurface defined in Cn by a generic
equation P (x) = 0 with fixed Newton polyhedron is equal to the number of points
with integer coordinates in the interior of the New- ton polyhedron [1]. The cor-
responding classical computation: the arithmetical genus of a general hypersurface
of degree m in n-dimensional space is (m− 1) . . . (m−n)n!; this number is just the
number of points with integer coordinates inside the simplex x1 ≥ 0, . . . , xn ≥ 0,∑

xi ≤ m.

As a rule, the answers become simpler and more symmetric if one considers
solutions of equations not in Cn, but in (C \ 0)n, that is, the subdomain of Cn

obtained by deleting all the coordinate hyperplanes.

Example [1]. The Euler characteristic of the hypersurface defined in (C \ 0)n

by a generic equation P (x) = 0 with fixed Newton polyhedron is equal to the
volume of the polyhedron multiplied by (−1)n−1n!. (The Euler characteristic of a
hypersurface in Cn is given by a more complicated formula. However, since Euler
characteristic is additive, this more complicated formula reduces to the previous
formula.)

As simple an object as the volume of the convex hull of a system of points is
an extremely complicated function of the coordinates. Such objects, considered in
the usual numerical terms, are so cumbersome that no progress would be possible
without a knowledge of their geometrical interpretation.
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1.4. Number of roots of n equations in n unknowns. By the Bézout Theo-
rem, the number of nonzero roots of a polynomial f in one variable is equal to the
difference between the maximum and minimum degrees of the monomials occurring
in the polynomial. The Newton polyhedron of the polynomial f is a closed interval
and the above-mentioned difference is the length of this interval. This observation
is generalized to the multidimensional case in the following theorems.

Kushnirenko’s Theorem [2]. The number of solutions in (C \ 0)n of a generic
polynomial system of n equations P1 = · · · = Pn = 0 with identical Newton poly-
hedra ∆(P1) = · · · = ∆(Pn) = ∆ is equal to the volume V (∆) of the Newton
polyhedron multiplied by n!.

Example. As already stated, the Newton polyhedron of a polynomial of degree
m in n variables is a simplex x1 ≥ 0, . . . , xn ≥ 0,

∑
xi ≤ m (on the assumption

that the polynomial contains all monomials of degrees ≤ m). The volume of this
simplex is mn/n!. By Kushnirenko’s Theorem, the number of roots of a general
system of n equations of degree m in n unknowns is mn.

This answer agrees with the Bézout Theorem. The Newton polyhedron of a
polynomial that does not contain all monomials of degree ≤ m may be smaller
than a simplex, and the number of solutions according to Kushnirenko’s Theorem
may be less than the number mn given by the Bézout Theorem. The reason is
that, as some monomials do not appear, some points at infinity may turn out to be
roots. Since the Bézout Theorem computes the number of roots in the projective
space, it counts these “parasitic” roots, while Kushnirenko’s Theorem does not.

Bernstein’s Theorem [3, 1]. The number of solutions in (C \ O)n of a generic
system of n polynomial equations P1 = · · · = Pn = 0 with Newton polyhedra
∆1, . . . , ∆n is equal to the mixed volume V (∆1, . . . , ∆n) multiplied by n!.

We first define mixed volume.
By the Minkowski sum of two subsets of a linear space we mean the set of all

sums of pairs of vectors, one from the first subset and another from the second one.
The product of a subset by a number is defined similarly. The Minkowski sum of
convex bodies (convex polyhedra, convex polyhedra with vertices at points with
integer coordinates) is a convex body (convex polyhedron, convex polyhedron with
vertices at points with integer coordinates). The role of Minkowski summation in
the theory of Newton polyhedra is due to the following simple proposition: the
Newton polyhedron of a product of polynomials is the Minkowski sum of their
Newton polyhedra.

Minkowski’s Theorem. The volume of a body that is a linear combination with
positive coefficients of fixed convex bodies in Rn is a homogeneous polynomial of
degree n in the coefficients of the linear combination.

Definition. The mixed volume V (∆1, . . . , ∆n) of convex bodies ∆1, . . . , ∆n in Rn

is the coefficient of λ1 . . . λn in the polynomial V (λ1∆1 + · · ·+ λn∆n), divided by
n!, where V (∆) is the volume of ∆.

The mixed volume of n identical bodies is equal to the volume of any one of
them. The mixed volume of n bodies is expressed in terms of usual volumes of
their sums in the same way as the product of n numbers is expressed in terms of
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the nth powers of their sums. For example, for n = 2 we have

ab =
1
2

[
(a + b)2 − a2 − b2

]
,

V (∆1, ∆2) =
1
2

[V (∆1 + ∆2)− V (∆1)− V (∆2)] .

Similarly, for n = 3,

V (∆1, ∆2∆3) =
1
3!


V (∆1 + ∆2 + ∆3)−

∑

i<j

V (∆i + ∆j) +
∑

i

V (∆i)


 .

Example. Let ∆1 be the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b, and ∆2 the rectangle
0 ≤ x ≤ c, 0 ≤ y ≤ d. The Minkowski sum ∆1 + ∆2 is the rectangle 0 ≤ x ≤ a + c,
0 ≤ y ≤ b + d. The mixed volume V (∆1,∆2) is ad + bc. The number ad + bc is

the permanent of the matrix
(

a b
c d

)
(the definition of the permanent is the same

as that of the determinant, except that all summands enter with the plus sign). In
the multidimensional case the mixed volume of n parallelepipeds whose sides are
parallel to the coordinate axes is also equal to the permanent of the corresponding
matrix.

Example. The number of roots of a generic system of polynomial equations in
which the ith variable occurs in the jth equation to power at most ai,j is equal to
the permanent of the matrix (ai,j) times n!.

For equations with identical Newton polyhedra, the statements of Kushnirenko’s
and Bernstein’s theorems coincide.

Newton polyhedra can be used to compute not only discrete invariants of hy-
persurfaces and numbers of solutions of systems of n equations in n unknowns, but
also discrete invariants of the varieties of solutions of systems of k equations in n
unknowns. Here is a very simple example.

Example [4]. For 0 ≤ i < n− k, the i-dimensional homology group of the variety
X of solutions of a generic system of k polynomial equations P1 = · · · = Pk = 0 in
(C\O)n is isomorphic to the i-dimensional homology group of the space (C\O)n, if
the Newton polyhedra ∆, . . . , ∆k of the system have full dimension, i.e., dim ∆1, =
· · · = dim ∆k = n. Hence, dim Hi(X) =

(
n
i

)
, for 0 ≤ i < n − k. In particular, if

k < n, the variety X is connected.

Let us return now to mixed volumes.

1.5. Aleksandrov–Fenchel inequalities. Many geometrical invariants can be
expressed in terms of mixed volumes of bodies. For example, the ε-neighborhood
of a convex body ∆ is the set ∆ + εK, where K is the unit ball about the origin.
By the Minkowski Theorem, the volume of the ε-neighborhood of a body ∆is the
following polynomial in ε:

V (∆) + nεVn−1(∆) +
n(n− 1)

2
ε2Vn−2(∆) + . . . ,
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where
Vl(∆) = V (∆, . . . , ∆︸ ︷︷ ︸

l times

, K, . . . , K︸ ︷︷ ︸
n−l times

).

On the other hand, it is clear that in the first approximation with respect to ∆
the volume of the ε-neighborhood of ∆ is V (∆)+ εS(∆), where S(∆) is the surface
area of ∆. From this we conclude that the surface area of ∆ is nVn−1(∆). (It is not
difficult to show that the mixed volume Vl(∆) coincides, up to a factor depending
only on l and n with the mean value of the area of the projection of ∆ onto an
l-dimensional plane.)

The following remarkable inequality of Aleksandrov–Fenchel for mixed volumes
of bodies is a generalization of the isoperimetric inequality

V 2(K1,K2 . . . , Kn) ≥ V (K1, K1 . . . , Kn)V (K2,K2, . . . ,Kn)

where K1, . . . , Kn are nonempty convex bodies. The following assertion is a simple
formal corollary of these inequalities: for any two convex bodies K1 and K2 and
any integer l, 0 < l < n,

V n(K1 . . . , K1︸ ︷︷ ︸
l times

K2, . . . , K2︸ ︷︷ ︸
n−l times

) ≥ V l(K1).V n−l(K2).

Applying this assertion to the case when K1 is ∆, K2 is the unit ball K, and
l = n− 1, we obtain the isoperimetric inequality:

S(∆) ≥ V (n−1)/n(∆)V 1/n(K).

The isoperimetric inequality furnishes an upper bound for the volume of a body in
terms of its surface area. This bound is best possible: for a ball the equality sign
holds.

The proof of the Aleksandrov–Fenchel inequalities is far from simple. Three geo-
metrical proofs of these inequalities are known. Two were published by A.D. Alek-
sandrov in 1936 [5]. One of them is combinatorical (the proof is worked out for
polyhedra and then extended to all convex bodies by continuity). The other is an-
alytical; it uses the theory of selfadjoint elliptic operators depending on parameters
(the proof is worked out for smooth, strictly convex bodies and then extended to
all convex bodies by continuity). Fenchel’s geometrical proof also dates to 1936 (it
is so complicated that it has never been published in full).

1.6. An algebraic proof of the Aleksandrov–Fenchel inequalities. Thanks
to the link created by Newton polyhedra between algebraic geometry and the geom-
etry of polyhedra, algebraic theorems of general type yield considerable information
about the geometry of polyhedra. As an example, we will show how the Hodge In-
dex Theorem can be used to obtain a simple proof of the Aleksandrov–Fenchel
Theorem. The proof outlined below was found independently in 1979 by Teissier
[6, 7] and the author [8, 9].

We first recall the Hodge Inequality from the algebraic geometry of surfaces [10],
which will play a key role in what follows. Let Γ1 and Γ2 be two complex curves on
a compact connected complex algebraic surface F . Let the self-intersection number
of one of the curves be positive. The Hodge Inequality states that

〈Γ1,Γ2〉2 ≥ 〈Γ1,Γ1〉〈Γ2, Γ2〉,
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where 〈Γ1, Γ2〉 is the intersection number of the curves Γ1 and Γ2, 〈Γ1, Γ1〉 and
〈Γ2,Γ2〉 are self-intersection numbers of these curves. (Recall that the self-intersection
number of a curve is defined as the intersection number of the curve with its image
under a slight deformation.)

The Aleksandrov–Fenchel inequalities will be inferred from the Hodge Inequality
and Bernstein’s Theorem, as follows.

Consider the noncompact algebraic surface defined in Cn by a generic system of
(n−2) polynomial equations P3 = 0, . . . , Pn = 0 with Newton polyhedra ∆3, . . . , ∆n
of full dimension dim ∆3 = · · · = dim∆n = n. Since by assumption the Newton
polyhedra are of full dimension, the surface will be connected. Let A1 and A2 be
two curves on this surface, defined by generic polynomial equations P1 = 0 and
P2 = 0 with Newton polyhedra ∆1 and ∆2. The number of points of intersection of
the curves A1 and A2 on our noncompact surface is equal to the number of solutions
of the system of equations P1 = P2 = P3 = · · · = Pn = 0. By Bernstein’s Theorem,
this number is equal to n!V (∆1, ∆2, ∆3, . . . , ∆n). Together with the curve A1, let us
consider a slightly deformed curve A′1, defined by an equation P ′1 = 0 that contains
the same monomials as the equation P1 = 0 but with slightly different coefficients
(in particular, the polynomials P1 and P ′1 have identical Newton polyhedra). Again
by Bernstein’s Theorem, the number of points of intersection of the curves A1 and
A′1 is n!V (∆1,∆1, ∆3, . . . , ∆n). Similarly, we construct a curve A′2 that intersects
the curve A2 at n!V (∆2, ∆2,∆3, . . . , ∆n) points.

The next step is compactification of the noncompact surface P3 = · · · = Pn = 0.
There is a special compactification F of this surface under which the closures

Γ1, Γ′1, Γ2 and Γ′2 of the noncompact curves A1, A
′
1, A2, and A′2 do not intersect “at

infinity”. Such compactifications play an important technical role in the theory of
Newton polyhedra. Some idea of such compactifications will be given in the next
section. Since the curves Γ1 = A1 and Γ′11 = A

′
1 have no points of intersection “at

infinity”, it follows that Γ1 ∩ Γ′1 = A1 ∩ A′1; similar equalities hold for the other
pairs of curves. Hence the intersection and self-intersection numbers of the curves
Γ1 and Γ2 are determined by the formulas

〈Γ1,Γ2〉 = n!V (∆1, ∆2, ∆3, . . . , ∆n),

〈Γ1,Γ1〉 = n!V (∆1, ∆1, ∆3, . . . , ∆n),

〈Γ2,Γ2〉 = n!V (∆2, ∆2, ∆3, . . . , ∆n).

Substituting these formulas into Hodge’s Inequality, we obtain the Aleksandrov–
Fenchel inequality for the polyhedra ∆1, ∆2,∆3, . . . , ∆n:

V 2(∆1, ∆2, ∆3, . . . , ∆n) ≥ V (∆1,∆1, ∆3, . . . , ∆n)V (∆2,∆2, ∆3, . . . , ∆n)

It follows that the Aleksandrov–Fenchel inequality holds for polyhedra of full
dimension with vertices at rational points (by a scale change one can place the
vertices at points with integer coefficients). To complete the proof, it remains to
use the continuity of mixed volume.

1.7. Minding’s method. We conclude this section with a brief discussion of
Bernstein’s Theorem. To be precise, we will explain to the reader why it is possible
to compute the number of roots of a system of two polynomial equations f(x, y) =
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g(x, y) = 0 using the Newton polygons of polynomials f and g. The method that
will be discussed below is due to Ferdinand Gottlieb Minding (1806-1865). Minding
expressed the answer in terms of the geometrical characteristics of polygons [11].
However, he was not famil- iar with the notion of mixed volume — when his paper
was published (1841), Minkowski had not yet been born; he was therefore unable
to extend his the- orem to the multi-dimensional case, and the generalization was
accomplished only in 1975 by D.N. Bernstein. We now outline Minding’s method.
Minding eliminates the variable y from the system f(x, y) = g(x, y) = 0. To that
end, he considers the multi-valued function y(x) defined by the equation f(x, y) = 0
and substitutes it into the second equation. The number of branches of the algebraic
function y(x) is equal to the degree of the polynomial f with respect to the variable
y. Suppose that the degree is k, and let y1(x), . . . , yk(x) be the different branches
of the function y(x). The product of all k branches g(x, yi(x)) of the multi-valued
function g(x, y(x)) gives a function p(x) =

∏
1≤j≤k g(x, yi(x)); this function is,

however, single-valued. It is clear that the zeroes of the function p correspond to
the roots of the original system. Since p is a single-valued algebraic function, it
is rational. Moreover, if the curve f(x, y) = 0 has no vertical asymptotes, then
p(x) will never become infinite for finite x, so it is a polynomial. Therefore, to
determine the number of roots of the system we must find the number of roots of
the polynomial p(x), which is simply its degree. To determine the degree of the
polynomial p, Minding suggests the following method. First compute the leading
terms of the expansions of the branches yi(x) of y(x) in fractional powers of x (the
so-called Puiseux series) as x → ∞. Then, substituting the leading terms of the
expansions of yi(x) into g(x, y), compute the leading terms of the expansions of the
branches g(x, yi(x)) and determine their (fractional) degrees. The required degree
of the polynomial p is equal to the sum of the degrees of the branches g(x, yi(x))
(this sum is always an integer).

Now Newton invented “his” polygons for the very purpose of determining the
leading terms of expansions of algebraic functions in Puiseux series. Minding uses
the Newton polygon of the polynomial f(x, y) to determine the leading terms in
the expansions of branches yi(x). He points out that in general position, when
the coefficients of polynomials f and g are not bound by special relationships, the
leading terms of the branches yi(x) do not cancel out after being substituted into
g(x, y). In addition, the degree of any branch g(x, yi(x)) depends only on that
of yi(x) and on the Newton polygon of the polynomial g(x, y). It is noteworthy
that Minding’s algorithm for computing the number of solutions of the system
f(x, y) = g(x, y) = 0 as the degree of the polynomial p =

∏
g(x, yi(x)), obtained

by expanding the branches yi(x) in Puiseux series, also works in the degenerate
case. In the case of degeneration, however, leading terms may cancel out, so that
the number of roots and the degree of the polynomial p can decrease.

2. Toric varieties and the combinatorics of polyhedra

In this section we shall give an intuitive idea of toric varieties and describe
an application of the algebraic geometry of toric varieties to the combinatorics of
polyhedra.

2.1. The notion of toric variety. It is well known that generic curves of degree
m are far more easily and conveniently studied not in the plane C2, but in the
projective plane CIP 2. This is because, first, the projective plane is compact and,
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second, the generic curve of degree m in the projective plane is smooth (compacti-
fication introduces no singularities “at infinity”).

FIGURE 2.

Figure 2 is a schematic representation of the projective plane, showing the x and
y axes and the line at infinity.

Now this picture clearly looks like the Newton polygon of a generic polynomial of
degree m. Moreover, the monomials of the highest degree m on the side x1+x2 = m,
x1 ≥ 0, x2 ≥ 0 of the Newton polygon play the main role when one approaches the
line at infinity. The monomials on the side x1 = 0, x2 ≥ 0, x1 + x2 ≤ m of the
Newton polygon dominate near the x axis, while monomials on the side x1 ≥ 0,
x2 = 0, x1 + x2 ≤ m are dominant near the y axis.

In the same way, a curve defined by a generic equation with a fixed Newton
polygon ∆ is more easily and conveniently considered in a special compactification
of the space (C \ 0)2 based on the polygon ∆. To each side of the polygon ∆
corresponds a deleted straight line C \ 0, which is added to (C \ 0)2 during the
compactification, and to each vertex of the polygon ∆ corresponds an added point.
The monomials on anyone side of the Newton polygon become dominant when one
approaches the corresponding deleted line, and the monomials at the vertices of the
Newton polygon dominate when one approaches the corresponding points.

In the multi-dimensional case we can also construct compactifications of the
space (C \ O)n based on Newton polyhedra [12]. They play the same role as the
projective compactification for general varieties of fixed degrees. All these com-
pactifications are what is known as toric varieties [13].

The space (C \ O)n is an algebraic group with respect to coordinatewise multi-
plication of vectors, known as an n-dimensional torus. A connected n-dimensional
algebraic variety (in general, singular) on which an n-dimensional torus acts alge-
braically and has one orbit isomorphic to an n-dimensional torus, is called a toric
variety. Under the action of a torus, a toric variety is broken up into a finite number
of orbits isomorphic to tori of different dimensions. To every Newton polyhedron
∆ we can associate a compact projective toric variety in such a way that every
k-dimensional face of ∆ corresponds to a complex k-dimensional orbit in the toric
variety. If one face of the polyhedron is contained in the closure of another face,
then the orbit corresponding to the first face is contained in the closure of the or-
bit corresponding to the second one. We will not present the construction of the
toric variety associated with a Newton polyhedron ∆, but restrict ourselves to the
following example.
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Example. The torus (C \ 0)2 acts on the projective plane CP 2 by the following
formula: an element (u1, u2) ∈ (C \ 0)2 takes the point z1 : z2 : z3 into the point
u1z1 : u2z2 : z3. With this action, CP 2 becomes a two-dimensional toric variety.
This variety corresponds to the Newton polygon of a generic polynomial of any
fixed degree m > 0. The sides of the polygon along the lines x1 = 0, x2 = 0, and
x1 + x2 = m correspond to the one- dimensional orbits z1 = 0, z2z3 6= 0; z2 = 0,
z1z3 6= 0; and z3 = 0, z1z2 6= 0. The vertices (0, 0), (m, 0), and (0,m) correspond
to the zero-dimensional orbits (0 : 0 : 1), (1 : 0 : 0), and (0: 1 : 0).

2.2. Simple polyhedra. We now turn to the combinatorics of polyhedra. A
bounded polyhedron is said to be simple if it is an intersection of half- spaces in
general position. An n-dimensional simple polyhedron has the same structure near
each vertex as the positive orthant in Rn near the origin. In particular, each vertex
of a simple n-dimensional polyhedron is incident with exactly n edges, and any k
of these edges belong to one k-dimensional face containing the vertex.

Remark. In “classical mathematics” a polyhedron can be defined either as the inter-
section of a finite number of subspaces or as the convex hull of a finite set of points.
A priori, these two definitions determine dual objects, and in the mathematics of
“general position” they are indeed distinct. As envisaged by the first definition, a
generic polyhedron is a simple polyhedron. From the point of view of the second
definition, it is a polyhedron all of whose proper faces are simplices. However, the
theory of simple polyhedra differs only slightly from the theory of polyhedra with
simplicial faces: polyhedra that are dual to simple polyhedra have simplicial faces,
and vice versa.

The F -polynomial of a simple n-dimensional polyhedron is defined as the gen-
erating polynomial of the sequence formed by the numbers of faces of different
dimensions in the polyhedron, i.e., F (t) =

∑
Fktk, where Fk is the number of

k-dimensional faces of the polyhedron.
By no means all polynomials are F -polynomials of simple polyhedra. Conditions

for a polynomial to have this property were found by McMullen [14]. The necessity
of these conditions was proved by Stanley [15], their sufficiency by Billera and
Lee [16]. To formulate the conditions we need the notion of the H-polynomial
of a polyhedron. To each F -polynomial we associate an H-polynomial defined by
the formula H(t) = F (t − 1); i.e., if F(t) =

∑
Fktk, then H(t) =

∑
Hktk, where

Hk =
∑

(−1)m−k
(
m
k

)
Fk.

We now present McMullen’s conditions. For any simple n-dimensional polyhe-
dron:

(1) the H-polynomial is reflexive, i.e., Hk = Hn−k;
(2) coefficients of an H-polynomial increase to the middle, i.e., H0 ≤ H1 ≤ · · · ≤

H[n/2], and the coefficients H0 and Hn are 1;
(3) for any i such that 1 ≤ i < [n/2], the difference Hi+1−Hi satisfies an estimate

that depends on the difference Hi−Hi−1; more precisely, Hi+1−Hi ≤ Qi(Hi−Hi−).
Here Qi is a special function of integers (for the definition of the function Qi,
see [14]). We shall need this function in subsection 2.3.

The statement about the reflexivity of the H-polynomial is also known as the
Dehn–Sommervi1le Theorem. A special case of that theorem for k = 0 coincides
with the Euler Theorem for polyhedra:

∑n
i=0(−1)iFi = 1. Indeed, the number H0

is equal to
∑n

i=0(−l)iFi = 1, while Hn is equal to Fn, which is equal to one since
an n-dimensional polyhedron has exactly one face in the highest dimension. The
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Dehn–Sommerville Theorem shows that the numbers Fi for a simple n-dimensional
polyhedron obey [(n + 1)/2] linear relations. In particular, if we consider simple
3-dimensional polyhedra, we have, in addition to the Euler relation, the obvious
relation 2E = 3V (where E is the number of edges and V the number of vertices).

The increase of the first half of the coefficients of an H-polynomial is far from
trivial; there is still no elementary proof of this fact. The only known proof is based
on the theory of toric varieties and algebraic geometry. We shall discuss this proof
below. The increase of the first half of the coefficients of an H-polynomial implies
the following

Corollary. All coefficients H0, . . . , Hn of an H-polynomial are positive.

We are now going to prove this corollary and the Dehn–Sommerville Theorem
using an elementary argument – a remarkable analogue of Morse theory in linear
programming.

Let us say that a linear function on a simple polyhedron is generic if its restriction
to any edge is not constant. We say that a generic linear function on a simple
polyhedron has index i at a vertex if it decreases along exactly i edges emanating
from the vertex (and increases along the remaining n− i edges).

Theorem [17]. The number h(i) of vertices of index i for any generic linear func-
tion on a simple polyhedron is exactly Hi, the i th coefficient of the H-polynomial
of the polyhedron.

This theorem generalizes the obvious fact that a generic linear function on a sim-
ple polyhedron (regardless of the choice of the function) has exactly one maximum
(i.e., hn = 1) and one minimum (i.e., ho = 1). Let us proceed to the proof.

It will suffice to show that if Fk is the number of k-dimensional faces of a simple
polyhedron, then Fk =

∑(
i
k

)
h(i), k = 0, . . . , n. Consider the map that assigns to

each k-dimensional face of the polyhedron the vertex at which the linear function
assumes its maximum on that face. Under this map, any vertex of index i will
be assigned to exactly

(
i
k

)
k-dimensional faces. Indeed, for any point on a k-

dimensional face at which the function has a maximum, it decreases along the
k edges from the point that lie on the face. Conversely, to any set of k edges
from the same vertex, along which the function decreases, there corresponds a k-
dimensional face, namely the face for which this vertex is a maximum point; in
a simple polyhedron, every set of k edges radiating from one vertex spans a k-
dimensional face. Now summing the number of inverse images of our mapping over
all vertices, we obtain the required formula.

Corollary 1. Hi = Hn−i.

Indeed, a vertex of index i for a function L has index (n − i) for the function
−L. Hence the number h(i) for the function L is precisely the number h(n− i) for
the function −L.

Corollary 2. For a simple n-dimensional polyhedron the numbers H0, H1, . . . , Hn

are strictly positive.

Indeed, for any vertex of a polyhedron and any number i = 0, 1, . . . , n, there
exists a generic linear function that has index i at that vertex.
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2.3. Simple polyhedra and quasismooth toric varieties. As already stated,
for every Newton polyhedron one can associate a toric variety. If the Newton
polyhedron is simple, then the variety is quasi smooth, i.e., it is isomorphic near
each point to a domain in the space Cn modulo the action of a finite group. The
cohomology theory of quasismooth varieties is quite similar to the cohomology
theory of smooth varieties. On quasismooth varieties one can consider differential
forms – in the local charts these are forms in domains of Cn that are invariant
under the action of the appropriate groups. On quasismooth varieties, just as on
smooth ones, the cohomology carries a (pure) Hodge structure, and one can define
numbers hp,q as dimensions of the Hodge subspaces in the (p + q)-dimensional
cohomology. Just as for smooth varieties, there is the Poincare duality for quasi
smooth varieties and we have equalities hp,q = hn−p,n−q, hp,q = hq,p. In particular,
hi,i = hn−i,n−i. In addition, the Strong Lefschetz Theorem holds for such varieties.
In particular, this theorem states that, for n-dimensional quasismooth varieties,
h0,0 ≤ h1,1 ≤ · · · ≤ hk,k, where k = [n/2].

We have the following theorem: the number hi,i for the toric variety associated
with a simple Newton polyhedron ∆ coincides with the ith coefficient Hi of the
H-polynomial of the polyhedron; all the other numbers hp,q, p 6= q, are equal to
zero. It is now evident that the symmetry of the coefficients of the H-polynomial
of a simple polyhedron is a consequence of Poincare duality, while the increase
of the first half of the coefficients of the H-polynomial of a simple polyhedron is
a corollary of the Strong Lefschetz Theorem. In addition, for toric varieties the
cohomology classes of Hodge degree (i, i) in the cohomology ring are generated
by the cohomology classes of Hodge degree (1, 1). In the geometry of polyhedra
this is due to the fact that every proper face of a polyhedron is an intersection of
proper faces of higher dimensions. Faces of dimension n− i correspond to algebraic
subva- rieties of the toric variety of complex dimension n− i. The group of cycles
spanned by these subvarieties is dual to the Hodge subspace in the cohomology of
degree (i, i), and an intersection of faces corresponds to intersection of cycles and
multiplication of dual cohomology classes.

For any n-dimensional quasismooth variety, whose cohomology of Hodge degree
(i, i) is generated by its cohomology of Hodge degree (1, 1), we have the inequality
(hi+1,i+1 − hi,i) ≤ Qi(hi,i − hi−1,i−1), where Qi is the function appearing in Mc-
Mullen’s conditions and 0 < i < [n/2]. Thus, the restriction on the rate of increase
of the numbers Hi for simple polyhedra is also a consequence of toroidal geometry.

The linear programming theorem proved above was also suggested by toroidal
geometry. The point is that there exists a special mapping onto a Newtonian
polyhedron, called the moment map of the toric variety associated with the poly-
hedron [17]. Under this map, orbits of complex dimension i go into i-dimensional
faces of the polyhedron. The superposition of a generic linear function on a Newton
polyhedron and the moment map determines a Morse function on the toric variety.
The critical points of this function are 0-dimensional orbits. The Morse index of a
critical point is twice the index of the linear function at the corresponding vertex.
Indeed, the function decreases on a 2i-dimensional real variety containing the crit-
ical point and increases on a 2(n− i)-dimensional real variety containing it. Here i
is the index of the vertex, and the varieties of decrease and increase are the closures
of the orbits corresponding to the i-dimensional and (n − i)-dimensional faces on
which the function decreases and increases. It is obvious that if a Morse function on
a variety has only critical points of even index, then the number of points of a fixed
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index 2i does not depend on the choice of the Morse function and is equal to the
2i-dimensional Betti number of the variety. That is why toric geometry explains
the linear programming theorem proved above. In addition, the above proof of the
Dehn–Sommerville Theorem imitates the proof of Poincare duality, which is based
on Morse theory and compares the cell complexes of the variety corresponding to
Morse functions f and −f .

2.4. Combinatorics of polyhedra and discrete groups in Lobachevsky
spaces. We now return to the geometry of simple polyhedra.

Nikulin’s theorem [18]. The average number of l-dimensional faces on f a k-
dimensional face of a simple n-dimensional polyhedron, 0 ≤ l < k ≤ (n + 1)/2, is
bounded from above by a certain function of l, k, and n, which can be written down
explicitly. If n tends to infinity, the function tends to the number of l-dimensional
faces of a k-dimensional cube.

Using Niku1in’s Theorem, Vinberg [19] showed that in the Lobachevsky space
of dimension geq32 there are no discrete groups generated by reflections with a
compact fundamental polyhedron. It is easy to see that the fundamental polyhedron
of such a group is simple – this is why Nikulin’s Theorem is applicable.

Nikulin proved his theorem using only the Dehn–Sommerville Theorem and the
fact that the coefficients of the H-polynomial are positive. We have presented above
very simple proofs of these properties based on linear programming. These simple
proofs have enabled us to prove the following generalization of Nikulin’s Theorem.

Theorem [17]. The bound in Nikulin’s Theorem is valid not only for simple poly-
hedra, but also for edge simple polyhedra. (An n-dimensional polyhedron is said to
be edge simple ifeach of its edges meets exactly (n− 1) faces of higher dimension.)

Using this bound, we can prove the following

Theorem [17, 20]. In a Lobachevsky space of dimension > 995 there are no discrete
groups generated by reflections with a fundamental polyhedron of finite volume.

A fundamental polyhedron of finite volume is edge simple. That is just why
the above bound is applicable. The bound on the mean number of 1-dimensional
faces on a k-dimensional face of an edge simple polyhedron has recently found an
unexpected application in the algebraic geometry of surfaces.

2.5. Sections of simple polyhedra. To end this paper, we shall discuss yet
another theorem whose proof is based on programming. If estimates the number of
faces in any dimension of a generic l-dimensional section of a simple n-dimensional
polyhedron with fixed numbers F0, . . . , Fn of faces of different dimensions. Consider
a simple (n − l)-dimensional polyhedron, the number fk of whose k-dimensional
faces, k ≥ (n− l)/2, is equal to the number of (k+ l)-dimensional faces of the initial
polyhedron, fk = Fk+l, and the number of faces of lower dimensions is found by
the Dehn–Sommerville Theorem.

Theorem [14]. The number of faces in any dimension of a generic l-dimensional
section does not exceed the number of faces in the same dimension of the polyhedron
defined above.

Of course, the theorem is obvious for faces of dimensions ≥ (n− l)/2. For faces
of lower dimensions, however, it gives a nontrivial bound.
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Examples. 1. A plane that does not pass through the vertices of a simple 3-
dimensional polyhedron with E edges can cut at mostE/3 + 2 edges. This bound
is sharp. By tilting the middle section of a prism with 3k edges we can make it
cut the upper and lower bases, while still cutting all the lateral faces. Then the
resulting section will cut exactly k + 2 edges.

2. Consider a polyhedron with the combinatorial structure of an n-dimensional
cube. If we let n → ∞, a hypersurface can asymptotically cut at most a frac-
tion (2π)−1/2

∫ +c

−c
exp(−x2/2)dx of the k-dimensional edges, where k ∼ c

√
n. This

bound is sharp.
3. What is the maximum possible number of k-dimensional faces in a simple

l-dimensional polyhedron which has p faces of the highest dimension? The answer
to this question is given by the famous Upper-Bound Theorem, proved in 1970
by McMullen [21]. Every simple l-dimensional polyhedron with p faces of the
highest dimension can be considered as a generic i-dimensional section of a (p− 1)-
dimensional simplex. Application of our theorem in this case yields the Upper-
Bound Theorem.
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