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This article is devoted to the (one-dimensional) logarithmic functional with
argument being one-dimensional cycle in the group (C∗)2. This functional gen-
eralizes usual logarithm, that can be viewed as zero-dimensional logarithmic
functional. Logarithmic functional inherits multiplicative property of the log-
arithm. It generalizes the functional introduced by Beilinson for topological
proof of the Weil reciprocity law. Beilinson’s proof is discussed in details in
this article.
Logarithmic functional can be easily generalized for multidimensional case. It’s
multidimensional analog (see Ref. 5) proves multidimensional reciprocity laws
of Parshin. I plan to return to this topic in upcoming publications.

1. Introduction

We start introduction with a brief discussion of classic results related to this
paper: reciprocity law, its topological proof and multidimensional general-
ization. Further we comment on the logarithmic functional and its relation
to the Beilinson functional. We end introduction with layout of material.

1.1. The Weil reciprocity law

Given two polynomials of degrees n and m with leading coefficients equal
to one, the following equality holds: the product of values of the first poly-
nomial over the roots of the second one is equal to the product of values of
the second polynomial over the roots of the first one, multiplied by (−1)mn.
André Weil has found further generalization of this equality called the reci-
procity law. The Weil reciprocity law applies to any pair of non-zero ra-
tional functions f , g on arbitrary irreducible algebraic curve X over an
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algebraically closed field K. In this paper we will consider only the case
of the field K being the field of complex numbers C. We will give exact
statement of the reciprocity law for K = C in Section 2. Now we just give
general comments.
The law is as follows. For each point a ∈ X some non-zero element [f, g]a of
the field K is defined, that is called the Weil symbol of functions f , g at the
point a. The Weil symbol depends on functions f , g skew-symmetrically,
i.e. [f, g]a = [g, f ]−1

a . Besides the Weil symbol is multiplicative in each
argument, i.e. for any triplet of non-zero rational functions f, g, ϕ and
any point a ∈ X the following equalities hold [fϕ, g]a = [f, g]a[ϕ, g]a and
[f, ϕg]a = [f, g]a[f, ϕ]a. Let O be the union of supports of divisors of func-
tions f and g. Weil symbol of functions f, g can differ form 1 only at points
a of the finite set O. Therefore the product of Weil symbols over all points a

of curve X is well defined: it is equal to the product of symbols [f, g]a over
finite set of points a ∈ O. The Weil reciprocity law states that the product
of Weil symbols [f, g]a over all point of the curve X is equal to one.

1.2. Topological explanation of the reciprocity law over the

field C

In the case of K = C Beilinson1 proved the Weil reciprocity law topologi-
cally and has found topological generalization of the Weil symbols. Let f ,
g be non-zero rational functions on connected complex algebraic curve X

and let O ⊂ X be finite set containing support of divisors of functions f

and g. Consider piecewise-smooth oriented closed curve γ : [0, 1] → X \O,
γ(0) = γ(1) on the manifold X that does not contain points of set O. Beiln-
son introduced a functional that associates a pair f, g and curve γ with an
element Bγ(f, g) of the group C/Z (i.e. some complex number defined up
to an integer additive term). He showed that:
1) For fixed f, g the functional Bγ(f, g) considered as a function of cycle
γ gives an element of one-dimensional cohomology group of the manifold
X \O with coefficients in group C/Z, i.e. for homologous to zero in X \O

integer-valued linear combination
∑

kiγi of oriented curves γi the equality∑
kiBγ(f, g) = 0 holds.

2) The functional skew-symmetrically depends on f and g, i.e. Bγ(f, g) =
−Bγ(g, f).
3) The functional has the following property of multiplicativity: for any
three rational functions f, g, ϕ not having zeros and poles in the set X \O

and for any curve γ ⊂ X \ O, equalities Bγ(fϕ, g) = Bγ(f, g) + Bγ(ϕ, g)
and Bγ(f, ϕg) = Bγ(f, g) + Bγ(f, ϕ) hold.



April 3, 2007 16:29 WSPC - Proceedings Trim Size: 9in x 6in WWCA06

Logarithmic Functional and the Weil Reciprocity Law 87

4) The functional Bγ(f, g) is related to Weil symbols as follows: for any
point a ∈ O and small curve γ ⊂ X \O “running around point a”, equality
[f, g]a = exp 2πiBγ(f, g) holds.
In accordance with 4) Weil symbols correspond to the values of Beilinson
functional on special curves related to the points of the set O. The sum of
those curves over all points in O is homologous to zero in X \ O, which
gives the Weil reciprocity law (see Section 5).
Summarizing, Beilinson functional explains the Weil reciprocity law over
field C, and also provides an analog of Weil symbols for arbitrary cycles in
X \O, not necessary related to the points of the set O.

1.3. Multi-dimensional reciprocity laws

A.N. Parshin (Refs. 6,7) has found remarkable multi-dimensional gen-
eralization of the reciprocity law. It applies to an arbitrary collection
f = {f1, . . . , fn+1} of n + 1 nonzero rational functions fj on irreducible
n-dimensional manifold M over arbitrary algebraically closed field K. In
multi-dimensional generalization instead of point on manifold M one con-
siders flag F = {M0 ⊂ M1 ⊂ · · · ⊂ Mn = M} consisting of a chain
of embedded germs Mj of algebraic manifolds of increasing dimensions,
dim Mj = j, locally irreducible in the neighborhood of the point M0. Each
collection of functions f and flag F is associated with nonzero element [f ]F
of the field K, which is called Parshin symbol. Reciprocity laws state that for
some chosen (precisely described) finite sets of flags L the product

∏
F∈L

[f ]F

is equal to 1.
Let n = 1 and manifold M be nonsingular algebraic curve. In this case:
1) flag F = {M0 ⊂ M} is defined by point a = M0,
2) Parshin symbol [f ]F of the pair of functions f = f1, f2 on flag F coincides
with Weil symbol [f1, f2]a,
3) the only chosen set of flags L is equal to the union of supports of the
divisor of functions f1, f2,
4) reciprocity law for this set coincides with the Weil reciprocity law.
In the case of K = C Brylinski and McLaughlin2 proved multidimen-
sional multiplicity laws topologically and found topological generalization
of Parshin symbols. Their topological construction heavily uses sheaf theory
and is not intuitive.
About 10 years ago I have found4 explicit formula for the product of roots of
a system of algebraic equations with general enough set of Newton polyhe-
drons in the group (C∗)n. This formula (which is multi-dimensional gener-
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alization of Vieta formula) uses Parshin symbols. Its proof however is based
on simple geometry and combinatorics and does not use Parshin theory.

1.4. The logarithmic functional

The search for formula for the product of the roots of a system of equations
convinced me that for K = C there should be intuitive geometric explana-
tion of Parshin symbols and reciprocity laws. Such explanation based on
multidimensional logarithmic functional was finally found in Ref. 5.
This paper is devoted to one-dimensional case. One-dimensional logarith-
mic functional (word “one-dimensional” we will omit further) associates
each one-dimensional cycle γ in one-dimensional complex X and piecewise-
smooth mapping (f, g) : X → (C∗)2 into group (C∗)2 with a complex
number, defined up to an integer additive term (i.e., with an element of the
group C/Z). Logarithmic functional is direct generalization of usual loga-
rithm. Zero-dimensional logarithmic functional (see Section 7.1) reduces to
the usual logarithmic function. All theorems about logarithmic functional
translate almost automatically to multidimensional case. I started presen-
tation from one-dimensional case because of the following reasons:
1) The Weil reciprocity law is formulated much simpler than Parshin reci-
procity laws. That’s why the introduction of the logarithmic functional is
much clearer in one-dimensional case.
2) Properties of logarithmic functional and methods of their prove become
apparent enough already in one-dimensional case.
3) In one-dimensional case there already exist simple Beilinson functional
giving clear topological proof of the reciprocity law. It has only one draw-
back: it is not transparent how to generalize it for multi-dimensional case.
One of the goals of this publication is to compare logarithmic functional and
Beilinson functional. The later is defined for a pair of rational functions f, g

and one-dimensional cycle γ on complex algebraic curve X. Generalizing
Beilinson functional we define logarithmic functional in Beilinson form, or in
short LB-functional, for a pair of smooth functions f, g and one-dimensional
cycle on real manifold M .
LB-functional has many properties of Beilinson functional, however there
are some differences too: when functions f, g are fixed, LB-functional not
always gives a class of one-dimensional cohomology group of the manifold
M . For this it is required that the form df ∧ dg is identical to zero on the
manifold M . For the rational functions f, g on complex curve X the identity
df ∧ dg ≡ 0 holds automatically. This fact plays a key role in the proof of
the reciprocity law with the help of LB-functional.
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We show that logarithmic functional is always representable as LB-
functional. This representation relates logarithmic functional with Beilinson
functional.

1.5. Organization of material

In Section 2 the Weil reciprocity law is given. In section 3 LB-functional
is defined for a pair of complex-valued function on a circle. In Section 4
LB-functional is defined for a mapping (f, g) : M → (C∗)2 of the manifold
M into group (C∗)2 and closed oriented curve on manifold M . Section 5
discusses Beilinson’s proof of the Weil theorem. In Section 6 LB-functional
is defined for the mapping (f, g) : M → (C∗)2 and one-cycle on the man-
ifold M , being an image of one-cycle γ in one-dimensional complex X of
piecewise-smooth mapping φ : X → M . Section 7 defines logarithmic func-
tional and proves its main properties. Section 8 shows that logarithmic
functional can always be represented in the form of LB-functional.

2. Formulation of the Weil reciprocity law

Let Γ be a connected compact one-dimensional complex manifold (another
words, Γ is irreducible regular complex algebraic curve). Local parameter
u near point a ∈ Γ is defined as an arbitrary meromorphic function u

with zero of multiplicity 1 at the point a. Local parameter is a coordinate
function in small neighborhood of the point a.
Let ϕ be a meromorphic function on the curve Γ and

∑
k≤m cmum be a

Laurent series with respect to local parameter u near point a. We will
call the leading monomial the first nonzero term of the series, i.e. χ(u) =
ckuk. The leading monomial is defined for any meromorphic function ϕ not
identical to zero.
For every pair of meromorphic functions f, g not identical to zero on a curve
Γ, and every point a ∈ Γ the Weil symbol [f, g]a is defined. It is nonzero
complex number given by

[f, g]a = (−1)nman
mb−m

n ,

where amum and bnun are leading monomials on parameter u of functions
f and g at the point a. Weil symbol is defined with the help of parameter
u but it does not depend on the choice of this parameter.
Let v be another local parameter near point a and let cv be the leading
monomial of the function u on parameter v, i.e. u = cv+. . . . Then amcmvm

and bncnvn are leading monomials of functions f and g on parameter v.
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The equality an
mb−m

n = (amcm)n(bncn)−m proves the correctness of the
definition of Weil symbol.
As it is seen from the definition Weil symbol multiplicatively depends on
functions f and g. Multiplicativity on f means that if f = f1f2 then
[f, g]a = [f1g]a[f2g]a. Multiplicativity with respect to g is defined analo-
gously.
For every pair of meromorphic functions f, g not identical to zero on a
curve Γ, the Weil symbol [f, g]a differs from one only in finite set of points
a. Indeed Weil symbol can differ from one only on the union of supports o
the divisors of functions f and g.
The Weil reciprocity law. (see ...) For every pair of meromorphic func-
tions f, g not identical to zero on an irreducible algebraic curve Γ, the
equality

∏
[f, g]a = 1

holds. Here product is taken over all points a of the curve Γ.
Infinite product above makes sense since only finite number of terms in it
are different from one.
Simple algebraic prove of the law can be found in Ref. 3. Simple topological
proof based on properties of LB-functional described in Sections 3 and
4, can be found in Section 5 (this proof is reformulation of Beilinson’s
reasoning from Ref. 1).

3. LB-functional of the pair of complex valued functions of
the segment on real variable

Let J be a segment a ≤ x ≤ b of the real line. For any continuous on
segment J function having non-zero complex values f : J → C∗, where
C∗ = C \ 0, denote by ln f any continuous branch of the logarithm of f .
Function ln f is defined up to an additive term 2kπi, where k is an integer.
If f(a) = f(b) then we can define an integer number degJ

f
|f | – degree

of mapping f
|f | : J/∂J → S1 of the circle J/∂J , obtained from segment

J by identifying its ends a and b, to the unit circle S1 ⊂ C. Obviously,
degJ

f
|f | = 1

2πi (ln f(b)− ln f(a)).
Consider a pair of piecewise-smooth complex-valued functions f and g,
having no zero values on the segment J , and f(a) = f(b), g(a) = g(b).
For such pair of functions we will call LB-functional the complex number
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LBJ(f, g) given by formula

LBJ(f, g) =
1

(2πi)2

b∫

a

ln f
dg

g
− 1

2πi
degJ

f

|f | ln g(b).

Lemma 3.1. LB-functional is defined up to an integer additive term and
is well defined element of the group C/Z.

Proof. Function ln f is defined up to an additive term 2kπi,
b∫

a

dg
g =

2πi degJ
dg
|g| , and degJ

dg
|g| is an integer number. This means that the number

1
(2πi)2

b∫
a

ln f dg
g is defined up to an integer additive term. The value ln g(b) is

defined up to an additive term 2mπi and degJ
df
|f | is an integer number. This

means that the number − 1
2πi degJ

f
|f | ln g(b) is defined up to an integer.

Now we give slightly more general formula for LB-functional. Let a =
x0 < x1 · · · < xn = b be an increasing sequence of points on the seg-
ment [a, b]. Given a continuous function f : J/∂J → C∗ we construct a
discontinuous function φ, which is equal to one of continuous branches
lnj f of the logarithm of f on each interval Jj defined by inequalities
xj < x < xj+1. Let jump of function φ at point xj be an integer num-
ber mφ(xj) = 1

2πi ( lim
t→x+

j

φ(x)− lim
t→x−j

φ(x)) for j = 1, . . . , n− 1, and at point

xn – an integer number mφ(xn) = 1
2πi ( lim

t→x+
n

φ(x)− lim
t→x−0

φ(x)).

Lemma 3.2. Let for functions f , g and segment J LB-functional be de-
fined. Then the equality

LBJ(f, g) =
1

(2πi)2

∫

J

φ
dg

g
− 1

2πi

n∑

i=1

mφ(xi) ln g(xi)

holds.

Proof. First show that LBJ(f, g) =

1
(2πi)2




n∑

i=0

∫

Ji

lni f
dg

g
+

n−1∑

i=0

lni(xi) ln g(xi)−
n∑

i=1

lni(xi+1) ln g(xi)


 .

Let’s change function φ on interval Jj by adding to the branch of lnj f

number 2kπi leaving φ without changes on other intervals. As the re-
sult the value of LB-functional above is incremented by the number
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2kπi
(2πi)2

(
∫
Ji

dg
g + ln g(xi)− ln g(xi+1)

)
, which is equal to zero. Since the

change of the branch of the logarithm on any of the intervals Jj does
not affect the result, we can assume that the function φ is taken as a
continuous branch of the logarithm of function f on the whole segment
J = [a, b]. In this case the formula for the LB-functional holds (it coin-
cides with the definition of the LB-functional). The claim of lemma fol-
lows, since 2πimφ(xj) = lnj f(xj) − lnj+1 f(xj) for j = 1, . . . , n − 1, and
2πimφ(xn)(φ) = lnn f(xn)− ln0 f(x0)

If one of functions f or g is constant then it is easy to compute LB-
functional. The following is obvious

Lemma 3.3. Let for functions f , g and segment J LB-functional be
defined. If f ≡ C then LBJ(f, g) = 1

2πi ln C degJ
g
|g| . If g ≡ C then

LBJ (f, g) = − 1
2πi ln C degJ

f
|f | .

The following obvious lemma shows that under change of variable LB-
functional behaves as an integral of a differential form.

Lemma 3.4. Let for functions f , g and segment J functional LBJ(f, g)
be defined, and let φ : J1 → J be a piecewise-smooth homeomorphism of
segment J1 into segment J . Then functional LBJ1(f ◦ φ, g ◦ φ) is defined.
Additionally, if φ preserves orientation then LBJ1(f ◦φ, g ◦φ) = LBJ (f, g),
and if φ changes orientation then LBJ1(f ◦ φ, g ◦ φ) = −LBJ(f, g).

Now we discuss how the LB-functional changes under homotopy of the pair
of functions f, g. Let I be the unit segment 0 ≤ t ≤ 1 and F : I × J → C∗,
G : I × J → C∗ be piecewise-smooth functions such, that F (t, a) = F (t, b),
G(t, a) = G(t, b) for every fixed t. Let f0(x) = F (0, x), f1(x) = F (1, x),
g0(x) = G(0, x), g1(x) = G(1, x).

Theorem 3.1. The equality holds:

LBJ(f1, g1)− LBJ(f0, g0) =
1

(2πi)2

∫

I×J

dF

F
∧ dG

G
.

Proof. Differential of the form ln F dG
G is equal to dF

F ∧ dG
G . Using Stokes
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formula we get

∫

I×J

dF

F
∧ dG

G
=

b∫

a

ln f1
dg1

g1
−

b∫

a

ln f0
dg0

g0
−

1∫

0

(lnF (t, b)− ln F (t, a))
dG

G
.

(1)
Since the degree of the mapping is homotopy invariant, the difference
ln F (t, b)− ln F (t, a) does not depend on parameter t and is equal to both
numbers 2πi degJ

f1
|f1| and 2πi degJ

f0
|f0| . Therefore

1∫

0

(lnF (t, b)− lnF (t, a))
dG

G
= 2πi degJ

f1

|f1| ln g1(a)− 2πi degJ

f0

|f0| ln g0(a)

(2)
and the statement of the theorem follows.

Corollary 3.1. Let f and g be piecewise-smooth functions on real line
periodic with period A = b − a with values in C∗ and let Jc be a segment
a + c ≤ x ≤ b + c of the length A. Then LBJc(f, g) does not depend on the
choice of the point c.

Proof. Consider homotopy F (t, x) = f(t + x), G(t, x) = g(t + x). This ho-
motopy preserves LB-functional since dF ∧dG ≡ 0. From previous theorem
the proof follows.

Lemma 3.5. The equality LBJ(f, g) = −LBJ (g, f) holds.

Proof. Using equalities ln(b) = ln(a) + 2πi degJ
f
|f | , ln g(b) = ln g(a) +

2πi degJ
g
|g| and Newton-Leibnitz formula we get:

b∫

a

d[ln f ln g] = 2πi degJ

f

|f | ln g(a) + 2πi degJ

g

|g| ln f(a)+ (3)

(2πi)2 degJ

f

|f | degJ

g

|g| .

On the other hand
b∫

a

d[ln f ln g] =

b∫

a

ln g
df

f
+

b∫

a

ln f
dg

g
.

Two expressions for the integral
b∫

a

d[ln f ln g] must coincide.
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Lemma 3.6. For any piecewise-smooth function f : J → C∗, having equal
values at the end-points a and b of the segment J , LBJ(f, f) = 1

2 degJ
f
|f | .

Proof. Substituting g = f in (3) we obtain

2

b∫

a

1
2πi

ln f
df

f
= 2degJ

f

|f | ln f(c) + 2πi deg2
J

f

|f | .

The claim follows, since deg2
J

f
|f | ≡ degJ

f
|f | mod 2.

Lemma 3.7. For any three piecewise-smooth functions f, ϕ, g with values
in the group C∗ on segment J with end-points a and b, such that f(a) =
f(b), ϕ(a) = ϕ(b), g(a) = g(b), the equality

LBJ (fϕ, g) = LBJ(f, g) + LBJ(ϕ, g)

holds.

Proof. In order to prove this it is enough to use the following facts:
1) in group C/Z the equality 1

2πi ln(fϕ) = 1
2πi ln f + 1

2πi ln ϕ holds.
2) for any pair of continuous functions f and ϕ that do not have zero values
and f(a) = f(b), ϕ(a) = ϕ(b), the equality degJ

fϕ
|fϕ| = degJ

f
|f | + degJ

ϕ
|ϕ|

holds.

The following lemma is obvious and we only give a formulation of it.

Lemma 3.8. Let segment J with end-points a and b is split by a point c

(a < c < b) into two segments: J1 with end-points a, c and J2 with end-
points c, b. Let f, g be a pair of piecewise-smooth functions on J with values
in group C∗ such, that f(a) = f(c) = f(b), g(a) = g(c) = g(b). Then the
functionals LBJ(f, g), LBJ1(f, g), LBJ2(f, g) are defined and

LBJ (f, g) = LBJ1(f, g) + LBJ2(f, g).

4. LB-functional of the pair of complex valued functions
and one-dimensional cycle on real manifold

Let M be a smooth real manifold and K(M) – multiplicative group with
elements being smooth complex-valued functions on M not having values
of 0. Let γ : J → M be piecewise-smooth closed curve on M . Element
IJ (γ∗f, γ∗g) of the group C/Z will be called LB-functional of the pair of
functions f, g ∈ K(M) and oriented closed curve γ and will be denoted as
LBγ(f, g).
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Lemma 4.1. LB-functional of the pair of functions f, g ∈ K(M) and
oriented closed curve γ does not change under orientation preserving re-
parametrization of the curve γ.

Proof. For re-parametrization of the curve γ preserving the end-point
γ(a) = γ(b) the statement is proved in Lemma 3.4. Independence of the
LB-functional from the choice of point γ(a) = γ(b) is proved in Corollary
3.1.

An element LBγ(f, g) of the group C/Z, defined by formula LBγ(f, g) =∑
kiLBγi

(f, g), is called LB-functional of pair of functions f, g ∈ K(M)
and cycle γ =

∑
kiγi, where ki ∈ Z and γi parameterized closed curves on

manifold M .
For any cycle γ in manifold M and any function f ∈ K(M) denote by
degγ

f
|f | the degree of mapping f

|f | : γ → S1 of the cycle γ into unit circle
S1.

Theorem 4.1. For any cycle γ in the manifold M the following equalities
hold:
1) LBγ(f, g) = −LBγ(g, f) for any pair of functions f, g ∈ K(M).
2) LBγ(fϕ, g) = LBγ(f, g) + LBγ(ϕ, g) for any f, ϕ, g ∈ K(M).
3) LBγ(f, f) = 1

2 degγ
f
|f | for any f ∈ K(M).

4) LBγ(C, f) = −LBγ(f, C) = ln C degγ
f
|f | for any function f ∈ K(M)

and any non-zero constant C.

Proof. Statement 1) follows from Lemma 3.5, statement 2) follows from
Lemma 3.7, statement 3) – from Lemma 3.6 and statement 4) – from Lemma
3.3.

Theorem 4.2. If for a pair of functions f, g ∈ K(M) on manifold M the
equality df ∧ dg ≡ 0 holds, then LB-functional LBγ(f, g) depends only on
homology class of the cycle γ =

∑
kiγi.

Proof. According to Theorem 3.1 under conditions of Theorem 4.2 LB-
functional along closed curve does not change under homotopy of the curve.
By homotopying if necessary every component of the cycle γ it is possible
to assume that cycle consists from closed curves, passing through the fixed
point c. Consider the fundamental group π1(M, c) of the manifold M with
basis point c. For functions f and g satisfying condition of the theorem, the
mapping I : π1(M, c) → C/Z of the closed curve γ ∈ π1(M, c) into element
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Iγ(f, g) of group C/Z is defined correctly and is group homomorphism. Any
homomorphism of the fundamental group into Abel group is passed trough
the homomorphism of the fundamental group into group of one-dimensional
homologies.

5. Topological proof of the Weil reciprocity law

Beilinson’s functional is a particular case of LB-functional, in which f, g is
a pair of analytic functions on one-dimensional complex manifold, and γ

is one-dimensional real cycle on this manifold. Under this restrictions we
will call LB-functional Beilinson’s functional and write Bγ(f, g) instead of
LBγ(f, g).

Example 5.1. (Beilinson, see Ref. 1) Let M be one-dimensional complex
manifold and Ka(M) ⊂ K(M) be a subgroup of group K(M) consisting of
analytic functions not equal to 0 anywhere. For any two functions f, g ∈
Ka(M) the equality df ∧dg ≡ 0 holds. In accordance with Theorem 4.2, for
any pair of functions f, g ∈ Ka(M) one-dimensional co-chain on manifold
M , that associates with a cycle γ element Bγ(f, g) ∈ C/Z, is an element
of H1(Ma,C/Z). According to Theorem 4.1, this class has the following
properties:
1) Bγ(f, g) = −Bγ(g, f) for any pair of functions f, g ∈ Ka(Ma).
2) Bγ(fϕ, g) = Bγ(f, g) + Bγ(ϕ, g) for any f, ϕ, g ∈ Ka(Ma).
3) Bγ(f, f) = 1

2 degγ
f
|f | for any f ∈ Ka(Ma).

4)Bγ(C, f) = −Bγ(f, C) = ln C degγ
f
|f | for any function f ∈ Ka(Ma) and

arbitrary nonzero constant C.

Let X be a connected compact one-dimensional complex manifold with a
boundary, and f, g be nonzero meromorphic functions on the manifold X,
that are regular on the boundary γ = ∂X of manifold X and not equal to
zero in the points of boundary ∂X. Under these assumptions the following
lemma holds.

Lemma 5.1. Let a single valued branch of the function ln f exists on the
manifold X. Then B-functional Bγ(f, g) of functions f, g and of boundary
of the manifold X is equal to

∑
p∈X

ord ag 1
2πi ln f(a), where ord ag is order of

meromorphic function g at the point a. (The infinite sum appearing above
is well defined since only finitely many terms in this sum are not equal to
zero.)
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Proof. The statement follows from the equality

1
(2πi)2

∫

∂X

ln f
dg

g
=

1
2πi

∑

p∈X

(ord pg) ln f(p).

Let U ⊂ C be a simply-connected domain with smooth boundary γ, con-
taining point 0 ∈ U . Let f, g be meromorphic functions in the domain U ,
such that their restrictions on punctured domain U \ 0 are analytic func-
tions, not taking values of 0. Let a1z

k, a2z
m be leading terms of Laurent

series of functions f and g at the point 0: f = a1z
k+. . . , and g = a2z

m+. . . .

Lemma 5.2. Under the listed above assumptions

Bγ(f, g) =
km

2
+ m ln a1 − k ln a2.

Proof. Represent f, g as f = f1z
k, g = g1z

m, where f1, g1 are analytic
in the domain U . Observe, that f1(0) = a1 6= 0, g1(0) = a2 6= 0. Using
multiplicativity property of B-functional we get Bγ(f, g) = kmBγ(z, z) +
mBγ(f1, z)+kBγ(z, g1)+Bγ(f1, g1). Using Lemma 5.1 and skew-symmetric
property of B-functional we get Bγ(f1, z) = ln a1, Bγ(z, g1) = − ln a2 and
Bγ(f1, g1) = 0. Further Bγ(z, z) = 1

2 degγ
z
|z| = 1

2 .

Topological proof of the Weil theorem is actually completed. We just need to
reformulate obtained results. Group C/Z is isomorphic to the multiplicative
group C∗ of the field of the complex numbers. Required isomorphism is
given by mapping τ : C/Z→ C∗ defined by formula τ(a) = exp(2πia). For
any one-dimensional cycle γ in the manifold M and for any pair of functions
f, g ∈ K(M) we call exponential B-functional B̃γ(f, g) an element of the
group C∗, defined by formula B̃γ(f, g) = exp(2πiBγ(f, g)).
Using the notion of exponential B-functional the last Lemma can be refor-
mulated as follows

Lemma 5.3. Under assumptions of Lemma 5.2, exponential B-functional
B̃γ(f, g) coincides with the Weil symbol [f, g]0 of functions f and g at point
0.

Let Γ be a compact complex curve, f, g – meromorphic functions on Γ such
that they are not identical to zero on any connected component of Γ, D – a
union of supports of divisors of functions f and g. Let Up be a small open
disk containing point p ∈ D, and γp = ∂Up be the border of disk Up, U =⋃
p∈D

Up, γ =
∑

p∈D

γp. Consider manifold W = M \U . Cycle γ homologically
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equals to zero on manifold W , since ∂W = −γ. Therefore, the equality
Bγ(f, g) = 0 holds and exp(2πiBγ(f, g)) =

∏
p∈P

exp(2πiBγp
(f, g)) = 1.

By Lemma 5.3 we have exp(2πiBγp(f, g)) = [f, g]p which proves the Weil
theorem.

6. Generalized LB-functional

In this section we will give another (more general, but in fact equiva-
lent) definition of LB-functional. It will be easier to generalize to multi-
dimensional case. Any one-dimensional cycle in (C∗)2 (as in any other man-
ifold) can be viewed as integer combination of oriented closed curves, i.e. as
integer combination of images of oriented circle. Therefore, it is sufficient to
define LB-functional for a pair of functions on a standard circle, as it was
done above. When n > 1 n-dimensional cycle in manifold M can be viewed
as an image of the mapping F : X → M of some n-dimensional cycle γ in
some n-dimensional simplicial complex X. Here we give a definition of LB-
functional for an image in the group (C∗)2 of one-dimensional cycle, laying
in one-dimensional simplicial complex X under mapping F : X → (C∗)2.
Let X be one-dimensional simplicial complex. Let us fix orientation on each
edge of complex X. Denote by S(∆j , Qp) the incidence coefficient between
edge ∆j and vertex Qp. It is equal to zero if and only if vertex Qp does not
belong to the edge ∆j , and it is equal to +1 or -1 depending on the sign of
Qp as a boundary of oriented edge ∆j .
For any continuous function f : X → C∗ on edges of complex X it is
possible to choose single-valued branches of function ln f . We will need a
definition of jump function for such a collection of branches of function
ln f on one-dimensional cycle γ =

∑
kj∆j of complex X. Let a single-

valued branch lnj f : ∆j → C∗ of the multi-valued function ln f be fixed
on the edge ∆j of complex X. Denote by φ a collection of branches ln fj .
We will view collection φ as discontinuous function on complex X (the
collection φ defines a function on the complement of complex X to the set
of its vertices, but at vertices of complex X this function is multi-valued).
Define on vertices of complex X jump function for function φ and cycle γ.
If vertex Qp is adjacent to the edge ∆j then on the vertex Qp a restriction
of function lnj f given on the edge ∆j is defined. We define the value of the
jump function mφ,γ for function φ and cycle γ =

∑
kj∆j at the vertex Qp

of complex X by formula

mφ,γ(Qp) =
1

2πi

∑
S(∆j , Qp)kj lnj f(Qp),
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where summation is done over all edges ∆j of complex X.

Lemma 6.1. The jump function is an integer valued function on the ver-
tices of complex X.

Proof. On every edge ∆j adjacent to the vertex Qp we can choose branches
lnj f so they are equal at Qp. With such choice of the function φ the number
mφ,γ(Qp) is equal to zero, because the chain γ =

∑
kj∆j is a cycle. With

the change of branches lnj f the change in the value of jump function is
integer number.

Consider piecewise-smooth mapping (f, g) : X → (C∗)2 of one-dimensional
complex X and one-dimensional cycle γ =

∑
kj∆j in X. Let φ = {lnj f}

be a collection of single-valued branches of function ln f on edges ∆j of
complex X. For pair of functions f, g and cycle γ we will call LB-functional
the complex number LBγ(f, g) defined by formula

LBγ(f, g) =
1

(2πi)2

∫

γ

φ
dg

g
− 1

2πi

∑

Q∈V

mφ,γ(Q) ln g(Q),

where summation is over set V of all vertices of complex X and mφ,γ is
jump function for function φ and cycle γ.
The following lemmas a proved similarly to Lemma 3.1 and 3.2.

Lemma 6.2. LB-functional LBγ(f, g) is defined up to an integer additive
term and is correctly defined element of the group C/Z.

Lemma 6.3. LB-functional LBγ(f, g) for the mapping (f, g) : X → (C∗)2
does not change under a simplicial subdivision of the complex X.

Let discuss the change of LB-functional under homotopy of the mapping
(f, g). Let I be a unit segment 0 ≤ t ≤ 1 and (F,G) : I × X → (C∗)2 be
a piecewise-smooth mapping, which coincides with the mapping (f0, g0) :
X → (C∗)2 when t = 0 and with the mapping (f1, g1) : X → (C∗)2 when
t = 1. Similarly to the Theorem 3.1 we can prove

Theorem 6.1. The equality

LBγ(f1, g1)− LBγ(f0, g0) =
1

(2πi)2

∫

I×γ

dF

F
∧ dG

G

holds.
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7. Logarithmic function and logarithmic functional

In this section we define logarithmic functional, formulate and prove its ma-
jor properties. Definitions and results of this section can be easily extended
to the multi-dimensional case and we plan to return to this topic in future
publications.

7.1. Zero-dimensional logarithmic functional and logarithm

In order to highlight an analogy between logarithm and logarithmic func-
tional we will define zero-dimensional functional here.
Consider group C∗ with coordinate z. Group C∗ is homotopy-equivalent to
the circle T 1, defined by the equation |z| = 1. Denote by e = 1 the unit
element of the group C∗.
Let X be finite set of points and K(X) – multiplicative group with elements
being complex-valued functions on X having no 0 values. Thus element f

of the set K(X) is a mapping f : X → C∗.
Let D be zero-dimensional cycle from the group H0(X,Z), i.e. D is a linear
combination of points from the set X with integer coefficients: D =

∑
kjxj ,

where kj ∈ Z i xj ∈ X.
Any mapping f : X → (C∗)2 of the finite set X into group C∗ is homotopic
to the mapping of X into point e since group C∗ is connected.
We will call zero-dimensional logarithmic functional a functor that asso-
ciates with the pair f, D, consisting of function f ∈ K(M) and zero-
dimensional cycle D =

∑
kjxj , the complex number

ln(f, D) =
1

2πi

∫

γ

dz

z
,

where γ is arbitrary piecewise-smooth curve in group C∗ with the boundary
∂γ equal to

∑
kjf(xj)− (

∑
kj)e.

Obviously, the number ln(f, D) is defined up to an additive integer term
and is correctly defined element of the group C/Z. The following formula
holds

ln(f,D) =
1

2πi

∑
kj ln f(xj),

where ln f(xj) is any of values of multi-valued function ln f at point xj .
Thus zero-dimensional logarithmic functional reduces to the usual loga-
rithmic function. It has the following multiplicativity property: for any
pair of functions f, g ∈ K(X) and any zero-dimensional cycle D the
equality ln(fg,D) = ln(f, D) + ln(g, D) holds. For any fixed function
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f ∈ K(X) and any pair of zero-dimensional cycles D1, D2 the equality
ln(f, (D1 + D2)) = ln(f,D1) + ln(f, D2) holds. Another words, for fixed
function f functional ln(f, D) is zero-dimensional co-chain with the values
in group C/Z.
Let M be real manifold and f : X → C∗ be a continuous mapping. Let’s
associate with every zero-dimensional cycle D =

∑
kjxj (kj ∈ Z, xj ∈

M) on the manifold M an element ln(f, D) of the group C/Z defined by
formula ln(f,D) = 1

2πi

∑
kj ln f(xj). It is obvious that co-chain ln(f, D)

defines an element of zero-dimensional cohomology group of manifold M

with coefficients in group C/Z if and only if df ≡ 0 (i.e. if and only if the
function f is constant on each connected component of the manifold M).

7.2. Properties of one-dimensional logarithmic functional

In this subsection we define one-dimensional logarithmic functional and for-
mulate its important properties. As before we will use the term “logarithmic
functional” skipping word “one-dimensional”.
Consider group (C∗)2 with co-ordinate functions z1 and z2. Group (C∗)2 is
homotopy equivalent to the torus T 2 ⊂ (C∗)2, defined by equations |z1| =
|z2| = 1. On group (C∗)2 there is remarkable 2-form

ω =
1

(2πi)2
dz1

z1
∧ dz2

z2
.

Restriction of form ω to the torus T 2 is real 2-form

ω|T 2 =
1

4π2
d(arg z1) ∧ d(arg z2),

that is not equal to zero nowhere. Integral of form ω over the torus T 2,
oriented by the form d(arg z1) ∧ d(arg z2), is equal to 1. Define by Id a
subset of group (C∗)2 consisting of points (z1, z2) such, that one of co-
ordinates is equal to 1, i.e. Id = {z1 = 1} ∪ {z2 = 1}.
Let X be one-dimensional simplicial complex and let γ =

∑
kj∆j be integer

linear combination of its oriented edges ∆j which constitutes a cycle, i.e.
∂γ = 0. Let (f, g) : X → (C∗)2 be a piecewise-smooth mapping of complex
X into the group (C∗)2.
Logarithmic functional is a functor, that associates with the mapping (f, g) :
X → (C∗)2 and one-dimensional cycle γ on X an element ln(f, g, γ) of the
group C/Z, defined by formula

ln(f, g, γ) =
1

(2πi)2

∫

σ

dz1

z1
∧ dz2

z2
=

∫

σ

ω,
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where σ is 2-chain in (C∗)2, with the boundary ∂σ equal to the difference
of the image f∗(γ) of cycle γ under mapping f = (f, g) and some cycle γ1

lying in the set Id.
We list the major properties of the logarithmic functional:
1) The value of the logarithmic functional is correctly defined element of
the group C/Z.
2) Logarithmic functional skew-symmetrically depends on components f

and g, i.e. ln(f, g, γ) = − ln(g, f, γ).
3) Logarithmic functional multiplicatively depends on components f and
g, i.e.

ln(fφ, g, γ) = ln(f, g, γ) + ln(φ, g, γ), ln(f, gφ, γ) = ln(f, g, γ) + ln(f, φ, γ).

4) Logarithmic functional has the following topological property. Let M be a
real manifold and (f, g) : M → C∗ be a smooth mapping. One-dimensional
cycle γ̃ on manifold M can be viewed as an image under some piecewise-
smooth mapping φ : X → M of some one-dimensional cycle γ =

∑
kj∆j

on some one-dimensional complex X, where kj ∈ Z and ∆j are edges of
complex X. Associate with the cycle γ̃ on manifold M an element ln(f ◦
φ, g ◦ φ, γ) of group C/Z. Obtained with this association one-dimensional
co-chain gives a class of one-dimensional cohomology group of manifold M

with coefficients in group C/Z if and only if df ∧ dg ≡ 0 (i.e. if and only
if the differential of the mapping (f, g) : M → (C∗)2 degenerates at each
point of manifold M).
5) The equality ln(f, g, γ) = LBγ(f, g) holds. One one hand, this equality
gives a formula for logarithmic functional that does not use auxiliary 2-chain
σ. On the other hand, this equality gives geometric sense to LB-functional
and shows that LB-functional is analog of logarithm.

7.3. Prove of properties of logarithmic functional

This subsection will give prove of properties 1)–4). Property 5) will be
proved in next section.
It is easy to see that sets Id (defined in previous subsection) and (C∗)2
have the following topological properties:
1) The set Id is homotopy equivalent to the boucquet of two circles, π1(Id)
– free group with two generators and H1(Id,Z) ≈ Z+ Z.
2) The set (C∗)2 is homotopy equivalent to the real torus T 2 and
π1((C∗)2) ≈ H1((C∗)2,Z) ≈ Z+ Z.
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3) Enclosure π : Id → (C∗)2 induces isomorphism of one-dimensional ho-
mologies and mapping “onto” of the fundamental groups of sets Id and
(C∗)2.
It follows from item 3) that any continuous mapping f : X → (C∗)2 of
one-dimensional simplicial complex X into group (C∗)2 is homotopic to the
mapping of complex X into the set Id ⊂ (C∗)2. We now prove more precise
statement.
Let V be a set of vertices of one-dimensional complex X and E be the
set of its edges. Fix inside each edge τj ∈ E two different points Aj and
Bj . Points Aj , Bj split edge τj into three segments, which intersect at the
ends only — central segment with endpoints Aj and Bj and two boundary
segments. Fix also in each edge τj point Oj , laying inside central segment
[Aj , Bj ].
Denote by X1 the union of all central segments on all edges τj , and by X0

– the union of all extreme segments on all edges τj . As it is seen from this
construction, every connected component of the set X1 is a central segment
of one of the edges τj . Every connected component of the set X0 contains
one of the vertices of complex X and is the union of all extreme segments,
containing this vertex. So, every connected component of the sets X0 and
X1 is contractible.

Lemma 7.1. Any continuous (piecewise-smooth) mapping (f, g) : X →
(C∗)2 of one-dimensional complex X into group (C∗)2 is homotopic
(piecewise-smoothly homotopic) to the mapping (f1, g1) : X → (C∗)2 such,
that function f1 is equal to 1 on the set X1 and function g1 is equal to 1
on the set X0.

Proof. First we will homotopically change function f without changing
function g. Since the set C∗ is connected we can assume that the following
condition is satisfied: f(Oj) = 1 at the chosen point Oj on every edge τj . If
this is not so, then we can homotopically change function f in such a way,
that in the process of homotopy ft values ft(Oj) move along the curves
connecting points Oj with 1. Let this condition holds. It is possible to
construct a homotopy φt : X → X of the identity mapping of the complex X

into itself such, that it leaves intact every vertex of the complex, translates
every edge τj into itself and contracts every central segment [Aj , Bj ] into
the point Oj . Homotopy ft = f ◦ φt translates function f into function f1

which is equal to 1 on the set X1. Analogously, without changing function
f , we can homotopically change function g into the function g1 having
required properties. We can assume, that function g is equal to 1 at every
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vertex (otherwise it can be homotopically changed into the function having
this property). It is possible to construct homotopy ψt : X → X of the
identity mapping of the complex X into itself such, that it leaves intact
every vertex of the complex, translates every edge τj into itself and contracts
each of boundary segments into the vertex that is contained in this segment.
Homotopy gt = g ◦ ψt translates function g into function g1 which is equal
to 1 on the set X0.

On group (C∗)2 there is remarkable 2-form

ω =
1

(2πi)2
dz1

z1
∧ dz2

z2
.

Lemma 7.2. For any 2-cycle σ in (C∗)2 integral
∫

σ
ω is an integer number.

Proof. Consider projection ρ : (C∗)2 → T 2 of the group (C∗)2 into torus
T 2, given by formula ρ(z1, z2) = ( z1

|z1| ,
z2
|z2| ). It is clear, that integral

∫
σ

ω

is equal to the degree of the mapping ρ : σ → T 2, which is restriction of
projection ρ onto cycle σ. Thus, this integral is an integer number.

Theorem 7.1. The value ln(f, g, γ) of the logarithmic functional is cor-
rectly defined element of the group C/Z (i.e. when 2-chain σ in the defini-
tion of functional changes, the value can be incremented by integer number
only).

Proof. Since embedding π : Id → (C∗)2 induces isomorphism π∗ of groups
H1(Id,Z) and H1((C∗)2,Z), for the image (f, g)∗γ of cycle γ there exists
homological cycle γ1 laying in the set Id, i.e. there exists 2-chain σ1 such,
that (f, g)∗γ − γ1 = ∂σ1. Let γ2 be another cycle in Id that is homological
to the cycle (f, g)∗γ and σ2 be such 2-chain, that (f, g)∗γ−γ2 = ∂σ2. Since
isomorphism π∗ has no kernel, cycles γ1 and γ2 are homological in the set
Id, i.e. there exists a chain σ3 laying in Id such, that γ1−γ2 = ∂σ3. By the
construction the chain σ = σ2 − σ1 − σ3 has zero boundary and therefore
is a 2-cycle in (C∗)2. By Lemma 7.2 integral

∫
σ

ω is an integer number. On
the other hand

∫
σ

ω =
∫

σ2
ω − ∫

σ1
ω − ∫

σ3
ω. The chain σ3 is laying in the

set Id. Restriction of the form ω on Id is identically equal to zero, therefore∫
σ3

ω = 0. Thus, the difference
∫

σ2
ω − ∫

σ1
ω is an integer number.

Theorem 7.2. Logarithmic functional is skew-symmetrical, i.e.
ln(f, g, γ) = − ln(g, f, γ).
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Proof. Let R : (C∗)2 → (C∗)2 be a mapping that swaps co-ordinates, i.e.
let R(z1, z2) = (z2, z1). Under this mapping the form ω changes the sign,
i.e. R∗ω = −ω. Mapping R translates the set Id into itself. Let σ be a
2-chain in (C∗)2 such, that the cycle (∂σ) − (f, g)∗(γ) is contained in the
set Id. Then ln(f, g, γ) =

∫
σ

ω. Further, ln(g, f, γ) =
∫

R(σ)
ω =

∫
σ

R∗ω =
− ∫

σ
ω = − ln(f, g, γ).

Theorem 7.3. Logarithmic functional has the following multiplicative
properties:

ln(fϕ, g, γ) = ln(f, g, γ)+ ln(ϕ, g, γ), ln(f, gϕ, γ) = ln(f, g, γ)+ ln(f, ϕ, γ).

Proof. Since the functional is skew-symmetrical, it is sufficient to prove
the first equality ln(fϕ, g, γ) = ln(f, g, γ) + ln(ϕ, g, γ). For evaluation of
ln(f, g, γ) and ln(ϕ, g, γ) we will choose specific 2-chains σ1 and σ2. Let
X = X0 ∪ X1 be a covering of the complex X by two closed sets with
contractible connected components the same as in Lemma 7.1.
We describe the choice of the chain σ1 first. Let I = [0, 1] be a unit segment,
W = I × X and (F,G) : W → (C∗)2 be a piecewise-smooth homotopy
of the mapping (f, g) discussed in Lemma 7.1. Another words, let (F, G)
be such mapping, that: 1) restriction (F,G)|{1}×X of the mapping (F, G)
on the set {1} × X coincides with the mapping (f, g) when sets X and
{1} × X are identified, 2) restriction F |{0}×X1 of function F on the set
{0} ×X1 identically equals to 1, 3) restriction G|{0}×X0 of function G on
the set {0} × X0 identically equals to 1. For the cycle γ =

∑
ki∆i take

σ1 =
∑

ki(F,G)∗(I × ∆i). By construction the boundary of the chain σ1

is equal to (f, g)∗(γ) − γ1, where γ1 is a cycle laying in the set Id. Thus
ln(f, g, γ) =

∫
σ1

ω.

Chain σ2 is constructed analogously. Let (Φ, G) : W → (C∗)2 be piecewise-
smooth mapping, with component G the same as in above described ho-
motopy, and component Φ having the following properties: 1) restriction
Φ|{1} ×X coincides with function ϕ, 2) restriction Φ|{0}×X1 of function
Φ on the set {0} × X1 identically equals to 1. For cycle γ =

∑
ki∆i take

σ2 =
∑

ki(Φ, G)∗(I × ∆i). By construction the boundary of the chain σ2

is equal to (ϕ, g)∗(γ) − γ2, where γ2 is a cycle laying in the set Id. Thus
ln(ϕ, g, γ) =

∫
σ2

ω.

Now we construct chain σ3. Consider the mapping (FΦ, G) : W → (C∗)2
with first component being the product of functions F and Φ, and second
component equal to function G. Take σ3 =

∑
ki(FΦ, G)∗(I × ∆i). By
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construction the boundary of the chain σ3 is equal to the difference of the
cycle (fϕ, g)∗(γ) and the cycle laying in the set Id. Therefore, ln(fϕ, g, γ) =∫
σ3

ω. Thus we have the following equalities

ln(f, g, γ) =
1

2πi

∑
ki

∫

I×∆i

dF

F
∧ dG

G
,

ln(ϕ, g, γ) =
1

2πi

∑
ki

∫

I×∆i

dΦ
Φ
∧ dG

G
,

ln(fϕ, g, γ) =
1

2πi

∑
ki

∫

I×∆i

d(FΦ)
(FΦ)

∧ dG

G
.

Equality ln(fϕ, g, γ) = ln(f, g, γ)+ ln(ϕ, g, γ) now follows from the identity

d(FΦ)
(FΦ)

=
dF

F
+

dΦ
Φ

.

Let real manifold M and smooth mapping (f, g) : M → (C∗)2 be given.
With each triple, consisting of one-dimensional complex X, one-dimensional
cycle γ on X and piecewise-smooth mapping φ : X → M , we will associate
an element ln(f ◦ φ, g ◦ φ, γ) of group C/Z. In order to prove topological
property 4) of the logarithmic functional described in previous subsection
it is sufficient to prove the following theorem.

Theorem 7.4. Let form df∧dg be identically equal to zero on the manifold
M and let cycle φ∗γ homologically equals to zero. Then ln(f ◦φ, g◦φ, γ) = 0.
Conversely, if from homological equality to zero of the cycle φ∗γ follows
equality ln(f ◦ φ, g ◦ φ, γ) = 0 then on the manifold M form df ∧ dg is
identically equal to zero.

Proof. If cycle φ∗γ homologically equals to zero, then on the manifold M

there exists piecewise-smooth 2-chain σ such that ∂σ = φ ◦γ. By definition

ln(f ◦ φ, g ◦ φ, γ) =
1

(2πi)2

∫

σ

df

f
∧ dg

g
.

If form df ∧ dg is identically equal to zero, then integrand is equal to zero.
Thus, ln(f ◦ φ, g ◦ φ, γ) = 0.
Conversely, let on some bi-vector v at some point a of manifold M form df∧
dg is not equal to zero. Consider arbitrary smooth mapping φ : (R2, 0) →
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(M, a) of the standard plane R2 into manifold M that translates point 0
into point a ∈ M , and differential dφ is nonsingular at point 0 and maps
plane R2 into subspace of the tangent space TMa at the point a, containing
bi-vector v. Let Sε be a square −ε ≤ x ≤ ε,−ε ≤ y ≤ ε on the plane R2,
and Xε = ∂Sε be its boundary. Let γ be a cycle geometrically coinciding
with Xε and oriented as boundary of the square Sε. Obviously, for small
enough ε element ln(f ◦φ, g◦φ, γ) of group C/Z is not equal to zero, however
cycle φ∗γ by construction is homologically equal to zero.

8. Logarithmic functional and generalized LB-functional

In this section we prove the following theorem.

Theorem 8.1. The equality ln(f, g, γ) = LBγ(f, g) holds.

We first prove auxiliary result.

Lemma 8.1. Let X0, X1 ⊂ X be subsets of complex X defined in Lemma
7.1, (f, g) : X → (C∗)2 – piecewise-smooth mapping such, that restric-
tion of function f on X1 and restriction of function g on X0 identically
equal to 1. Then for any one-dimensional cycle γ in complex X the equality
LBγ(f, g) = 0 holds.

Proof. Consider the following subpartition of complex X: every edge τj of
complex X is split into three edges by points Aj , Bj belonging to the bound-
aries of sets X0 and X1. Choose collection φ of the branches of function
ln f on the edges of sub-partitioned complex X that satisfies the following
two conditions: 1) on every edge that is connected component of set X1,
the branch of function ln f is identically equal to zero; 2) branches ln f on
the union of edges, that are connected components of the set X0, define on
this component continuous function. Condition 2) can be satisfied because
every connected component of the set X0 is contractible. By the definition
of LB-functional we have

LBγ(f, g) =
1

(2πi)2

∫

γ

φ
dg

g
− 1

2πi

∑

P∈Ṽ

mφ,γ(P ) ln g(P ),

where summation is over set Ṽ of all vertices of sub-partitioned complex
X. Now,

∫
γ

φdg
g = 0, because integrand is equal to zero. Indeed, on every

edge from set X1 function φ is equal to zero. On every edge from set X0

function g is identically equal to 1 and thus dg/g = 0. At the vertex P of
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the original complex X (before subpartition), coefficient mφ,γ is equal to
0, because function φ is continuous at such point P . At every vertex P ,
belonging to the boundary of sets X0 and X1, the number ln g is equal to
2kπ, where k ∈ Z, because function g is equal to 1 on the set X0. Therefore,
the number 1

2πi

∑
P∈Ṽ

mφ,γ(P ) ln g(P ) is integer. From all this it follows that

element LBγ(f, g) of group C/Z equals to zero.

Proof. (of Theorem 8.1). By Lemma 7.1 the mapping (f, g) : X → (C∗)2
is homotopic to the mapping (f1, g1) : X → (C∗)2, for which restriction of
function f1 on X1 and restriction of function g1 on X0 are identically equal
to 1. Let W = I × X and (F, G) : W → (C∗)2 be homotopy connecting
mappings (f, g) and (f1, g1). By Theorem 6.1

LBγ(f, g)− LBγ(f1, g1) =
∫

σ

ω,

where σ — 2-chain on W that is equal to I×γ. By Lemma 8.1 LBγ(f1, g1) =
0. By construction ∂σ = γ − γ1, where cycle γ1 is laying in the set Id.
Therefore, LBγ(f, g) = lnγ(f, g).

The author would like to thank Eugene Zima for his help during preparation
of this paper.
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