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Abstract
A new transparent proof of the well-known good compactification theorem for the
complex torus (C∗)n is presented. This theorem provides a powerful tool in enu-
merative geometry for subvarieties in the complex torus. The paper also contains an
algorithm constructing a good compactification for a subvariety in (C∗)n explicitly
defined by a system of equations. A new theorem on a toroidal-like compactification
is stated. A transparent proof of this generalization of the good compactification the-
orem which is similar to proofs and constructions from this paper will be presented in
a forthcoming publication.

Keywords Good compactification theorem · Complex torus · Newton polyhedra ·
Toric variety

1 Introduction

The paper is dedicated to a simple constructive proof of the good compactification
theorem for the group (C∗)n and to related elementary geometry of this group.

A few words about the introduction. We briefly talk about the ring of conditions
R(T n) for the complex torus (C∗)n in the introduction only. This ring suggests a
version of intersection theory for algebraic cycles in (C∗)n . We discuss a role of the
good compactification theorem in this theory and explain how Newton polyhedra are
related to the ring R(T n). In Sect. 1.4, we state a new stronger version of the good
compactification theorem. In the Sects. 1.5 and 1.6, we summarize the remainder of
the paper and fix some notation.
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136 A. Khovanskii

1.1 The Ring of Conditions

The good compactification theorem for a spherical homogeneous space U allows to
define the ring of conditions of U (see [3] or the next page for the relevant definitions
and statements). In the paper, we consider the case when U is a complex torus (C∗)n
equipped with the natural action of the torus on itself.

Following the original ideas of Schubert, in the early 1980s, De Concini and Procesi
developed an intersection theory for algebraic cycles in a symmetric homogeneous
space [3]. Their theory, named the ring of conditions of U , can be automatically
generalized to a spherical homogeneous space U . De Concini and Procesi showed
that the description of such a ring can be reduced to homology rings (or to Chow
rings) of an increasing chain of smooth G-equivariant compactifications of U .

The ring of conditionsR(U ) = R0(U )+· · ·+Rn(U ) is a commutative graded ring
with homogeneous components of degrees 0, . . . , n where n equals to the dimension
of U . The component Rk(U ) consists of algebraic cycles Zk in U of codimension
k, considered up to an equivalents relation ∼. An element in Zk is a formal sum of
algebraic subvarieties of codimension k taken with integral coefficients.

(1) Two algebraic cycles X1, X2 ∈ Zk are equivalent X1 ∼ X2 (and define the same
element in Rk(U )) if for any cycle Y ∈ Zn−k for almost any g ∈ G, the cycles
X1 and gY , as well as cycles X2 and gY , have finite number of points of inter-
sections and these numbers computed with appropriate multiplicities are equal.
(Let us comment on these appropriate multiplicities. If the cycles are irreducible
varieties, then for almost any g one computes the number of the intersection points
with multiplicities one. For arbitrary cycles, these multiplicities can be found by
linearity).

(2) Assume that (a) X1, X2 ∈ Zk and X1 ∼ X2; (b) Y1,Y2 ∈ Zm and Y1 ∼ Y2. For
almost any element g ∈ G for i = 1, 2, let Wi,g be the cycle obtained by taken
with appropriate coefficient components of codimension k +m in the intersection
of Xi and gYi , then the cycles W1,g and W2,g are equivalent and they define the
same element in Rk+m(U ).

(Let us comment on these appropriate coefficients. If the cycles are irreducible
varieties, then for almost any g the components of the intersection have to be taken
with coefficient one. For arbitrary cycles, these coefficients can be found by linearity).

The addition + in the ringR(U ) is induced by the addition in the group of cycles.
The multiplication ∗ in the ring R(U ) is induced by intersection of cycles. The mul-
tiplication inR(U ) is well defined because of the property (2).

The component R0(U ) is isomorphic to Z, each element in R0(U ) is the variety
U multiplied by an integral coefficient.

The component Rn(U ) is isomorphic to Z. Its elements are represented by lin-
ear combinations of points in U with the following equivalence relation:

∑
kiai ∼∑

m jb j if
∑

ki = ∑
m j .

The pairing Fk : Rk × Rn−k → Z can be defined using the multiplication in the
ringR(U ) and the isomorphismRn ∼ Z. This pairing is non degenerate, i.e. for any
ak ∈ Rk \ {0} there is bn−k ∈ Rn−k such that Fk(ak, bn−k) �= 0 (the non-degeneracy
follows automatically from the definition of the ring R(U )).
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Newton Polyhedra and Good Compactification Theorem 137

In Sect. 1.2, we comment on the role of the good compactification theorem for this
intersection theory in the case when a homogeneous space U is the complex torus
(C∗)n acting naturally on itself.

1.2 The RingR(Tn) of Conditions of Tn = (C∗)n

The construction of the ring and all its descriptions are based on the good compacti-
fication theorem [4,8,9,11,18,19].

A complete toric variety V ⊃ (C∗)n is a good compactification for an algebraic
variety X ⊂ (C∗)n of codimension k if the closure of X in V does not intersect any
orbit of the (C∗)n action on V whose dimension is smaller than k. The toric variety
V is a good compactification for an algebraic cycle of codimension k if it is a good
compactification of all varieties of codimension k which appear in the cycle with
nonzero coefficients.

Good compactification theorem [3,4,18,19] One can find a good compactification
for any given algebraic subvariety X in (C∗)n .

LetV , V1 be toric varieties andπ : V → V1 be a proper equivariantmap. LetV1 be a
good compactification for the variety X . Then V also is a good compactification for X .
For any finite collection of complete toric varieties V1, . . . , Vk , one can find a smooth
projective toric variety V which dominates all of them, i.e. one can find such V that
there exist proper equivariant projections π1 : V → V1, . . . , πk : V → Vk . Thus, the
theorem implies that one can find a smooth projective toric variety M which provides
a good compactification for any given finite collection of algebraic subvarieties in
(C∗)n .

The good compactification theoremwas first discovered and proven in [3] in amuch
more general setting: it is applicable for an arbitrary spherical homogeneous spaceU .
The case of U = (C∗)n can be proven in a much simpler way (see below). It would
be interesting to extend this simple proof to the general case.

In [18,19] only the case U = (C∗)n is considered. The proof from [18] uses
universal Gröbner bases (see Lemma 10 below). Usually it is very hard to find such
bases explicitly (see [10]). The proof from [19] uses generalized Kapranov’s visible
contours and non archimedean amoebas. This proof also is far from being transparent.

Assume that a smooth projective toric variety V is a good compactification for
cycles X1, X2 ∈ Zk . Then X1 ∼ X2 if and only if the closure of these cycles in
V define equal elements in the homology group H2(n−k)(V ,Z). Moreover, for any
element x ∈ H2(n−k)(V ,Z), one can find a cycle X ∈ Zk such that V is a good
compactification for X and the closure of X in V represents the element x .

Assume that the variety V is a good compactification for cycles X ∈ Zk and
Y ∈ Zm and the closure of these cycles define elements x ∈ H2(n−k)(V ,Z) and
y ∈ H2(n−m)(V ,Z). Let g be a generic element in (C∗)n (i.e. let g be such an element
that for any orbit O the cycles O ∩ X and O ∩ gY are stratified transversal). Let
Wg ∈ Zk+m be the cycle corresponding to the intersection of X and gY . Then V is a
good compactification for Wg . Moreover, the closure of Wg in V defines the element
w ∈ H2(n−k−m)(V ,Z) which is independent of a choice of generic element g and
equal to the intersection of cycles x and y in the homology ring H∗(V ,Z).
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138 A. Khovanskii

These statements belong to the theory of rings of conditions of spherical homoge-
neous spaces [3], for the toric case see for example [4], related material can be found
in [6,8,9,11,18]. Thus, the description of the ringR(T n) can be reduced to the descrip-
tion of the homology rings of smooth projective toric varieties (and to description of
the behavior of these rings under proper equivariant maps between toric varieties).

1.3 Newton Polyhedra and the RingR(Tn)

Let us start with the following striking connection of Newton polyhedra to the ring
R(T n). Consider two hypersurfaces �1, �2 ⊂ (C∗)n defined by equations P1 = 0,
P2 = 0, where P1 and P2 are Laurent polynomials. Then the cycles �1, �2 ∈ Z1
represent the same element inR1(T n) if and only if the Newton polyhedra �(P1) and
�(P2) are equal up to a shift.

Any element inR1(T n) can be represented as a formal difference of two hypersur-
faces. Thus, the componentR1(T n) can be identified with the group of virtual convex
polyhedra with integral vertices (i.e. can be identified with the Grothendieck group of
the semigroup of convex polyhedra with integral vertices).

The ring R(T n) is generated by R0(T n) ∼ Z and R1(T n) (since the homology
ring of a smooth projective toric variety V is generated by H2n(V ,Z) ∼ Z and
H2n−2(V ,Z)). Thus, it is not surprising that the ring R(T n) can be described using
only the geometry of convex polyhedra with integral vertices [4,11].

Let �1, . . . , �n ⊂ (C∗)n be hypersurfaces defined by equations P1 = 0, . . . , Pn =
0 where P1, . . . , Pn are Laurent polynomials with Newton polyhedra �1, . . . , �n .
Then the intersection number of the cycles�1, . . . , �n in the ring of conditionsR(T N )

is equal to n!multiplied by themixed volume of�1, . . . ,�n (see [11]). This statement
is a version of the famous Bernstein–Kushnirenko theorem (see [1,2,13,14,17]) also
known as BKK (Bernstein–Kushnirenko–Khovanskii) theorem. The statement shows
that the BKK theorem applies naturally to the ringR(T n).

1.4 StrongVersion of the Good Compactification Theorem

In this section, we announce a toroidal like compactification theorem which is a
stronger version of the good compactification theorem for a complex torus.

Consider a triple (Y , D, a), where Y is a normal n-dimensional variety, D ⊂ Y is
a Weil divisor and a ∈ D is a point. We say that (Y , D, a) is a pointed toroidal triple
if there is an affine toric variety Y1 ⊃ (C∗)n with a divisor D1 = Y1 \ (Y1 ∩ (C∗)n)
and with a null orbit a1 ∈ D1 such that the triple (Y , D, a) is locally analytically
equivalent to the triple (Y1, D1, a1) in neighborhoods of the points a and a1 (about
toroidal embedding see [12]).

Let V ⊃ (C∗)n be a good compactification for X ⊃ (C∗)n , let X be the closure
of X in V and let D be X ∩ D, where D = V \ (C∗)n . Consider the normalization
π : X̃ → X and let D̃ be π−1(D).

We say that a good compactification V for a subvariety X of codimension k in
(C∗)n gives a toroidal like compactificationX of X if for any point a ∈ X ∩O, where
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Newton Polyhedra and Good Compactification Theorem 139

O ⊂ V is a k-dimensional orbit, and for any point ã ∈ X̃ such that π(ã) = a the
triple (X̃ , D̃, ã) is a pointed toroidal triple.

Toroidal like compactification theorem For any given algebraic subvariety X in
(C∗)n one can find a toric variety V ⊃ (C∗)n providing a toroidal like compactification
of X .

A transparent proof of this new theoremwhich is similar to proofs and constructions
from this paper will be presented in a forthcoming article.

Consider any toroidal like compactification for a variety X ⊂ (C∗)n . Let ã ∈ X̃
be a point as above and let Ṽ ⊂ X̃ be a small neighborhood of ã in X̃ . The image
V = π(Ṽ) ⊂ X (which is a piece of a branch ofX passing through the point π(ã)) can
be represented by converging multidimensional Laurent power series. From a tropical
geometry point of view, domains of convergency of such Laurent series “cover almost
all the infinity of X”. Such series could be useful for enumerative geometry. For
example, one can easily determine the multiplicity of intersection of O and X at a
point a in terms of such series at all points ã ∈ π−1(a) (such multiplicities play an
important role in tropical geometry).

1.5 Summary of the Paper

A short proof of the good compactification theorem is presented in the Sect. 7. We
use convenient compactifications for a system of equations (Sect. 5) and developed
systems of equations (Sect. 6). Appropriate regular sequences (Sect. 2) allow to reduce
an arbitrary variety X to a complete intersection Y , such that X ⊂ Y , dim X = dim Y
(Sect. 3).

Sections 2 and 4 are not used directly in the proof. In Sect. 2, we explain how
to reconstruct the dimension of a variety X from the set of Newton polyhedra of all
Laurent polynomials in an ideal defining X . Our proof of the good compactification
theorem is based on similar observations.

The proof heavily uses developed systems of k equations in (C∗)n . In Newton
polyhedra theory there are many results on such systems with k = n. In Sect. 4, we
recall these results.

An algorithm constructing a good compactification for a subvariety X in (C∗)n
explicitly defined by a system of equations is presented in Sect. 10. It is based on
elementary results from elimination theory (Sect. 8) which allows to define by explic-
itly written system of equations a projection π(X) of X on an (n − 1)-dimensional
subtorus (Sect. 9).

In Sect. 12, amodified algorithm is presented.We assume there that the codimension
of X is given and we make arbitrary generic choices for the construction to work. This
modification is based on the original algorithm and on auxiliary results presented in
Sect. 11.

1.6 Complex Torus, Its Subgroups and Factor Groups

Here we fix some notation.
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140 A. Khovanskii

The standard n-dimensional complex torus we denote by (C∗)n . We denote by Ln

the ring of regular functions on (C∗)n consisting of Laurent polynomials (i.e. of linear
combinations of characters of (C∗)n). We denote by

� ∼ Z
n — the lattice of characters;

M ∼ R
n — the space �

⊗
Z
R of characters;

�∗ ∼ (Zn)∗ — the lattice of one-parameter subgroups;
N ∼ (Rn)∗ — the space �∗ ⊗

Z
R of one parameter subgroups.

A subspace L ⊂ M is rational if it is generated by elements from�. With a rational
space L one can associate the following objects:

(1) The sublattice �(L) of characters in L equal to � ∩ L . The sub-ring LL of the
ring Ln consisting of Laurent polynomials whose Newton polyhedra belong to L .

(2) The connected subgroup H(L) in (C∗)n whose Lie algebra is spanned by vectors
from �∗ orthogonal to the space L . The subgroup H(L) is a subset in (C∗)n ,
where all characters from �(L) equal to one. Its dimension dimC H(L) equals to
n − dimR L .

(3) The factor-group F(L) = (C∗)n/H(L) and the factorization map π : (C∗)n →
F(L). The map π∗ identifies the lattice of characters of F(L) with the sublattice
�(L), and it identifies the ring of regular functions on F(L) with the ring LL .

2 Newton Polyhedra and Dimension of an Algebraic Variety

The dimension of an algebraic variety X ⊂ (C∗)n is its key invariant for the good
compactification theorem. Assume that X is defined by an ideal I in the ring of
Laurent polynomials. It is natural to ask the following question: is it possible(at least
theoretically) to determine the dimension of the variety X knowing the set �(I ) of
Newton polyhedra �(P) of all Laurent polynomials P ∈ I?. Below we provide
a positive answer to this question. Later we will not use this result directly, but our
approach to the good compactification theorem is based on simple arguments used in
this section.

Let X ⊂ (C∗)n be the algebraic variety defined by an ideal I ⊂ Ln .

Lemma 1 If dim X = m, then for any rational subspace L ⊂ M such that dimR L =
m + 1 there is a Laurent polynomial P ∈ I whose Newton polyhedron �(P) belongs
to L.

Proof Let L ⊂ M be an (m + 1)-dimensional rational space. Then the factor-group
F(L) = (C∗)n/H(L) has dimension (m + 1). Let π : (C∗)n → F(L) be the natural
factorization map. The image π(X) ⊂ F(L) of X has dimension ≤ m and it has to
belong to some algebraic hypersurface Q in the (m + 1)-dimensional group F(L).
By definition, the function π∗(Q) vanishes on X . Thus, π∗(Q) belongs to the radical
of the ideal I , i.e. there is a natural number p such that (π∗Q)p ∈ I . The Newton
polyhedron � of π∗(Q) belongs to L . Now one can choose P = (π∗Q)p since
�(P) = p� ⊂ L . ��
Lemma 2 If dim X = m, then for a generic rational subspace L ⊂ M, with dim L =
m, there is no P ∈ I such that �(P) belongs to L.
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Newton Polyhedra and Good Compactification Theorem 141

Proof For a generic rational subspace L ⊂ M with dim L = m the image of X in
the m-dimensional factor-group F(L) has dimension m and it can not belong to any
algebraic hypersurface in F(L). Thus, there is no Laurent polynomial P ∈ I such that
�(P) ⊂ L . ��

Lemmas 1, 2 allow (at least theoretically) to determine the dimension of X by
Newton polyhedra of all Laurent polynomials from an ideal I which defined X .

Theorem 3 If dim X = m, then any rational space L ⊂ M with dim L = m + 1
contains the Newton polyhedron �(P) of some P ∈ I and a generic rational space
L ⊂ M with dim L = m does not contain any such polyhedron.

3 Good Compactification and Regular Sequences

One can strongly modify an algebraic variety X preserving its dimension. In this sec-
tion, we will talk about complete intersections Y containing X such that dim Y =
dim X . We are interested in such varieties Y because of the following obvious obser-
vation.

Lemma 4 If X ⊂ Y ⊂ (C∗)n and dim X = dim Y then any good compactification for
Y is a good compactification for X.

Proof Let V ⊃ (C∗)n be a good compactification for Y . Then the closure of Y in M
does not intersect any orbit O ⊂ M such that dim O < n − dim Y = n − dim X . The
closure of X in V also does not intersect any such orbit since X ⊂ Y . ��

Let us recall the following definition.

Definition 1 A sequence P1, . . . , Pk of Laurent polynomials on (C∗)n is regular if for
i = 1, . . . , k the following conditions (i) hold.

(1): P1 is not identically equal to zero on (C∗)n .
(i > 1): Pi is not identically equal to zero on each (n − i + 1)-dimensional
irreducible component of the variety defined by a system P1 = · · · = Pi−1 = 0.

Let Y be a variety defined in (C∗)n by the system P1 = · · · = Pk = 0 where
P1, . . . , Pk is a regular sequence. It is easy to see that dim Y = n − k.

Consider a variety X ⊂ (C∗)n defined by an ideal I in the ring Ln with a
basis Q1, . . . , QN . Let F be the space of C-linear combinations of the functions
Q1, . . . , QN . We will prove the following lemma.

Lemma 5 If P1, . . . , Pk is a generic k-tuple of Laurent polynomials belonging to F
and k = n− dim X, then P1, . . . , Pk is a regular sequence and a variety Y defined by
the system P1 = · · · = Pk = 0 contains the variety X.

To prove Lemma 5 we will need the following auxiliary statement.

Lemma 6 Let A ⊂ (C∗)n be a finite set. Assume that for any ai ∈ A there is P ∈ F
such that P(ai ) �= 0. Then there is an algebraic hypersurface � ⊂ F such that for
any Q ∈ F \ � and for any a j ∈ A the inequality Q(a j ) �= 0 holds.
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142 A. Khovanskii

Proof Let �ai be a hyperplane in F defined by the following condition: P ∈ �ai if
P(ai ) = 0. The union � = ⋃

ai∈A �ai is an algebraic hypersurface in F . If Q /∈ �

then Q(a j ) �= 0 for all a j ∈ A. ��
Proof of Lemma 5 Since F ⊂ I all functions P1, . . . , Pk vanish on X thus X ⊂ Y .
We have to explain why a generic sequence is regular. If X coincides with (C∗)n
then there is nothing to prove. Otherwise as a first member P1 of a sequence one
can take any nonzero element in E . Assume that for i < n − k we already chose
members P1, . . . , Pi ∈ F such that the sequence P1, . . . , Pi is regular. Consider a
variety Yi defined by the system P1 = · · · = Pi = 0. The variety X cannot contain
any irreducible (n − i)-dimensional component of Yi since dim X = n − k < n − i .
Take a finite set A containing a point at each (n− i)-dimensional component of Yi not
belonging to X . According to Lemma 6 there is a hypersurface � ⊂ F such that any
P ∈ F \ � does not vanish at any point from A. As the next member of the sequence
one can take any Pi+1 ∈ F \ �. ��

4 Developed Systems of n Equations in (C∗)n

Our proof of the good compactification theorem heavily uses developed systems of
k equations in (C∗)n . In Newton polyhedra theory, there are many results on such
systems with k = n. Here we recall these results. This section can be skipped without
compromising understanding of the paper.

Among all systems of n equations P1 = · · · = Pn = 0 in (C∗)n there is an
interesting subclass of developed systems which resemble one polynomial equation
in one variable. Below we recall the definition and main properties of such systems.

Let us start with general definitions. For a convex polyhedron � ⊂ R
n and a

covector ξ ∈ (Rn)∗ we denote by �ξ the face of � at which the restriction on �

of the linear function 〈ξ, x〉 attains its minima. The face �ξ of the Minkowskii sum
� = �1 + · · · + �k of k-tuple �1, . . . ,�k in Rn is equal to �

ξ
1 + · · · + �

ξ
k .

For a Laurent polynomial P = ∑
amxm with Newton polyhedron�(P)we denote

by Pξ the reduction of P in the co-direction ξ defined by the following formula:
Pξ = ∑

m∈�ξ (P) amx
m . With a system of equations P1 = · · · = Pk = 0 in (C∗)n

and a covector ξ one associates the reduced in the co-direction ξ system Pξ
1 = · · · =

Pξ
k = 0.

Definition 2 (see [15]) An n-tuple �1, . . . �n of convex polyhedra inRn is developed
if for any nonzero co-vector ξ ∈ (Rn)∗ the n-tuple �

ξ
1, . . . �

ξ
n contains at least one

face�
ξ
j which is a vertex of� j . The system of equations P1 = · · · = Pn = 0 in (C∗)n

is called developed if n-tuple �(P1, ) . . . �(Pn) of Newton polyhedra of P1, . . . , Pn
is developed.

Apolynomial in one variable of degreed has exactly d roots countingwithmultiplic-
ity. The number of roots in (C∗)n counting with multiplicities of a developed system
is determined only by Newton polyhedra of equations by the Bernstein–Kushnirenko
formula (if the system is not developed this formula holds only for generic systems
with given Newton polyhedra).
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Newton Polyhedra and Good Compactification Theorem 143

As in the one-dimensional case, one can explicitly compute the sum of values of any
Laurent polynomial over the roots of a developed system [7]. In particular, it allows
to eliminate all unknowns but one from the system.

As in the one-dimensional case, one can explicitly compute the product of all of
the roots of the system regarded as elements in the group (C∗)n [15].

For two polynomials in one variable, the following identity holds: up to the sign
depending on degrees of the polynomials the product of values of the first polynomial
over the roots of the second one is equal to the product of values of the second polyno-
mial over the roots of the first one multiplied by a certain monomial in coefficients of
the polynomials. Assume that for given (n+ 1) Laurent polynomials P1, . . . , Pn+1 in
n variables any n-tuple out of (n + 1)-tuple of their Newton polyhedra is developed.
Then for any 1 ≤ i < j ≤ n + 1 up to sign depending on Newton polyhedra the
product of values of Pi over the common roots of all Laurent polynomials but Pi
is equal to the product of values of Pj over the roots of all Laurent polynomial but
Pj multiplied by a certain monomial in coefficients of all Laurent polynomials. This
result and a review of the results mentioned above can be found in [16].

5 Convenient Compactifications of (C∗)n for a System of Equations

With any given system of equations in (C∗)n one can associate a natural class of com-
pactifications of (C∗)n which are convenient for the system. In Sect. 10, we construct
a good compactification for a variety X as a convenient compactification for some
explicitly presented system of equations. In this section, we talk about convenient
compactifications.

Consider a variety Y ⊂ (C∗)n defined by a finite system of equations

P1 = · · · = Pk = 0, (1)

where P1, . . . , Pk ∈ Ln . With each convex polyhedron � ⊂ R
n one can associate its

support function H� on (Rn)∗ defined by the relation

H�(ξ) = min
x∈�

〈ξ, x〉.

Definition 3 (see [13,14]) A toric compactification V ⊃ (C∗)n is convenient for the
system (1) if the support functions of Newton polyhedra �1, . . . ,�k of P1, . . . , Pk
are linear at each cone σ belonging to the fan FV of the toric variety V .

It is easy to verify that V is convenient for the system (1) if and only if its fan FV

is a subdivision of a dual fan �⊥ to � = �(P1) + · · · + �(Pk).
For some systems, each convenient compactification provides a good compacti-

fication for the variety Y defined by the system. We will show below that a good
compactification for any variety Y ⊂ (C∗)n can be obtained as a convenient compact-
ification for some auxiliary system.

Consider a hypersurface� in (C∗)n defined by the equation P = 0,where P ∈ Ln .
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144 A. Khovanskii

Lemma 7 [13,14]Any convenient compactification V for the equation P = 0 provides
a good compactification for the hypersurface �.

Proof Let us show that the closure of � in V does not contain any null-orbit. Let O
be a null-orbit and let σ be the cone in the fan of V corresponding to the affine toric
subvariety VO containing O . Since V is a convenient compactification, on the cone σ

the support function of �(P) is a linear function 〈ξ, A〉, where A is a vertex of �(P).
Let χA be the character (the monomial) corresponding to the point A. The support
function of �(P · χ−1

A ) is equal to zero on σ thus �(P · χ−1) belongs to the cone σ⊥
dual to σ , i.e. P · χ−1

A is regular on VO . Assume that the monomial χA appears in P
with the coefficient CA, which is not equal to zero since A is a vertex of �(P). The
closure of � ⊂ (C∗)n in VO can be defined by the equation P · χ−1

A = 0. It does not
contain O since P · χ−1

A (O) = CA �= 0. ��
The converse statement to Lemma 7 also is true:

Lemma 8 If V ⊃ (C∗)n is a good compactification for � then V is a convenient for
the equation P = 0.

We will not use Lemma 8 and will not prove it.

Definition 4 (see [13,14]) A system (1) is called�-non-degenerate if for any covector
ξ ∈ (R∗)n the following condition (ξ) is satisfied:

for any root a ∈ (C∗)n of the system Pξ
1 = · · · = Pξ

k = 0 the differentials

dPξ
1 , . . . , dPξ

k are independent at the tangent space to (C∗)n at the point a.
Lemma 9 [13,14] Any convenient compactification V for a �-non-degenerate system
provides a good compactification for the variety Y ⊂ (C∗)n defined by this system.

If in the assumptions of Lemma 9, the toric compactification V is smooth then
the closure of Y in V is also smooth and transversal to all orbits of V (see [13,14]).
One can show that a generic system (1) with the fixed Newton polyhedra �1 =
�(P1), . . . ,�k = �(Pk) is �-non-degenerate. These statements play the key role in
Newton polyhedra theory,which computes discreet invariants of the varietyY ⊂ (C∗)n
in terms of �1, . . . ,�k , where Y is defined by a generic system of equations with
Newton polyhedra �1, . . . , �k .

Instead of the �-non-degeneracy assumption in Lemma 9 one can assume that the
(ξ ) condition (see Definition 4) holds only for covectors ξ belonging to cones in the
fan �⊥ for � = �1 + · · · + �k dual to faces of � whose dimension is smaller then
k. (For such covectors, ξ it just means that the system Pξ

1 = · · · = Pξ
k = 0 has no

solutions in (C∗)n .) For k = 1 this claim coincides with Lemma 7.
In any ideal I ⊂ Ln , there exists an universal Gröbner basic P1, . . . , Pk ∈ I (see

for example [18]), a relatedmaterial can be found in [10]. One can prove the following.

Lemma 10 Any convenient compactification M for a system P1 = · · · = Pk = 0,
where P1, . . . , Pk is an universal Gröbner basis of an ideal I ⊂ Ln provides a good
compactification for the variety Y ⊂ (C∗)n defined by the ideal I .

Lemma 10 is applicable for any subvariety Y ⊂ (C∗)n and it provides a standard
proof of the good compactification theorem. Unfortunately a universal Gröbner basis
of an ideal contains usually a very large number of element (see [10]).
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6 Developed Systems of k < n Equations in (C∗)n

In this section, we will deal with developed systems and with complete intersections
Y ⊂ (C∗)n defined by these systems. A convenient compactification for a developed
system provides a good compactification for the corresponding complete intersection
Y .

Let�1, . . . ,�k be a k-tuple of convex polyhedra inRn and let� be theMinkowskii
sum�1 +· · ·+�k . Each face � of� is representable as the sum �1 +· · ·+�k where
�1, . . . , �k is the (unique) k-tuple of faces of these polyhedra.

Definition 5 A k-tuple �1, . . . ,�k of convex polyhedra in R
n is developed if for

any face � of � = �1 + · · · + �k such that dim � < k in the representation � =
�1 + · · · + �k , where �1, . . . , �k is a k-tuple of faces of �1, . . . , �k at least one face
� j is a vertex of � j . A system (1) is called developed if k-tuple �(P1), . . . ,�(Pk)
of Newton polyhedra of P1, . . . , Pk is developed.

A system containing only one equation P1 = 0 is always developed. For k = n
Definition 5 is equivalent to Definition 1.

Lemma 11 Let Y ⊂ (C∗)n be a complete intersection defined by a developed system
containing k equations and let V be a convenient compactification for the system.
Then the closure of Y in V does not intersect any orbit O ⊂ V whose dimension is
smaller then k.

Proof Lemma 11 can be proved in the same way as Lemma 7. Let us show that the
closure of Y in V does not intersect any orbits O in V such that dim O < k. Let O be
an orbit with dim O < k and let σ be the cone of dimension n − dim O in the fan of
V corresponding to the smallest affine toric subvariety VO containing O .

Since V is a convenient compactification the cone σ has to belong to a some cone
τ of the dual fan �⊥ for � = �1 + · · · + �k .

Since dim τ ≥ dim σ the cone τ is dual to a face � of � such that dim � =
n − dim τ < k. By assumption in the representation � = �1 + · · · + �k , where each
�i is a face of�i , there is a face� j which is a vertex A of� j . Thus, the support function
of �(Pj ) is the linear function 〈ξ, A〉. The vertex A corresponds to the character χA.
Assume that the monomial χA appears in P with the coefficientCA, which is not equal
to zero since A is a vertex of �(P). The closure of {Pj = 0} ⊂ (C∗)n in VO can
be defined by the equation PJ · χ−1

A = 0. It does not intersect the orbit O since the
function Pj · χ−1

A is equal to the constant CA �= 0 on O . The variety Y is contained
in the hypersurface {Pj = 0} ⊂ (C∗)n and can not intersect O as well. ��

Corollary 12 If Y is defined by a developed system, then a convenient compactification
for the system is good compactification for Y .

Proof Indeed if Y is defined by a system of k equations in the n-dimensional torus,
then dimension of Y is greater or equal to n − k. Thus, Corollary 12 follows from
Lemma 11. ��
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7 Polyhedra with Affine Independent Edges

In this section, we prove Theorem 15 on geometry of Newton polyhedra which easily
implies the good compactification theorem.

Definition 6 A k-tuple of segments I1, . . . , Ik in R
n is affine independent if there is

no k-tuple of vectors a1, . . . , ak ∈ R
n such that the segments I1 + a1, . . . , Ik + ak

belong to a (k − 1)-dimensional subspace L of Rn . Equivalently, I1, . . . , Ik are affine
independent if dimension of their Minkowski sum I1 + · · · + Ik equals to k.

Definition 7 Convex polyhedra �1, . . . ,�k in R
n have affine independent edges if

any collection I1 ⊂ �1, . . . , Ik ⊂ �k of their edges is affine independent.

Lemma 13 Any k-tuple of convex polyhedra �1, . . . ,�k ⊂ R
n having affine inde-

pendent edges is developed.

Proof Consider the Minkowski sum � = �1 + · · · + �k . Each face � of � is the
Minkowski sum�1+· · ·+�k of the unique collection of faces�1 ⊂ �1, . . . , �k ⊂ �k

of these polyhedra. If a face �i is not a vertex of �i , then �i has to contain an edge Ii
of �i . If all faces �1, . . . , �k are not vertices then �1 + · · · + �k = � has to contain
a sum I1 + · · · + Ik where I1, . . . , Ik are some edges of �1, . . . ,�k . Dimension of
I1 + · · · + Ik is equal to k since �1, . . . ,�k have affine independent edges. Thus if
dim � < k, then among faces �1, . . . , �k has to be at least one vertex. ��

With any hyperplane L ⊂ M one can associate a linear function fL : M → R

(defined up to a nonzero factor) which vanishes on L .

Definition 8 Alinear function onM isweakly generic for a convex polyhedron� ⊂ M
if its restriction on � attains its maximum and minimum only at vertices of �. If the
function fL associated with a hyperplane L ⊂ M has such property we say that L is
weakly generic for �.

Assume that X ⊂ (C∗)n is defined by N + 1 ≥ 1 equations

T1 = · · · = TN+1 = 0, (2)

(where T1, . . . , TN+1 are Laurent polynomials not identically equal to zero).

Lemma 14 If a rational hyperplane L ⊂ M is weakly generic for the Newton
polyhedron �1 of T1, then the image π(X) of X under the factorization map
π : (C∗)n → (C∗)n/H(L) = F(L) is an affine subvariety in the torus F(L). More-
over the dimension of π(X) is equal to the dimension of X.

Sketch of proof Conditions on the equation T1 = 0 and on the hyperplane L imply
that the restriction of π on X is a proper map and that each point in π(X) has finitely
many pre-images in X . Both claims of Lemma 14 follow from these properties of π .
We omit details, since in Sect. 9, we present a constructive proof of Lemma 14. ��
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Definition 9 A linear function on M is generic for a convex polyhedron � ⊂ M if its
restriction on � is not a constant on any edge of �. If the function fL associated with
a hyperplane L ⊂ M has such property we say that L is generic for �.

Any hyperplane L generic for � is weakly generic for �.

Theorem 15 If codimension of a subvariety X in the torus (C∗)n is equal to k then
one can choose a k-tuple of Laurent polynomials P1, . . . , Pk vanishing on X such that
their Newton polyhedra �1, . . . ,�k have affine independent edges.

Proof Induction in codimension of X . If codimension is one then X is contained in a
hypersurface P = 0 where P is a nonzero Laurent polynomial. In that case, one can
choose P1 equal to P .

If codimension of X is k > 1 then as P1 one can choose any nonzero Laurent
polynomial vanishing on X . After that one can choose a rational hyperplane L ⊂ M
which is generic for the Newton polyhedron �1 of P1. In particular, L is weakly
generic for �1. Thus, by Lemma 14, the image π(X) of X is an affine subvariety of
codimension k − 1 in the (n − 1)-dimensional torus F(L).

The map π∗ identifies regular functions on F(L) vanishing on π(X) with Laurent
polynomials on (C∗)n vanishing on X whose Newton polyhedra belong to L . By
induction there are Laurent polynomials P2, . . . , Pk vanishing on X whose Newton
polyhedra belong to L and have affine independent edges. All edges of �1 are not
parallel to the space L since L is generic for �1. Thus, the Laurent polynomials
P1, P2, . . . , Pk have affine independent edges and vanish on X . Theorem 15 is proven.

��
Assume that an algebraic variety X ⊂ (C∗)n is defined by an ideal I ⊂ Ln .

Corollary 16 If codimension of X in (C∗)n is equal to k, then one can choose a k-tuple
of Laurent polynomials P1, . . . , Pk in the ideal I such that their Newton polyhedra
�1, . . . ,�k have affine independent edges.

Proof According to Theorem 15 one can chose Laurent polynomials P1, . . . , Pk van-
ishing on X such that their Newton polyhedra �1, . . . ,�k have affine independent
edges. By Hilbert’s theorem, there is a natural number m such that Laurent polyno-
mials Pm

1 , . . . , Pm
k belong to the ideal I . Newton polyhedra m�1, . . . ,m�k of these

polynomials have affine independent edges. ��
The following corollary provides a version of the good compactification theorem.

Corollary 17 (a version of good compactification theorem) If codimension of X in
(C∗)n is equal to k then one can choose Laurent polynomials P1, . . . , Pk vanishing
on X such that any convenient compactification for the system P1 = · · · = Pk = 0 is
a good compactification for X. Moreover, for any ideal I ⊂ Ln defining X, one can
choose such Laurent polynomials from the ideal I .

Proof By Theorem 15, one can choose Laurent polynomials P1, . . . , Pk vanishing on
X such that their Newton polyhedra �1, . . . ,�k have affine independent edges. By
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Lemma13 the system P1 = · · · = Pk = 0 is developed. ByLemma11, any convenient
compactification V for the system is a good compactification for the variety defined
by the system. By Lemma 4, V is also a good compactification for X . By Corollary 16
P1, . . . , Pk can be chosen in any ideal I defining X . ��

If X ⊂ (C∗)n is defined by an explicitly written system of equations then The-
orem 15 and elimination theory allow to construct a good compactification for X
explicitly (see Sect. 10). Before presenting a general algorithm let us show on a sim-
ple example how it works.

If X is defined by one equation P = 0 then any convenient compactification for its
Newton polyhedron is a good compactification for X . In the next example, we discuss
our algorithm for X ⊂ (C∗)n defined by two equations P = Q = 0 with Newton
polyhedra �(P) and �(Q). In the example, we use slightly different notation than in
the paper.

Example (Variety X defined by two equations) To construct a good compactification
for X let us make some preparations. One can choose an appropriate automorphism of
(C∗)n and embed it into the standard affine space Cn in such a way that the following
condition holds: the linear function l1 on the space of monomials corresponding to
powers of the first coordinate x1 in C

n is a generic linear function for �(P). After
that one can multiply P and Q by appropriate monomials, in such a way that P and
Q become polynomials on Cn and minima of l1 on �(P) and �(Q) become equal to
zero.

Consider P and Q as polynomials in x1 whose coefficients are polynomials in all
other coordinates x2, . . . , xn of Cn . Let R be the resultant of P and Q which is a
polynomial in x2, . . . , xn . If R is not identically equal to zero, then any convenient
compactification for �(P),�(R), where �(R) is the Newton polyhedron of R, is a
good compactification for X . Otherwise, if R ≡ 0, then any convenient compactifica-
tion for �(P) is a good compactification for X .

Remark (1) If P , Q are generic polynomials for their Newton polyhedra�(P),�(Q)

then the Newton polyhedron �(R) of their resultant R does not depend on coeffi-
cients of P and Q and can be found up to a shift directly from the polyhedra�(P)

and�(Q) (see [5]). Note that if P, Q are generic for their Newton polyhedra, then
any convenient compactification for �(P),�(Q) is a good compactification for
X , thus for its construction one does not need the polyhedron�(R). Nevertheless,
[5] provides an exact bound from above for the size of �(R) which is helpful in
estimating complexity of the algorithm.

(2) If R ≡ 0 then the polynomials P, Q have a nontrivial common factor T . Let P1 =
P/T and Q1 = Q/T . Then X = X1∪X2 where X1 is defined by T = 0 and X2 is
defined by P1 = Q2 = 0. The codimension of X1 equals one, X2 either is empty
or has codimension two. Any convenient compactification for �(P) provides a
good compactification for X and for the collection X1 of components of X of
the biggest dimension. But in general it does not provide a good compactification
for X2.
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8 Resultant and Elimination of Variables

In this section, we recall classical results on elimination of variables. We adopt these
results for projections of subvarieties in torus (C∗)n = (C∗)n−1×C

∗ on the first factor
(C∗)n−1.

Let P = a0 +a1t +· · ·+apt p and Q = b0 + b1t +· · ·+ bq tq be polynomials in t
of degrees ≤ p and ≤ q correspondingly. The resultant Rp,q(P, Q) is a polynomial
in a0, . . . , ap, b0, . . . , bq with integral coefficients. By definition Rp,q(P, Q) is the
determinant of the homogeneous system of linear equations whose unknowns are the
undetermined coefficients of polynomials P̃ and Q̃ of degrees ≤ p − 1 and ≤ q − 1
correspondingly satisfying the relation

P Q̃ = QP̃. (3)

Since an ordering of equations in the system is not fixed its determinant Rp,q(P, Q)

is defined up to sign.

Lemma 18 If the leading coefficient ap of the polynomial P (coefficient bq of the
polynomial Q) is not equal to zero, then polynomials P and Q have a common factor
if and only if their resultant Rp,q(P, Q) is equal to zero.

Remark If ap = bq = 0, then the resultant Rp,q(P, Q) is equal to zero (even if
polynomials P and Q have no common factor).

Proof of Lemma 18 If P and Q have a common factor T with deg T > 0 and P = P1T ,
Q = Q1T then the system (3) has a nontrivial solution: one can put P̃ = P1 and
Q̃ = Q1. Thus, the determinantRp,q(P, Q) is equal to zero. On the other hand if the
system (3) has a nontrivial solution then P divides QP̃ . Since deg P̃ < deg P it can
happen only if Q and P have a common factor. ��

Consider a polynomial P = a0 + a1t + · · · + apt p together with a finite collection
of polynomials Qi = bi0 + bi1t + · · · + biqi t

qi where i = 1, . . . , N . Let Qλ =
λ1Q1 + · · · + λN QN be a linear combination of polynomials Qi with coefficients λi .

Lemma 19 Assume that the leading coefficient ap of P is not equal to zero. Let q =
max1≤i≤N qi . Then the polynomials P, Q1, . . . , QN have a common complex root
t0 if and only the resultant R(λ) = Rp,q(P, Qλ) is identically equal to zero as a
function in λ = (λ1, . . . , λN ). If in addition the constant term a0 of P is not equal to
zero then any common root of P, Q1, . . . QN also is not equal to zero.

Proof If all polynomials P, Q1, . . . , QN have a common root t0 then for any N -tuple
λ = (λ1, . . . , λN ) the polynomial Qλ = λ1Q1 + · · · + λN QN and the polynomial P
have the common root t0. Thus, by Lemma 18, the resultantRp,q(P, Qλ) = R(λ) is
identically qual to zero as a function in λ = (λ1, . . . , λN ).

Assume now that each root tk , 1 ≤ k ≤ p of the polynomial P is not a root of
some polynomial Qi . For each root tk let �k ⊂ C

N be the hyperplane defined by
the equation

∑
1≤ j≤N λ j Q j (tk) = 0. If λ0 = (λ01, . . . , λ

0
N ) ∈ C

N do not belong to
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the union ∪1≤i≤p�i ⊂ C
N , then the polynomial Qλ0 = λ01Q

1 + · · · + λ0N Q
N has

no common roots with the polynomial P . Thus, the resultant Rp,q(P, t Qλ) is not
identically equal to zero as function in λ.

If a0 �= 0, then zero is not a root of P; thus, it is not a common root of
P, Q1, . . . , QN . ��

9 Projection of X ⊂ (C∗)n on a Sub-torus in (C∗)n

In this section, we will present a constructive proof of Lemma 14. It will be used as a
step in a constructive proof of the good compactification theorem.

9.1 Modified Problem

Let us modify a little our problem. The group F(L) is the factor-group of (C∗)n by the
normal subgroup H(L). Let us choose any complementary to H(L) subgroup H([e])
(i.e. such a subgroup that the identity H([e]) × H(L) = (C∗)n holds) and consider
the image π1(X) ⊂ H([e]) under the projection π1 of (C∗)n to the first factor H([e]).
Problem 1 In the assumption of Lemma 14, construct explicitly a system of equations

Cm = 0, (4)

where Cm ∈ LL , which defines π1(X) ⊂ H([e]).
Any solution of Problem 1 automatically provides a system of equations on F(L)

which defines π(X) ⊂ F(L). Indeed, we identified the ring of regular functions on
FL with the ring LL . Under this identification, the system (4) becomes the system of
equations on FL which defines π(X).

Remark The system of equations (5) constructed below defines a variety π1(X) ⊂
H([e]) which depends on a choice of the complementary subgroup H([e]). But its
image in the factor-group F(L) equals to π(X) ⊂ F(L) and is independent of H([e]).

9.2 Decomposition of (C∗)n into a Direct Product

Two rational subspaces L1, L2 ⊂ M are complementary to each other if the identity

�(L1) + �(L2) = �

holds, where �(L1) = � ∩ L1 and �(L2) = � ∩ L2. If L1, L2 are complementary
to each other then the identity

H(L1) × H(L2) = (C∗)n

holds, where H(L1) and H(L2) are subgroups corresponding to L1 and L2. Later we
will be interested in the case when L1 is a hyperplane and L2 is a line.
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We will say that e is complementary to rational hyperplane L if e is an irreducible
vector in the lattice � and the line [e] generated by e is a complementary line for L .
The vector e and the hyperplane L define the linear function l(e, L) : M → R such
that l(e, L) vanishes on L and l(e, L)(e) = 1.

Let t : (C∗)n → C
∗ be the character χe corresponding to the vector e. Then t has

the following properties:

(1) the set {t−1(1)} ⊂ (C∗)n is the subgroup H([e]) in the torus (C∗)n . We identify
regular functions on H([e]) (as well as regular functions on F(L)) with Laurent
polynomials from the ring LL ;

(2) the map t : (C∗)n → C
∗ restricted to H(L) provides an isomorphism between

H(L) and C
∗. Thus, H(L) is a one-parameter group with the parameter t .

Each Laurent polynomial on (C∗)n = H([e])× H(L) can be considered as a Laurent
polynomial in t whose coefficients belong to the ringLL . We denote by π1 : (C∗)n →
H([e]) the projection of the product to the first factor.

Below we use notations and assumptions from Lemma 14. The lowest degreemi in
t in monomials appearing in Ti is equal to minimum of the function lt on the Newton
polyhedron�i of Ti . Let us put P = T1t−m1, Q1 = T2t−m2 , . . . , QN = TN+1t−mN+1 .
System (2) defining X is equivalent to the system

P = Q1 = · · · = QN = 0,

where P, Q1, . . . , QN are polynomials in t whose coefficients belong to the ring LL

and in addition the leading coefficient and the constant term of the polynomial P
are characters with nonzero coefficients. We denote the degrees of the polynomials
P, Q1, . . . , QN by p, q1, . . . , qN correspondingly.

Let Qλ = λ1Q1 + · · · + λN QN be a linear combination of polynomials Qi with
coefficients λi and let q = max1≤i≤N qi . The resultant Rp,q(P, Qλ) is a polynomial
R(λ) in λ = (λ1, . . . , λN ), i.e.

R(λ) =
∑

ck1,...,kN λ
k1
1 . . . λ

kN
N ,

whose coefficients ck1,...,kN are Laurent polynomials from the ring LL .

Theorem 20 (Solution to Problem 1) In the assumptions written above the image,
π1(X) is an affine subvariety in H([e]) ⊂ (C∗)n defined by the system

ck1,...,kN = 0, (5)

where ck1,...,kN ∈ LL are all coefficients of the polynomial R(λ). Moreover,
dim π1(X) = dim X.

Proof We consider functions from the ring LL as functions on H([e]). By assumption
the coefficients a0 and ap cannot vanish at any point x ∈ H([e]). Thus, by Lemma 19,
the system P = Q1 = · · · = QN = 0 has a common zero t0 ∈ π−1

1 (x) ∼ C
∗

above a point x ∈ H([e]) if and only if all coefficients ck1,...,kN vanish at x . Any point
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x ∈ π1(X) has ≤ p pre-images in X since the degree of P in t is equal to p. Thus,
dim π1(X) = dim X . ��
Corollary 21 The image π(X) ⊂ F(L) can be defined by the system (5) and
dim π(X) = dim X.

10 Explicit Construction of a Good Compactification

Let X ⊂ (C∗)n be an algebraic variety. Assume that a system of equations (2) with
the following properties is given:

(1) a variety Y ⊂ (C∗)n defined by the system of equations (2) contains the variety
X ;

(2) dim Y = dim X .
In this section, we present an algorithm which replaces (2) with a new system

P1 = · · · = Pk = 0 (6)

which in addition to properties (1), (2) has the following properties:
(3) any convenient compactification for (6) is a good compactification for X .
(4) the number of equations in (6) is equal to the codimension of X in (C∗)n .
In particular, the algorithm allows to compute the dimension of a variety X defined in
(C∗)n by a given system of equations and to construct a good compactification for it.

10.1 The Algorithm

As the first equation P1 = 0 of the new system (6) one can take the equation T1 = 0
(we assume that T1 is not identically equal to zero). To complete the first step of the
algorithm, some preparations are needed.

Let us choose any rational hyperplane L1 ⊂ M generic for the Newton polyhedron
�1 of P1. Let us choose any complementary vector e1 to L1. By Theorem 20, one can
explicitly write a system of equations

c(1)
k1,...,kN1

= 0,

where c(1)
k1,...,kN1

∈ LL1 defining the image Y1 = π1(Y ) ⊂ H [(e1)]. The first step

of the algorithm is completed. If all functions c(1)
k1,...,kN1

are identically equal to zero,
then the algorithm is completed, codimension of X is one and as the new system (6)
contains one equation P1 = 0.

The second step is identical to the first step applied to the system (6) on the torus
H([e1]). In order to do this step we have to replace:

the torus (C∗)n by the torus H([e1]) ⊂ (C∗)n ;
the lattice of characters � by the lattice �(L1) = � ∩ L1 ⊂ �;
the space of characters M by the space L1 ⊂ M
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the ring of Laurent polynomials Ln by the ring LL1 .
The subgroup in the torus H([e1]) corresponding to a rational subspace L2 ⊂ L1

we will denote by H1(L2).
Let us proceed with the second step. If there is a nonzero Laurent polynomial

c(1)
k01 ,...,k

0
N1

then as the second equation P2 = 0 of the new system (6) one can take the

equation c(1)
k01 ,...,k

0
N1

= 0.

After that one can choose a rational hyperplane L2 in the space L1 generic to the
Newton polyhedron �2 ⊂ L1 of P2 and choose a complementary vector e2 ∈ �(L1)

to L2 in the space L1.
Let t2 : H([e1]) → C

∗ be the character corresponding to the vector e2. Then t2 has
the following properties:

(1) the set {t−1
2 (1)} ⊂ H([e1]) is the subgroup H1([e2]) in the torus H([e1]). We

identify regular functions on H1([e2]) with Laurent polynomials from the ring
LL2 ;

(2) themap t2 : H([e1]) → C
∗ restricted to H1(L2) provides an isomorphismbetween

H1(L2) and C
∗. Thus, H1(L2) is a one-parameter group with the parameter t2.

The torus H([e1]) can be represented as the product H1([e2]) × H1(L2). We are
interested in the projection π2(Y1) ⊂ H1(L2), where π2 is the projection of the
product H1([e2]) × H1(L2) on the first factor and Y1 = π1(Y ).

By Theorem 20, one can explicitly write a system of equations

c(2)
k1,...,kN2

= 0,

where c(2)
k1,...,kN2

∈ LL2 define the image Y2 = π2(Y ) ⊂ H1([e2]). The second step

of the algorithm is completed. If all functions c(2)
k1,...,kN2

are identically equal to zero
then the algorithm is completed, codimension of X is two and as the new system (6)
contains two equations P1 = P2 = 0.

If there is a nonzero Laurent polynomial c(2)
k01 ,...,k

0
N2

, then as the third equation P3 = 0

of the new system (6), one can take the equation c(2)
k01 ,...,k

0
N2

= 0 and proceed with the

third step of the algorithm and so on. After k steps where k is the codimension of X
we will explicitly obtain a system P1 = · · · = Pk = 0 such that P1, . . . , Pk vanish on
X and their Newton polyhedra have affine independent edges. The description of the
algorithm is completed.

11 Modification of Problem 1

In this section, under assumption of Lemma 14we consider the followingmodification
of Problem 1.
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Problem 2 Assume that codimension X ⊂ (C∗)n is k > 1. How to construct
a sequence of (k − 1) functions R1, . . . , Rk−1 from the ring LL such that (1)
R1, . . . , Rk−1 vanish on π(X); (2) R1, . . . , Rk−1 form a regular sequence on H([e])?

Theorem 20 suggests the following solution of Problem 2. Consider an auxiliary
linear space F of C-linear combinations of the functions ck1,...,kN (see the system of
equations (5)). As R1, . . . , Rk−1 one can take any generic (k − 1)-tuple of functions
from the space F . This solution deals with the space F of large dimension. Here we
present a similar solution which does not involve auxiliary spaces of big dimension.

We use notations from Lemma 14 and Theorem 20. The variety X ⊂ (C∗)n defined
by system (2). As the first equation G1 = 0 we choose the equation T1 = 0. After that
we choose a rational hyperplaneweakly generic to�(G1) and a complementary vector
e for L . Each function from the ring Ln can be represented as a Laurent polynomial
on t (where t is the character corresponding to the vector e) whose coefficients belong
to the ring LL . One can multiply equations from (2) by any power of t . Below we
assume that (1) each Ti is a polynomial of t ; (2) the polynomial G1 = T1 has a
nonzero constant term. Let us denote degG1 by p and let q be the maximal degrees
of the polynomials Ti .

Let π : (C∗)n → H(L) be the projection defined by the choice of L and e.
Let F be the span of polynomials T1, . . . , TN+1.
Let codimension X be equal to k.
We already chose the polynomial G1 from the space F . For any T ∈ F by

Rp,q(G1, T ) we denote the resultant of G1 and T , which we consider as a Laurent
polynomial from the ring LL .

Theorem 22 (Solution to Problem 2) For a generic (k−1)-tuple G2, . . . ,Gk ∈ F the
following conditions hold:

(1) the sequence G1,G2, . . . ,Gk is regular on (C∗)n and all its members Gi vanish
on X;

(2) the sequence R2 = Rp,q(G1,G2), . . . , Rk = Rp,q(G1,Gk) is regular on H(L)

and all its members Ri vanish on π(X).

Our proof of Theorem 22 is similar to the proof of Lemma 5. We will need an
auxiliary Lemma 23 stated below.

Consider a variety Y = Z ×C
m , where Z is an affine algebraic variety and Cm is a

standard linear space with coordinates λ1, . . . , λm . Consider a regular function R on
Y which is a polynomial in λ1, . . . , λm whose coefficients are regular functions on Z .

Lemma 23 Let A ⊂ Z be a finite set. Assume that for any ai ∈ A the restriction ofR on
{ai }×C

m is not identically equal to zero. Then for ageneric pointλ0 = (λ0,1, . . . , λ0,n)

for all points a j ∈ A the inequality R(a j , λ0) �= 0 holds.

Proof Let �ai ⊂ C
m be the hypersurface inCm defined by the equationR(ai , λ) = 0.

The union � = ⋃
ai∈A �ai is a hypersurface inC

m . If λ0 /∈ �, thenR(a j , λ0) �= 0 for
all a j ∈ A. ��
Proof of Theorem 22 Since G1, . . . ,Gk ∈ F all functions Gi vanish on X . Assume
that for 1 ≤ i < k we already chose members G1, . . . ,Gi ∈ F such that: (1) the

123



Newton Polyhedra and Good Compactification Theorem 155

sequence G1, . . . ,Gi is regular on (C∗)n ; (2) the sequence R2, . . . ,Ri is regular on
H(L). Consider the variety Yi defined by the system G1 = · · · = Gi = 0 on (C∗)n
and the variety Zi defined by the system R2 = · · · = Ri = 0 on H(L).

The variety X cannot contain any irreducible (n − i)-dimensional component of
Yi since dim X = n − k < n − i . Take a finite set Ai containing a point at each
(n − i)-dimensional component of Yi not belonging to X .

By construction the variety π(X) is contained in the variety Zi . The variety π(X)

cannot contain any irreducible (n − i − 1)-dimensional component of Zi since
dim π(X) = n − k − 1 < n − i − 1. Take a finite set Bi containing a point at
each (n − i − 1)-dimensional component of Zi not belonging to π(X).

According to Lemma 6 there is a hypersurface �1 ⊂ C
N such that for any λ =

(λ1, . . . , λN ) not in �1 the function G = λ1T1 + · · · + λN TN does not vanish at any
point from the set Ai .

Consider a function R(x, λ), where x ∈ H(L) and λ = (λ1, . . . , λN ) defined by
the formulaR(x, λ) = Rp,q(G1, λ1T1+· · ·+λN TN ). Here we consider the resultant
as a polynomial in λ whose coefficients belong to the ring LL of regular functions on
H(L). The restriction ofR(x, λ) to the set (x, λ) with fixed x = b is identically equal
to zero if and only if b ∈ π(X).

By the choice of the set Bi and by Lemma 23, there is an algebraic hypersurface
�2 ⊂ C

N such that for any λ not in �2 the functionR(x, λ) is not equal to zero at any
point of the set Bi .

As the next member of the sequence, one can take any Gi+1 = λ1T1 +· · ·+λN TN
for any λ not in �1 ∪ �2. ��

12 Modification of the Algorithm

Herewe discuss amodification of the algorithmpresented in the Sect. 10. Themodified
algorithm does not involve auxiliary spaces of large dimensions. We assume that the
codimension k of X in (C∗)n is given. We will also make arbitrary generic choices in
the construction below.

Let X ⊂ (C∗)n be an algebraic variety of codimension k. Assume that a system of
equations

T1 = · · · = TN+1 = 0.7 (7)

is given which has the following properties:

(1) the variety Y ⊂ (C∗)n defined by (7) contains the variety X ;
(2) dim Y = dim X .

The modified algorithm replaces (7) by a new system

P1 = · · · = Pk = 0 (8)

containing k equations which in addition to the properties (1), (2) has the following
property:
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(3) any convenient compactification for (8) is a good compactification for X .

The first step of the algorithm Consider C-linear space L0 consisting of C-linear
combinations λ1T1 + · · · + λN+1TN+1 of the Laurent polynomials T1, . . . , TN+1.
As P1 choose any nonzero element of the space L0. Choose a rational hyperplane
L generic for �(P1). Choose a complementary vector e ∈ � to L . Consider the
projectionπ : (C∗)n → H(L). Take a generic (k−1)-tupleG(1)

2 , . . . ,G(1)
k of elements

from L0. Add the first member G(1)
1 = P1 to the (k − 1)-tuple. Now acting as in

Theorem 22 from the sequence G(1)
1 ,G(1)

2 , . . . ,G(1)
k using L0 and e construct the

sequence R(1)
2 , . . . , R(1)

k of Laurent polynomials from the space LL . By Theorem 22,

all R(1)
2 , . . . , R(1)

k form a regular sequence on H(L) and they vanish on the subvariety
Y1 = π(Y ) of H(L) having codimension (k − 1).

The second step of the algorithm is identical to the first step applied to the system
R(1)
2 = · · · = R(1)

k = 0 on H(L), where R(1)
2 , . . . , R(1)

k belong to LL and vanish on
the variety Y1 = π(Y ) ⊂ H(L) having codimension (k − 1).

Consider theC-linear spaceL1 consisting ofC-linear combinations λ1R
(1)
2 +· · ·+

λk R
(1)
k . As P2 choose an element R(1)

2 of the space L1. Choose a rational hyperplane
L1 in the space L generic for�(P2) ⊂ L . Choose a complementary vector e1 ∈ �(L)

to L1. Consider the projection π1 : H(L) → H1(L1). Take a generic (k − 2)-tuple
G(2)

3 , . . . ,G(2)
k of elements from L1. Add the second member G(2)

2 = R(1)
2 to the

(k − 2)-tuple. Now acting as in Theorem 22 from the sequence G(2)
2 ,G(2)

3 , . . . ,G(2)
k

using L1 and e1 construct the sequence R(2)
3 , . . . , R(2)

k of Laurent polynomials from

the space LL1 . By Theorem 22, all R(2)
3 , . . . , R(2)

k form a regular sequence on H(L1)

and they vanish on the subvariety Y2 = π1(Y1) of H1(L1) having codimension (k−2).
Proceeding in the same way one can make steps 3, . . . , k. After k steps, we obtain

a system P1, . . . , Pk which has needed properties.
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