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THE RESULTANT OF DEVELOPED SYSTEMS OF LAURENT

POLYNOMIALS
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To the memory of Vladivir Igorevich Arnold

Abstract. Let R∆(f1, . . . , fn+1) be the ∆-resultant (defined in the
paper) of (n+1)-tuple of Laurent polynomials. We provide an algorithm
for computing R∆ assuming that an n-tuple (f2, . . . , fn+1) is developed.
We provide a relation between the product of f1 over roots of f2 = · · · =
fn+1 = 0 in (C∗)n and the product of f2 over roots of f1 = f3 = · · · =
fn+1 = 0 in (C∗)n assuming that the n-tuple (f1f2, f3, . . . , fn+1) is
developed. If all n-tuples contained in (f1, . . . , fn+1) are developed we
provide a signed version of Poisson formula for R∆. In our proofs we use
topological arguments and topological version of the Parshin reciprocity
laws.
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1. Introduction

To a Laurent polynomial f in n variables one associates its Newton polyhedron
∆(f), which is a convex lattice polyhedron in Rn (through all of this paper by
polyhedron we will mean compact convex polyhedron with integer vertices). A
system of n equations f1 = · · · = fn = 0 in (C∗)n is called developed if (roughly
speaking) their Newton polyhedra ∆(fi) are located generically enough with respect
to each other. The exact definition (see also Sec. 6) is as follows: a collection of n
polyhedra ∆1, . . . , ∆n ⊂ Rn is called developed if for any covector v ∈ (Rn)∗ there
is i such that on the polyhedron ∆i the inner product with v attains its biggest
value precisely at a vertex of ∆i.

A developed system resembles an equation in one unknown. A polynomial in
one variable of degree d has exactly d roots counting with multiplicity. The num-
ber of roots in (C∗)n counting with multiplicities of a developed system is always
determined by the Bernstein–Koushnirenko formula (see [B]) (if the system is not
developed this formula holds only for generic systems with fixed Newton polyhedra).
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As in the one-dimensional case, one can explicitly compute the sum of values of
any Laurent polynomial over the roots of a developed system [GKh], [GKh1] and the
product of all of the roots of the system regarded as elements in the group (C∗)n
[Kh1]. These results can be proved topologically [GKh1], using the topological
identity between certain homology cycles related to developed system (see Sec. 7),
the Cauchy residues theorem, and a topological version of the Parshin reciprocity
laws (see Sec. 8).

To an (n + 1)-tuple A = (A1, . . . , An+1) of finite subsets in Zn one associates
the A-resultant RA. It is a polynomial defined up to sign in the coefficients of Lau-
rent polynomials f1, . . . , fn+1 whose supports belong to A1, . . . , An+1 respectevely.
The A-resultant is equal to ±1 if the codimension of the variety of consistent sys-
tems in the space of all systems with supports in A is greater than 1. Otherwise,
RA is a polynomial vanishing on the variety of consistent systems and such that
the degree of RA in the coefficients of the i-th polynomial is equal to the generic

number of roots of the system f1 = . . . = f̂i = . . . = fn+1 = 0 (in which the
equation fi = 0 is removed).

The notion of A-resultant was introduced and studied in [GKZ] under the follow-
ing assumption on A: the lattice generated by the differences a − b for all couples
a, b ∈ Ai and all 0 6 i 6 n + 1 is Zn. Under this assumption the resultant RA is
an irreducible polynomial (which was used in the definition of RA in [GKZ]). Later
in [Est] and [DS] it was shown that in the general case (i.e when the differences
from Ai’s do not generate the whole lattice) RA is some power of an irreducible
polynomial. The power is equal to the generic number of roots of a corresponding
consistent system (see Sec. 13 for more details).

To an (n + 1)-tuple ∆ = (∆1, . . . , ∆n+1) of Newton polyhedra one associates
the (n+ 1)-tuple A∆ of finite subsets (∆1 ∩ Zn, . . . , ∆n+1 ∩ Zn) in Zn. We define
the ∆-resultant as A-resultant for A = A∆. In the paper we deal with ∆-resultants
only. If a property of ∆-resultant is a known property of A-resultants for A =
A∆ we refer to a paper where the property of A-resultants is proven (without
mentioning that the paper deals with A-resultants and not with ∆-resultants).
Dealing with ∆-resultants only we lose nothing: A-resultants can be reduced to ∆-
resultants. One can check that RA(f1, . . . , fn+1) for A = (A1, . . . , An+1) is equal
to R∆(f1, . . . , fn+1) for ∆ = (∆1, . . . , ∆n+1), where ∆1, . . . , ∆n+1 are the convex
hulls of the sets A1, . . . , An+1.

A collection ∆ is called i-developed if its subcollection obtained by removing
the polyhedron ∆i is developed. Using the Poisson formula (see [PSt], [DS], and
Sec. 13.3) one can show that for i-developed ∆ the identity

R∆ = ±Π
[i]
∆Mi (1.1)

holds, where Π
[i]
∆ is the product of fi over the common zeros in (C∗)n of fj , for

j 6= i, and Mi is an explicit monomial in the vertex coefficients (i.e., the coefficient
of fj in front of a monomial corresponding to a vertex of ∆j) of all the Laurent
polynomials fj with j 6= i.

We provide an explicit algorithm for computing the term Π
[i]
∆ using the summa-

tion formula over the roots of a developed system (Corollary 8). Hence we get an



THE RESULTANT OF DEVELOPED SYSTEMS OF LAURENT POLYNOMIALS 719

explicit algorithm for computing the resultant R∆ for an i-developed collection ∆.
This algorithm heavily uses the Poisson formula (1).

If (n+ 1)-tuple ∆ is i-developed and j-developed for some i 6= j the identity

Π
[i]
∆ = Π

[j]
∆Mi,jsi,j (1.2)

holds, where Mi,j is an explicit monomial in the coefficients of Laurent polynomials
f1, . . . , fn+1 and si,j = (−1)fi,j is an explicitly defined sign (Corollary 4).

Our proof of the identity (1.2) is topological. We use the topological identity
between cycles related to a developed system (see Sec. 7) and a topological version
of the Parshin reciprocity laws. The identity (1.2) generalizes the formula from
[Kh1] for the product in (C∗)n of all roots of a developed system of equations.

An (n + 1)-tuple ∆ is called completely developed if it is i-developed for every
1 6 i 6 n+ 1. For completely developed ∆ the identity

Π
[1]
∆ M1s1 = . . . = Π

[n+1]
∆ Mn+1sn+1 (1.3)

holds, where (M1, . . . , Mn+1) and
(
Π

[1]
∆ , . . . , Π

[n+1]
∆

)
are monomials and products

appearing in (1.1) and (s1, . . . , sn+1) is an (n+ 1)-tuple of signs such that sisj =
si,j , where si,j are the explicit signs from identity (1.2).

Our proof of the identities (1.3) uses the identity (1.2) and does not rely on the
theory of resultants. Using one general fact from this theory (Theorem 19) one can
see that the quantities in the identities (1.3) are equal to the ∆-resultant, i.e., to
±R∆. Thus the identities (1.3) can be considered as a signed version of the Poisson
formula for completely developed systems.

To make the paper more accessible we first describe all of the results in the
classical one dimensional case.

Acknowledgements. The authors would like to thank Benjamin Briggs and Kiu-
mars Kaveh for their help with editing earlier versions of this paper and the referee
for their valuable comments, which helped to improve the paper.

2. Resultants in Dimension One

2.1. Sylvester’s formula for resultant. Let P1 = a0+· · ·+akzk, P2 = b0+· · ·+
bnz

n be polynomials in one complex variable of degrees 6 k and 6 n. Sylvester
defined resultants R[1] and R[2] which are equal up to a sign. R[1] and R[2] are
defined as the determinant of the (n+ k)× (n+ k) matrices M1, M2 respectively,
where,

M1(P1, P2) =



ak ak−1 . . . a0 0 0

0
. . .

. . . . . .
. . . 0

0 0 ak ak−1 . . . a0

bn bn−1 . . . b0 0 0

0
. . .

. . . . . .
. . . 0

0 0 bn bn−1 . . . b0


and M2(P1, P2) = M1(P2, P1).
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One can see that: 1) R[1] = (−1)knR[2]; 2) resultants are polynomials in the co-
efficients of P1 and P2 with degrees n and k in coefficients of P1 and P2 respectively;
3) the polynomials R[1] and R[2] have integer coefficients; 4) the coefficient of the
monomial ankb

k
0 in R[1] is +1 and, hence, the coefficient of the same monomial in

R[2] is (−1)kn, 5) the coefficients of R[1] and R[2] are coprime integers (this follows
from 3) and 4)).

Under the assumption an 6= 0, bk 6= 0 the resultant R[1] (the resultant R[2]) is
equal to zero if and only if the polynomials P1 and P2 have common root. One can
show that the variety of pairs of polynomials P1 and P2 having a common root is an
irreducible quasi projective variety X (a simple proof of a multidimensional version
of this statement can be found in [GKZ]). Let D be an irreducible polynomial equal
to zero on X. According to the previous statement R[1] and R[2] are equal to the
same power of D, multiplied by some coefficients.

The Sylvester resultants can be generalized for Laurent polynomials. Consider
two Laurent polynomials

f1 = akz
k + · · ·+ anz

n, f2 = blz
l + · · ·+ bmz

m, (2.1)

on C∗ whose Newton polyhedra belong to the segments ∆1, ∆2 defined by inequal-
ities k 6 x 6 n, l 6 x 6 m. With f1, f2 let us associate the pair of polynomials
P1, P2, where

P1 = z−kf1 = ak + · · ·+ anz
n−k, P2 = z−lf2 = bl + · · ·+ bmz

m−l. (2.2)

For ∆ = (∆1, ∆2) we define resultants R
[1]
∆ , R

[2]
∆ as follows:

R
[1]
∆ (f1, f2) = (−1)n(m−l)R[1](P1, P2), R

[2]
∆ (f1, f2) = (−1)l(n−k)R[2](P1, P2).

The definitions of ∆-resultants R
[1]
∆ and R

[2]
∆ are made in such a way that they

coincide with the product resultants, which are defined in the next section (see
Theorem 3).

3. Product Formula in Dimension One

For Laurent polynomials f1, f2 as in (2.1), let Π
[1]
∆ =

∏
yj∈Y f

myj

1 (yj) and Π
[2]
∆ =∏

xi∈X f
mxi
2 (xi), where X = {xi} and Y = {yj} are the sets of non-zero roots of

f1 and f2 and myj , mxi
are their multiplicities.

Theorem 1. If akanblbm 6= 0 then the following identity holds:

b−kl bnmΠ
[1]
∆ = (−1)kl+nma−lk a

m
n Π

[2]
∆ . (3.1)

Let us recall an elementary proof of this classical theorem.

Proof. We have f1(z) = an(z − x1)mx1 · · · · · (z − xs)mxs zk, so

Π
[1]
∆ =

∏
yj∈Y

[
any

k
j

∏
xi∈X

(yj − xi)mxi

]myj

= am−ln

[
(−1)m−l(bl/bm)

]k
Π

[1,2]
∆ ,
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where Π
[1,2]
∆ =

∏
xi∈X,yj∈Y (yj − xi)mxi

myj . Here we used the Vieta relation∏
yj∈Y

y
myj

j = (−1)m−lbl/bm.

Thus we proved the identity b−kl bnmΠ
[1]
∆ = am−ln bn−km Π

[1,2]
∆ (−1)mk−lk.

In a similar way

a−lk a
m
n Π

[2]
∆ = am−ln bn−km Π

[2,1]
∆ (−1)nl−kl,

where Π
[2,1]
∆ =

∏
xi∈X,yj∈Y (xi − yj)

mxi
myj . But Π

[1,2]
∆ = Π

[2,1]
∆ (−1)(m−l)(n−k).

Theorem 1 is proved. �

For Laurent polynomials f1, f2 as in (2.1) let us define their product resultants

R
[1]
Π,∆(f1, f2) and R

[2]
Π,∆(f1, f2) by the formulas

R
[1]
Π,∆ = b−kl bnmΠ

[1]
∆ , R

[2]
Π,∆ = a−lk a

m
n Π

[2]
∆ . (3.2)

Theorem 2. (1) The product resultants are polynomials in the coefficients of f1

and f2 (the expressions in (3.2) themselves could have removable singularities at
the hyperplanes where the extreme coefficients vanish);

(2) If the extreme coefficients are nonzero, i.e., akanblbm 6= 0, the product resul-
tants equal to zero exactly on the pairs of Laurent polynomials having common root
in C∗;

(3) The product resultants have degrees (m− l) and (n− k) in the coefficients of
f1 and f2 correspondingly ;

(4) The coefficient of the monomial am−lk bn−km in R
[1]
Π,∆ and R

[2]
Π,∆ is equal to

(−1)k(m−l) and (−1)l(n−k) respectively.

Proof. The expression b−kl bnmΠ
[1]
∆ obviously is a polynomial of degree m− l in coef-

ficients of f1 and the expression a−lk a
m
n Π

[1]
∆ is obviously a polynomial in coefficients

of f2 of degree n − k. Since two expressions are equal up to sign we have proved
(1) and (3).

It is clear that R
[1]
Π,∆ vanishes if and only if f1(z) = 0 for some root z of f2, so z

is a common root. The same is true for R
[2]
Π,∆.

For part (4) let us note that the values of the monomial am−lk bn−km in b−kl bnmΠ
[1]
∆

come from multiplying the term akz
k over roots of f2. Using the Vieta formula we

have: b−kl bnm
∏
akz

k = (−1)k(m−l)am−lk bn−km . �

Theorem 3. Assume that k = l = 0. Then the product resultants coincide with
the Sylvester resultants:

R
[1]
∆ = R

[1]
Π,∆ = (−1)kl+nmR

[2]
Π,∆ = (−1)kl+nmR

[2]
∆ .

Proof. Both functions R
[1]
∆ and R

[1]
Π,∆ are polynomials in the coefficients of f1, f2

of the same degree. They both vanish on the set of pairs of polynomials having
a common root in C∗. Since the set of pairs of polynomials having a common

root is irreducible the polynomials R
[1]
∆ and R

[1]
Π,∆ are proportional. They have the
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same coefficient in front of the monomial am−lk bn−km , so they are equal. A similar

argument works for R
[2]
∆ and R

[2]
Π,∆. �

Keeping in mind multidimensional generalizations, in Section 4 we will present
another topological proof of Theorem 1 and in Section 5 we will present an algorithm
for computing the product resultant that does not rely on the Sylvester determinant.

4. Weil Reciprocity Law

4.1. Weil symbol and Weil law. Let f and g be two meromorphic functions
on a compact Riemann surface S. About each point p ∈ S one can choose a
local parameter u such that u(p) = 0 and consider the Laurent expansions f =
c1u

k1 + . . . , g = c2u
k2 + . . . of f and g, with dots are standing for higher order

terms. One can check that the expression

{f, g}p = (−1)k1k2c−k2
1 ck1

2

is independent of the choice of u. The number {f, g}p is called the Weil symbol of
f and g at the point p.

Example 1. If p is a zero of g of multiplicity mp and f(p) 6= 0, ∞, then {f, g}p =
f−mp(p). If p is a zero of f of multiplicity mp and g(p) 6= 0, ∞, then {f, g}p =
g(p)mp .

Example 2. Consider f1, f2 from (2.1) as the functions on CP 1. The main terms
of Laurent expansions of f1, f2 at 0 are akz

k, blz
l respectively, so {f1, f2}0 =

(−1)kla−lk b
k
l .

Let w = 1/z be the local parameter on CP 1 at ∞. Then the main terms of
Laurent expansions of f1, f2 at∞ are anw

−n, bmw
−m respectively, so {f1, f2}∞ =

(−1)nmamn b
−n
m .

Let D ⊂ S be a finite set containing all points where f or g is equal to 0 or to∞
(we assume that each function f ,g is not identically equal to zero at each connected
component of S).

Theorem 4 (Weil reciprocity law). For any couple of meromorphic functions f
and g the following relation holds:∏

p∈D
{f, g}p = 1. (4.1)

A compact Riemann surface S equipped with its field of meromorphic functions
can be considered as an algebraic curve equipped with its field of rational functions.
Under such consideration Theorem 4 becomes purely algebraic.

Corollary 1. Consider f1, f2 from (2.1) as the functions on CP 1. Let X, Y be sets
of non-zero roots of f1, f2. Assume that X ∩Y = ∅ and roots xi ∈ X, yj ∈ Y have
multiplicities mxi , myj . Then according to the Weil reciprocity law and examples
1 and 2

b−kl bnm
∏
yj∈Y

f
myj

1 (yj) = (−1)kl+nma−lk a
m
n

∏
xi∈X

f
mxi
2 (xi).
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Thus Theorem 1 could be considered as a corollary of the Weil reciprocity law.
On the other hand Theorem 1 provides an elementary proof of the Weil reciprocity
law in the case under consideration. In the general case the Weil reciprocity law
also can be reduced using Newton polygons to similar elementary arguments [Kh1].

4.2. Topological extension of the Weil reciprocity law. Let S be a Rie-
mann surface (not necessary compact) and let D ⊂ S be a discrete subset. The
Leray coboundary operator δ associates to every point p ∈ D an element δ(p) ∈
H1(S \D, Z) represented by a small circle centered at p with the counterclockwise
orientation. Let M be the multiplicative group of meromorphic functions on S
which are regular and nonzero on S \D.

Theorem 5. To each couple f, g ∈M one can associate a map

{f, g} : H1(S \D, Z)→ C∗

such that the following properties hold :

(1) for each p ∈ D the image {f, g}(δ(p)) of the cycle δ(p) under the map {f, g}
is equal to the Weil symbol {f, g}p;

(2) {f, g} = {g, f}−1;
(3) for any triple f, g, φ ∈M the identity {f, gφ} = {f, g}{f, φ} holds.

A simple proof of Theorem 5 can be found in [Kh3]. If the surface S is compact
then the following relation between the cycles δ(p) holds:

Lemma 1. The element
∑
p∈D δ(p) ∈ H1(S \D, Z) is equal to zero.

Proof. Indeed the cycle −
∑
p∈D δ(p) is the boundary of S \

⋃
p∈D Bp, where Bp is

the open ball centered in p with the boundary δ(p). �

The Weil reciprocity law follows from Theorem 5 and Lemma 1:
∏
p∈D{f, g}p=1

because in H1(S \D) the identity
∑
p∈D δ(p) = 0 holds.

Let us reformulate Lemma 1 in the case related to the torus C∗ = CP 1 \{0, ∞}.
We will work with S = CP 1 and D = {0, ∞}∪D′, where D′ is a finite set containing
the sets X, Y of non-zero roots of the functions f1, f2 from (2.1), i.e., containing
non-zero roots of P = f1f2. Let ∆ be the Newton polyhedron of P . Then ∆ is
the segment with vertices A0 = k + l and A∞ = n+m. Let T 1 ⊂ C∗ be the circle
|z| = 1 orientated by the form d(arg z). Let T 1

A0
, T 1

A∞
be the cycles in C∗ \D′ given

by 1
λT

1, λT 1, where |λ| is big enough. Let kA0
= 1 and kA∞ = −1.

Theorem 6 (one dimensional topological theorem). In the notations above the
identity

∑
p∈D′ δ(p) = −(kA0

T 1
A0

+ kA∞T
1
A∞

) holds.

Proof. Theorem 6 immediately follows from Lemma 1 because T 1
A0

= δ(0) and

T 1
A∞

= −δ(∞). �

The identity
∏
p∈D{f1, f2}−1

p = {f1, f2}0{f1, f2}∞ follows from Theorems 5

and 6. It can be rewritten as Π
[1]
∆ /Π

[2]
∆ = (−1)−kl+nma−lk b

k
l a
m
n b
−n
m . Thus we ob-

tained a topological proof of Theorem 1.
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5. Sums over Roots of Laurent Polynomial
and Elimination Theory

5.1. Sums over roots of Laurent polynomial. Let z ∈ C∗ be a root of multi-
plicity µ(z) of the Laurent polynomial P . Then for any Laurent polynomial f the
following theorem holds.

Theorem 7. The sum
∑
f(z)µ(z) over all roots z ∈ C∗ of P is equal to −(res0 ω+

res∞ ω), where ω = f dPP = ∂P
∂z ·

fz
P ·

dz
z .

Proof. Theorem 7 follows from the Cauchy residue formula since the residue of the
form ω at a root z is equal to f(z)µ(z). �

Theorem 7 provides an explicit formula for the sum
∑
f(z)µ(z): in contrast to

the roots of P , the points 0, ∞ are independent of the coefficients of P and therefore
the residues of ω at 0 and ∞ could be explicitly computed.

5.2. Elimination theory related to the one-dimensional case. Let P and
f be Laurent polynomials as above. Here we explain how to find any symmetric
function of the set of values {f(z)} over all roots z ∈ C∗ (each root z is taken with
multiplicity µ(z)).

Denote by f (k) the number f (k) =
∑
z f

k(z)µ(z). By Theorem 7 one can calculate

f (k) for any k explicitly. The power sum symmetric polynomials form a generating
set for the ring of symmetric polynomials.

Corollary 2. One can find explicitly all symmetric functions of {f(z)}, construct
a monic polynomial whose roots are {f(z)}, and eliminate z from the definition of

the set {f(z)}. In particular, one can compute the products Π
[1]
∆ , Π

[2]
∆ defined in

Section 3.

6. Developed Systems and Combinatorial Coefficients

Let ∆ = (∆1, . . . , ∆n) be an n-tuple of convex polyhedra in Rn, and let
∑

∆i =
∆1 + · · · + ∆n be their Minkowski sum. Each face Γ of the polyhedron

∑
∆i can

be uniquely represented as a sum Γ = Γ1 + · · ·+ Γn, where Γi is a face of ∆i.
An n-tuple ∆ is called developed if for each face Γ of the polyhedron

∑
∆i, at

least one of the terms Γi in its decomposition is a vertex.
The system of equations f1 = . . . = fn = 0 on (C∗)n, where f1, . . . , fn are Lau-

rent polynomials, is called developed if the n-tuple (∆1, . . . , ∆n) of their Newton
polyhedra is developed.

For a developed n-tuple of polyhedra ∆, a map h : ∂
∑

∆i → ∂Rn+ of the bound-
ary ∂

∑
∆i of

∑
∆i into the boundary of the positive octant is called characteristic

if the component hi of the map h = (h1, . . . , hn) vanishes precisely on the faces Γ
for which the i-th term Γi in the decomposition is a point (a vertex of the poly-
hedron ∆i). One can show that the space of characteristic maps is nonempty and
connected. The preimage of the origin under a characteristic map is precisely the
set of all vertices of the polyhedron

∑
∆i.



THE RESULTANT OF DEVELOPED SYSTEMS OF LAURENT POLYNOMIALS 725

Figure 1. Combinatorial coefficient in dimension 2

The combinatorial coefficient kA of a vertex A of
∑

∆i is the local degree of the
germ

h : (∂
∑

∆i, A)→ (∂Rn+, 0)

of a characteristic map restricted to the boundary ∂
∑

∆i of
∑

∆i. The combina-
torial coefficient is independent of a choice of a characteristic map, but it depends
on the choice of the orientation of

∑
∆i and Rn+. The first one is given by the

orientation of the space of characters on (C∗)n. The second is defined by an order-
ing of the polyhedra ∆1, . . . , ∆n in n-tuple ∆. Both orientations are an arbitrary
choice, and after changing each of them the combinatorial coefficient will change
sign. For more detailed discussion of combinatorial coefficients see [GKh1], [Sop],
[Kh1].

Let us discuss combinatorial coefficients in the two-dimensional case. Two poly-
gons ∆1, ∆2 ⊂ R2 are developed if and only if they do not have parallel sides with
the same direction of the outer normals (see figure 1). If ∆1, ∆2 are developed each
side of ∆1 + ∆2 comes either from ∆1 or from ∆2. That is, each side of ∆1 + ∆2

is either the sum of a side of ∆1 and a vertex of ∆2, or the sum of a vertex of ∆1

and a side of ∆2.
The two types of sides are labeled by 2 (dashed in the picture) and 1 (solid in the

picture) respectively. Giving R2 and the positive octant the standard orientations
we can find the local degree of a characteristic map at a vertex. It is equal to 0 if
neighbouring edges have the same label, to +1 if the label at A is changing from 2
to 1 in the counter clockwise direction, and to −1 if it is changing from 1 to 2.

So the combinatorial coefficient kA of a vertex A ∈ ∆ is equal to 0 if neigh-
bouring edges have the same label, and +1 or −1 (depending on the orientation) if
the labeling changes at A. The only possible value of combinatorial coefficient in
dimension 2 is −1, 0 or +1 because the local mapping degree of one dimensional
manifolds could take only these values. The combinatorial coefficient in dimension
> 3 could be any integer number.
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7. Topological Theorem

7.1. Grothendieck cycle. Let z be an isolated root of a system f1 = . . . = fn = 0
on (C∗)n, where f1, . . . , fn are Laurent polynomials. The Grothendieck cycle γz
is a class in the group of n-dimensional homologies of the complement (U \ Γ)
of a small neighborhood U of the point z, of the hyperplane Γ defined by the
equation P = f1 . . . fn = 0. For almost all small enough ε = (ε1, . . . εn) ∈ Rn+, the
subset γz,ε defined by |fi| = εi is a smooth compact real submanifold of (U \ Γ).
The Grothendieck cycle γz is the cycle of the submanifold γz,ε for small enough ε
oriented by the form d(arg f1)∧ . . .∧d(arg fn). The orientation of the Grothendieck
cycle depends on the order of the equations f1 = 0, . . . , fn = 0.

7.2. The cycle related to a vertex of the Newton polyhedron. Let Γ ⊂
(C∗)n be a hypersurface P = 0, where P is a Laurent polynomial with Newton
polyhedron ∆(P ). Let Tn ⊂ (C∗)n be the torus |z1| = . . . = |zn| = 1 orientated by
ω = d(arg z) ∧ . . . ∧ d(arg(zn). The sign of ω depends on the order of variables, so
the sign of a cycle Tn depends on the orientation of the space Rn of characters on
(C∗)n.

For every vertex A of ∆(P ) we will assign an n-dimensional cycle TnA in (C∗)n \Γ
defined up to homological equivalence. For this denote by ξA = (ξ1, . . . , ξn) an
integer covector such that the inner product of x ∈

∑
∆1 with ξA attains its

maximum value at A. Consider the 1-parameter subgroup λ(t) = (tξ1 , . . . , tξn) of
(C∗)n. For t with large enough absolute value |t| the translation λ(t)Tn of Tn by
the subgroup λ(t) does not intersect the hypersurface Γ.

Let us define TnA as a cycle λ(t)Tn with |t| large enough. The definition makes
sense because the homology class of λ(t)Tn in (C∗)n \ Γ does not depend on the
choice of ξA and t, provided |t| is large enough.

7.3. Topological theorem for n Laurent polynomials. Let f1, . . . , fn be
Laurent polynomials with developed Newton polyhedra ∆1, . . . , ∆n. Let Γ be a
hypersurface in (C∗)n defined by the equation P = f1 . . . fn = 0. In [GKh],[GKh1]
the following theorem is proved.

Theorem 8. In (C∗)n \Γ the sum of the Grothendieck cycles γz over all roots z of
the system f1 = . . . = fn = 0 is homologous to the cycle (−1)n

∑
kAT

n
A, where the

sum is taken over all vertices A of
∑

∆i and kA is the combinatorial coefficient at
the vertex A.

The signs in the topological theorem depend on the choice of order of variables
z1, . . . , zn and on the choice of order of functions f1, . . . , fn. In the statement these
orders are fixed in an arbitrary way. Changing the order of the variables changes
the sign of cycle at vertices TnA and all of the combinatorial coefficients. Choosing a
different order for the equations will change the signs of all the Grothendieck cycles
γz, and all of the combinatorial coefficients as well.

7.4. Topological theorem for (n + 1) Laurent polynomials. We will say
that the collection of polyhedra ∆1, . . . , ∆n+1 is i-developed if the collection with
∆i removed is developed. In this section we present a version of the topological
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theorem applicable for a collection of n+1 Laurent polynomials which is i-developed
and j-developed for some 1 6 i < j 6 n

Let i, j be indexes such that 1 6 i < j 6 n + 1. We will associate with i, j
the permutation {k1, . . . , kn+1} of {1, . . . , n + 1} defined by the relations k1 = i,
k2 = j, and k3 < · · · < kn+1.

The following lemma is obvious.

Lemma 2. A collection of (n+1) polyhedra ∆1, . . . , ∆n+1 in Rn is i-developed and
j-developed for some i < j if and only if the collection (∆i + ∆j), ∆k3

, . . . , ∆kn+1

is developed.

Let ∆1, . . . , ∆n+1 be an i-developed and j-developed collection of Newton poly-

hedra. Let us denote by ki,jA the combinatorial coefficient of a vertex A ∈
∑

∆i

associated with the the collection ∆i + ∆j , ∆k3
, . . . , ∆kn+1

. Let f1, . . . , fn+1 be
Laurent polynomials with Newton polyhedra ∆1, . . . , ∆n+1 such that the system

f1 = · · · = fn+1 = 0 (7.1)

is not consistent in (C∗)n. Denote by Xi the set of all roots x of the system

f1 = · · · = f̂i = · · · = fn+1 = 0, (7.2)

where the equation fi = 0 is removed. Denote by Xj the set of all roots y of the
system

f1 = · · · = f̂j = · · · = fn+1 = 0, (7.3)

where the equation fj = 0 is removed.

Theorem 9. Assume that the Newton polyhedra ∆1, . . . , ∆n+1 of the Laurent
polynomials f1, . . . , fn+1 are i-developed and j-developed and that the system (7.1)
is not consistent in (C∗)n. Then in the group Hn((C∗)n \ Γ, Z) the identity

(−1)j−2
∑
x∈Xi

γx + (−1)i−1
∑
y∈Xj

γy = (−1)n
∑

ki,jA TnA

holds, where γx and γy are the Grothendieck cycles of the roots x and y of the
systems (7.2), (7.3) and the summation on the right is taken over all vertices A of
∆ = ∆1 + · · ·+ ∆n.

Proof. According to the topological theorem the sum of the Grothendieck cycles γz
over the set Xi,j of all roots z of the system

fifj = fk1
= · · · = fkn+1

= 0

is equal to (−1)nki,jA TA. The set Xi,j is equal to Xi ∪ Xj , where Xi is the set of
roots x of the system fj = fk1 = · · · = fk+1 = 0 and Xj is the set of roots y of
the system fi = fk1 = · · · = fk+1 = 0. If z = x ∈ Xi then the cycle γz is equal to
the cycle (−1)j−2γx for the system (7.2). The sign (−1)j−2 in the identity appears
because of the change of the order equations from fj = fk1

= · · · = fkn+1
= 0 to

f1 = · · · = f̂i = · · · = fn+1 = 0. In a similar way if z = y ∈ Xj then the cycle γz is
equal to the cycle (−1)i−1γy for the system (7.3). �
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8. Parshin Reciprocity Laws

8.1. Analog of the determinant of n + 1 vectors in n-dimesional space
over F2. A determinant of n vectors in n-dimensional space Ln over the field
F2 = Z/2Z is unique non-zero multilinear function on n-tuples of vectors in Ln
which is invariant under the GL(n, F2) action and which has value 0 if the n-tuple
is dependent.

It turns out that there exists unique function on (n+ 1)-tuples of vectors in Ln
having exactly the same properties (see [Kh1], [Kh4]).

Theorem 10. There exists a unique non-zero function D on (n + 1)-tuples of
vectors in Ln satisfying the following properties:

(i) D is GL(n, F2) invariant, i.e., for any A ∈ GL(n, F2) the equality

D(k1, . . . , kn+1) = D(A(k1), . . . , A(kn+1))

holds;
(ii) if the rank of k1, . . . , kn+1 is < n then D(k1, . . . , kn+1) = 0;
(iii) D is multilinear.

Let us present two explicit formulas for D:
I) If the rank of k1, . . . , kn+1 is < n then D(k1, . . . , kn+1) = 0 (see (ii)). If the

rank is n then there is a unique non-zero collection λ1, . . . , λn+1 ∈ F2 such that
λ1k1+· · ·+λn+1kn+1 = 0 and . In this case D(k1, . . . , kn+1) = 1 + λ1 + · · ·+ λn+1.

II) If on the space Ln the coordinates are fixed, thenD(k1, . . . , kn+1)=
∑
j>i ∆ij ,

where ∆ij is the determinant of (n × n) matrix whose first n − 1 columns are co-
ordinates of vectors k1, . . . , kn+1 with vectors ki, kj removed and the last column
is the coordinatewise product of vectors ki and kj .

For a vector v ∈ Zn let ṽ ∈ Fn2 be its mod 2 reduction. For an (n + 1)-tuple of
vectors v1 . . . vn+1 ∈ Zn we define D(v1 . . . vn+1) as D(ṽ1 . . . ṽn+1).

The determinant of a matrix A over R is the volume of the oriented parallelepiped
spanned by the columns of A. It turns out that the function D also computes the
volume of some figure (see [Kh2]). This property of D allows to fit it into the
topological version of Parshin reciprocity laws (see [Kh4] and Section 8.3).

8.2. Parshin symbols of monomials. Consider n + 1 monomials c1z
k1 , . . . ,

cn+1z
kn+1 with nonzero coefficients ci ∈ C∗ in n complex variables z = (z1, . . . , zn),

ki ∈ (Z)n, ki = (ki,1, . . . , ki,n), ciz
ki = ciz

ki,1
1 · · · · · zki,nn . The Parshin Symbol

[c1z
k1 , . . . , cn+1z

kn+1 ] of the sequence c1z
k1 , . . . , cn+1z

kn+1 is equal by definition
to

(−1)D(k1,...,kn+1)c
− det(k2,...,kn+1)
1 . . . c

(−1)n+1 det(k1,...,kn)
n+1

= (−1)D(k1,...,kn+1) exp

−det

 ln c1 k1,1 . . . k1,n+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ln cn+1 kn+1,1 . . . kn+1,n+1

 ,

where D : (Zn)n+1 → Z/2Z is the function defined in the previous section.
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Example 3. The Parshin symbol [c1z
k1 , c2z

k2 ] of functions c1z
k1 , c2z

k2 in one vari-

able z is equal to (−1)k1k2c−k2
1 ck1

1 , thus it is equal to the Weil symbol {c1zk1 , c2z
k2}0

of these functions at the origin z = 0.

By definition, the Parshin symbol is skew-symmetric, so for example,

[c1z
k1 , c2z

k2 , . . . , cn+1z
kn+1 ] = [c2z

k2 , c1z
k1 , . . . , cn+1z

kn+1 ]−1,

and multiplicative, so for example, if c1z
k1 = a1b1z

l1+m1 , then

[c1z
k1 , . . . , cn+1z

kn+1 ] = [a1z
l1 , . . . , cn+1z

ln+1 ][b1z
m1 , . . . , cn+1z

mn+1 ].

8.3. Topological version of Parshin laws. The Parshin reciprocity laws (see
[P], [FP]) are applicable to (n+1) rational functions on an n-dimensional algebraic
variety over an algebraically closed field of any characteristic. They contain several
general relations between the Parshin symbols of these (n+1) functions analogous to
the relation between the Weil symbols of two functions given in the Weil reciprocity
law for an algebraic curve. We will need a topological version of Parshin’s laws over
C in the special situation that the algebraic variety is (C∗)n and the (n+1) functions
are Laurent polynomials f1, . . . , fn+1. Let us state needed facts for that special
situation (for general case see [Kh4]).

Let Γ be a hypersurface in (C∗)n defined by the equation P = f1 . . . fn = 0.
According to the topological version of the Parshin reciprocity laws there is a map
[f1, . . . , fn+1] : Hn((C∗)n \ Γ, Z)→ C∗ having the following properties:

1) The map [f1, . . . , fn] depends skew symmetrically on the components fi, so
for example [f1, f2, . . . , fn+1] = [f2, f1, . . . , fn+1]−1.

2) Let A = A1 + . . .+An+1 be a vertex of ∆1 + · · ·+ ∆n+1, where Ai is a vertex
in ∆i. Let ciz

ki be the monomial with the coefficient ci in fi corresponding to
Ai ∈ ∆i. Then [f1, . . . , fn+1](TnA) = [c1z

k1 , . . . , cn+1z
kn+1 ], where TnA is the cycle

corresponding to the vertex A.

3) Let z be a root of multiplicity µ(z) of the system f1 = . . . = f̂i = · · · =
fn+1 = 0, where the equation fi = 0 has been removed. Let γz be the correspond-
ing Grothendieck cycle. Assume that fi(z) 6= 0. Then [f1, f2, . . . , fn+1](γz) =

fi(z)
(−1)iµ(z).

9. Product over Roots of a System of Equations

Let ∆ = (∆1, . . . , ∆n+1) be (n+ 1) Newton polyhedra in the lattice Zn and let
Ω∆ be the space of (n+1)-tuples of Laurent polynomials (f1, . . . fn+1) such that the

Newton polyhedron of fi is contained in ∆i. We will define a rational function Π
[i]
∆

on the space Ω∆, which we will call the product of fi over the common zeros of fj
for j 6= i. Let U i∆ ⊂ Ω∆ be the Zariski open set defined by the following condition:
(f1, . . . , fn+1) ∈ U i∆ if and only if the set Y i∆ ⊂ (C∗)n of common zeros of fj
for j 6= i is finite and the number of points in Y i∆ (counting with multiplicities) is

equal to n! Vol(∆1, . . . , ∆̂i, . . . , ∆n+1) (the polyhedron ∆i is omitted in this mixed
volume).
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Definition 1. We define the function Π
[i]
∆ on U i∆ as follows. If the set Y i∆ ⊂ (C∗)n

is empty (i.e., if n! Vol(∆1, . . . , ∆̂i, . . . , ∆n+1) = 0) then Π
[i]
∆ ≡ 1. Otherwise

Π
[i]
∆ (f1, . . . , fn+1) =

∏
x∈Y i

∆

fmx
i (x),

where mx is the multiplicity of the common zero x ∈ Y i∆ of the Laurent polynomials
fj for j 6= i.

Lemma 3. The function Π
[i]
∆ is regular on U i∆. It can be extended to a rational

function on Ω∆.

Proof. Let Ũ i∆ ⊂ U i∆ be the Zariski open set in which common zeros of fj with

j 6= i have multiplicity one. The function Π
[i]
∆ is obviously regular on Ũ i∆. By the

removable singularity theorem it is regular in U i∆. By definition Π
[i]
∆ is an algebraic

single-valued function on U i∆. Thus, it is rational function on Ω∆. �

Note that even if (f1, . . . , fn+1) /∈ U i∆ then the product of fi over the common
roots of fj for j 6= i is well defined if the set of common roots is finite. But this

product is not necessarily equal to Π
[i]
∆ (f1, . . . , fn+1).

Assume that the collection ∆ = (∆1, . . . , ∆n+1) is i-developed. Consider the
space Ω∆ of (n + 1)-tuples (f1, . . . , fn+1) of Laurent polynomials whose Newton
polyhedra are contained correspondingly in (∆1, . . . , ∆n+1). Denote by Ωi∆ the
open subset in Ω∆ defined by the condition that the Newton polyhedron of fj is
∆j for j 6= i.

Theorem 11. The function Π
[i]
∆ is regular on Ωi∆. Moreover, there exists a mono-

mial Mi in vertex coefficients of all the fj for j 6= i such that the product MiΠ
[i]
∆ is

a polynomial.

Proof. Since the system f1 = . . . = f̂i = · · · = fn+1 = 0 is developed, the number
of roots counting with multiplicities is constant on Ωi∆ and Ωi∆ ⊂ U i∆. Therefore

the function Π
[i]
∆ is regular on Ωi∆. Thus there exists a monomial Mi in the vertex

coefficients of fj for j 6= i such that the product MiΠ
[i]
∆ is a polynomial on Ω∆. �

In Section 12.4 we will present an algorithm for computing the function Π
[i]
∆ for

i-developed systems.

10. Identity for i- and j- Developed System

Theorem 12. Assume that ∆ = (∆1, . . . , ∆n+1) is i-developed and j-developed
for some i 6= j. Assume also that (f1, . . . , fn+1) ∈ Ω∆ satisfies the assumptions of
Theorem 9. Then

Π
[i]
∆ (f1, . . . , fn+1)(Π

[j]
∆ (f1, . . . , fn+1))−1 =

∏
[f1, . . . , fn+1]

(−1)n+i+jki,jA

A ,

where the product on the right is taken over the vertices A of
∑

∆i.
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Proof. Let us apply the element [f1, . . . , fn+1] ∈ Hn((C∗)n \Γ, C∗) to the identity
from Theorem 9. According to Section 8.3 we have

Π
[i]
∆ (f1, . . . , fn+1)(−1)i(−1)j−2

Π
[j]
∆ (f1, . . . , fn+1))(−1)j(−1)i−1

=
∏

[f1, . . . , fn+1]
(−1)nki,jA

A .

To complete the proof it is enough to raise each side of this identity to the power
(−1)i+j . �

Theorem 12 contains the formula from [Kh1] for the product in (C∗)n of all the
roots of a developed system of n equations. To find such a product it is enough
to compute the product over all roots of any monomial zm: taking the coordinate
functions z1, . . . , zn as such monomials one obtains all coordinates of the product of
all roots. Assume that ∆ = (∆1, . . . , ∆n+1) is, say, 1-developed and that ∆1 = {m}
is a single point. Consider an (n + 1) tuple of Laurent polynomials f1, . . . , fn+1

with Newton polyhedra ∆1, . . . , ∆n+1.
Then: 1) f1 is the monomial zm with a nonzero coefficient c, i.e., f1 = czm; 2) ∆

is j-developed for any 1 < j 6 (n + 1) because the collection ∆ with ∆j skipped
contains the point ∆1.

Let us apply Theorem 12 to the case under consideration with i = 1, j = 2.

We have: a) Π
[2]
∆ = 1 because the system cxm = f3 = · · · = fn+1 = 0 has no

roots in (C∗)n; b) Π
[1]
∆ is equal to the product of czm over all roots of the system

f2 = · · · = fn+1 = 0, i.e., is equal to cn! Vol(∆2,...,∆n+1) multiplied by the product of
zm over all roots of the system.

Corollary 3. With the assumptions of Theorem 12 for i = 1, j = 2 and f1 = czm

the product of zm over the roots of the system f2 = · · · = fn+1 = 0 multiplied by

cn! Vol(∆2,...,∆n+1) is equal to
∏

[f1, . . . , fn+1]
(−1)n+1k1,2

A

A .

Corollary 4. If ∆ = (∆1, . . . , ∆n+1) is i-developed and j-developed then on Ω∆

the relation

Π
[i]
∆/Π

[j]
∆ = Mi,jsi,j (10.1)

holds, where Mi,j is an explicit monomial in the vertex coefficients of all fk and

si,j =
∏
A(−1)D(A1,...,An+1)ki,jA , where A1, . . . , An+1 are vertices of ∆1, . . . , ∆n+1

such that A1 + · · ·+An+1 = A.

Proof. By definition [f1, . . . , fn+1]A is an explicit monomial in coefficients of f1, . . . ,
fn+1 corresponding to the vertices A1, . . . , An+1 multiplied by (−1)D(A1,...,An+1).

�

11. Identities for a Completely Developed System

Definition 2. A collection ∆ = (∆1, . . . , ∆n+1) of polyhedra is called completely
developed if it is i-developed for all 1 6 i 6 n+ 1.
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Theorem 13. For a completely developed ∆ there is a (n+1)-tuple (M1, . . . ,Mn+1),
where Mk is a monomial depending on the vertex coefficients of (f1, . . . , fn+1) ∈
Ω∆ with fk removed and an (n+ 1)-tuple (s1, . . . , sn+1), where si = ±1, such that

Π
[1]
∆ M1s1 = . . . = Π

[n+1]
∆ Mn+1sn+1. (11.1)

The (n+ 1)-tuple (M1, . . . , Mn+1) of monomials is unique and the (n+ 1)-tuple of
signs (s1, . . . , sn+1) is unique up to simultaneous multiplication by −1. Moreover
the relation sisj = si,j holds.

Proof. To prove existence we will use the identities (10.1) for j > i = 1. Let us

represent each monomial M1,j as a product
∏

16k6n+1m
(k)
1,j , where m

(k)
1,j is a mono-

mial depending on the vertex coefficients of fk only. Denote m =
∏
j 6=1m

(j)
1,j and

divide each identity (10.1) for j > i = 1 by m. We obtain a needed representation
with (M1, . . . , Mn+1) = (m−1, M1,2m

−1, . . . , M1,n+1m
−1), and (s1, . . . , sk+1) =

(1, s1,2, . . . , s1,n+1).
To show uniqueness assume that (M ′1, . . . , M

′
n+1) and (s′1, . . . , s

′
n+1) are another

pair of (n+ 1)-tuples of monomials and signs such that

Π
[1]
∆ M ′1s

′
1 = . . . = Π

[n+1]
∆ M ′n+1s

′
n+1.

For any i the ratio Mi/M
′
i is a monomial which does not depend on coefficients of

fi . But since M1s1/M
′
1s
′
1 = . . . = Mn+1sn+1/M

′
n+1s

′
n+1, the ratio Mi/M

′
i is equal

to 1 and collections of signs are proportional. The relation sisj = si,j follows from
(10.1). �

Remark 1. Let G = (Z/2Z)n+1/D be the factor group of (Z/2Z)n+1 by the diag-
onal subgroup D = {(1, . . . , 1), (−1, . . . , −1)}. Assigning to a collection of com-
pletely developed polyhedra ∆1, . . . , ∆n+1 the collection of signs (s1, . . . , sn+1)
defined up to simultaneous multiplication by −1 gives a map to G. This map is
a coordinatewise homomorphism with respect to Minkowski sum, for example the
relation

φ(∆1 + ∆′1, , . . . , ∆n+1) = φ(∆1, . . . , ∆n+1)φ(∆′1, . . . , ∆n+1),

holds for any completely developed collections (∆1, ∆2, . . . , ∆n+1) and (∆′1, ∆2,
. . . , ∆n+1).

The multihomomorphism φ is closely related to the resultants. Take any col-
lection of Laurent polynomials f = (f1, . . . , fn+1) with completely developed col-
lection of Newton polyhedra ∆ = (∆1, . . . , ∆n+1) such that all vertex coefficients
of fi’s are equal to 1. Then the values of the n + 1 product resultants on the

collection f would coincide up to a sign, and so φ(∆) = (R
[1]
Π∆, . . . , R

[n+1]
Π∆ ) up to

multiplication by common factor.
In a contrast to the ∆-resultants, the map φ in general is not translation in-

variant (although, it is invariant under simultaneous translation of ∆i’s) and is not
symmetric.

Theorems 12 and 13 allow to describe the monomials M1, . . . , Mn+1 in terms
of Parshin symbols. Now we will describe these monomials in terms of Newton
polyhedra. Let us introduce some notation.
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For an i-developed collection ∆1, . . . , ∆n+1 denote by ∆̃i the sum ∆1+· · ·+∆̂i+

· · ·+∆n+1, where ∆i is removed. For each facet Γ ⊂ ∆̃i denote by vΓ an irreducible
integral covector such that the inner product with vΓ attains its maximum value on
∆̃i at the facet Γ. With vΓ one associates the value H∆i

(vΓ) of the support function
of ∆i on vΓ, the faces ∆vΓ

j of ∆j at which the inner product with vΓ attains the

maximal value. The facet Γ is essential if among the faces ∆vΓ
j with j 6= i exactly

one face ∆vΓ

j(vΓ) is a vertex. With an essential facet Γ one associates a coefficient

aj(vΓ) of the Laurent polynomial fj(vΓ) at the vertex ∆vΓ

j(vΓ), and the integral mixed

volume V (vΓ) of the collection of polyhedra {∆vΓ
j } in which the polyhedra ∆vΓ

i and

∆vΓ

j(vΓ) are removed.

Let L(Γ) be a linear subspace parallel to the minimal affine subspace contain-
ing Γ. We define the integral volume on L(Γ) as the translation invariant volume
normalized by the following condition: for any v1, . . . , vn−1 the generators of the
lattice L(Γ) ∩ Zn, the volume the parallelepiped with sides v1, . . . , vn−1 is equal
to 1.

Any polyhedron in the collection {∆vΓ
j } in which the polyhedra ∆vΓ

i and ∆vΓ

j(vΓ)

are removed could be translated to L(Γ). By V (vΓ) we mean the integral mixed
volume of these translations (note that V (vΓ) could vanish for some Γ).

Theorem 14. For the monomial Mi the following formula holds

Mi =
∏

a
(n−1)!H∆i

(vΓ)V (vΓ)

j(vΓ) ,

where the product is taken over all essential facets Γ of ∆̃i.

Proof. Let us sketch a proof for M1. In the proof of Theorem 13 we represented M1

in the form M1 =
(∏

j 6=1m
(j)
1,j

)−1
. One can deal with each factor m

(j)
1,j separately.

We will show that m
(2)
1,2 =

∏
Γ a

d(vΓ)
2(vΓ), where a2(vΓ) is the coefficient of f2 at the

vertex ∆vΓ
2 , d(vΓ) = (n−1)!V (vΓ)H∆1

(vΓ), and the product is taken over all facets
Γ of ∆1,2 = ∆3 + · · ·+ ∆n+1.

Let C ⊂ (C∗)n be the curve defined by the system f3 = . . . = fn+1 = 0 (we

assume that this system is generic enough). The normalization C̃ of C has a very ex-
plicit description: it can be obtained as the closure of C in the toric comactification
X of (C∗)n associated with the polyhedron ∆12. In particular, each facet Γ of ∆12

corresponds to a codimension 1 orbit XΓ in X. The equality C̃ \C =
⋃

Γ(C̃ ∩XΓ)

holds. Moreover the number of points in C̃ ∩ XΓ is equal to (n − 1)!V (vΓ), (see
[Kh] for details).

By (10.1) we have M1,2 = ±Π
[1]
∆ /Π

[2]
∆ . By definition M1,2 = m

(1)
1,2m

(2)
1,2F , where

F =
∏
k>2m

(k)
1,2 is independent of f1, f2. On the other hand Π

[1]
∆ /Π

[2]
∆ is equal to

the product of {f1, f2}−1
p over all zeros p of f1f2 on the curve C. By Weil’s theorem

this product is equal to
∏
q∈(C̃\C){f1, f2}q.

Explicit calculations show that for any g ∈ C̃ ∩XΓ the following identity holds:

{f1, f2}p = a
H∆2

(vΓ)

1(vΓ) a
−H∆1

(vΓ)

2(vΓ) G, where G is independent of f1, f2). The number

of points in C̃ ∩ XF is equal to (n − 1)! Vol(∆v
3, . . . , ∆v

n+1). Putting everything

together we get the needed identity m
(2)
1,2 =

∏
Γ a

d(vΓ)
2(vΓ). �
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Definition 3. For completely developed (n + 1)-tuple ∆ and 1 6 i 6 n + 1 we

define the i-th product resultant R
[i]
Π∆ on Ω∆ as R

[i]
Π∆ = Π

[i]
∆Mi. By (11.1) all the

product resultants R
[i]
Π∆ are equal up to sign.

Theorem 15. Let ∆ = (∆1, . . . , ∆n+1) be a completely developed collection.
Then:

(1) Each product resultant R
[i]
Π∆ is a polynomial on Ω∆. The degree of R

[i]
Π∆ in

the coefficients of fj is equal to the number of roots of the generic system f1 =

. . . = fn+1 = 0 with fj skipped (i.e is equal to n! Vol(∆1, . . . , ∆̂j , . . . , ∆n+1)).

(2) The function R
[i]
Π∆ is equal to zero at (f1, . . . , fn+1) ∈ Ω

[i]
∆ if and only if the

system f1 = . . . = fn+1 = 0 has a root in (C∗)n.

Proof. The expression MiΠ
[i]
∆ = R

[i]
Π∆ is obviously a polynomial of degree n! Vol(∆1,

. . . , ∆̂j , . . . , ∆n+1) in the coefficients of fi. Since all product resultants are equal
up to sign we have proven (1).

Statement (2) is obvious from the definitions. �

Let m ∈ ∆i ∩ Zn. Denote by c the coefficient in front of zm in the Laurent
polynomial fi with Newton polyhedron ∆i.

Theorem 16. In the notations from Theorem 15, the degree of R
[j]
Π∆ in a specific

coefficient c of fi is equal to n! Vol(∆1, . . . , ∆̂i, . . . , ∆n+1). Each polynomial R
[j]
Π∆

contains exactly one monomial of the highest degree in c and the coefficient in front
of this monomial is ±1.

Proof. Without loss of generality we can assume that i = 1. Since all product

resultants are equal up to sign it is enough to prove the statement for R
[1]
Π∆ =

M1Π
[1]
∆ . The monomial M1 is independent of the coefficients of f1 and monomial

of the highest degree in c comes from multiplying the monomial czm over roots of
f2 = · · · = fn+1 = 0. Now the theorem follows from Corollary 3. �

12. Sums of Grothendieck Residues
over Roots of Developed System

In this section we discuss a formula from [GKh], [GKh1] for the sum of Groth-
endieck residues over the roots of a developed system. As a corollary we provide
an algorithm for computing the product of values of a Laurent polynomial over the
roots of a developed system.

12.1. Grothendieck residue. Consider the system f1 = . . . = fn = 0 in (C∗)n
and the hypersurface Γ defined by f1 · . . . · fn = 0. Let ω be a holomorphic n-form
on (C∗)n \ Γ.

Definition 4. The Grothendieck residue of ω at the root z of the system f1 =
. . . = fn = 0 is defined as the number 1

(2πi)n

∫
γz
ω, where γz is the Grothendieck

cycle at z.

As ω is automatically closed, the Grothendieck residue at the root z is well
defined.
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12.2. The residue of the form at a vertex of a polyhedron. For each vertex
A of the Newton Polyhedron ∆(P ) of a Laurent polynomial P , we will construct
the Laurent series of the function f/P , for any Laurent polynomial f .

Let qA 6= 0 be the coefficient of the monomial in P which corresponds to the
vertex A of ∆(P ). The constant term of the Laurent polynomial P̃ = P/(qAz

a)

equals one. We will define the Laurent series of 1/P̃ by the formula:

1/P̃ = 1 + (1− P̃ ) + (1− P̃ )2 + . . . .

Since each monomial zb appears only in finitely many summands (1 − P̃ )k, the
above sum is well defined. The Laurent series of the rational function f/P at the

vertex A of ∆(P ) is the product of the series 1/P̃ and the Laurent polynomial
qAz

af .
Consider the n-form ωf = fdz1 ∧ . . . ∧ dzn/Pz1 · . . . · zn.

Definition 5. The Grothendieck residue resA ω of ω = ωf at the vertex A of ∆(P )
is defined as the number 1

(2πi)n

∫
TA
ωf , where TA is the cycle assigned to a vertex

A (see Sec. 7.2).

Lemma 4. The residue resA ωf is equal to the coefficient in from of the monomial
(z1 · . . . · zn)−1 in Laurent series of f/P at the vertex A.

We will not prove this simple lemma. See [GKh1] for the details.

12.3. Summation formula. Consider the developed system of equations f1 =
. . . = fn = 0 in (C∗)n with Newton polyhedra ∆1, . . . , ∆n. Denote by P the
product f1 · . . . · fn.

Theorem 17. For any Laurent polynomial f the sum of the Grothendieck residues
of the form ωf = f dz1 ∧ . . . ∧ dzn/Pz1 · . . . · zn over all the roots of the system is
equal to (−1)n

∑
kA resA ωf , where the summation is taken over all vertices A of

∆1 + . . .+ ∆n.

Proof. Theorem 17 follows from Theorem 8 and the results of Sections 12.1, 12.2.
�

Corollary 5. The sum
∑
f(z)µ(z) of the values of any Laurent polynomial f

over all roots z of a developed system, counted with multiplicities µ(z), is equal to
(−1)n

∑
kA resA ωϕ, where ϕ = f detM and M is (n× n)-matrix with the entries

Mi,j = ∂fi/∂zj.

Proof. The Grothendieck residue of ω = fdf1 ∧ . . . ∧ dfn/f1 · . . . · fn at the root z
is equal to f(z)µ(z). It is easy to see that ω = ωϕ. So Corollary 5 follows from
Theorem 17. �

12.4. Elimination theory. Here we use notations from the previous section. Let
f be a Laurent polynomial. We will explain how to find any symmetric function
of the sequence of the numbers {f(z)} for all roots z of the system (each root z is
taken with multiplicity µ(z))

Denote by f [k] the number f [k] =
∑
z f

k(z)µ(z). By Corollary 5 one can calculate

f [k] for any k explicitly. The power sum symmetric polynomials form a generating
set for the ring of symmetric polynomials.
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Corollary 6. One can find explicitly all symmetric functions of {f(z)} and con-
struct a monic polynomial whose roots are {f(z)}. In particular one can compute

Π
[i]
∆ =

∏
z f(z)µ(z) for any i-developed system.

13. ∆-Resultants

13.1. Definition and some properties of ∆-resultant. Following [GKZ] we
define the ∆-resultant for a collection ∆ = (∆1, . . . , ∆n+1) of (n + 1) Newton
polyhedra in Rn. We also generalize this definition to a collection ∆ in RN with
N > n such that the polyhedron ∆1 + · · ·+ ∆n+1 has dimension 6 n.

For ∆ = (∆1, . . . , ∆n+1) with ∆i ⊂ Rn denote by X∆ ⊂ Ω∆ the quasi-projective
set of points (f1, . . . , fn+1) ∈ Ω∆ such the system f1 = · · · = fn+1 = 0 in (C∗)n
is consistent. The set X∆ is irreducible, an easy proof of this fact can be found in
[GKZ].

Definition 6. The ∆-resultant R∆ is a polynomial on Ω∆ satisfying the following
conditions:

(i) The degree of R∆ in the coefficients of fi is equal to the number of roots
of the generic system f1 = . . . = fn+1 = 0 with fi skipped (i.e., it is equal to

n! Vol(∆1, . . . , ∆̂i, . . . , ∆n+1).) The coefficients of R∆ are coprime integers.
(ii) If the codimension of X∆ in Ω∆ is greater then 1 then R∆ ≡ ±1.
(iii) R∆(f1, . . . , fn+1) = 0 if and only if (f1, . . . , fn+1) belongs to the closure

X∆ of X∆ in Ω∆.

Theorem 18 [GKZ].1 There exists a unique up to sign polynomial R∆ on Ω∆

satisfying the conditions (i)–(iii).

The ∆-resultant obviously has the following properties: 1) it is independent of
the ordering of the polyhedra from the set ∆ = (∆1, . . . , ∆n+1); 2) it is invariant
under translations of the polyhedra from the set ∆; 3) it is invariant under linear
transformations of Rn inducing an automorphism of the lattice Zn ⊂ Rn.

Example 4. Suppose ∆1 = {m} is a one point set, i.e., f1 = czm is a monomial
zm with some coefficient c. Then R∆ = ±cn! Vol(∆2,...,∆n+1).

Assume that ∆ = (∆1, . . . , ∆n+1) with ∆i ⊂ RN satisfying inequality dim(∆1 +
· · · + ∆n+1) 6 n. Choose any linear isomorphism A : RN → RN preserving the
lattice ZN and choose vectors v1, . . . , vn+1 ∈ ZN such that the polyhedra ∆′i =
A(∆i) + vi belong to the n dimensional coordinate subspace Rn ⊂ RN .

Definition 7. The generalized ∆-resultant for ∆ as above is defined as the ∆′-
resultant for ∆′ = (∆′1, . . . , ∆′n+1). The generalized ∆-resultant is well defined,
i.e., is independent of the choice of A and v1, . . . , vn+1.

1In [GKZ] the A-resultant is defined, the connection between A-resultants and ∆-resultants is
described in introduction.

In [GKZ] A-resultant is defined under some assumption on (n + 1)-tuple of supports A. The

general definition of the A-resultant is given in [Est].
The condition (i) on the degrees of resultant could be replaced by the condition that the

resultant is a polynomial which vanishes on X∆ with multiplicity equal to the generic number of

solutions of consistent system (see [DS]).
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13.2. Product resultants and ∆-resultant. In this section we show that for
a completely developed collection ∆ all product resultants are equal up to sign to
the ∆-resultant.

The Sylvester formula represents the ∆-resultants of two polynomials in one
variable as a determinant of one of two explicitly written matrices (see Sec. 2.1).
In [CE] the Sylvester formula was beautifully generalized in the following way.
For the collection of n + 1 Newton polyhedra ∆, Canny and Emiris construct
n + 1 matrices Mi (which coincide with Sylvester’s matrix up to permutation of
rows in dimension 1) such that the ∆-resultant R∆ divides their determinants.
Moreover, R∆ is the greatest common divisor of polynomials det(Mi), thus they
obtain a practical algorithm for computing R∆. The construction in [CE] heavily
uses geometry of Newton polyhedra.

By the extreme monomials of a polynomial P we will mean the monomials cor-
responding to the vertices of the Newton polyhedron of P . In [St] Sturmfelds gen-
eralized the construction in [CE] and using this generalization proved the following
theorem.

Theorem 19. All extreme monomials of the ∆-resultant have coefficient −1 or +1.

Now we are able to prove the following theorem.

Theorem 20. For a completely developed ∆ for any 1 6 i 6 n + 1 the product

resultant R
[i]
Π∆ is equal up to sign to the ∆-resultant R∆.

Proof. Without the loss of generality we can assume that i = 1. Both functions R∆

and R
[1]
Π,∆ are polynomials in the coefficients of f1, . . . , fn+1 of the same degrees and

they both vanish on the set X∆ (see Theorem 15). Since the set X∆ is irreducible

polynomials R∆ and R
[1]
Π,∆ are proportional. According to Corollary 3 for any

chosen coefficient c of f1, in the polynomial R
[1]
Π∆ there is a unique monomial having

the highest degree in c and the coefficient in R
[1]
Π∆ in front of this monomial is ±1.

But according to Theorem 19 the coefficient in R∆ in front of this monomial is also

±1. So R∆ = ±R[1]
Π,∆. �

13.3. The Poisson formula. The inductive Poisson formula for ∆-resultant (see
[PSt], [DS]) and the summation formula (see Section 12.3) allow to provide an algo-
rithm computing the ∆-resultant for 1-developed systems. To state the formula let
us define all terms appearing in it. Let ∆ be (∆1, . . . , ∆n+1) and let (f1, . . . , fn+1)
be a point in Ω∆. The only term in the formula depending on the coefficients of f1

is the term Π
[1]
∆ . To present the other terms we need some notation.

Denote by ∆̃1 the sum ∆2 + · · · + ∆n+1. For each facet Γ of ∆̃1 denote by vΓ

the irreducible integral covector such that the inner product of x ∈ ∆̃1 with vΓ

attains its maximum value on Γ. With vΓ one associates the value H∆1
(vΓ) of the

support function of ∆1 on vΓ, the faces ∆vΓ
j of ∆j on which the inner product of

x ∈ ∆j with vΓ attains its maximal value. By fvΓ
j we denote the sum

∑
cmx

m

over m ∈ ∆vΓ
j ∩ Zn, where cm is the coefficient in front of xm in fj . For each

vΓ the collection of n polyhedra ∆̃vΓ
1 = (∆vΓ

2 , . . . , ∆vΓ
n+1) satisfies the inequality
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dim(∆vΓ
2 + · · · + ∆vΓ

n+1) 6 (n − 1). This is why the generalized ∆̃vΓ
1 resultant

R∆̃
vΓ
1

(fvΓ
2 , . . . , fvΓ

n+1) is defined. Now we are ready to state the Poisson formula.

Theorem 21. The following Poisson formula holds:

R∆(f1, . . . , fn+1) = ±Π
[1]
∆ (f1, . . . , fn+1)

∏
R
H1(vΓ)

∆̃
vΓ
1

(fvΓ
2 , . . . , fvΓ

n+1),

where the product is taken over all facets Γ of ∆̃1.

In a subsequent paper we are going to give an elementary proof of Theorem 21
(in fact, we will generalize the Poisson formula from the toric case to a larger class
of algebraic varieties).

Remark 2. Mixed volume and ∆-resultants have many similar properties. For
example the non-symmetric formula for the mixed volume Vol(∆1, . . . , ∆n) =
1
n

∑
vH1(v) Vol(∆v

2, . . . , ∆v
n) is analogues to the Poisson formula for the ∆-resul-

tants.

For a 1-developed collection ∆ = (∆1, . . . , ∆n+1) of Newton polyhedra the Pois-
son formula becomes much simpler: in this case the resultants R∆̃

vΓ
1

(fvΓ
1 , . . . , fvΓ

n+1)

can be computed explicitly. Below we present such computation.
By definition of ∆ being 1-developed collection, for any facet Γ of ∆̃1 in the

set {∆vΓ
j } with j > 1 at least one polyhedron ∆vΓ

j(vΓ) is a point (if more then

one polyhedron is a point denote by ∆vΓ

j(vΓ) any of them). Denote by Vol(vΓ) the

integral (n− 1) dimensional mixed volume of collection {∆vΓ
j } with j > 1 in which

the polyhedron ∆vΓ

j(vΓ) is skipped. Denote by aj(vΓ) the coefficient of the Laurent

polynomial fj(vΓ) at the vertex ∆vΓ

j(vΓ). In the above notation Example 4 provides

us the formula:

RvΓ

∆̃1
(fvΓ

2 , . . . , fvΓ
n+1) = ±a(n−1)! Vol(vΓ)

j(vΓ) .

Corollary 7. With the notation as above the ∆-resultant of the 1-developed collec-
tion ∆ is given by :

R∆(f1, . . . , fn+1) = ±Π
[1]
∆ (f1, . . . , fn+1)

∏
Γ

a
(n−1)! Vol(vΓ)H1(vΓ)
j(vΓ) .

Corollary 8. Using Corollary 6 one can produce an algorithm for computing the
∆-resultant of a 1-developed collection ∆.

Indeed, the only implicit term in the formula from the Corollary 7 is the term

Π
[1]
∆ . Corollary 6 provides an algorithm for its computation.

13.4. A sign version of Poisson formula. Let ∆ be a developed collection.
According to Theorem 13 with such ∆, an (n+1)-tuple of monomialsM1, . . . , Mn+1

and an (n+1)-tuple of signs are defined. According to the formula from Corollary 7

the Poisson formula in that case can be written as R∆ = ±Π
[1]
∆ M1. By definition ∆

is not only 1-developed, it is i-developed for any i. Thus one can write the formula
from Corollary 7 putting instead of f1 any fi.
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Corollary 9. The following equalities hold :

±Π
[1]
∆ M1 = · · · = ±Π

[n+1]
∆ Mn+1 = ±R∆.

Thus from the theory of ∆-resultants one can prove the product identities from
Theorem 13 up to sign. It is impossible to reconstruct the signs in these identities
using ∆-resultants: the ∆-resultant itself is defined up to sign only. Our Theorem 13
provided the sign version

Π
[1]
∆ M1s1 = · · · = Π

[n+1]
∆ Mn+1sn+1

of Poisson type identities and Theorem 20 provides identities Π
[i]
∆Mi = ±R∆ (which

unavoidably could be up to sign only).
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