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TROPICAL NOETHERITY AND GRÖBNER BASES

YA. KAZARNOVSKĬI AND A. G. KHOVANSKĬI

Abstract. A set that is a Gröbner basis for an ideal with respect to every Gröbner
ordering is called a universal Gröbner basis for that ideal. In the paper, it is proved
that there exists a universal Gröbner basis in which the polynomials have controlled
degrees. The main result is the theorem on the tropical Noetherity of a ring of Laurent
polynomials. This theorem is close to the existence theorem for a universal basis and
is needed for the tropical intersection theory in (C∗)n, which will be presented in a
forthcoming paper.

Introduction

In this paper, we prove that the ring R of Laurent polynomials in n variables over an
arbitrary field k is tropically Noetherian (see below). This commutative algebra theorem
is involved in various descriptions of a specific version of the Chow ring, the so-called ring
of conditions (see below and [1, 2]), for the group (C∗)n; we prepare such descriptions
for publication. The present paper is independent of that material and is comparatively
elementary. It employs neither the intersection theory and toric geometry, nor the theory
of mixed volumes, nor the constructions of tropical geometry required for the description
of the ring of conditions. We believe that this paper is of independent interest.

In the Introduction, we define the notion of tropical Noetherity, outline the content
of the paper, and briefly discuss the ring of conditions for the group (C∗)n.

A Laurent polynomial P =
∑

cmzm ∈ R is a linear combination of monomials zm =
zm1
1 . . . zmn

n , where m = (m1, . . . ,mn) ∈ Zn and cm ∈ k. The support S(P ) of a Laurent
polynomial P is the set of points m ∈ Zn for which cm �= 0. With every linear function
f : Rn → R on the space Rn containing the lattice Zn, we associate the truncation P (f) of
P =

∑
cmzm with respect to the order f . By definition, P (f) =

∑
m∈B cmzm, where B

is the subset of the support S(P ) of P on which the linear function f attains its maximal
value. With every ideal I ⊂ R and every order f , we associate the ideal I(f) generated
by the truncations of all Laurent polynomials in I with respect to the order f (if f ≡ 0,
the ideals I and I(f) coincide).

A finite set {Qj} ⊂ I is called a system of tropical generators of an ideal I if, for every

order f , the ideal I(f) is generated by the Laurent polynomials {Q(f)
j }.

Remark 1. The notion of tropical generators of an ideal is close to that of an H-basis
(see, e.g., [18, 19]). We thank the referee for this remark.

We prove that the ring R is tropically Noetherian: every ideal I of the ring R has
a system of tropical generators. We prove the existence of tropical generators, and also

2010 Mathematics Subject Classification. Primary 16S34.
Key words and phrases. Laurent polynomial, ideal, tropical basis, universal Gröbner basis, Seidenberg
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obtain a fairly explicit description of them. We remark that somewhat weaker similar
results were known earlier (cf. [3, 4]).

Theorem. For each finite set A ⊂ Zn, there exists a finite set Φ(A) ⊂ Zn with the
following property: for every ideal I of the ring R and a system of generators of I with
supports in A, one can choose a system of tropical generators {Qj} with supports S(Qj)
lying in Φ(A).

In a somewhat sharper form, this theorem is stated and proved in §7. The proof
involves the Seidenberg theorem (see §1 and [5, 6]), which refines the Noetherity property
of polynomial rings and the Gröbner bases technique. This machinery is partially based
on simple results on linear spaces with completely ordered bases (see §2). A slightly
bulkier part of this technique is related to the definitions of a Gröbner ordering (see
Subsection 2.4) and a Gröbner basis, and also to Buchberger’s theorem and Buchberger’s
algorithm (see §3).

In Subsection 5.1, we estimate the degrees of the polynomials arising in the application
of the Buchberger algorithm. It is very important that the estimates obtained depend
only on the degrees of the polynomials to which the procedure is applied and do not
depend on a Gröbner ordering. The estimates are based on the description of all possible
linear orderings on finite subsets of the lattice Zn and involve simple considerations from
convex geometry (see §4).

In Subsection 5.2, we estimate the degrees of the polynomials in a Gröbner basis in
terms of the degrees of the generators of the ideal in question. The resulting estimates
do not depend on a Gröbner ordering. They are based on Seidenberg’s theorem and on
the estimates obtained in Subsection 5.1.

In §6, we give a sufficiently explicit (however, practically not implementable) construc-
tion of a universal Gröbner basis of an ideal and estimate the degrees of the polynomials
in this basis in terms of the degrees of the generators of the ideal. This result, which is not
used in this paper, follows directly from the estimates in Subsection 5.2 and demonstrates
the strength of these estimates.

§7 contains the main theorem (on the tropical Noetherity of the ring of Laurent poly-
nomials). This theorem also follows easily from the estimates proved in Subsection 5.2.

In the remaining part of the Introduction, we very briefly discuss the ring of conditions
for the group (C∗)n. The reader can skip this part without detriment to the understand-
ing of the paper (the ring of conditions does not appear in the present paper, but the
study of it was the main motivation for our results).

The following version of the Chow ring is well known for an n-dimensional reductive
group G (see [1, 2]). Two k-dimensional subvarieties X1 and X2 of G are equivalent,
X1 ∼ X2, if #(X1 ∩ g1Y g2) = #(X2 ∩ g1Y g2) for every (n− k)-dimensional subvariety
Y ⊂ G and almost all g1, g2 ∈ G. If X1 ∼ X2 and Y1 ∼ Y2, then the varieties
X1 ∩ g1Y1g2 and X2 ∩ g3Y2g4 are equivalent for almost all g1, g2, g3, g4 ∈ G. Thus,
on the equivalence classes of subvarieties we have a product that, to every two classes,
assigns the intersection of their representatives (put, if necessary, in the general position
by the left-right action of the group). The ring of conditions R(G) of a group G is the
ring of formal linear combinations of equivalence classes with the multiplication described
above and extended by linearity to the linear combinations.

The following description of the ring R((C∗)n) was given in [8]. For each k-dimensional
subvariety X ⊂ (C∗)n, we have a certain k-dimensional tropical fan CX in Rn (a specific
k-dimensional real cycle, which is a linear combination of k-dimensional rational cones)
such that (CX = CY ) ⇔ (X ∼ Y ). A geometric description of all fans of the form CX

and a geometric construction of the tropical fan CX∩Y by two tropical fans CX and CY

are given. Thus, the paper [8] contains a description of the ring of tropical fans CX
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isomorphic to the ring R((C∗)n). Some close results are contained in [3]. Several nice
and strong results in tropical geometry can be found in [9, 10, 11].

We have found a new description of the ring R((C∗)n) in the terms of mixed volumes
of integral polytopes. We completely revised the results of the paper [8] and proved
that the ring defined in terms of mixed volumes is isomorphic to the ring of tropical
fans. These results are being prepared for publication, see [12]. All of them employ the
theorem in commutative algebra to which the present paper is devoted.

§1. Seidenberg’s theorem

In this section, we state Seidenberg’s theorem for a polynomial ring and its counterpart
for the semigroup Zn

≥0.

1.1. Polynomial rings. The ring R = k[z1, . . . , zn] of polynomials in n variables over
an arbitrary field k is Noetherian, i.e., every strictly ascending chain

(1) I1 ⊂ I2 ⊂ · · · ⊂ Ii ⊂ . . .

of ideals in R terminates eventually. Abraham Seidenberg proved the theorem (see [5, 6]),
that can be stated as follows.

Seidenberg’s theorem. Let f be a strictly monotone increasing function defined on the
set of integers. Suppose that, for every i, the ideal Ii in (1) is generated by polynomials
of degree at most f(i). Then the number of ideals in (1) does not exceed a number gn,
which can be calculated explicitly by the function f and the dimension n.

In the initial papers [5, 6], the phrase “gn can be calculated explicitly by the function f
and the dimension n” has a sharper meaning. The remarkable paper [7] by Guillermo
Moreno refines Seidenberg’s theorem. In particular, that paper contains examples show-
ing that, even for the simplest increasing function f(i) = i, the number gn as a function
of n increases tremendously and is not a primitive recursive function of n (see [7]). For
our needs, Seidenberg’s theorem in the form given above is sufficient. For the details, we
refer the reader to the well-written paper [7].

1.2. The semigroup Zn
≥0. With every point m ∈ Zn

≥0, we associate the octant Om

with vertex m defined by Om = Zn
≥0 + m. We recall the following important finiteness

property of the semigroup Zn
≥0 (see, e.g., [13]): the union of an arbitrary set of octants

can be represented as a finite union of octants. A subset J ⊂ Zn
≥0 is called an ideal in

the semigroup Zn
≥0 if m + a ∈ J for all m ∈ J and a ∈ Zn

≥0. The semigroup Zn
≥0 is

Noetherian, i.e., every strictly ascending chain

(2) J1 ⊂ J2 ⊂ · · · ⊂ Ji ⊂ . . .

of its ideals terminates eventually. This fact is equivalent to the finiteness property of
the semigroup Zn

≥0. The following statement is also equivalent to the finiteness property
of the semigroup Zn

≥0: every ideal J ⊂ Zn
≥0 has a finite number of generators, i.e., there

exists a finite set G ⊂ J such that every element of J can be represented in the form m+a
with m ∈ G and a ∈ Zn

≥0. By definition, the degree of a point m = (m1, . . . ,mn) ∈ Zn
≥0

is the number |m| = m1 + · · ·+mn.

Seidenberg’s theorem for Zn
≥0. Let f be a strictly monotone increasing function de-

fined on the set of positive integers. Suppose that the generators of the Ji in (2) have
degrees at most f(i). Then the number of ideals in (2) does not exceed a number gn,
which can be calculated explicitly by the function f and the dimension n.
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With every point m = (m1, . . . ,mn) ∈ Zn
≥0, we associate the monomial zm = zm1

1 ·
. . . ·zmn

n . For every ideal J ⊂ Zn
≥0, we consider the ideal I(J) in R consisting of all linear

combinations of the monomials zm for m ∈ J . For the chain (2), Seidenberg’s theorem
for Zn

≥0 follows from Seidenberg’s theorem applied to the chain of ideals I(J1) ⊂ I(J2) ⊂
· · · ⊂ I(Ji) . . .

Remark 2. Using the Gröbner bases technique, it is easy to prove that Seidenberg’s
theorem is equivalent to its counterpart for the semigroup Zn

≥0. The paper [7] contains
the proof of the claim for this semigroup, and Seidenberg’s theorem is deduced from it.

§2. Linear spaces with ordered bases

A linear space K (in general, infinite-dimensional) over k with a fixed basis {em}
indexed by the elements of a set M equipped with a well-ordering ≺ is called a space
with a well-ordered basis.

2.1. Inversion of operators in a space with an ordered basis. We start with
a simple statement valid for the vector spaces without an additional structure. An
operator A : L → L acting in a (infinite-dimensional) vector space L over k is said to be
generalized nilpotent if, for every vector x ∈ L, there is a number k (depending on x)
such that Akx = 0.

Proposition 1. Let E be the identity operator, and let A be a generalized nilpotent
operator. Then the operator E −A is invertible, i.e., the operator

B = E +A+A2 + . . .

is well defined and (E −A)B = E.

Proof. Indeed, the definition of generalized nilpotency implies that, for every x ∈ L,
there is k such that Akx = 0. Therefore, the vector Bx is well defined and is equal to
(E +A+ · · ·+Ak−1)x. Hence, (E −A)Bx = (E −Ak)x = x. �

Let K be a space with a well-ordered basis {em}. We say that an operator A : K → K
is upper triangular in the basis {em} if, for each index m ∈ M, in the formula A(em) =∑

μpep the coefficient μp is zero if m ≺ p or m = p.

Proposition 2. An upper triangular operator is generalized nilpotent.

The proof is based on Lemma 3 stated below.
We say that a correspondence C assigning a finite (possibly, empty) subset C(m)

of M to m ∈ M is finitely multivalued decreasing map if m � g for all m ∈ M and
g ∈ C(m) ⊂ M. Let C be a finitely multivalued decreasing map. We say that a
sequence m1, . . . ,mk ∈ M is a C-sequence if mi+1 ∈ C(mi) for each i = 1, . . . , k − 1 (if
C(mi) = ∅, then the sequence terminates at the term mi).

Lemma 3. Every C-sequence m1, . . . ,mk with a given first term m1 = m ∈ M has
length k ≤ N(C,m) bounded from above.

Proof. Assume that there exist arbitrarily long C-sequences starting at m = m1. Since
the set C(m1) is finite, there is a point m2 ∈ C(m1) such that there exist arbitrarily long
C-sequences starting at m1,m2. Similarly, there is a point m3 ∈ C(m2) such that there
exist arbitrarily long C-sequences starting at m1,m2,m3. Continuing this process, we
obtain an infinite sequence m1 � m2 � . . . . The existence of such a sequence contradicts
the fact that the set M is well-ordered. The lemma is proved. �
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Proof of Proposition 2. Let A be an upper triangular operator in a basis {em}. With
the operator A, we associate a finitely multivalued decreasing map C defined as follows:
the set C(m) coincides with the set of indices mi for which the coefficients μi in the
expansion Aem =

∑
μiemi

are nonzero (if Aem = 0, then the set C(m) is empty). By
Lemma 3, there is a number N(m,C) such that the length of each C-sequence starting at
m is less than k = N(m,C). It is clear that Akem = 0. Thus, Proposition 2 follows. �

Theorem 4. An operator equal to the sum of the identity operator and an upper trian-
gular operator is invertible.

This follows from Propositions 1 and 2.

2.2. The M-valuation map and direct sum decompositions. Let v =
∑

cm(v)em
be a nonzero vector in a space K with a well-ordered basis {em}. The coefficients cm(v)
are nonzero on a finite set S(v) ⊂ M called the support of the vector v.

Definition 1. The map NM : (K \ {0}) → M that, to any vector v ∈ K \ {0}, assigns
the maximal (with respect to the ordering ≺) point NM(v) ∈ S(v) in the support of v is
called the M-valuation.

We describe a construction that employs the M-valuation and, with every linear space
L ⊂ K, associates a complement L⊥ ⊂ K (i.e., a space such that L ⊕ L⊥ = K). For a
space L ⊂ K, we consider the following sets:

the image NM(L \ {0}) = J of the set L \ {0} under the M-valuation;
the complement M\J = J⊥ to the set J in M.
We define the space L⊥ as the space generated by the vectors em for m ∈ J⊥. The

relation K = L⊕ L⊥ is proved below in Theorem 5.
For each point p ∈ J , we fix a vector gp ∈ L such that NM(gp) = ep, i.e., gp =

ep +
∑

μiemi
, where mi ≺ p. For every index m ∈ M, we define the following vector

fm ∈ K:
if m ∈ J , then fm = gm;
if m ∈ J⊥, then fm = em.

Theorem 5. 1) K = L⊕ L⊥.
2) If x = x1 + x2, where x1 ∈ L, x2 ∈ L⊥, and x1, x2 �= 0, then NM(x) =

max(NM(x1), NM(x2)).
3) The vectors {fm} form a basis of K.
4) The vectors {gp} with p ∈ J form a basis of L.
5) The vectors {em} with m ∈ J⊥ form a basis of L⊥.

Proof. First, we prove statement 2). Since J ∩ J⊥ = ∅, we have NM(x1) �= NM(x2).
Therefore, the element NM(x1 + x2) is equal to the largest of the elements NM(x1) and
NM(x2). We consider the linear operator Φ: K → K defined on the vectors {em} of
the basis by Φ(em) = fm. By the definition of the vectors fm, the operator Φ is equal
to the sum of the identity operator and an operator triangular in the basis {em}. By
Theorem 4, the operator Φ is invertible. This immediately implies all the remaining
statements of Theorem 5. �

Definition 2. Let {gp}, p ∈ J , be the basis of L occurring in item 4) of Theorem 5. We
say that a set {vp = λpgp}, where the λp are arbitrary nonzero elements of the ground
field k, is a Gröbner (M)-basis of the space L.

From item 4) of Theorem 5, it follows that every Gröbner (M)-basis is a basis and
that the dimension of the finite-dimensional space L is equal to the number of points in
the set J .
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How to use the M-valuation to determine whether two embedded subspaces L ⊂ M
of the space K coincide? Theorem 5 enables us to answer this question.

Corollary 6. Let L ⊂ M ⊂ K be a triple of spaces. We have M �= L if and only if there
is a vector v ∈ M \ {0} with support S(v) disjoint from the set J .

Proof. If M �= L, then there is a vector x ∈ M representable in the form x = x1 + x2,
where x1 ∈ L, x2 ∈ L⊥, and x2 �= 0. Since x1 ∈ L ⊂ M , the vector v = x2 = x− x1 lies
in M . The support S(v) of v is disjoint from J . �
2.3. A simplest analog of Buchberger’s algorithm. Let G be a finite set of nonzero
vectors in K. We consider the following two problems. How to find the image J of L\{0}
under the M-valuation, where L ⊂ K is the space generated by the vectors from G? How
to find a Gröbner M-basis in L?

We describe an algorithm that solves these two problems. This algorithm is the
simplest analog of Buchberger’s algorithm, which we need in the sequel.

As a first approximation to the set J , we take the set JG = NM(G). We choose an
arbitrary map F : JG → G such that NM(g) = p for g = F(p). (In general, the relation
NM(g) = p does not determine the vector g uniquely, and there is a freedom in the choice
of F .)

As a first approximation to the (M)-basis in L, we take the set V ⊂ G coinciding
with the range of the map F . By construction, we have NM(V ) = NM(G), and the set
V is a Gröbner M-basis of the space L(JG,F) ⊂ L generated by the vectors in V .

If G ⊂ L(JG,F), then the set J coincides with its first approximation JG, the space
L coincides with L(JG,F), and the set V is a Gröbner (M)-basis in L. In this case, the
two problems are solved.

If the inclusion G ⊂ L(JG,F) is not fulfilled, then there exist vectors gj ∈ G that do
not lie in L(JG,F). We put J ⊥

G = M\JG and consider the space L(J⊥
G ) generated by

the vectors eq, q ∈ J⊥
G . By Theorem 5, every vector gj can be represented in the form

gj = g1j + g2j , where g1j ∈ L(JG,F) and g2j ∈ L(J⊥
G , ). The vectors g2j lie in the space L

because gj and g1j lie in L. We denote by G1 ⊂ L the union of V and the set of all nonzero

vectors g2j . The set G1 generates the space L. To the set G1, we apply the procedure
that was applied to G. As a result, we construct the set JG1

= NM(G1), the map
F1 : JG1

→ G1, the set V1 = F(G1), and the space L(JG1
,F1) generated by the vectors

in V1. The set JG1
is a second approximation to the set J . The set JG1

is strictly larger
than JG because the supports of the nonzero vectors g2j lie in the complement of JG.
The space L(JG1

,F1) ⊂ L is strictly larger than L(JG,F). If G1 ⊂ L(JG1
,F1), then

the two problems are solved.
If the inclusion in question fails, then we again apply our procedure to the set G1, etc.

This process cannot continue infinitely because the sets JGi
⊂ J strictly grow with i

and the set J is finite. As a result, both problems will be solved in a finite number of
steps.

2.4. Gröbner’s ordering, the space L(JG, F ), and truncation of polynomials.
In this section, we define Gröbner’s ordering and use it to define the space L(JG, F ). We
consider truncations of the polynomials belonging to this space with respect to the order
f for a linear function f monotone with respect to the Gröbner ordering.

Definition 3. We say that an ordering ≺ on the lattice Zn is compatible with the group
structure if a+ c ≺ b+ c, whenever a, b, c ∈ Zn and a ≺ b. The restriction of an ordering
on Zn compatible with the group structure to Zn

≥0 is called a Gröbner ordering on Zn
≥0

if the semigroup Zn
≥0 is a well-ordered set with the minimal element 0 with respect to

this ordering.
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The function that maps each monomial zm = zm1
1 · . . . · zmn

n , where z = z1, . . . , zn
and m = (m1, . . . ,mn) ∈ Zn

≥0, to its degree m is an isomorphism of the multiplicative
semigroup of monomials of nonnegative degree to the semigroup Zn

≥0. This function
gives rise to an enumeration of the monomials by the elements of the semigroup Zn

≥0.

The monomials form a basis in the linear space R = k[z1, . . . , zn]. Fixing a Gröbner
ordering on the semigroup Zn

≥0, we turn the space of polynomials into a linear space
with a well-ordered bases to which we can apply the results of Subsections 2.1–2.3.

Definition 4. The M-valuation map from the set of nonzero polynomials R \ {0} to
Zn
≥0 that corresponds to a Gröbner ordering on the semigroup Zn is called the Gröbner

map and is denoted by Gr : R \ {0} → Zn
≥0.

We fix a Gröbner ordering on the semigroup Zn
≥0. We consider a linear subspace

L(JG, F ) (depending on the choice of a map F ) for a finite set G ⊂ k[z1, . . . , zn] \ {0}.
Let JG be the ideal

⋃
m∈A Om of Zn

≥0, where A = Gr(G);

let J⊥
G be the coideal in Zn

≥0 defined by J⊥
G = Zn

≥0 \ JG;
let L(J⊥

G ) be the space of polynomials generated by the monomials zj with j ∈ J⊥
G ;

and let F : JG → G be a map such that p ∈ Om if g = F (p), where m = Gr(g).
Given a Gröbner ordering, a set G, and a map F , we construct the linear space

L(JG, F ) ⊂ R generated by the polynomials gp = zp−mg, where p ∈ JG, g = F (p) ∈ G,
and m = Gr(g).

Definition 5. Let f : Rn → R be a linear function on the space Rn containing Zn. For
each nonzero polynomial P =

∑
amzm, we consider its truncation P (f) with respect to

the order f . By definition, P (f) =
∑

m∈B amzm, where B is the subset of the support
S(P ) of P on which the function f attains its maximum value. We denote the maximum
value of f on S(P ) by degf (P ).

It is obvious that
1) (PQ)(f) = P (f)Q(f);
2) if degf P = degf Q and P (f) +Q(f) �= 0, then (P +Q)(f) = P (f) +Q(f).
We say that a linear function f is monotone with respect to a Gröbner ordering ≺ if

x ≺ y implies f(x) ≤ f(y).

Proposition 7. Let L(JG, F ) be the space constructed by G, F , and a certain Gröbner
ordering, and let f be a function monotone with respect to this ordering. Then, for
every polynomial P ∈ L(JG, F ), its truncation P (f) lies in the ideal generated by the

truncations g
(f)
i of the polynomials gi ∈ G.

Proof. By definition, every polynomial P ∈ L(JG, F ) can be represented in the form

P =
∑

μigiz
ai−mi , where gi = F (ai) and mi = Gr(gi). We denote by S̃(P ) the set of

points ai for which μi �= 0, and we denote by B̃(P ) the subset of S̃(P ) on which the

function f is equal to degf P . For ai ∈ B̃(P ), we have degf giz
ai−mi = degf P . The

polynomial

Q =
∑
ai∈ ˜B

μig
(f)
i zai−mi

is nonzero (it is easily seen that, for a = Gr(P ), the monomial za occurs in the polynomial
Q with a nonzero coefficient). Therefore, P (f) = Q. Proposition 7 is proved. �

§3. A Gröbner basis for an ideal

In this section, we discuss Gröbner bases, Buchberger’s theorem, and Buchberger’s
algorithm.
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3.1. The space L(JG, F ) and an ideal containing the set G. Let R = k[z1, . . . , zn],
and let Gr: R \ {0} → Zn

≥0 be a Gröbner map for a Gröbner ordering on Zn
≥0. The

following statement is obvious.

Proposition 8. For every ideal I ⊂ R, the set J(I) = Gr(I \ {0}) is an ideal in the
semigroup Zn

≥0.

Let G ⊂ I \ {0} be a finite set, let JG be the ideal generated by the elements Gr(g),
g ∈ G, in Zn

≥0, and let L(JG, F ) be the subspace corresponding to a map F : JG → G.

By definition, the space L(JG, F ) is contained in the ideal I.

Question. Does the space L(JG, F ) coincide with the ideal I, or the ideal I is strictly
larger than the space L(JG, F )?

It turns out that the answer to this question depends only on the restriction of the
Gröbner map to the set G (i.e., it depends neither on the restriction of Gr to the set
I \G nor on the choice of a map F ).

Theorem 9. The identity I = L(JG, F ) is valid if and only if the intersection of the
support of each polynomial P ∈ I with the ideal JG is not empty.

Theorem 9 follows from Corollary 6.

Definition 6. A Gröbner basis of an ideal I with respect to a Gröbner ordering is a
finite set G of nonzero polynomials in I such that for the image A = Gr(G) of G under
the Gröbner map we have

⋃
m∈A Om = Gr(I \ {0}).

By Theorem 9, a Gröbner basis for an ideal is a basis of that ideal in the usual sense.

Corollary 10. Let f be a monotone function with respect to a Gröbner ordering, and
let G = {gi} be a Gröbner basis of I with respect to this ordering. Then the truncation

P (f) of every polynomial P ∈ I lies in the ideal generated by the truncations g
(f)
i of the

polynomials gi ∈ G.

Corollary 10 follows from Theorem 9 and Proposition 7.

3.2. Buchberger’s theorem. Is it true that a given finite setG of polynomials contains
a Gröbner basis of the ideal I generated by G? Buchberger’s theorem gives an answer
to this question. This theorem is a part of Buchberger’s algorithm (see Subsection 3.3)
and contains its first step (step 1(G,F )).

For every polynomial gi ∈ G, we denote by mi its image under the Gröbner map.
Multiplying each polynomial gi by an appropriate constant, we may assume that the
coefficient at the leading monomial zmi of gi is equal to 1.

Step 1(G,F ). In the semigroup Zn
≥0, we consider the ideal JG =

⋃
Omi

, wheremi = Gr(gi)
and gi ∈ G. For every pair gi, gj ∈ G, we denote by mi,j the vertex of the octant
Omi

∩ Omj
(obviously, mi,j − mi ∈ Zn

≥0 and mi,j − mj ∈ Zn
≥0) and consider the

polynomial gi,j = zmi,j−migi − zmi,j−mjgj . We fix an arbitrary map F : JG → G for
which a ∈ Om, where m = Gr(F (a)), and consider the related space L(JG, F ).

Theorem 11 (Buchberger). A set G contains a Gröbner basis of I if and only if all
polynomials gi,j lie in L(JG, F ).

Proof. The ideal generated by the polynomials gi consists of all linear combinations of
the polynomials of the form zbgi. It suffices to prove that if all polynomials gi,j lie in
L(JG, F ), then L(JG, F ) contains all polynomials of the form zbgi. We assume that
there exist polynomials zbgi /∈ L(JG, F ) and among them we choose a polynomial for
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which the point a = Gr(zbgi) = b + mi is the smallest with respect to the Gröbner
ordering. The space L(JG, F ) contains a polynomial za−mjgj with gj = F (a). We have
za−migi−za−mjgj = za−mi,jgi,j . Since gi,j ∈ L(JG, F ), we obtain gi,j =

∑
λ(p)zp−mlgl,

where l = F (p). Hence,

zbgi = za−mjgj −
∑

λ(p)zc(p)gl, where c(p) = a−mi,j + p−ml.

The order of a point p in the support of a polynomial gi,j is strictly smaller than the

order of the point mi,j . Therefore, c(p)−ml < a. Consequently, the polynomials zc(p)gl
lie in the space L(JG, F ). Therefore, zbgi ∈ L(JG, F ). Theorem 11 is proved. �

3.3. Buchberger’s algorithm. This algorithm solves the following problem.

Problem. Given a finite set G of polynomials generating an ideal I, construct a finite
set of polynomials containing a Gröbner basis of the ideal.

Buchberger’s theorem allows us to check whether or not the set G contain a Gröbner
basis of the ideal I. If G contains a Gröbner basis of I, then the problem is solved. If not,
then Buchberger’s algorithm allows us to successively construct a chain of finite subsets
G = G0 ⊂ G1 ⊂ . . . of I with the following properties:

1) there is a number i such that Gi+1 = Gi;
2) if Gi+1 = Gi, then the set Gi contains a Gröbner basis of I.
Thus, Buchberger’s algorithm solves the problem mentioned above.
To pass from one finite set of polynomials to the next one, Buchberger’s algorithm

employs a two-step procedure. We describe this procedure (for definiteness, we apply it
to the initial set G).

Step 1(G,F ). This step was described in Subsection 3.2.

Step 2(G,F ). For the space L(JG, F ), we consider the space L(J⊥
G ) and the decomposition

R = L(JG, F ) ⊕ L(J⊥
G ). For every pair of polynomials gi, gj ∈ G, we consider the

polynomial gi,j and find its decomposition gi,j = g1i,j + g2i,j , where g1i,j ∈ L(JG, F ) and

g2i,j ∈ L(J⊥
G ). We consider the set H consisting of all nonzero polynomials g2i,j and put

G1 = G ∪H.
Now, we perform steps 1(G,F ) and 2(G,F ). If the resulting set G1 coincides with G,

then G contains a Gröbner basis, and the algorithm stops. If G �= G1, then we proceed
from G to a larger set G1. The two-step procedure is described.

If G �= G1, then the ideal J1 generated by Gr(G1) in the semigroup Zn
≥0 is strictly

larger than the ideal J , because the supports of the nonzero polynomials g2i,j are disjoint
from J . To the set G1, we apply the same procedure as to G, i.e., we perform steps
1(G1,F1) and 2(G1,F1) and construct a larger set G2. If G2 = G1, then G2 contains a
Gröbner basis, and the algorithm stops. If G1 �= G2, then the ideal J2 generated by the
set Gr(G2) in the semigroup Zn

≥0 is strictly larger than J1. We apply to G2 the same
procedure as to G, etc. Since every strictly increasing chain of ideals in the semigroup
Zn
≥0 eventually terminates, the theorem is proved.

Theorem 12. Buchberger’s algorithm stops after a finite number of steps and gives a
solution to the problem in question.

Remark 3. If two distinct Gröbner orderings give rise to the same Gröbner map of G,
then steps 1(G,F ) and 2(G,F ) for these orderings are also the same. This remark plays a
crucial role in the sequel (see §5) for obtaining estimates of the degrees of the polynomials
arising in Buchberger’s algorithm.
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§4. Orderings on finite subsets of the lattice Zn

For a finite set A ⊂ Zn, we consider the finite set B ⊂ Zn consisting of all points
b = ai − aj with ai, aj ∈ A, ai �= aj . In particular, 0 /∈ B, and if b ∈ B, then −b ∈ B.
On the lattice Zn, we fix an arbitrary ordering � compatible with the group structure.
Let B+ ⊂ B be the set of elements greater than zero (in particular, if b ∈ B+, then
−b /∈ B+).

Lemma 13. The convex hull Δ(B+) of the set B+ does not contain the point 0.

Proof. If 0 ∈ Δ(B+), then 0 is contained in the interior of one of the simplexes with ver-
tices {b0, . . . , bk} ⊂ B+, i.e., there exist λi > 0 such that

∑
λi = 1 and

∑
λibi = 0. The

points b0, . . . , bk have integral coordinates and are affinely independent (i.e., the small-
est affine space containing these points is k-dimensional). Consequently, the numbers
λi are rational and become integral after multiplying by an appropriate positive integer
N . However, the relation

∑
(Nλi)bi = 0 is impossible because bi � 0 and, respectively,

(Nλi)bi � 0 and
∑

(Nλi)bi � 0. This contradiction proves the lemma. �
Let Δc(B+) be the minimal cone having 0 as the vertex and containing the polytope

Δ(B+). Let J = {b1, . . . , bn−1} be an arbitrary sequence of points in B+ containing
n − 1 elements. We denote by fJ the linear function on Rn the value fJ (x) of which
at a point x ∈ Rn is equal to the determinant of the (n × n)-matrix with the columns
{b1, . . . , bn−1, x}.
Lemma 14. If the dimension of the cone Δc(B+) is n, then this cone can be determined
by a system fJi

≥ 0 of lineal inequalities, where Ji is a sequence of elements in B+ of
length n− 1.

Proof. Each (n− 1)-dimensional face Γi of the cone Δc(B+) contain n− 1 linearly inde-
pendent vectors belonging to the set B+. We order these vectors so that, for the resulting
sequence Ji, the function fJi

be nonnegative on the cone Δc(B+). For each face Γi, we
consider the inequality fJi

≥ 0. The system of inequalities obtained determines the
multiface cone Δc(B+). �

The function f : Rn → R is monotone (strictly monotone) on A ⊂ Zn with respect to
an ordering � if, for all a, b ∈ A such that a � b, we have f(a) ≥ f(b) (f(a) > f(b)).
A strictly monotone function gives rise to the same ordering on A as � does, i.e., for
a, b ∈ A, the inequalities f(a) > f(b) and a � b are equivalent.

Example 1. The functions fJi
occurring in Lemma 14 are nonnegative on B+ and,

consequently, they are monotone on A.

Let Rn be the space with coordinates x1, . . . , xn and the standard Euclidean metric.

Corollary 15. If the diameter of A does not exceed ρ, then the cone Δc(B+) is given

by a system of inequalities ai1x1 + · · ·+ ainxn ≥ 0 in which aij ∈ Z and |aji | ≤ ρn−1.

Proof. If Ji = {bi1, . . . , bin−1}, then the coefficient aij of fJi
is equal to the determinant of

the matrix with the columns bi1, . . . , b
i
n−1, ej , where ej is the jth basis vector in Rn. This

determinant is an integer whose absolute value does not exceed the (n− 1)-dimensional
volume Vn−1 of the parallelepiped spanned by the vectors bi1, . . . , b

i
n−1. By assumption,

the lengths of the vectors in B do not exceed ρ. Therefore, Vn−1 ≤ ρn−1. �
Theorem 16. Suppose that A contains the point 0 and all basis vectors ei, and let
the ordering on A be such that ei � 0 for i = 1, . . . , n. If the diameter of A does not
exceed ρ, then there is a strictly monotone linear function on A with coefficients that do
not exceed ρn−1.
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Proof. Corollary 15 implies that the coefficients of each function fJi
are integers with

absolute values not exceeding ρn−1. Since {ei} ∈ B+, the coefficients of all functions fJi

are nonnegative. It suffices to prove that some face Γj of the cone Δc(B+) contains no
basis vectors (all coefficients of the function fJj

corresponding to this face are positive).
The existence of such a face is proved below in Lemma 18. �

Renumbering the vectors {ej}, we may assume that e1 ≺ · · · ≺ en. The following
lemma is valid for each (n− 1)-dimensional face Γi of the cone Δc(B+).

Lemma 17. If ek ∈ Γi and m < k, then em ∈ Γi.

Proof. The function fJi
is zero on Γi, is monotone on A, and is positive on Δc(B+) \Γi.

Therefore, fJi
(em) ≤ fJi

(ek) = 0. Since em ∈ B+, we have fJi
(em) ≥ 0. Hence,

fJi
(em) = 0 and, consequently, em ∈ Γi. �

Lemma 18. There exists an (n − 1)-dimensional face Γj in Δc(B+) that contains no
basis vectors.

Proof. The set G of all faces of the cone Δc(B+) (including the cone itself and its vertex 0)
is partially ordered by inclusion. We define a map Ψ: {ei} → G that takes the basis vector
em to the smallest face Ψ(em) containing em. Each proper face of the cone Δc(B+)
is the intersection of the (n − 1)-faces of Δc(B+). Lemma 17 shows that Ψ(em) ⊂
Ψ(ek) if em ≺ ek. Therefore, the face Ψ(e1) is contained in each face Ψ(ei). The face
Ψ(e1) is not a vertex. If Ψ(e1) = Δc(B+), then there is nothing to prove because each
face contains no basis vectors. Otherwise, for the role of Γj we can take an arbitrary
(n− 1)-dimensional face not containing Ψ(e1). Indeed, if em ∈ Γj , then Ψ(em) ⊂ Γj and
Ψ(e1) ⊂ Ψ(em) ⊂ Γj . �

§5. Estimation of the degrees of polynomials

We say that α : Rn → R is an admissible function whenever α is a linear function,
α(x1, . . . , xn) = α1x1 + · · ·+αnxn, with positive coefficients α1, . . . , αn that are linearly
independent over Q. We say that x is less than y with respect to the α-ordering if
α(x) < α(y). The following statement can easily be verified.

Proposition 19. If α : Rn → R is an admissible function, then the α-ordering is compat-
ible with the group structure on Zn. On the semigroup Zn

≥0, the α-ordering is a Gröbner
ordering.

Proof. Since the function α is linear, we have α(x+ z) < α(y + z) if α(x) < α(y). Since
the coefficients αi are linearly independent over Q, the relation α(x) = α(y) for x, y ∈ Zn

is valid only if x = y. Finally, the α-ordering yields a well-ordering on the semigroup Zn
≥0

with the minimal element 0, because the coefficients αi are positive (for a given point
x ∈ Zn

≥0, there is a finite number of points y ∈ Zn
≥0 for which x � y). �

Below in §7, we shall need the following statement.

Proposition 20. For every nonzero linear function f that is nonnegative on Zn
≥0, there

is a Gröbner ordering on Zn
≥0 with respect to which the function f is monotone.

Proof. We give an example of such an ordering. Fixing an arbitrary admissible func-
tion α, we define the required ordering as follows: if f(x) > f(y), then, by definition,
x � y; if f(x) = f(y), then, by definition, x � y if α(x) > α(y). �
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5.1. The degrees of the polynomials in Buchberger’s algorithm. Let G be a
finite set of polynomials in k[z1, . . . , zn] of degrees at most N . We consider an arbitrary
Gröbner ordering on Zn.

Theorem 21. There exists an admissible function α such that
1) the Gröbner map defined for the given Gröbner ordering and for the α-ordering

coincide on the polynomials belonging to G;

2) the coefficients αi of the function α satisfy the inequalities 1 ≤ αi ≤ Nn−1n
n−1
2 .

Proof. Let A ⊂ Zn
≥0 be the set of points m = (m1, . . . ,mn) defined by the inequalities

mi ≥ 0, |m| = m1 + · · ·+mn ≤ N . The set A contains the point 0, all points e1, . . . , en,
and the supports of all polynomials of degree at most N . The diameter of A is ρ = Nn1/2.
By Theorem 16, there is a linear function l(x) = a1x1 + · · ·+ anxn that determines the
same ordering on A as the given Gröbner basis, and the coefficients ai of which satisfy
1 ≤ ai ≤ Nn−1n(n−1)/2. To construct the required function α, it suffices to slightly
perturb the coefficients of l to obtain a function giving rise to the same ordering on
A and having the coefficients αi linearly independent over Q and satisfying the same
inequalities 1 ≤ αi ≤ ρn−1 = Nn−1n(n−1)/2. Theorem 21 is proved. �

Let G be a set of nonzero polynomials generating the ideal I. Suppose that the degrees
of the polynomials in G do not exceed a certain number N .

Theorem 22. For each Gröbner ordering, the degrees of the polynomials g2i,j that arise
when applying Buchberger’s two-step procedure to the polynomials in G do not exceed

C(N,n) = 2Nnn
n−1
2 .

Proof. For different Gröbner orderings determining the same Gröbner map on G, the two
steps of the procedure coincide. We use the Gröbner α-ordering, where α is the function
as in Theorem 21. Since the degrees of gi and gj do not exceed N , the degree of gi,j
does not exceed 2N . Therefore, α(Gr(gi,j)) ≤ Nn−1n

n−1
2 2N (because the coefficients αi

do not exceed the number Nn−1nn−1/2), i.e., α(Gr(gi,j)) ≤ C(N,n). Since Gr(g2i,j) ≺
Gr(gi,j), we have α(Gr(g2i,j)) ≤ C(N,n). Since the coefficients of the function α are at

least 1, the degree of the polynomial g2i,j does not exceed C(N,n). �
5.2. The degrees of the polynomials in a Gröbner basis.

Theorem 23. Let I be an ideal in k[z1, . . . , zn] generated by polynomials of degree at
most N . Then, for each Gröbner ordering, there is a basis of I in which all polynomials
have degrees at most F1(N). The number F1(N) can be calculated explicitly by the degree
N and the dimension n.

Proof. For each set G of generators of I and each Gröbner ordering, Buchberger’s algo-
rithm allows us to construct a chain of subsets G ⊂ G2 ⊂ · · · ⊂ Gk ⊂ . . . for which the
chain of ideals J ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jk ⊂ . . . in Zn

≥0 generated by the images of Gi under
the Gröbner map strictly increases. We define the function F1 of a natural argument
by the following relations: F1(1) = N and F1(i) = C(F1(i), n) if i > 1, where C is the
function occurring in Theorem 22. By Theorem 22, the ideal Jk is generated by elements
of degree not exceeding F1(k). By Seidenberg’s theorem applied to the semigroup Zn

≥0,
the above chain of ideals terminates at some ideal JM . The elements of GM have degree
at most F1(N). In the set GM , we can choose a Gröbner basis for the ideal J . �

§6. The universal Gröbner basis

This section is not used in what follows. We placed it here to illustrate the results
proved above.
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We say that a finite set G of polynomials in an ideal I contains a universal Gröbner
basis if, for each Gröbner ordering, the set G contains a Gröbner basis with respect to
this ordering. It has long been known (see [14, 15, 16]) that every ideal has a universal
Gröbner basis. A simple proof can be found in [17]. Below, we not only prove the
existence of such a basis but also present quite an explicit construction of it.

Theorem 24. Let I be an ideal in k[z1, . . . , zn] generated by polynomials of degree at
most N . Then there exists a universal Gröbner basis of I in which the degrees of all
polynomials do not exceed F1(N).

Proof. Consider a finite subset T (N) of Zn
≥0 defined by the following condition: m ∈ T (N)

if and only if |m| ≤ F1(N). We construct a finite subset G of I as follows. For every
convex polytope Δ the vertices of which lie in T (N), we choose a polynomial P in I
for which the Newton polytope is Δ. If there are no such polynomials in I, then we
ignore the polytope Δ. We define G as the set of all polynomials obtained in this way.
By construction, the set G has the following property. For every Gröbner ordering and
every polynomial Q ∈ I of degree at most F1(N), there is a polynomial P ∈ G such
that the images of P and Q under the Gröbner map coincide. To conclude the proof, it
remains to use Theorem 23. �

Theorem 24 can be refined. For the refined version of it (Theorem 25), we need some
more definitions.

For a point m = (m1, . . . ,mn) ∈ Zn
≥0, consider the parallelepiped

∏
(m) defined by

the relations

x = (x1, . . . , xn) ∈
∏

(m) ⇔ 0 ≤ x1 ≤ m1, . . . , 0 ≤ xn ≤ mn.

We say that an integral polytope is Zn
≥0-convex if all its vertices lie in Zn

≥0 and, for

each vertex m, this polytope contains the parallelepiped
∏
(m). For a polynomial P ,

we consider the smallest Zn
≥0-convex polytope Δ≥0(P ) containing the support of P and

construct a finite subset G̃ of I as follows. For each Zn
≥0-convex polytope Δ the vertices

of which lie in T (N), we choose a polynomial P in I for which Δ≥0(P ) = Δ. If there are

no such elements in I, then we ignore this Zn
≥0-convex polytope Δ. We define G̃ as the

set of all polynomials obtained in this way.

Theorem 25. The set G̃ of polynomials described above contains a universal Gröbner
basis of I.

Proof. It suffices to repeat nearly verbatim the argument used in the proof of Theo-
rem 24. The crucial fact is that if for polynomials P and Q we have Δ≥0(P ) = Δ≥0(Q),
then the elements Gr(P ) and Gr(Q) coincide for every Gröbner ordering. �

§7. The main theorem

For an integral polytope Δ ⊂ Rn, we define the set M(Δ) of Laurent polynomials
as follows: a Laurent polynomial P belongs to M(Δ) if its Newton polytope Δ(P ) is
obtained by shifting the polytope Δ by an integral vector, Δ(P ) = Δ +m. Let I be an
ideal in the ring of Laurent polynomials in n variables, and let U ⊂ Rn be a bounded
set.

Definition 7. A finite set G ⊂ I of Laurent polynomials is said to be a U -approximation
of I if, for each integral polytope Δ ⊂ U , either M(Δ) ∩ I = ∅ or M(Δ) ∩G �= ∅.

For every bounded domain U , there exists a U -approximation G of I. Indeed, there
exist only finitely many integral polytopes in U . For every such polytope Δ, we take a
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Laurent polynomial P ∈ I with Δ(P ) = Δ (if such polynomials exist in the ideal I) and
include these polynomials in G.

Main theorem. Let I be an ideal generated by the Laurent polynomials whose Newton
polytopes lie in the cube −N ≤ mi ≤ N , i = 1, . . . , n. Let G be a U-approximation of the
ideal I, where U is the region defined by the inequalities |m1| + · · · + |mn| ≤ F1(2Nn).
Then the polynomials in G give a system of tropical generators of the ideal I.

Proof. Let f(m1, . . . ,mn) = α1m1 + · · ·+ αnmn. We consider the automorphism of the
torus (C∗)n that sends a point (z1, . . . , zn) to the point (y1, . . . , yn), where yi = zi for
αi ≥ 0 and yi = z−1

i for αi < 0. This automorphism maps the cube and the region U
in the space of the degrees of the monomials into themselves, and the linear function f
becomes a function f∗ with nonnegative coefficients. By Proposition 20, the function f∗ is
monotone with respect to some Gröbner ordering in the ring of polynomials in y1, . . . , yn.
Multiplying Laurent polynomials by appropriate monomials, we obtain polynomials, and
the Laurent polynomials in the set of generators of I transform into polynomials of degree
at most 2Nn. To conclude the proof, it remains to use Theorem 23 and Corollary 10. �
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