
FAOMFunct. Anal. Other Math. (2008) 2: 45–71
DOI 10.1007/s11853-008-0015-2

Elimination theory and Newton polytopes

A. Esterov · A. Khovanskii

Received: 25 August 2006 / Revised: 6 November 2006 / Accepted: 26 January 2007 /
Published online: 19 March 2008
© PHASIS GmbH and Springer-Verlag 2008

Abstract We study elimination theory in the context of Newton polytopes and develop its
convex-geometry counterpart.
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1 Introduction

Let N ⊂ Cn be an affine algebraic variety and π : Cn → Cm be a projection. The goal of
elimination theory is to describe the defining equations of π(N) in terms of the defining
equations of N . We study the defining equations of projections in the context of Newton
polytopes: we assume that the variety N ⊂ (C\0)n is defined by equations f1 = · · · = fk = 0
with given Newton polytopes and generic coefficients and that the projection π(N) ⊂
(C \ 0)m is given by one equation g = 0. Under this assumption, we describe the Newton
polytope and the leading coefficients of the Laurent polynomial g in terms of the Newton
polytope and the leading coefficients of the Laurent polynomials f1, . . . , fk (by the lead-
ing coefficients, we mean the coefficients of monomials from the boundary of the Newton
polytope).

In this section, we define the equation g of a projection of a complete intersection
f1 = · · · = fk = 0 (Definition 2) and describe its Newton polytope in terms of the Newton
polytopes �1, . . . ,�k of the equations f1, . . . , fk (Theorem 2). Section 2 contains certain
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facts about the geometry of this polytope. In particular, this polytope is an increasing func-
tion of the polytopes �1, . . . ,�k (Theorem 4) and coincides with the mixed fiber polytope
of �1, . . . ,�k up to a shift and dilatation (Theorem 7). The existence and other basic prop-
erties of mixed fiber polytopes (Definition 7) are proved in Sect. 3. Sections 4 and 5 are
concerned with computing the leading coefficients of g. For example, Theorems 16 and 19
can be used to explicitly compute the coefficients of the monomials corresponding to the
vertices of the Newton polytope of g if the polytopes �1, . . . ,�k satisfy a condition of
general position (Definition 20). In Sect. 6, we present some other versions of elimination
theory in the context of Newton polytopes, such as the elimination theory for rational and
analytic functions.

1.1 Elimination theory and Newton polytopes

Many important problems related to Newton polytopes and tropical geometry turn out to be
special cases of this version of elimination theory. We give some examples of such prob-
lems:

1. To compute the number of common roots of polynomial equations with given Newton
polytopes and generic coefficients: the answer is given by the Kushnirenko–Bernstein
formula (see [1] or Theorem 1 below).

2. To compute the product of common roots of polynomial equations with given Newton
polytopes and generic coefficients: if the Newton polytopes satisfy some conditions of
general position, then the answer is given by Khovanskii’s product formula (see [2] or
Theorems 18 and 19 below).

3. To compute the sum of values of a polynomial over the common roots of polynomial
equations with given Newton polytopes and generic coefficients: if the Newton polytopes
satisfy some conditions of general position, then the answer is given by the Gelfond–
Khovanskii formula (see [3] or Theorem 17 below).

4. To compute the Newton polytope and leading coefficients of the defining equation of
a hypersurface parameterized by a polynomial map (C \ 0)n → (C \ 0)n+1 with given
Newton polytopes and generic coefficients of the components (implicitization theory):
the Newton polytope was described by Sturmfels, Tevelev, and Yu (see [4]).

5. To describe the Newton polytope and the leading coefficients of a multidimensional resul-
tant: the Newton polytope and the absolute values of leading coefficients were computed
by Sturmfels (see [5]).

6. To prove the existence of mixed fiber polytopes (Definition 7): the existence of mixed
fiber polytopes was predicted in [6] and proved in [7].

1.2 Problems 1–3 in the context of elimination theory

To put problems 1–3 in the context of elimination theory, we regard a Laurent monomial
as a projection π : (C \ 0)n → (C \ 0). Then the defining equation of the projection of a
zero-dimensional complete intersection {f1 = · · · = fn = 0} = {z1, . . . , zN } is a polynomial
g(t) = ∏

i

(
t − π(zi)

)
in one variable.

Lemma 1 1. The length of the (one-dimensional) Newton polytope of g is equal to the
number of common roots of f1, . . . , fn.
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2. The constant term of g (which is a leading coefficient in our terminology) is equal to
the product of the values of the monomial −π over all common roots of f1, . . . , fn.

3. Let Sm be a polynomial of m variables such that

Sm

(∑

i

xi ,
∑

i

x2
i , . . . ,

∑

i

xm
i

)

is equal to the mth elementary symmetric function of the independent variables xi . Then the
coefficient of the monomial tm in the polynomial g is equal to

(−1)N−mSm(p1, . . . , pm),

where pm is the sum of the values of the monomial πm over all common roots of f1, . . . , fn.

All these facts are obvious, and we omit the proof. We generalize this lemma to projec-
tions of complete intersections of an arbitrary dimension (see Theorem 2 and Sect. 4).

Lemma 1 implies that the Kushnirenko–Bernstein formula (Theorem 1), Khovanskii’s
product formula (Theorems 18 and 19), and the Gelfond–Khovanskii formula (Theorem 17)
can be seen as the respective explicit formulas for the Newton polytope of g, the leading
coefficients of g, and all coefficients of g if the Newton polytopes of f1, . . . , fn satisfy a
certain condition of general position. We generalize these observations to projections of
complete intersections of an arbitrary dimension (see Sect. 5).

1.3 Problems 4–6 in the context of elimination theory

Implicitization theory can be regarded as a special case of elimination theory. Indeed, we
consider a map g = (g0, . . . , gk) : (C \ 0)n → (C \ 0)k+1 and a k-dimensional complete in-
tersection F = {f1 = · · · = fn−k = 0} ⊂ (C\0)n, where g0, . . . , gk, f1, . . . , fn−k are Laurent
polynomials on (C\0)n. Let π be the standard projection (C\0)n × (C\0)k+1 → (C\0)k+1

and y0, . . . , yk be the standard coordinates on (C \ 0)k+1. Then the defining equation
of the image g(F ) ⊂ (C \ 0)k+1 coincides with the defining equation of the projection
π({g0 − y0 = · · · = gk − yk = f1 = · · · = fn−k = 0}).

A multidimensional resultant is the “universal” special case of elimination theory, which
is clear from the following version of the definition of a resultant. We regard the polynomials

gi(x1, . . . , xk) =
∑

b∈Bi

cb,ix
b, i = 0, . . . , k, Bi ⊂ Z

k,

as polynomials fi in the variables cb,i and xj with all coefficients equal to 1. Let π be the pro-
jection of the domain of the polynomials (f0, . . . , fk) along the domain of the polynomials
(g0, . . . , gk). Then the defining equation of the projection π({f0 = · · · = fk = 0}) is called
the (B0, . . . ,Bk)-resultant. This definition of the multidimensional resultant is somewhat
different from the classical definition if we understand the defining equation of a projection
in the sense of Definition 2 because it is not always square-free. We consider the square-free
version of Definition 2 in Sect. 6 (see Theorem 20).

Elimination theory, implicitization theory, and the theory of multidimensional resultants
are equivalent in the sense that they can be formulated in terms of each other. The contents
of this paper could therefore be written in terms of resultants or implicitization theory. When
written in these terms, Theorem 2 gives the descriptions of Newton polytopes in [4] and [5],
while the facts in Sects. 4 and 5 give some new information about the leading coefficients.
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For example, Theorems 16 and 19 can be used to compare the signs of the leading coeffi-
cients of a multidimensional resultant (Esterov AI, Khovanskii AG On the vertex coefficients
of multidimensional resultants and discriminants. In preparation).

The theory of mixed fiber polytopes turns out to be the Newton-polyhedral counter-
part of elimination theory in the following sense. We define the composite polytope of the
polytopes �1, . . . ,�k as the Newton polytope of a projection of a complete intersection
f1 = · · · = fk = 0 if the Newton polytope of fi is �i and the coefficients of f1, . . . , fk are
in general position. Then Theorems 2 and 7 imply that the composite polytope satisfies the
definition of the mixed fiber polytope up to a shift and dilatation, which proves the existence
of mixed fiber polytopes. We omit the details and prefer to give an independent elementary
proof of the existence of mixed fiber polytopes in Sect. 3 to make our paper self-contained
(the proof in [7] is based on work in preparation). We note that composite polytopes are
more convenient than mixed fiber polytopes in some sense; for example, they are monotonic
(Theorem 4).

1.4 The composite polynomial

Let M denote the Zariski closure of a set M . For an algebraic map f : M → (C \ 0)n of
an irreducible algebraic variety M , let m(f ) denote the number of points in the preimage
f (−1)(x) of a generic point x ∈ f (M) if this number is finite, and let m(f ) be zero otherwise.
We define a cycle N = ∑

i aiNi in (C \ 0)n as a formal linear combination of irreducible
algebraic varieties Ni ⊂ (C \ 0)n of the same dimension with integer coefficients ai .

Definition 1 Let π : (C \ 0)n �→ (C \ 0)n−k be an epimorphism of complex tori. For a cycle
N = ∑

i aiNi in (C \ 0)n, the cycle
∑

i m(π |Ni
)aiπ(Ni) is called the projection π∗N of the

cycle N .

Let f1, . . . , fm be Laurent polynomials on (C \ 0)n such that codim{f1 = · · · = fm = 0}
= m. Let [f1 = · · · = fm = 0] denote the intersection cycle of the divisors of the polynomials
f1, . . . , fm.

Definition 2 Let f0, . . . , fk be Laurent polynomials on (C \ 0)n such that codim{f0 = · · · =
fk = 0} = k + 1. The Laurent polynomial πf0,...,fk

on (C \ 0)n−k such that [πf0,...,fk
= 0] =

π∗[f0 = · · · = fk = 0] is called the composite polynomial of the polynomials f0, . . . , fk with
respect to the projection π .

The composite polynomial πf0,...,fk
is defined up to a monomial factor. To describe its

Newton polytope, we need the Kushnirenko–Bernstein formula for the number of roots of a
system of polynomial equations.

1.5 The Kushnirenko–Bernstein formula

The set of all convex bodies in R
m is a semigroup with respect to the operation of Minkowski

summation A + B = {a + b |a ∈ A, b ∈ B}.

Definition 3 The mixed volume MVμ induced by a volume form μ on R
m is the symmetric

Minkowski-multilinear function of m convex bodies in R
m such that

MVμ(�, . . . ,�) =
∫

�

μ
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for every convex body � ⊂ R
m. The mixed volume induced by the standard volume form is

denoted by MV.

The restriction f |B of a Laurent polynomial f (x) = ∑
a∈Zn cax

a onto a set B ⊂ Z
n is the

polynomial
∑

a∈B cax
a . The Newton polytope �f of a Laurent polynomial f is the convex

hull of the set A such that f (x) = ∑
a∈A cax

a and ca �= 0.

Definition 4 Laurent polynomials f0, . . . , fk on (C \ 0)n are said to be Newton-nonde-
generate if for any collection of faces A0 ⊂ �f0 , . . . ,Ak ⊂ �fk

such that the sum A0 +
· · · + Ak is at most a k-dimensional face of the sum �f0 + · · · + �fk

, the restrictions
f0|A0 , . . . , fk|Ak

have no common zeros in (C \ 0)n.

Newton-nondegenerate collections of polynomials form a dense subset in the space of all
collections of polynomials with given Newton polytopes.

Theorem 1 (Kushnirenko–Bernstein [1]) 1. The number of common roots of Newton-
nondegenerate Laurent polynomials f1, . . . , fn in (C \ 0)n with multiplicities taken into
account is equal to n!MV(�f1 , . . . ,�fn).

2. Without the assumption of Newton-nondegeneracy, the number of isolated common
roots of f1, . . . , fn in (C \ 0)n with multiplicities taken into account is not greater than
n!MV(�f1 , . . . ,�fn).

1.6 The Newton polytope of the composite polynomial

The Newton polytope of the polynomial πf0,...,fk
is uniquely determined up to a shift by

equality (∗) below. This equality is a corollary of the Kushnirenko–Bernstein formula and
can be seen as its generalization (see Lemma 1.1).

Theorem 2 1. Let π× : Z
n−k ↪→ Z

n be the inclusion of character lattices defined by the
epimorphism π : (C \ 0)n �→ (C \ 0)n−k . Let A0, . . . ,Ak ⊂ Z

n and A ⊂ Z
n−k be the New-

ton polytopes of the polynomials f0, . . . , fk and πf0,...,fk
. Then for any convex bodies

B1, . . . ,Bn−k−1 ⊂ Z
n−k ,

(n − k)!MV(A,B1, . . . ,Bn−k−1)

= n!MV(A0, . . . ,Ak,π
×B1, . . . , π

×Bn−k−1) (∗)

if the polynomials f0, . . . , fk are Newton-nondegenerate.
2. Without the assumption of Newton-nondegeneracy,

(n − k)!MV(A,B1, . . . ,Bn−k−1)

≤ n!MV(A0, . . . ,Ak,π
×B1, . . . , π

×Bn−k−1). (∗∗)

This theorem yields the “elimination theory for convex bodies,” which describes the poly-
tope A in terms of A0, . . . ,Ak proceeding from equality (∗) and estimates it proceeding from
inequality (∗∗) (see Sect. 2 for the details).

Proof By the continuity and linearity of the mixed volume, it suffices to prove this theo-
rem under the assumption that B1, . . . ,Bn−k−1 are polytopes with integer vertices. Under
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this assumption, we consider generic Laurent polynomials g1, . . . , gn−k−1 on (C \ 0)n−k

with the Newton polytopes B1, . . . ,Bn−k−1. Because πf0,...,fk
is not identically zero, the

collection πf0,...,fk
, g1, . . . , gn−k−1 is Newton-nondegenerate. If the collection f0, . . . , fk is

Newton-nondegenerate, then the collection f0, . . . , fk, g1 ◦π, . . . , gn−k−1 ◦π is also Newton-
nondegenerate.

By the Kushnirenko–Bernstein formula, the numbers of solutions of the systems f0 =
· · · = fk = g1 ◦ π = · · · = gn−k−1 ◦ π = 0 and πf0,...,fk

= g1 = · · · = gn−k−1 = 0 are respec-
tively equal to n!V (A0, . . . ,Ak,B1, . . . ,Bn−k−1) and (n− k)!V (A,B1, . . . , Bn−k−1). On the
other hand, the solutions of the second system are the projections of the solutions of the first
system. �

2 Elimination theory for convex bodies

Theorem 2 motivates the following definition, which yields the “elimination theory
for convex bodies.” A convex body B in an (n−k)-dimensional subspace L ⊂ R

n

is called a composite body of convex bodies �0, . . . ,�k ⊂ R
n if the mixed volume

n!MV(�0, . . . ,�k,B1, . . . ,Bn−k−1) in R
n is equal to the mixed volume (n − k)!MV(B,

B1, . . . ,Bn−k−1) in L for every collection of convex bodies B1, . . . ,Bn−k−1 ⊂ L (see Defin-
ition 5 for the details).

For every collection of convex bodies �0, . . . ,�k , there exists a unique composite body
up to a shift (Theorem 3). The existence of composite bodies follows because the mixed
fiber body of the bodies �0, . . . ,�k satisfies the definition of a composite body up to a shift
and dilatation (Definition 7 and Theorem 7). Hence, the theory of composite bodies is a
version of the theory of mixed fiber polytopes, conjectured in [6] and constructed in [7].
Because [7] is based on work in preparation, we prefer to present another approach to mixed
fiber polytopes in Sect. 3 to make our paper self-contained. At the same time, we prove some
basic facts about composite bodies:

• A composite body of polytopes is a polytope (Theorem 6).

• A composite body of integer polytopes (i.e., polytopes such that all their vertices are
integer lattice points) is a shifted integer polytope (Theorem 13).

• Composite bodies are monotonic (Theorem 4).

• The linear span of a composite body depends on the linear spans of its arguments (Theo-
rem 5).

• Codimension-m faces of a composite polytope depend on codimension-m faces of its
arguments (Theorem 11).

• In particular, vertices of the composite polytope of the polytopes �0, . . . ,�k can be ex-
pressed in terms of moments of their k-dimensional faces (Theorem 12).

2.1 Composite bodies

Definition 5 Let L ⊂ Rn be a vector subspace of codimension k, μ be a volume form on
Rn/L, and �0, . . . ,�k be convex bodies in Rn. A convex body B ⊂ L is called a composite
body of �0, . . . ,�k in L and is denoted by CBμ(�0, . . . ,�k) if for every collection of
convex bodies B1, . . . ,Bn−k−1 ⊂ L,

n!MVμ′∧μ(�0, . . . ,�k,B1, . . . ,Bn−k−1) = (n − k)!MVμ′(B,B1, . . . ,Bn−k−1),

where μ′ is a volume form on L.
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Theorem 3 1. For any collection of convex bodies �0, . . . ,�k ⊂ R
n, there exists a compos-

ite body CBμ(�0, . . . ,�k).
2. A composite body CBμ(�0, . . . ,�k) is unique up to a shift.

Proof Part 1 of the theorem follows from an explicit formula for composite bodies (see
Theorem 7). Part 2 follows from the monotonicity (see Theorem 4). �

The proof of uniqueness implies that in Definition 5, it suffices to consider collections
B1, . . . ,Bn−k−1 such that B1, . . . ,Bn−k−1 are simplices.

2.2 Monotonicity of a composite body

Theorem 4 If �i ⊂ �′
i for i = 0, . . . , k, then

CBμ(�0, . . . ,�k) ⊂ CBμ(�′
0, . . . ,�

′
k).

This is a corollary of the monotonicity of the mixed volume and the following fact.

Lemma 2 Let � and �′ be convex bodies in R
m. If

MV(�,B, . . . ,B) ≤ MV(�′,B, . . . ,B)

for every simplex B , then for a certain shift a ∈ R
m, the shifted body � + a is contained

in �′.

Proof We choose a such that the minimax distance

dist(� + a,�′) = max
x∈�+a

min
y∈�′ |x − y|

is minimal. We suppose that dist(� + a,�′) > 0. Then the set of all covectors γ ∈ (Rm)∗

such that

max
x∈�+a

〈γ, x〉 > max
y∈�′ 〈γ, y〉

is not contained in a half-space. In particular, it contains covectors γ0, . . . , γm such that
none of them is a linear combination of the others with nonnegative coefficients. Let B

denote an m-dimensional simplex with the external normal covectors γ0, . . . , γm. Then
MV(�,B, . . . ,B) > MV(�′,B, . . . ,B) because of the following formula for mixed vol-
umes. �

Lemma 3 Let � be a convex body, B1, . . . ,Bm−1 be polytopes, and μ be a volume form
in R

m. Let � ⊂ (Rn)∗ be a set that contains one external normal covector for each (m−1)-
dimensional face of the sum B1 + · · · + Bm−1. Then

MVμ(�,B1, . . . ,Bm−1) = 1

m

∑

γ∈�

max
x∈�

〈γ, x〉MVμ/γ (B
γ

1 , . . . ,B
γ

m−1),

where B
γ

i is the maximal face of Bi on which γ attains its maximum as a function on Bi .
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The mixed volume in the right-hand side makes sense because its arguments are all par-
allel to the same (m−1)-dimensional subspace kerγ .

Proof If � = B1 = · · · = Bm−1 contains the origin, then this formula states that the volume
of � is equal to the sum of volumes of the convex hulls conv({0} ∪ F), where F ranges all
(m−1)-dimensional faces of �. In general, the formula follows from this special case by
the additivity and continuity of the mixed volume. �

2.3 Linear span of a composite body

We need one more fact about composite bodies, which, in the context of Newton poly-
topes, reflects the fact that elimination of variables preserves the homogeneity of equations.
Namely, the following theorem expresses the linear span of a composite body in terms of
linear spans of its arguments.

For a set � ⊂ R
n, let 〈�〉 denote the linear span of all vectors of the form a − b, where

a ∈ � and b ∈ �. For a subspace L ⊂ R
n, let p denote the projection R

n �→ R
n/L. We recall

that μ is a volume form on R
n/L.

Theorem 5 1. If dimp(�i1 + · · · + �iq ) < q − 1 for some numbers 0 ≤ i1 < · · · < iq ≤ k,
then CBμ(�0, . . . ,�k) consists of one point.

2. Otherwise, there exists a unique minimal nonempty set {i1, . . . , iq} ⊂ {1, . . . , n} such
that dimp(�i1 + · · · + �iq ) = q − 1. In this case

〈CBμ(�0, . . . ,�k)〉 = 〈�i1 + · · · + �iq 〉 ∩ L.

Proof By the definition of a composite body, this theorem follows from a similar fact about
mixed volumes, namely, from Bernstein’s criterion for the vanishing of the mixed volume
(see below). The uniqueness of a minimal nonempty set {i1, . . . , iq} ⊂ {1, . . . , n} such that
dimp(�i1 + · · · + �iq ) = q − 1 follows because the family of all such sets is closed under
the operation of intersection (see Theorem 1.1 in [5] for the details). �

Lemma 4 (Bernstein’s criterion [8]) The mixed volume of convex bodies B1, . . . ,Bn in R
n

is equal to zero iff dim〈Bi1 + · · · + Biq 〉 < q for some numbers 1 ≤ i1 < · · · < iq ≤ n.

2.4 Mixed fiber bodies and the existence of composite bodies

The notion of a composite body turns out to be a version of the notion of a mixed fiber body.
We use this relation to prove the existence and some basic properties of composite bodies.

Let L ⊂ R
n be a vector subspace of codimension k, μ be a volume form on R

n/L, and
p denote the projection Rn → Rn/L.

Definition 6 [9] For a convex body � ⊂ R
n, the set of all points of the form

∫

p(�)

sμ ∈ R
n,

where s : p(�) → � is a continuous section of the projection p, is called the Minkowski
integral of � and is denoted by

∫
p|�μ.
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The following fact explains the relation between composite bodies and the Minkowski
integrals.

Lemma 5 The convex body (k + 1)! ∫ p|�μ is contained in a fiber of the projection p and
satisfies the definition of the composite body CBμ(�, . . . ,�) up to a shift.

Proof We first consider a special case. If � = A + B , where B ⊂ L and the restriction p|A
is injective, then the statement follows from the additivity of the mixed volume. Indeed, for
arbitrary convex bodies B1, . . . ,Bn−k−1 ⊂ L and a volume form μ′ on L,

n!MVμ∧μ′(A + B, . . . ,A + B,B1, . . . ,Bn−k−1)

= (k + 1) · n!MVμ∧μ′(A, . . . ,A,B,B1, . . . ,Bn−k−1)

= (k + 1) · k!(∫
p(A)

μ
) · (n − k)!MVμ′(B,B1, . . . ,Bn−k−1)

= (n − k)!MVμ′
(
(k + 1)!(∫

p(A)
μ

) · B,B1, . . . ,Bn−k−1

)

= (n − k)!MVμ′
(
(k + 1)! · ∫ p|�μ,B1, . . . ,Bn−k−1

)
.

In general, the projection p(�) can be subdivided into small pieces and � can be
subdivided into the inverse images �i of these pieces. Representing the mixed volume
MVμ∧μ′(�, . . . ,�,B1, . . . ,Bn−k−1) as the sum of the mixed volumes

∑

i

MVμ∧μ′(�i, . . . ,�i,B1, . . . ,Bn−k−1)

for arbitrary convex bodies B1, . . . ,Bn−k−1 in L and approximating each �i by a sum Ai +
Bi such that Bi ⊂ L and the restriction p|Ai

is injective, we reduce the general case to the
special case. �

The following theorem provides a way to generalize Lemma 5 to composite bodies of
arbitrary collections of convex bodies.

Theorem 6 Let u : R
n → L be a linear projection.

1. There exists a unique symmetric multilinear map MFμ,u from collections of k+1 convex
bodies in R

n to convex bodies in L such that MFμ,u(�, . . . ,�) = u
∫

p|�μ for each
convex body � ⊂ R

n.

2. This map assigns polytopes to polytopes.

This theorem is proved below.

Definition 7 The convex body MFμ,u(�0, . . . ,�k) is called the mixed fiber body of the
bodies �0, . . . ,�k .

Theorem 7 The convex body (k + 1)!MFμ,u(�0, . . . ,�k) is contained in a fiber of the pro-
jection p and satisfies the definition of the composite body CBμ(�0, . . . ,�k) up to a shift.

Proof By the additivity of mixed fiber bodies and mixed volumes, the statement can be
reduced to the special case �0 = · · · = �k considered in Lemma 5 above. �
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2.5 Virtual bodies

It is more convenient to prove Theorem 6 in the context of virtual bodies instead of convex
bodies because an explicit formula for mixed fiber bodies (see Lemma 7) involves subtrac-
tion of convex bodies.

We recall that the Grothendieck group KG of a commutative semigroup K is the group
of formal differences of elements from K . In more detail, it is the quotient of the set K × K

by the equivalence relation (a, b) ∼ (c, d) ⇔ ∃k : a + d + k = b + c + k with the operations
(a, b)+ (c, d) = (a +c, b+d) and −(a, b) = (b, a). For each semigroup K with the cancel-
lation law a + c = b + c ⇒ a = b, the map a → (a + a, a) induces the inclusion K ↪→ KG.
An element of the form (a + a, a) ∈ KG is said to be proper and is usually identified with
a ∈ K . Under this convention, we can write (a, b) = a − b.

Definition 8 The group of virtual bodies in R
n is the Grothendieck group of the semigroup

of convex bodies in R
n with the operation of Minkowski summation. It contains the group of

virtual polytopes in R
n, i.e., the Grothendieck group of the semigroup of convex polytopes

in R
n.

These commutative groups are real vector spaces with the operation of scalar multiplica-
tion defined as dilatation.

Definition 9 For a virtual body � in R
n, its support function �( · ) : (Rn)∗ → R is defined

as

�(γ ) = max
x∈�1

〈γ, x〉 − max
x∈�2

〈γ, x〉,

where �1 and �2 are convex bodies such that � = �1 − �2.

The following statement describes the group of virtual bodies more explicitly. A function
f : R

n → R is said to be positively homogeneous if f (tx) = tf (x) for each t ≥ 0. A function
f : R

n → R is called a d.c. function if it can be represented as the difference of two convex
functions.

Lemma 6 1. The map � → �( · ) induces an isomorphism between the group of virtual
bodies in R

n and the group of positively homogeneous d.c. functions on (Rn)∗.
2. This isomorphism induces an isomorphism between the group of virtual polytopes and

the group of continuous piecewise linear positively homogeneous functions.

Proof The map � → �( · ) is surjective by the definition of a d.c. function. It is injective
because a convex body is uniquely determined by its support function. Part 2 of the lemma
follows because each continuous piecewise linear function can be represented as a difference
of two convex piecewise linear functions. �

The operations of taking the mixed volume, the composite body, and the mixed fiber body
can be extended to virtual bodies by linearity. This extension is unique, but its properties are
quite different. For example, the mixed volume of virtual polytopes is not monotonic (e.g.,
MV(−A,A) > MV(−A,2A) for a convex polygon A) and is not nondegenerate in the sense
of Lemma 4 (e.g., MV(B−C,2B+2C) = 0 for nonparallel segments B and C in the plane).
As a result, Theorems 4 and 5 are not applicable to virtual composite bodies.
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2.6 Proof of Theorem 6

The uniqueness and part 2 of the theorem are corollaries of the following formula for mixed
fiber bodies.

Lemma 7 For any convex bodies �0, . . . ,�k ⊂ R
n,

MFμ,u(�0, . . . ,�k)

= 1

(k + 1)!
∑

0≤i1<···<iq≤k

(−1)k+1−qu
∫
p|(�i1 +···+�iq ) μ.

Proof Let m : A × · · · × A → B be a symmetric multilinear map, where A and B are semi-
groups. Then

m(a1, . . . , ak)

=
∑

0≤i1<···<iq≤k

(−1)k+1−qm(ai1 + · · · + aiq , . . . , ai1 + · · · + aiq ).

To prove this formula, we open the parentheses in the right-hand side by the linearity of m

and cancel like terms. �

Lemma 8 (see Sect. 3 or [7]) Let u : Rn → L be a linear projection and μ be a volume
form on R

n/L.

1. There exists a symmetric multilinear map MFμ,u from collections of k+1 virtual poly-
topes in R

n to virtual polytopes in L such that MFμ,u(�, . . . ,�) = u
∫

p|�μ for each
convex polytope � ⊂ R

n.

2. The map MFμ,u sends convex polytopes to convex polytopes.

The existence of mixed fiber bodies can be reduced to this special case as follows. For
arbitrary convex bodies �0, . . . ,�k in R

n, we define the virtual body MFμ,u(�0, . . . ,�k)

as in Lemma 7. It follows from the definition that

1. MFμ,u is symmetric,

2. MFμ,u(�, . . . ,�) = u
∫

p|�μ for each convex body � ⊂ Rn, and

3. MFμ,u is continuous in the sense of the norm |�| = maxγ∈B |�(γ )|, where B ∈ (Rn)∗ is
a compact neighborhood of the origin, because the Minkowski integral is continuous in
this sense.

Lemma 8 implies that MFμ,u is multilinear and preserves convexity under the assumption
that the arguments are polytopes. Namely, for any virtual polytopes �0,�

′
0, �1, . . . ,�k ,

4. MFμ,u(�0 + �′
0,�1, . . . ,�k) = MFμ,u(�0, . . . ,�k) + MFμ,u(�

′
0, . . . ,�k),

5. MFμ,u(t · �0, . . . ,�k) = t · MFμ,u(�0, . . . ,�k), and

6. MFμ,u(�0, . . . ,�k) is convex if �0, . . . ,�k are convex.

Approximating arbitrary convex bodies with convex polytopes and using the continuity
of MFμ,u (property 3), we can extend properties 4, 5 and 6 to arbitrary convex bodies. �
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3 Mixed fiber polytopes

In this section, we prove the existence of mixed fiber polytopes (Lemma 8). Namely, let
L ⊂ R

n be a vector subspace of codimension k, u : R
n → L be a linear projection, and

μ be a volume form on R
n/L. Let p denote the projection R

n → R
n/L. Then (1) there

exists a symmetric multilinear map MFμ,u from collections of k+1 virtual polytopes in R
n

to virtual polytopes in L such that MFμ,u(�, . . . ,�) = u
∫

p|�μ for each convex polytope
� ⊂ R

n, and (2) MFμ,u maps convex polytopes to convex polytopes. The proof of these
statements follows because the Minkowski integral is a polynomial map from the space of
virtual polytopes in R

n to the space of virtual polytopes in L. Each polynomial map of vector
spaces yields a certain symmetric multilinear function, which is called the polarization of the
polynomial. In more detail, statement 1 follows from Theorems 8, 9, and 10, and statement 2
follows from the corollary in Sect. 3.3.

3.1 Polarizations of polynomials on Zariski dense sets

The existence of mixed fiber polytopes is a corollary of the following general construction.

Definition 10 A set A in a vector space W is said to be Zariski dense if each finite-
dimensional subspace U ⊂ W is contained in a finite-dimensional subspace V ⊂ W such
that A ∩ V is Zariski dense in V (i.e., A ∩ V is not contained in a proper algebraic subset
of V ).

Definition 11 A map f : A → V from a subset A of a vector space W to a vector space V

is called a (homogeneous) polynomial of degree k if for each finite-dimensional subspace
U ⊂ W and for each linear function l : V → R, the composition l ◦ f |U : A ∩ U → R is a
restriction of a (homogeneous) polynomial of degree at most k on U .

Theorem 8 1. A (homogeneous) polynomial map of degree k on a Zariski dense subset of
a vector space W has a unique extension to a (homogeneous) polynomial map of degree k

on W .
2. For a homogeneous polynomial map f : W → V of degree k, there exists a unique

symmetric multilinear function

Mf : W ⊕ · · · ⊕ W
︸ ︷︷ ︸

k

→ V such that Mf (w, . . . ,w) = f (w)

for every w ∈ W .

Definition 12 The function Mf is called the polarization of the polynomial f .

Proof of Theorem 8 1. Let A be a Zariski dense subset in W and f : A → V be a (homo-
geneous) polynomial map of degree k. For a subspace U such that A ∩ U is Zariski dense
in U , there exists a unique (homogeneous) polynomial map fU : U → V of degree k such
that fU = f on U ∩ A. For any two such finite-dimensional subspaces U and U ′, the sum
U + U ′ is contained in a finite-dimensional subspace U ′′ such that U ′′ ∩ A is Zariski dense.
Hence, fU ′′ = fU ′ on U ′ and fU ′′ = fU on U . In particular, fU = fU ′ on the intersection
U ∩ U ′. This implies that polynomials fU glue together into a map f̃ : W → V such that
f̃ = f on A.
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2. For numbers t1, . . . , tk and vectors w1, . . . ,wk ∈ W , the expression f (t1w1 + · · ·
+ tkwk)/k! is a homogeneous polynomial as a function of t1, . . . , fk . The coefficient of
the monomial t1 · · · tk in this polynomial satisfies the definition of the polarization Mf . �

We apply polarizations in the following context. Let V (K) be the space of virtual poly-
topes in a k-dimensional vector space K . Let A(K) ⊂ V (K) be the set of convex polytopes.

Theorem 9 The subset A(K) ⊂ V (k) is Zariski dense in V (K).

Definition 13 A polytope �′ ∈ V (K) is said to be compatible with a polytope � ∈ V (K) if
the support function �′( · ) is linear on every domain of linearity of �( · ).

Proof of Theorem 9 Let V (�) ⊂ V (K) be the space of all virtual polytopes compatible with
� ∈ V (K). Theorem 9 is a corollary of the following facts:

1. For every polytope � ∈ V (K), the space V (�) is finite dimensional. Indeed, the space of
piecewise-linear functions with the prescribed domains of linearity is finite dimensional.

2. For every convex polytope � ∈ A(K), the intersection V (�) ∩ A(K) is Zariski dense
in V (K).

3. Every finite-dimensional vector subspace U ⊂ V (K) is contained in the space V (�) for
some convex polytope � ∈ A(K). Indeed, if U is generated by the differences Ai − Bi

of the convex polytopes Ai and Bi , then we can choose � = ∑
i Ai + Bi .

The theorem is proved. �

3.2 The Minkowski integral is a polynomial

Let u : R
n → L be a linear projection, μ be a volume form on the k-dimensional vector

space R
n/L, and p be the projection R

n → R
n/L.

Theorem 10 The Minkowski integral M(�) = u
∫

p|�μ is a homogeneous polynomial map
A(Rn) → A(L) of degree k + 1.

For a convex polytope � ∈ R
n, we define A(�) as the set of all convex polytopes com-

patible with �. For a convex k-dimensional polytope �, the restriction of M to A(�) is a
homogeneous polynomial map of degree k + 1 because of the following two facts (the first
follows from the definition of the Minkowski integral, and the second is well known).

Lemma 9 The Minkowski integral M(�) of a convex k-dimensional polytope � consists of
one point, and this point coincides with the projection u of the first moment

∫
�

xp∗(μ) of �,
where x ranges � and p∗(μ) is the volume form μ on R

n/L lifted to �.

Lemma 10 The first moment is a homogeneous polynomial of degree k + 1 on the space
A(�) if � is a convex k-dimensional polytope.

Theorem 10 can be reduced to k-dimensional polytopes as follows. For a covector
γ ∈ (Rn)∗ and a convex polytope � ⊂ R

n, let �γ be the maximal face where γ attains
its maximum as a function on �.
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Lemma 11 For every covector γ ∈ L∗,

(u
∫
p|�μ)γ =

∑

δ∈(Rn)∗, δ|L=γ

u
∫
p|�δμ.

This equality easily follows from the definition of the Minkowski integral, and we omit
the proof. The sum in the right-hand side makes sense because it contains finitely many
nonzero summands. We note that Lemmas 9 and 11 are respectively similar to Proposi-
tions 5.1 and 5.2 in [7].

Lemma 12 The map M preserves the compatibility of convex polytopes:

M
(
A(�)

) ⊂ A
(

M(�)
)
.

Proof The integral of a continuous family of convex functions is a linear function if every
function in the family is linear. We apply this to the following description of the support
function of M(�). �

For a convex body � ⊂ R
n and a point a ∈ R

n/L, let �a denote the convex body
u
(
� ∩ p(−1)(a)

) ⊂ L; roughly speaking, �a is a fiber of � over the point a.

Lemma 13 The support function of the body u
(

M(�)
)

is equal to the integral of the sup-
port functions of the bodies �a over a ∈ p(�).

This equality easily follows from the definition of the Minkowski integral, and we omit
the proof.

Proof of Theorem 10 For a face B of a polytope �, let B̃ : A(�) → A(B) be the map
that sends each �′ ∈ A(�) to its face B ′ ∈ A(B) such that B + B ′ is a face of � + �′.
For an n-dimensional convex polytope � ∈ A(Rn), let a1, . . . , aI denote the vertices of
M(�) and B1, . . . ,BJ denote the k-dimensional faces of �. By Lemma 12, the points
ã1

(
M(�′)

)
, . . . , ãI

(
M(�′)

)
are the vertices of the polytope M(�′) for each convex poly-

tope �′ ∈ A(�). By Lemma 11, each vertex ãi

(
M(�′)

)
is equal to a finite sum of the

Minkowski integrals of k-dimensional faces B̃j (�′). By Lemmas 9 and 10, the Minkowski
integral M is a homogeneous polynomial of degree k + 1 on the image of each linear
map B̃j . �

3.3 Faces and convexity of mixed fiber polytopes

By Theorems 9 and 10, there exists a unique polarization of the Minkowski integral
of a polytope in R

n with respect to a volume form μ on R
n/L. It is denoted by

MFμ,u(�0, . . . ,�k) and is called the mixed fiber polytope. To prove that it preserves con-
vexity, we extend Lemma 11 to mixed fiber polytopes as follows.

For a virtual polytope � equal to the difference of convex polytopes A and B in R
n and

for a covector γ ∈ (Rn)∗, the support face �γ is defined as Aγ − Bγ .

Theorem 11 For virtual polytopes �0, . . . ,�k ⊂ R
n and a covector γ ∈ L∗, the face(

MFμ,u(�0, . . . ,�k)
)γ

coincides with the Minkowski sum

∑

δ∈(Rn)∗, δ|L=γ

MFμ,u(�
δ
0, . . . ,�

δ
k).
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This theorem follows from Lemma 11 by the linearity of mixed fiber polytopes.
The length of a one-dimensional Minkowski integral of a convex polytope � is by defi-

nition equal to the volume of �. This fact extends by linearity as follows.

Lemma 14 If the convex polytopes �0, . . . ,�k are all parallel to a (k+1)-dimension-
al subspace K ⊂ R

n and t is a coordinate on the line K ∩ L, then a mixed fiber body
MFμ,u(�0, . . . ,�k) is a segment, parallel to the line K ∩ L, and its length (in the sense of
the coordinate t ) is equal to MVdt∧p∗μ(�0, . . . ,�k).

This mixed volume makes sense because its arguments are all parallel to the same
(k+1)-dimensional subspace K . The volume form dt ∧ p∗μ makes sense on K because
ker(p|K) = K ∩ L.

In particular, a one-dimensional mixed fiber polytope of convex polytopes is convex.
Because each edge of a mixed fiber polytope is a sum of one-dimensional mixed fiber poly-
topes by Theorem 11, each edge of a mixed fiber polytope of convex polytopes is convex.
A polytope with all convex edges is convex.

Corollary A mixed fiber polytope of convex polytopes is convex.

3.4 Vertices and integrality of mixed fiber polytopes

The proof of Theorem 10 is based on the fact that vertices of the Minkowski integral of �

can be expressed in terms of the first moments of faces of �. We extend this fact to mixed
fiber polytopes in order to prove their integrality. To formulate this, we need the polariza-
tion of the first moment, which exists by Lemma 10. For the virtual polytopes �0, . . . ,�k

in R
n, the subspace 〈�0, . . . ,�k〉 ⊂ R

n is defined as the minimal subspace containing con-
vex polytopes B

j

i such that �i = B0
i − B1

i up to a shift for i = 0, . . . , k.

Lemma 15 There exists a unique symmetric multilinear function MMμ of k+1 convex bod-
ies such that

1. the domain of MMμ consists of all collections of virtual polytopes

�0, . . . ,�k ⊂ R
n

such that dim〈�0, . . . ,�k〉 ≤ k and

2. we have

MMμ(�, . . . ,�) =
∫

�

xp∗(μ)

for each k-dimensional convex polytope � ⊂ R
n, where x ranges � and p∗(μ) is the

volume form μ on Rn/L lifted to �.

Definition 14 The point MMμ(�0, . . . ,�k) ∈ Rn is called the mixed moment of �0,

. . . ,�k .

By linearity, Lemma 9 extends to mixed fiber polytopes as follows.
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Lemma 16 If dim〈�0, . . . ,�k〉 ≤ k, then the mixed fiber polytope

MFμ,u(�0, . . . ,�k) ∈ R
n

consists of one point uMMμ(�0, . . . ,�k) ∈ L.

Lemma 16 and Theorem 11 give the following expression for the vertices of a mixed
fiber polytope.

Theorem 12 In the notation in Theorem 11,

1. if dim〈�δ
0, . . . ,�

δ
k〉 ≤ k for each covector δ ∈ (Rn)∗ such that δ|L = γ , then

the face
(
MFμ,u(�0, . . . ,�k)

)γ
is a vertex of MFμ,u(�0, . . . ,�k) and is equal to∑

δ|L=γ uMMμ(�δ
0, . . . ,�

δ
k);

2. almost all covectors γ ∈ L∗ satisfy the condition in part 1; and

3. the set of all points of the form
∑

δ|L=γ uMMμ(�δ
0, . . . ,�

δ
k), where γ ∈ L∗ satisfies the

condition in part 1, coincides with the set of all vertices of MFμ,u(�0, . . . ,�k).

In part 2 of the theorem, “almost all (co)vectors in a space V ” means all covectors from
the complement of a finite union of proper vector subspaces of V .

In particular, because the mixed moment of integer polytopes is a rational number with
the denominator (k + 1)!, the same is true for mixed fiber polytopes.

Theorem 13 If �0, . . . ,�k are integer polytopes (i.e., their vertices are integer lattice
points), L ⊂ R

n is a k-dimensional rational subspace, u(Zn) = L ∩ Z
n, and μ is the in-

teger volume form on R
n/L (i.e.,

∫
Rn/(L+Zn)

μ = 1), then (k + 1)!MFμ,u(�0, . . . ,�k) is an
integer polytope.

4 Leading coefficients of a composite polynomial in terms of composite polynomials
of fewer variables

In this section, we present some technical facts about how to compute the leading coef-
ficients of a composite polynomial in terms of composite polynomials of fewer variables.
In the next section, we use these facts to compute the leading coefficients of a compos-
ite polynomial πf0,...,fk

explicitly under the assumption that the Newton polytopes of the
polynomials f0, . . . , fk satisfy a certain condition of general position.

We recall that for a covector γ ∈ (Rn)∗ and a convex polytope A ⊂ R
n, the polytope Aγ

is defined as the maximal face of A where γ attains its maximum as a function on A.

Definition 15 For a covector γ ∈ (Rn)∗ and a Laurent polynomial f (x) = ∑
a∈A cax

a on
(C \ 0)n, the polynomial

∑
a∈Aγ cax

a is called the truncation of f in the direction γ and is
denoted by f γ .

Theorem 14 expresses a truncation of a composite polynomial in terms of composite
polynomials of truncations. Theorem 15 represents a homogeneous composite polynomial
as a composite polynomial of fewer variables. Because truncations of polynomials are ho-
mogeneous, Theorem 15 can be used to simplify the answer in the formulation of Theo-
rem 14. As a result, a truncation of a composite polynomial can be expressed in terms of
composite polynomials of fewer variables.
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Definition 16 The vertex coefficients of a polynomial f are the coefficients of its monomials
corresponding to the vertices of the Newton polytope �f .

Because a composite polynomial is unique up to a monomial factor, we are interested in
ratios of its vertex coefficients rather than in individual vertex coefficients. Theorem 16
expresses the ratio of two vertex coefficients of a composite polynomial as the product
of values of some monomial over the roots of some system of polynomial equations. By
Lemma 1.2, this product over roots can be seen as a vertex coefficient of a corresponding
composite polynomial of one variable.

4.1 Truncation and dehomogenization

The operations of truncating and taking the composite polynomial commute in the following
sense.

Theorem 14 Let π : (C \ 0)n → (C \ 0)n−k and π× : Z
n−k ↪→ Z

n be an epimorphism of
complex tori and the corresponding embedding of their character lattices, and let f0, . . . , fk

be Newton-nondegenerate Laurent polynomials on (C \ 0)n. Then for every γ ∈ (Zn−k)∗,
the truncation π

γ

f0,...,fk
is equal to the product

∏
δ πf δ

0 ,...,f δ
k

over all δ ∈ (Zn)∗ such that
δ|π×Zn−k = γ .

Because composite polynomials are defined up to a monomial multiplier, we can assume
that whenever πf δ

0 ,...,f δ
k

is a monomial, it is equal to 1. Under this assumption, the product
∏

δ∈Zn, δ|
π×Zn−k =γ πf δ

0 ,...,f δ
k

contains a finite number of factors different from 1. The proof of
this theorem is given at the end of this section. Theorem 11 is the geometric counterpart of
this theorem.

A Laurent polynomial f : (C \ 0)n → C is said to be homogeneous if there exist an epi-
morphism of complex tori (C \ 0)n → (C \ 0)n′

and a Laurent polynomial g : (C \ 0)n′ → C

such that n′ < n and f = g ◦ h up to a monomial factor. The polynomial g is called a
dehomogenization of f . Theorem 15 below implies that the operations of dehomogeniza-
tion and taking the composite polynomial commute in the following sense: if polynomials
f0, . . . , fk are “sufficiently homogeneous,” then their composite polynomial is also homo-
geneous, and its dehomogenization is equal to the composite polynomial of dehomogeniza-
tions of f0, . . . , fk raised to some power.

Every pair of tori epimorphisms (C \ 0)n−k π← (C \ 0)n h→ (C \ 0)n′
and corresponding

character lattice embeddings Z
n−k

π×
↪→ Z

n
h×
←↩ Z

n′
can be included in the commutative squares

(C \ 0)n h�→ (C \ 0)n′
Z

n
h×
←↩ Z

n′

↓ π ↓ π ′ and ↑ π× ↑ π ′×

(C \ 0)n−k h′�→ (C \ 0)n′−k Zn−k
h′×
←↩ Zn′−k

such that the image of Z
n′−k in Z

n is equal to the intersection π×
Z

n−k ∩ h×
Z

n′
.

Theorem 15 In this notation, if Laurent polynomials f0, . . . , fk on (C \ 0)n are homoge-
neous in the sense that fi = gi ◦ h up to a monomial factor for some Laurent polynomials
g0, . . . , gk on (C \ 0)n′

, then their composite polynomial πf0,...,fk
is homogeneous in the

sense that it is equal to g ◦ h′, where g = (π ′
g0,...,gk

)

∣
∣
Z

n / (π×
Z

n−k+h×
Z

n′
)

∣
∣

is a Laurent polyno-

mial on (C \ 0)n′−k .

The proof is given at the end of this section.
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4.2 Vertex coefficients

Definition 17 The product over roots RA1,...,Am(g0;g1, . . . , gm) is a rational function on the
space of collections of Laurent polynomials (g1, . . . , gm) such that the Newton polytope of
gi is Ai ⊂ Z

m. By definition, this function is equal to the product of values of a polynomial
g0 over the roots of the system g1 = · · · = gm = 0 for Newton-nondegenerate polynomials
g1, . . . , gm.

Lemma 1.2 is a formula for the vertex coefficient of a composite polynomial of one
variable in terms of products over roots. The following theorem extends this formula to
composite polynomials of several variables. Let π : Ck × Cn−k → Cn−k be the standard
projection and u1, . . . , uk be the standard coordinates on C

k . We suppose that f0, . . . , fk

are polynomials on C
k × C

n−k and that their Newton polytopes A0, . . . ,Ak ⊂ R
k × R

n−k

intersect all coordinate hyperplanes. We let A ⊂ R
n−k denote the Newton polytope of the

composite polynomial πf0,...,fk
and consider covectors γ1 and γ2 in (Zn−k)∗ with positive

integer coordinates. Let f̃i (u, t) be a Laurent polynomial fi(u, tγ2 + t−γ1) of k+1 variables
u1, . . . , uk, t and Ãi be its Newton polytope.

Theorem 16 If the polynomials f0, . . . , fk are Newton-nondegenerate and the covectors γ1

and γ2 are generic in the sense that the face
(
({a} × R

n−k) ∩ ∑
i Ai

)γj is a vertex for each
a ∈ R

k , then

1. the face Aγj of the polytope A is a vertex (let Bj denote it); the difference B1 − B2 is
equal to

(k + 1)!
∑

δ∈(Zk)∗
MMμ(A

γ1+δ

0 , . . . ,A
γ1+δ

k ) − MMμ(A
γ2+δ

0 , . . . ,A
γ2+δ

k ),

where μ is the unit volume form on Z
k and the mixed moment MM is defined in

Lemma 15; and

2. the ratio of the coefficients of the composite polynomial πf0,...,fk
at the vertices B1 and

B2 is equal to

(−1)γ1·B1+γ2·B2RÃ0,...,Ãk
(t; f̃0, . . . , f̃k).

After an appropriate monomial change of coordinates and multiplication of the poly-
nomials fi by appropriate monomials, this theorem can be used to find the ratio of the
coefficients of the composite polynomial πf0,...,fk

at two arbitrary vertices B1 and B2 of its
Newton polytope. If πf0,...,fk

is homogeneous, then a monomial change of coordinates is
unnecessary. If the Newton polytopes of the polynomials f0, . . . , fk satisfy a certain con-
dition of general position (see Definition 20), then Theorem 19 can be used to compute
R(t; f̃0, . . . , f̃k) explicitly.

Proof Part 1 of the theorem follows from Theorem 12. To prove part 2, we apply the fol-
lowing lemma to the composite polynomial πf0,...,fk

multiplied by a monomial such that its
Newton polytope belongs to the positive octant and intersects all coordinate hyperplanes. �
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Lemma 17 If the Newton polytope A of a polynomial g intersects all coordinate hyper-
planes and if γ1 and γ2 are covectors with positive integer components, then the ratio of the
coefficients of g at the vertices Aγ1 and Aγ2 is equal to (−1)γ1·B1+γ2·B2 times the product of
roots of the Laurent polynomial in one variable g(tγ2 + t−γ1).

This lemma is a corollary of the Vieta theorem.

4.3 Proof of Theorem 15

We extend the commutative square

(C \ 0)n h�→ (C \ 0)n′
(C \ 0)n p�→ T

p2�→ (C \ 0)n′

↓ π ↓ π ′ to ↓ p1 ↓ π ′

(C \ 0)n−k h′�→ (C \ 0)n′−k (C \ 0)n−k h′�→ (C \ 0)n′−k,

where p1 and p2 are the projections of (C \ 0)n−k × (C \ 0)n′
to the multipliers, T is the

kernel of the epimorphism h′ ◦ p1 − π ′ ◦ p2 : (C \ 0)n−k × (C \ 0)n′ → (C \ 0)n′−k , and
p = (π,h) : (C \ 0)n → (C \ 0)n−k × (C \ 0)n′

. The corresponding commutative diagram
of embeddings of character lattices implies that the image of p× is a sublattice of index
q = ∣

∣Zn / (π×
Z

n−k + h×
Z

n′
)
∣
∣ in Z

n. Hence, a fiber of the epimorphism p consists of q

points.
For a cycle N = ∑

i aiNi in a complex torus (C\0)m and an epimorphism p : (C\0)n →
(C \ 0)m, let p(−1)(N) denote the cycle

∑
i aip

(−1)(Ni). If m = n and a fiber of p consists
of q points, then p∗ ◦ p(−1)(N) = q · N . Hence, π∗ ◦ h(−1) = (p1)∗ ◦ p∗ ◦ p(−1) ◦ p

(−1)

2 =
q · (p1)∗ ◦ p

(−1)

2 = q · h(−1) ◦ π ′∗. To prove the statement of the theorem, we apply both sides
of this equality to the cycle [g0 = · · · = gk = 0].

4.4 Truncations of varieties

The proof of Theorem 14 is based on the following definition of a truncation of a variety
(just a more geometric reformulation of the usual definition; see [10]). By varieties, we
mean formal sums of irreducible algebraic varieties of the same dimension with positive co-
efficients. By the intersection of varieties, we mean the intersection counting multiplicities,
which makes sense only for proper intersections (the intersection of the varieties Vi is said
to be proper if its codimension is equal to the sum of the codimensions of Vi ). For an alge-
braic curve C ⊂ (C \ 0)n, there exists a unique compactification C̃ = C � {p1, . . . , pI } that
is smooth near all infinite points pi . A variety N ⊂ (C \ 0)n is said to be γ -homogeneous
for a linear function γ on the character lattice of the torus (C \ 0)n if N is invariant under
the action of the corresponding one-parameter subgroup {tγ | t ∈ (C \ 0)} ⊂ (C \ 0)n.

Definition 18 1. The truncation of an irreducible curve C ⊂ (C\0)n in the direction γ ∈ Z
n

is a curve Cγ = ∑
Ai , where the summation is over all infinite points pi of its compactifica-

tion C̃, and a curve Ai is given by a parameterization ci t
γ if C is given by a parameterization

ci t
γ + . . . near pi .
2. The truncation of an arbitrary curve C = ∑

miCi in the direction γ ∈ Z
n is a curve

Cγ = ∑
miC

γ

i .
3. The truncation of an m-dimensional variety M ⊂ (C \ 0)n in the direction γ ∈ Z

n is an
m-dimensional γ -homogeneous variety Mγ such that for any γ -homogeneous variety N of
dimension codimM + 1,
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a. if Mγ ∩ N is a curve, then M ∩ N is a curve, and

b. under this assumption, Mγ ∩ N = (M ∩ N)γ .

Lemma 18 1. There exists a unique truncation of a given variety in a given direction.
2. Let f1 = · · · = fk = 0 be a Newton-nondegenerate complete intersection. Then its

truncation in a direction γ is the complete intersection f
γ

1 = · · · = f
γ

k = 0.
3. There is a finite number of different truncations of a given variety.

Proof The uniqueness follows from the definition. The existence is a corollary of the fol-
lowing explicit construction for the truncation of M ⊂ (C \ 0)n in the direction γ ∈ Z

n.
Without loss of generality, we can assume that γ = (k,0, . . . ,0) and define Mγ as
p−1

1 (M ∩ {x1 = 0}), where x1, . . . , xn are the standard coordinates in C
n, p1 : (C \ 0)n →

{x1 = 0} is the standard projection, and M ⊂ C × (C \ 0)n−1 is the closure of the variety
M ⊂ (C \ 0)n ⊂ C × (C \ 0)n−1 counting multiplicities.

Part 2 of the lemma also follows from this construction. Indeed, the variety

p−1
1 ({f γ

1 = · · · = f
γ

k = 0} ∩ {x1 = 0})

is given by the ideal I generated by the γ -truncations of all the elements of the ideal
〈f1, . . . , fk〉. The ideal I is equal to 〈f γ

1 , . . . , f
γ

k 〉 because for any relation
∑

gif
γ

i = 0,
the polynomials gi are contained in the ideal 〈f γ

1 , . . . , f
γ

k 〉 (the last fact is equivalent to
the vanishing of the first homology group of the Koszul complex for a regular sequence
f

γ

1 , . . . , f
γ

k ).
In general, part 3 of the lemma follows from the existence of the c-fan or Gröbner fan of

the ideal of a variety M (see [12]). If M is a Newton-nondegenerate complete intersection,
which is the only important case for the proof of Theorem 14, then part 3 follows from part
2. Indeed, γ1- and γ2-truncations of a Newton-nondegenerate complete intersection f1 =
· · · = fk = 0 coincide if Aγ1 = Aγ2 , where A is the sum of the Newton polytopes �fi

. �

4.5 Proof of Theorem 14

Theorem 14 is a special case of the following theorem.

Theorem 17 Let π : (C \ 0)n → (C \ 0)n−k and π× : Z
n−k ↪→ Z

n be an epimorphism of
complex tori and the corresponding embedding of their character lattices, and let M ⊂
(C \ 0)n be a variety. Then the truncation

(
π∗(M)

)γ
is equal to the sum

∑
δ π∗(Mδ) over

all δ ∈ (Zn)∗ such that δ|π×Zn−k = γ (in particular, there is a finite number of nonempty
summands).

Proof If M is one-dimensional, then this theorem follows from the definition of the trun-
cation of a curve. If the dimension is arbitrary, then the number of nonempty summands
is finite by Lemma 18.3 because Mδ1 = Mδ2 , δ1 �= δ2, and δ1|π×Zn−k = δ2|π×Zn−k im-
plies π∗Mδ1 = π∗Mδ2 = ∅. If a (codimM−k+1)-dimensional γ -homogeneous variety
N ⊂ (C \ 0)n−k intersects all summands π∗(Mδ) properly, then

N ∩
∑

δ∈(Zn)∗,
δ|

π×Zn−k =γ

π(Mδ) = (
N ∩ π(M)

)γ (1)⇔
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π∗
( ∑

δ∈(Zn)∗,
δ|

π×Zn−k =γ

π(−1)(N) ∩ Mδ
)

=
(
π∗

(
π(−1)(N) ∩ M

))γ (2)⇔

π∗
( ∑

δ∈(Zn)∗,
δ|

π×Zn−k =γ

π(−1)(N) ∩ Mδ
)

= π∗
( ∑

δ∈(Zn)∗,
δ|

π×Zn−k =γ

(
π(−1)(N) ∩ M

)δ
)
.

Here the last equation follows from the definition of a truncation of the variety M . Equiv-
alence (2) is the statement of the theorem for a curve π(−1)(N) ∩ M . Equivalence (1) is a
corollary of the fact that π∗(A ∩ π(−1)B) = (π∗A) ∩ B for any varieties A ⊂ (C \ 0)n and
B ⊂ (C \ 0)n−k . �

5 Leading coefficients of a composite polynomial: Explicit answers for generic
Newton polytopes

Definition 19 The edge coefficients of a polynomial f are the coefficients of its monomials
that correspond to the integer lattice points on the edges of the Newton polytope �f .

We can compute the Newton polytope and the vertex and edge coefficients of a composite
polynomial πf0,...,fk

explicitly if the Newton polytopes of the polynomials f0, . . . , fk satisfy
the following condition of general position.

Definition 20 Polytopes A0, . . . ,Ak in R
n are said to be developed if the following condi-

tion is satisfied: if the faces B0, . . . ,Bk of the polytopes A0, . . . ,Ak sum to a k-dimensional
face of the Minkowski sum A0 + · · · + Ak , then Bi is a vertex of Ai for some i.

5.1 Elimination theory for polynomials with developed Newton polytopes

If the Newton polytopes of the polynomials f0, . . . , fk are developed, then the explicit com-
putation of the Newton polytope and the vertex and edge coefficients of the composite poly-
nomial πf0,...,fk

is based on the following facts:

• The polynomials f0, . . . , fk are Newton-nondegenerate, and the assumption of Newton
nondegeneracy in Theorems 2.1, 14, 15, and 16 is redundant.

• Theorems 14, 15, and 16 express the vertex and edge coefficients of a composite polyno-
mial of several variables in terms of composite polynomials of one variable.

• Passing to the right-hand side in the formulation of Theorems 14, 15, and 16 preserves
the property that the Newton polytopes are developed (see Lemmas 19 and 20 below).

• If πf0,...,fk
is a composite polynomial of one variable, then Lemma 1 implies that Kho-

vanskii’s product formula (Theorems 18 and 19) and the Gelfond-Khovanskii formula
(Theorem 17) can be seen as the respective explicit formulas for the vertex coefficient
and the edge coefficients of πf0,...,fk

.

Lemma 19 1. In the notation in Theorem 14, if the Newton polytopes of the polynomials
f0, . . . , fk are developed, then the Newton polytopes of the polynomials f δ

0 , . . . , f δ
k are also

developed for every covector δ.
2. In the notation in Theorem 15, if the Newton polytopes of the polynomials f0, . . . , fk

are developed, then the Newton polytopes of the polynomials g0, . . . , gk are developed.
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These facts follow from the definitions, and we omit the proof.
But in the notation in Theorem 16, the Newton polytopes of the polynomials f̃0, . . . , f̃k

are usually not developed (regardless of the Newton polytopes of the polynomials
f0, . . . , fk), and we must consider the following (weaker) condition.

Definition 21 Polytopes A1, . . . ,An in Rn are said to be developed with respect to a point
b ∈ R

n if the following condition is satisfied: if the faces B1, . . . ,Bn of the polytopes
A1, . . . ,An sum to a face of the Minkowski sum A1 + · · · + An, then Bi is a vertex of
Ai for some i unless B1 + · · · + Bn contains a segment parallel to the vector b ∈ R

n.

Lemma 20 In the notation in Theorem 16, if the Newton polytopes of the polynomials
f0, . . . , fk are developed, then the Newton polytopes of the polynomials f̃0, . . . , f̃k are de-
veloped with respect to the degree of the monomial t .

5.2 The Gelfond–Khovanskii formula and Khovanskii’s product formula

Definition 22 For a collection of polytopes A1, . . . ,An in R
n, let φi be a nonnegative real-

valued function on the boundary ∂(A1 + · · · + An) such that its zero set is the union of all
faces of the form B1 + · · · + Bn, where B1, . . . ,Bn are the respective faces of A1, . . . ,An

and Bi is a vertex. The combinatorial coefficient Ca of a vertex a ∈ (A1 + · · · + An) is the
local degree of the map (φ1, . . . , φn) : ∂(A1 + · · · + An) → ∂R

n+ near a if φ1 · · · · · φn = 0
near a.

In particular, the definition of the combinatorial coefficient makes sense for all vertices
of the sum of developed polytopes.

Definition 23 Let f1, . . . , fn, g be Laurent polynomials of the variables x1, . . . , xn, and let
their Newton polytopes A1, . . . ,An be developed. The residue resa ωf·,g of a form ωf·,g =
g dx1 ∧ · · · ∧ dxn/(f1 · · ·fnx1 · · ·xn) at a vertex a of the polytope

∑
Ai is defined as the

constant term of the series

g
1

p(a)

1

p/p(a)
,

where p is the product f1 · · · · · fn, p(a) is its term of degree a of the polynomial p, and
1/(p/p(a)) is the inverse of the polynomial p/p(a) near the origin.

Theorem 18 [3] Let f1, . . . , fn be Laurent polynomials on (C \ 0)n, and let their Newton
polytopes A1, . . . ,An be developed. Then the sum of the values of a Laurent polynomial h

over the roots of the system f1 = · · · = fn = 0 (with multiplicities of the roots taken into
account) is equal to (−1)n

∑
a Ca resa ω

f·,hdet ∂f·
∂x·

, where a ranges all vertices of the poly-

tope
∑

Ai .

Let Z
n×m
2 be the space of Z2 matrices with n rows and m columns.

Definition 24 There exists a unique nonzero function det2 : Z
n×(n+1)

2 → Z2 that is linear
and symmetric as a function of columns and vanishes at degenerate matrices. It is called the
2-determinant.
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Definition 25 Let f1, . . . , fn be Laurent polynomials on (C \ 0)n, and let their Newton
polytopes A1, . . . ,An be developed. The Parshin symbol [f1, . . . , fn, x

b]a of the monomial
xb at a vertex a of the polytope

∑
Ai is the product

(−1)det2(a1,...,an,b)f1(a1)
−det(b,a2,...,an) · · ·fn(an)

−det(b,a1,...,an−1),

where fi(a) is the term of degree a of the polynomial fi .

Theorem 19 [2] Let f1, . . . , fn be Laurent polynomials on (C \ 0)n, and let their Newton
polytopes A1, . . . ,An be developed. Then the product of the values of the monomial xA0 over
the roots of the system f1 = · · · = fn = 0 (with multiplicities of the roots taken into account)
is equal to

∏
a[f1, . . . , fn, x

A0 ](−1)nCa
a , where a ranges all vertices of the polytope

∑
Ai .

In particular, this product is a monomial as a function of the vertex coefficients of the
polynomials f1, . . . , fn, and this theorem can be seen as a multidimensional generalization
of the fact that the constant term of a polynomial in one variable is equal to the product of
the negatives of its roots.

5.3 Khovanskii’s product formula for Newton polytopes developed with respect to a point

Lemma 20 implies that we must generalize Theorem 18 to polytopes developed with re-
spect to a point for it to be applicable in the context of Theorem 16. For a polytope
A ⊂ R

n and a concave piecewise-linear function v : A → R, let N(v) denote the polyhe-
dron {(a, t) |a ∈ A, t ≤ v(a)} ⊂ Rn ⊕ R1. Let v1, . . . , vn be piecewise-linear functions on
the polytopes A1, . . . ,An ⊂ R

n. Let � denote the union of all bounded faces of the polytope∑
i N(vi) ⊂ Rn ⊕ R1; � is a topological disc. Let �j ⊂ ∂� be the union of all faces that can

be represented as
∑

i Bi , where Bi are faces of N(vi), i = 1, . . . , n, and Bj is a point. We
consider a continuous map (φ1, . . . , φn) : ∂� → Rn+ such that the zero set of a function φj

is �j .

Definition 26 Functions v1, . . . , vn are said to be developed if the image of the map
(φ1, . . . , φn) is contained in the boundary of the positive octant R

n+. A point a ∈ ∂(A1 +
· · · + An) is called a vertex of the sum A1 + · · · + An with respect to the functions vj if it is
equal to the projection of some vertex b ⊂ ∂� of the sum N(v1) + · · · + N(vn). In this case
b = b1 + · · · + bn, where bj is a vertex of the polyhedron N(vj ), and we let aj denote the
projection of bj .

The combinatorial coefficient Ca of a vertex a is the local topological degree of the
map (φ1, . . . , φn) : � → ∂R

n+ at the point b. The Parshin symbol [f1, . . . , fn, x
k]a of the

monomial xk at this vertex is the product

(−1)det2(a1,...,an,k)f1(a1)
−det(k,a2,...,an) · · ·fn(an)

−det(k,a1,...,an−1),

where fi(a) is the term of degree a of the polynomial fi .

Theorem 20 If the polytopes A1, . . . ,An ⊂ Z
n are developed with respect to A0, then the

function RA1,...,An(x
A0;f1, . . . , fn) (see Definition 17) is equal to the monomial in the vertex

coefficients of polynomials f1, . . . , fn

∏

a is a vertex of A1+···+An
with respect to v1,...,vn

[f1, . . . , fn, x
A0 ](−1)nCa

a ,
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where v1, . . . , vn are arbitrary developed functions on the polytopes A1, . . . ,An such that
all vertices of A1 + · · · + An with respect to v1, . . . , vn are integer.

Theorem 18 is a special case of this theorem for developed polytopes A1, . . . ,An and
developed functions vi = 0 on them. The statement in Theorem 19 holds for Newton-
degenerate polynomials f1, . . . , fn, but RA1,...,An(x

A0;f1, . . . , fn) is not equal to the product
of the values of the monomial xA0 over the roots of the system f1 = · · · = fn = 0 in this
case.

Proof The main point in the proof of Theorem 18 (see [2]) is the following fact: if the
polynomials f1, . . . , fn depend on a parameter s ∈ (C \ 0) and if their Newton polytopes
are developed and are independent of s, then the product of the values of the monomial xA0

over the roots of the system f1 = · · · = fn = 0 as a function of s is a monomial because it is
a rational function of s that has no zeroes and no poles. We can easily verify that the same
holds under the assumption that the Newton polytopes of f1, . . . , fn are developed with
respect to A0 if we consider the function RA1,...,An(x

A0;f1, . . . , fn) instead of the product of
xA0 over the roots of the system f1 = · · · = fn = 0. �

6 Other versions of elimination theory in the context of Newton polytopes

In this paper, we have discussed common zeros of Laurent polynomials with the multiplici-
ties of zeros taken into account. Of course, the same theory can be developed in many other
contexts. We give some examples.

6.1 Square-free composite polynomials

The square-free standpoint is usual when discussing Newton polytopes of multidimen-
sional resultants. For a finite set A ∈ Z

n, let C[A] denote the set of all Laurent polyno-
mials

∑
a∈A cax

a . We consider an epimorphism π : (C \ 0)n → (C \ 0)n−k and finite sets
A0, . . . ,Ak in the character lattice Z

n of the complex torus (C \ 0)n.
The composite polynomial πf0,...,fk

is not square-free for a collection of polynomials
(f0, . . . , fk) ∈ C[A0] ⊕ · · · ⊕ C[Ak] if the sets A0, . . . ,Ak ⊂ Z

n are degenerate in some
sense. Let π0

f0,...,fk
be the square-free polynomial that has the same zeros as πf0,...,fk

. The
theorem stated below expresses the square-free composite polynomial π0

f0,...,fk
in terms

of πf0,...,fk
.

Definition 27 Let L ⊂ Z
n be an (n−k)-dimensional lattice and p : Z

n → Z
k be the projec-

tion along L. The multiplicity d(A0, . . . ,Ak,L) of the collection of finite sets A0, . . . ,Ak ⊂
Z

n with respect to L is defined as follows:

1. if dimp(Ai1 + · · · + Aiq ) < q − 1 for some numbers 0 ≤ i1 < · · · < iq ≤ k, then
d(A0, . . . ,Ak,L) = 0;

2. otherwise, we choose the minimal nonempty set {i1, . . . , iq} ⊂ {0, . . . , k} such that
dimp(Ai1 + · · · + Aiq ) = q − 1, choose the minimal sublattice M ⊂ Z

n that contains
the sum Ai1 + · · · + Aiq + L up to a shift, and note that codimM = k + 1 − q . Let
r denote the projection Z

n → Z
k+1−q along M and {j1, . . . , jk+1−q} denote the set

{0, . . . , k} \ {i1, . . . , iq}. In this notation,

d(A0, . . . ,Ak,L) = (k + 1 − q)!MV(rAj1 , . . . , rAjk+1−q
) · |ker r/M|.
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For example, let L ⊂ Z
2 be the horizontal coordinate axis. Then d(A1,A2,L) = 0 iff both

A1 and A2 are contained in horizontal segments. If one of them is contained in a horizontal
segment, then d(A1,A2,L) is equal to the height of the other one. If neither A1 nor A2 is
contained in a horizontal segment, then d(A1,A2,L) is equal to the GCD of the lengths of
vertical segments connecting points of the set A1 + A2 + L.

Theorem 21 We consider an epimorphism of complex tori π : (C \ 0)n → (C \ 0)n−k , the
corresponding embedding of their character lattices L ⊂ Zn, and finite sets A0, . . . ,Ak

⊂ Z
n.

1. If d(A0, . . . ,Ak,L) = 0, then π0
f0,...,fk

= πf0,...,fk
= 1 for all collections of polynomials

(f0, . . . , fk) ∈ C[A0] ⊕ · · · ⊕ C[Ak].
2. Otherwise, (π0

f0,...,fk
)d(A0,...,Ak,L) = πf0,...,fk

for all collections of polynomials f0, . . . , fk

from some Zariski open subset of the space C[A0] ⊕ · · · ⊕ C[Ak].

We note that this Zariski open subset neither contains nor is contained in the set of all
Newton-nondegenerate collections of polynomials. In particular, this theorem implies that
the Newton polytope of π0

f0,...,fk
is d(A0, . . . ,Ak,L) times smaller than the Newton polytope

of πf0,...,fk
for a generic collection of polynomials (f0, . . . , fk) ∈ C[A0] ⊕ · · · ⊕ C[Ak].

Proof Part 1 of the theorem is a corollary of Theorem 5.1. Applying Theorem 5.2 and The-
orem 15, we can reduce part 2 to the following special case. �

Definition 28 Let L ⊂ Z
n be an (n − k)-dimensional lattice L ⊂ Z

n and p : Z
n → Z

k be
the projection along L. A collection of finite sets A0, . . . ,Ak ⊂ Z

n is said to be essential
with respect to L ⊂ Z

n if dimp(Ai1 + · · · + Aiq ) > q − 1 for every collection of numbers
0 ≤ i1 < · · · < iq ≤ k, q ≤ k, and the sum A0 + · · · + Ak + L is not contained in a shifted
proper sublattice of Z

n.

We note that d(A0, . . . ,Ak,L) = 1 if the collection A0, . . . ,Ak ⊂ Z
n is essential with

respect to L, but the converse is not true. For example, if L ⊂ Z
2 is the horizontal coordi-

nate axis, then A1 and A2 form an essential collection iff neither of them is contained in a
horizontal segment and d(A1,A2,L) = 1.

Lemma 21 If A0, . . . ,Ak are essential with respect to L, then π0
f0,...,fk

= πf0,...,fk
for all

collections of polynomials f0, . . . , fk from some Zariski open subset of the space C[A0] ⊕
· · · ⊕ C[Ak].

The proof is a straightforward generalization of a similar argument for multidimen-
sional resultants (see Theorem 1.1 in [5], where the notion of essential sets was introduced
for k = n).

6.2 Composite functions of rational functions

Definition 29 A vertex of a virtual polytope A − B is a pair of vertices (a, b) of the poly-
topes A and B such that a + b is a vertex of the sum A + B . The Newton polytope of a
rational function f/g is the difference of the Newton polytopes of f and g. The vertex co-
efficient of a rational function f/g at the vertex (a, b) of its Newton polytope is the ratio of
the vertex coefficients of the polynomials f and g at the respective vertices a and b.
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Elimination theory can be readily generalized from Laurent polynomials and convex
polytopes to rational functions and virtual polytopes.

6.3 Composite functions of germs of analytic functions

A convex polyhedron in R
n is an intersection of a finite number of half-spaces (which may

be unbounded). Two convex polyhedra in R
n are said to be parallel if their support func-

tions have the same domain. For a germ of an analytic function f : (Cn,0) → (C,0) of the
variables x1, . . . , xn, the Newton polyhedron is defined as the minimal polyhedron parallel
to the positive octant in the lattice of monomials in x1, . . . , xn and containing all monomials
of the Taylor expansion of f . Elimination theory can be readily generalized from Laurent
polynomials and bounded polyhedra to germs of analytic functions and polyhedra parallel
to the positive octant. It requires the following version of Bernstein’s theorem.

Definition 30 [11, 12] Let PC be the set of all pairs of polyhedra (A,B) such that A

and B are both parallel to a cone C and the difference A�B is bounded. The notions
of the Minkowski sum (A,B) + (C,D) = (A + C,B + D) and volume Vol

(
(A,B)

) =
Vol(A \ B) − Vol(B \ A) for such pairs yield the mixed volume VC : PC × · · · × PC︸ ︷︷ ︸

n

→ R,

which is the polarization of the volume with respect to Minkowski summation.

If the cone C consists of one point ∗, then PC is the set of pairs of bounded polyhedra,
Vol

(
(A,B)

) = Vol(A) − Vol(B), and hence

V∗((A1,B1), . . . , (An,Bn)) = MV(A1, . . . ,An) − MV(B1, . . . ,Bn).

If C �= {∗}, then the mixed volumes in the right-hand side are infinite, but “their difference
is well defined.”

Lemma 22 [12] We have

VC((A1,B1), . . . , (An,Bn)) + VC((B1,C1), . . . , (Bn,Cn))

= VC((A1,C1), . . . , (An,Cn)).

Let μ be the unit volume form in R
n, S be the positive octant in (Rn)∗, and S0 ⊂ S be a

set of covectors that contains a unique multiple of each covector in S.

Lemma 23 [12] We have

VC((A1,B1), . . . , (An,Bn)) = 1

n

∑

γ∈S0

n∑

i=1

(maxγ (Ai) − maxγ (Bi))

× MVμ/γ (A
γ

1 , . . . ,A
γ

i−1,B
γ

i+1, . . . ,B
γ
n ).

We note that the right-hand side of this formula is not symmetric under permutations of
pairs. The sum in the right-hand side makes sense because it contains finitely many nonzero
summands (which correspond to normal covectors of bounded (n−1)-dimensional faces of
the sum A1 +B1 +· · ·+An +Bn). The (n−1)-dimensional mixed volume in the right-hand
side makes sense because all arguments are contained in the (n−1)-dimensional space kerγ .
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Definition 31 A polyhedron is called an M-far stabilization of a polyhedron � ⊂ R
n+

parallel to the positive octant R
n+ if it can be represented as the convex hull of a union

� ∪ � for some polyhedron � ⊂ R
n+ such that the distance between � and the ori-

gin is greater than M and the difference R
n+ \ � is bounded. The mixed volume of (un-

bounded) polyhedra �1, . . . ,�n ⊂ R
n+ parallel to R

n+ is defined as the mixed volume of
pairs (Rn+, �̃1), . . . , (R

n+, �̃n), where �̃i is an M-far stabilization of �i if the mixed volume
of these pairs is independent of the choice of M-far stabilizations for some M (in this case,
we say that the mixed volume of �1, . . . ,�n is well defined).

Theorem 22 1. The mixed volume of polyhedra �1, . . . ,�n ⊂ R
n+ parallel to the positive

octant R
n+ is well defined iff each k-dimensional coordinate plane intersects at least k of

these polyhedra.
2. If the germs of the functions f1, . . . , fn : (Cn,0) → (C,0) have an isolated common

root of multiplicity μ, then the mixed volume V of their Newton polyhedra is well defined,
and μ ≥ n!V .

3. If the mixed volume V of the integer polyhedra �1, . . . ,�n ⊂ R
n+ parallel to the

positive octant R
n+ is well defined, then the germs of the analytic functions f1, . . . , fn :

(Cn,0) → (C,0) have an isolated common root of multiplicity n!V if their Newton poly-
hedra are equal to �1, . . . ,�n and their leading coefficients are in general position in the
sense that for any collection of bounded faces A1 ⊂ �1, . . . ,An ⊂ �n such that the sum
A1 + · · · + An is a face of the sum �1 + · · · + �n, the Laurent polynomials f1|A1 , . . . , fn|An

have no common zeros in (C \ 0)n.

Proof Part 1 of the theorem follows from Lemma 22, and parts 2 and 3 follow from part 1
and a local version of Bernstein’s formula (see Theorem 3 in [12]). �
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