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Abstract. We define a class of L-convex-concave subsets of RP n, where
L is a projective subspace of dimension l in RP n. These are sets whose
sections by any (l + 1)-dimensional space L′ containing L are convex
and concavely depend on L′. We introduce an L-duality for these sets
and prove that the L-dual to an L-convex-concave set is an L∗-convex-
concave subset of (RP n)∗. We discuss a version of Arnold’s conjecture
for these sets and prove that it is true (or false) for an L-convex-concave
set and its L-dual simultaneously.

2000 Math. Subj. Class. 52A30, 52A35.

Key words and phrases. Separability, duality, convex-concave set, nonde-
generate projective hypersurfaces.

Introduction

Convex-concave sets and Arnold’s conjecture. The notion of convexity is
usually defined for subsets of affine spaces, but it can be generalized to subsets
of projective spaces. Namely, a subset of projective space RPn is called convex if
it doesn’t intersect some hyperplane L ⊂ RPn and is convex in the affine space
RPn \L. In the very definition of a convex subset of projective space, a hyperplane
L appears. Projective space has subspaces L of different dimensions, not only
hyperplanes. For any subspace L, we can define a class of L-convex-concave sets.
These sets are the main object of investigation in this paper. If L is a hyperplane,
then this class coincides with the class of closed convex sets lying in the affine chart
RPn \ L. The definition of L-convex-concave sets is as follows.

A closed set A ⊂ RPn is L-convex-concave if (i) the set A doesn’t intersect the
projective subspace L, (ii) for any (dim L + 1)-dimensional subspace N ⊂ RPn

containing L, the section A ∩ N of the set A by N is convex, and (iii) for any
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(dim L− 1)-dimensional subspace T ⊂ L, the complement to the projection of the
set A from the center T on the factor-space RPn/T is an open convex set.

Example. In projective space RPn with homogeneous coordinates x0 : · · · : xn,
consider the set A ⊂ RPn defined by the inequality {K(x) ≤ 0}, where K is a non-
degenerate quadratic form on Rn+1. Suppose that K is positive definite on some
(k + 1)-dimensional subspace and negative definite on some (n − k)-dimensional
subspace. In other words, suppose that K is of the form K(x) = x2

0 + · · · + x2
k −

x2
k+1 − · · · − x2

n up to a linear change of coordinates. In this case, the set A is
L-convex-concave with respect to the projectivization L of any (k +1)-dimensional
subspace of Rn+1 on which K is positive definite.

We are mainly interested in the following conjecture.

Main Conjecture. Any L-convex-concave subset A of an n-dimensional projective
space contains a projective subspace M of dimension (n− 1− dim L).

Note that any projective subspace of dimension larger than (n − 1 − dim L)
necessarily intersects L, so it cannot be contained in A. For the quadratic set A
from the above example, the main conjecture is evidently true: as M we can take
the projectivization of any (n − k)-dimensional subspace of Rn+1 on which K is
negative definite.

For an L-convex-concave set A with a smooth non-degenerate boundary B, the
main conjecture is a special case of the following conjecture of Arnold ([Ar1], [Ar2]).

Arnold’s Conjecture. Let B ⊂ RPn be a connected smooth hypersurface bounding
some domain U ⊂ RPn. Suppose that, at any point of B, the second fundamental
form of B with respect to the outer normal vector is non-degenerate. Suppose that
this form has (necessarily constant) signature (n − k − 1, k), i. e., at each point
b ∈ B, the restriction of the second quadratic form to some k-dimensional subspace
of TbB is negative definite and its restriction to some (n − k − 1)-dimensional
subspace of TbB is positive definite.

Then there exist a projective subspace of dimension (n− k− 1) contained in the
domain U and a projective subspace of dimension k in the complement RPn \ U .

Our main conjecture and the very notion of L-convex-concavity arose from an
attempt to prove or disprove the Arnold conjecture. We were not able to prove it
in full generality. However, we obtained several results in this direction.

We proved the Arnold conjecture for hypersurfaces satisfying the following addi-
tional assumption: there exist a non-degenerate quadratic cone K and a hyperplane
π ⊂ RPn not passing through the vertex of the cone such that, first, the hyper-
surface and the cone K have the same intersection with the hyperplane π and,
secondly, at each point of this intersection, the tangent planes to the hypersurface
and to the cone coincide (the proof is given in [KhN2]).

There is the affine version of the Arnold conjecture, where RPn is replaced
by Rn (and the question is whether there exist affine subspaces of dimensions k
and (n − k − 1) in U and Rn \ U , respectively). Our second result is an explicit
construction of a counterexample to this affine version of Arnold’s conjecture (see
[KhN2]). The main role in this construction is played by affine convex-concave sets.
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The class of (L)-convex-concave subsets of Rn is defined as follows. Fix the class
(L) of (k + 1)-dimensional affine subspaces of Rn parallel to L. Its elements are
parameterized by points of the quotient space Rn/N , where N is the (only) linear
subspace from this class. A set A is called affine (L-) convex-concave if

(1) the section A ∩N of A by any subspace N ∈ (L) is convex and
(2) the section A ∩Na depends concavely on the parameter a ∈ Rn/N .

The latter condition means that, for any segment at = ta + (1 − t)b, where
0 ≤ t ≤ 1, in the parameter space Rn/N , the section A ∩ Nat is contained inside
the linear combination (in the Minkowski sense) t(A∩Na) + (1− t)(A∩Nb) of the
sections A ∩ Na and A ∩ Nb. Any projective L-convex-concave set is affine (L)-
convex-concave in any affine chart not containing L with respect to the class (L)
of the (dim L + 1)-dimensional affine subspaces whose closures in RPn contain L.

For the class (L) of planes parallel to L in R3, we constructed an (L)-convex-
concave set A ⊂ R3 not containing lines with smooth and everywhere non-degen-
erate boundary, see [KhN2]. However, all our attempts to modify the example in
such a way that its closure A ⊂ RP 3 be L-convex-concave failed. In the end, we
have proved that this is impossible; to be more precise, the main conjecture is true
for R3 and any L-convex-concave set with dim L = 1 (see [KhN1]). This is the only
case of the main conjecture which we were able to prove (except the trivially true
cases of dim L = 0 and dim L = n−1 in projective space RPn of any dimension n).

The main conjecture in the three-dimensional case. Our proof of the main
conjecture in the three-dimensional case is quite lengthy. In this paper, we construct
an L-duality needed for the fourth step of the proof (see the sketch of the proof
below). The third step of the proof involves a cumbersome combinatorics, see
[KhN1].

Below, we give a sketch of the proof and clarify the role of L-duality.

Sketch of the proof. Any line lying inside an L-convex-concave set A ⊂ RP 3 inter-
sects all convex sections A ∩ N of A by planes N containing the line L, and vice
versa, any line intersecting all these sections lies in A. The first step of the proof
is an application of a Helly theorem [He1], [He2]. Consider the four-dimensional
affine space of all lines in RP 3 not intersecting L; let UN be the convex subsets
of this space consisting of all lines intersecting the section A ∩ N . Applying the
Helly theorem to the family UN , we conclude that if, for any five sections A ∩Ni,
i = 1, . . . , 5, there is a line intersecting all of them, then there is a line intersecting
all the sections.

For any four sections, we can prove the existence of a line intersecting all of them.
The second step consists in prooving this assertion (in any dimension). Namely, we
have the following proposition.

Proposition 1 (about four sections). Let A be an L-convex-concave subset of RPn,
and let dim L = n−2. Then, for any four sections A∩Ni of the set A by hyperplanes
Ni, where i = 1, . . . , 4 and Ni ⊃ L, there exists a line intersecting all of them.

The proof uses a theorem of Browder [Br]. This theorem is a version of the
Brawer fixed point theorem asserting the existence of a fixed point for a continuous
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self-mapping of a closed n-dimensional ball. The Browder theorem deals with set-
valued upper semi-continuous maps of a convex set Bn into the set of all its closed
convex subsets. The Browder theorem claims that there is a point a ∈ Bn such
that a ∈ f(a).

We use it as follows. Since the set A ⊂ RPn is L-convex-concave and because
of the assumption codim L = 2, we easily deduce that, for any three sections Ai =
A ∩ Ni with i = 1, 2, 3, and any point a1 ∈ A1, there is a line passing through
a1 and intersecting both A2 and A3. For the four sections Ai = A ∩ Ni, where
i = 1, . . . , 4, and a point a1 ∈ A1, consider all pairs of lines l1 and l2 such that

(1) the line l1 passes through a1 and intersects A2 and A3;
(2) the line l2 passes through the intersection point of l1 and A3, intersects A4,

and intersects A1 at a point a′1.

Consider a set-valued mapping f of the section A1 to the set of all its subsets
which maps the point a1 to the set of all points a′1 that can be obtained as specified
above. We prove that f satisfies conditions of the Browder theorem. Hence there
exists a point a1 ∈ A1 such that a1 ∈ f(a1). This means that there is a line l1
passing through this point and coinciding with the corresponding line l2. Therefore,
this line intersects the sections A2, A3, and A4, which completes the second step of
the proof.

The proof of the existence of a line intersecting the sections A ∩ Ni, with i =
1, . . . , 5 (they are assumed to be fixed from now on) is quite complicated; the
outline is as follows. Choose an affine chart containing all the five sections and not
containing the line L. Fix a Euclidean metric in this chart.

We define the distance from a line l to the collection of sections A ∩Ni, where
i = 1, . . . , 5, as the maximum distance from the point ai = l ∩ Ni to the section
A ∩Ni, over i = 1, . . . , 5. A line l is a Chebyshev line if the distance from l to the
sections A ∩Ni, i = 1, . . . , 5, is minimal. We prove that, for the Chebyshev lines,
these distances are all equal. With a Chebyshev line l, we associate five half-planes
p+

i ⊂ Ni. These half-planes are supporting to the sections A ∩ Ni at the points
bi ∈ A ∩Ni closest to ai among all points of the section A ∩Ni. We have to prove
that the distance from L to the sections is equal to zero, i. e., that ai = bi.

To prove this, it is sufficient to find a line l′ intersecting all half-planes p+
i with

i = 1, . . . , 5. Indeed, if ai 6= bi then, slightly moving the line l in the direction
of the line l′, we can decrease the distance from the line l to the sections A ∩ Ni,
i = 1, . . . , 5, which is impossible. So, it is sufficient to prove that there exists a
line l intersecting the five support half-planes p+

i ⊂ Ni, where i = 1, . . . , 5.
We say that the configuration of half-planes p+

i ⊂ Ni, i = 1, . . . , 5, is non-
degenerate if their boundaries intersect the line L in five different points. Otherwise,
i. e., if their boundaries intersect L in less than five points, we call the configuration
degenerate. We prove the existence of the line l′ separately for non-degenerate
(step 3) and degenerate (step 4) configurations.

A detailed proof of the third step is given in [KhN1].
Below we give a brief sketch of this third step. The proof of the existence of a

line intersecting all the five half-planes p+
i ⊂ Ni of a non-degenerate configuration

is based on a detailed analysis of combinatorial properties of each possible configu-
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ration. It turns out that there are essentially only six possible combinatorial types.
For different combinatorial types of configurations, the proofs are different, though
in the same spirit.

A rough description of the most general scheme is as follows. Instead of the
half-planes p+

i ⊂ Ni, i = 1, . . . , 5, consider extended half-planes pi such that

(1) p+
i ⊂ pi ⊂ Ni;

(2) the boundaries of the half-planes pi intersect the Chebyshev line; and
(3) the intersections of the boundaries of pi and p+

i with the line L coincide.

It is sufficient to prove that there exists a line intersecting all the extended half-
planes pi ⊂ Ni, i = 1, . . . , 5, and at least one of the intersection points is interior.
Take the planes πi containing the Chebyshev line l and the boundaries of half-planes
pi for i = 1, . . . , 5. Each half-plane pj is divided by the planes πi into five sectors.
The minimizing property of the Chebyshev line l implies that some of the sectors
necessarily intersect the convex-concave set A.

Using the combinatorial properties of the configuration, we choose four half-
planes and a sector on one of them which intersects the set A. Applying the Browder
theorem (as at step 2), we prove the existence of a line intersecting the four sections
in some prescribed sectors of the corresponding half-planes. The combinatorial
properties of the configuration imply that the constructed line intersects the fifth
half-plane, q.e.d.

In the present paper, we prove, among the other things, the assertion of the
fourth step, i. e., the existence of a line intersecting all the five half-planes p+

i ⊂ Ni

of a degenerate configuration. It is proved as follows. All hyperplanes N ⊂ RPn

containing a fixed subspace L of codimension 2 can be parameterized by points
of the projective line RPn/L; so they carry a natural cyclic order. We say that
an L-convex-concave set A with dim L = n − 2 is linear between cyclically ordered
sections Ai = A ∩Ni if the intersection Aij of the set A with the half-space of the
projective space bounded by the two adjacent hyperplanes Ni and Ni+1 coincides
with the convex hull of the sections Ai = A∩Ni and Ai+1 = A∩Ni+1 (the convex
hull is taken in an arbitrary affine chart RPn \Nj , where j 6= i and j 6= i + 1, and
does not depend on the choice of the chart).

Proposition 2. Let A be an L-convex-concave subset of RPn, where dim L = n−2.
Suppose that there exist four sections of the set A such that A is linear between these
sections. Then the set A contains a line.

This is a reformulation of Proposition 1.
We prove the following assertion, which is dual to Proposition 2.

Proposition 3 (about sets with octagonal sections). Let D ⊂ RPn be an L-
convex-concave set, where dim L = 1. Suppose that any section D ∩ N of D by
any two-dimensional plane N containing the line L is an octagon whose sides lie
on lines intersecting the line L in four fixed (i. e., not depending on N) points; in
other words, each octagon has four pairs of “parallel” sides intersecting L in a fixed
point. Then there exists an (n− 2)-dimensional projective subspace intersecting all
planar sections D ∩N , where L ⊂ N , of the set D.
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In fact, the main goal of this paper is to give a definition of an L-duality with
respect to which the two propositions above are dual and establish the general
properties of this duality required to reduce Proposition 3 to Proposition 2.

Let us return to step 4 of the proof. In the cases of the degenerate configu-
ration, the boundaries of the five half-planes p+

i , i = 1, . . . , 5, intersect the line
L in at most four points. We assume that their number is exactly four and de-
note them by Q1, Q2, Q3, and Q4. Now, consider the surgery of the set A which
consists in replacing each convex section A ∩ N of the set A, where L ⊂ N , by a
circumscribed octagon whose four pairs of parallel sides intersect the line L at the
points Q1, . . . , Q4. In Section 6, we prove that the application of this surgery to
an L-convex-concave set A gives an L-convex-concave set D. The set D satisfies
the conditions of Proposition 3, so there exists a line intersecting all octagonal sec-
tions of the set D. This line intersects all the half-planes p+

i , i = 1, . . . , 5, which
completes the proof of the main conjecture in the three-dimensional case. �

L-duality and the plan of the paper. There are several well-known types
of duality, e. g., the usual projective duality or the duality between the convex
subsets of Rn containing the origin and the convex subsets of the dual space.
Different types of duality are useful for different purposes. Here, we shall con-
struct an L-duality, which maps an L-convex-concave subset A of projective space
RPn to a set A⊥

L in the dual projective space (RPn)∗. The set A⊥
L turns out to

be L∗-convex-concave, where L∗ ⊂ (RPn)∗ is the subspace dual to L. The L-
duality has the main duality property holds, namely, A = (A⊥

L )⊥L∗ . It turns out
that the main conjecture holds for a set A ⊂ RPn if and only if it holds for its
dual A⊥

L ⊂ (RPn)∗: if the set A⊥
L contains a projective subspace M∗ such that

dim M∗ + dim L∗ = n − 1, then the set A contains the dual subspace M such
that dim M + dim L = n − 1. This is why L-duality is useful for us: the problem
for the L-dual set may be simpler than that for the initial set. Such a situa-
tion occurs at step 4 of the proof of the main conjecture in the three-dimensional
case.

In this paper, we give a detailed description of L-duality. Its geometric meaning
is easy-to-understand if the L-convex-concave set A is a domain with a smooth
boundary. Assume that the boundary B of A is strictly convex-concave, i. e., that its
second quadratic form is non-degenerate at each point. Consider the hypersurface
B∗ in the dual projective space (RPn)∗ projectively dual (in the classical sense) to
B. The smooth hypersurface B∗ divides (RPn)∗ into two parts. The subspace L∗

dual to L does not intersect the hypersurface B∗, so exactly one of the connected
components of (RPn)∗ \B∗ does not contain L∗. The L-dual of the set A coincides
with the closure of this component.

This definition does not work for sets whose boundaries are not smooth and
strictly convex-concave. However, we have to deal with precisely such sets (in par-
ticular, with sets whose sections are closed convex polygons and whose complements
to projections are open convex polygons). Therefore, we must give a different, more
suitable to our settings, definition. An example of how duality can be defined in
such a general situation is the classical definition of dual convex sets. We follow
closely this example.
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The paper is organized as follows. First, in Section 1, we give a definition of
projective separability mimicking the standard definition of separability for affine
spaces. All the statements formulated in this section are immediate, so we omit the
proofs. In Section 2 we discuss projective duality, the notion mimicking the classical
definition of duality for convex subsets of linear spaces containing the origin. The
statements are also very simple, but for the sake of completeness, we give their
proofs and explain why all of them are analogues of classical ones.

After that, in Section 3, we define L-duality and prove its basic properties (using
the already defined notions of projective separability and projective duality). At
the end of Section 3 we discuss semi-algebraic L-convex-concave sets and a relation
between L-duality and integration along the Euler characteristic. The results of
Sections 5 and 6 are used at step 4 of the proof of the main conjecture in the three-
dimensional case. The results of Section 4 imply, in particular, the proposition
about convex-concave sets with octagonal sections (the Proposition 3 above). In
Section 6, we describe, in particular, the surgery allowing to circumscribe convex
octagons about planar convex sections.

1. Projective and Affine Separability

We recall the terminology related to the notion of separability in projective and
affine spaces.

Projective case. We say that a subset A ⊂ RPn is projectively separable if any
point of its complement lies on a hyperplane not intersecting the set A.

Proposition. The complement to a projectively separable set A coincides with the
union of all hyperplanes disjoint from the set A. Vice versa, the complement to any
union of hyperplanes has the property of projective separability.

This proposition can be reformulatedas follows.

Proposition. Any subset of projective space defined by a system of linear ho-
mogeneous inequalities Lα 6= 0, where α belongs to some index set and Lα is a
homogeneous polynomial of degree one, is projectively separable. Vice versa, any
projectively separable set can be defined in this way.

We define the projectively separable hull of the set A as the smallest projectively
separable set containing the set A.

Proposition. The projectively separable hull of a set A is exactly the complement
to the union of all hyperplanes in RPn disjoint from A. In other words, a point lies
in the projectively separable hull of a set A if and only if any hyperplane containing
this point intersects the set A.

Affine case. Recall the well-known notion of separability in the affine case.
Namely, a subset A of an affine space is affinely separable if any point of the
complement to the set A belongs to a closed half-space not intersecting the set A.
Evidently, any affinely separable set is convex and connected.
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Proposition. The complement to an affinely separable set A coincides with the
union of closed half-spaces not intersecting the set A. Vice versa, a complement to
any union of closed half-spaces is affinely separable.

This property can be reformulated as follows.

Proposition. Any subset of an affine space defined by a system of linear inequal-
ities {Lα(x) < 0}, where α belongs to some index set and Lα is a polynomial of
degree at most one, is affinely separable. Vice versa, any affinely separable set can
be defined in this way.

We define an affinely separable hull of a set A as the smallest set containing the
set A and having the property of affine separability.

Proposition. The affinely separable hull of a set A is equal to the complement
to the union of all closed half-spaces of the affine space disjoint from A. In other
words, a point lies in the affinely separable hull of the set A if and only if any closed
half-space containing this point also intersects the set A.

Convex subsets of projective spaces and separability. Projective and affine
separability are closely connected.

Proposition. Let L be a hyperplane in projective space RPn, and let U = RPn \L
be the corresponding affine chart.

1. Any affinely separable subset of the affine chart U (which are, in particular,
connected and convex in U) is also projectively separable as a subset of a projective
space.

2. Any connected projectively separable subset of the affine chart U is also affinely
separable as a subset of the affine space U .

A connected projectively separable subset of projective space disjoint from at
least one hyperplane is called a separable convex subset of projective space. (There
is exactly one projectively separable subset of projective space intersecting all hy-
perplanes, namely, the projective space itself.)

Remark. We have defined above the notion of a (not necessarily projectively sepa-
rable) convex subset of a projective space: a nonempty subset A of projective space
RPn is called convex if, first, there is a hyperplane L ⊂ RPn disjoint from the set
A and, secondly, any two points of the set A can be joined by a segment lying in
A. We will not need convex non-separable sets.

2. Projective and Linear Duality

In this section, we construct a variant of projective duality. To a subset A of
projective space RPn, it assigns a subset A∗

p of the dual projective space (RPn)∗.
This duality is completely different from the usual projective duality and is similar
to linear duality used in convex analysis. For the sake of completeness, we describe
here this parallelism.
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Projective duality. Projective space RPn is the quotient of the linear space
Rn+1 \ 0 by the proportionality relation. The dual projective space is, by defi-
nition, the quotient of the set of all non-zero covectors α ∈ (Rn+1)∗ \ 0 by the
proportionality relation.

There is a one-to-one correspondence between the hyperplanes of the space and
the points of the dual space. More generally, to any subspace L ⊂ RPn, there
corresponds the dual subspace L∗ ⊂ (RPn)∗ of all hyperplanes containing L, and
the reflexivity property (L∗)∗ = L holds.

For any set A ∈ RPn, we define its dual set A∗
p ⊂ (RPn)∗ to be the set of all

hyperplanes in RPn disjoint from A. (The symbol A∗ denotes the dual space, so
we introduce the new notation A∗

p.)

Proposition. 1. If A is non-empty, then the set A∗
p is contained in some affine

chart of the dual space.
2. The set A∗

p is projectively separable.

Proof. 1. If A is non-empty, then it contains a point b. The hyperplane b∗ ∈
(RPn)∗ corresponding to the point b does not intersect A∗

p. Therefore, the set A∗
p

is contained in the affine chart (RPn)∗ \ b∗.
2. If a hyperplane L ⊂ RPn considered as a point in the space (RPn)∗ does not

belong to the set A∗
p, then, by definition, the hyperplane L intersects the set A.

Let b ∈ A∩L. The hyperplane b∗ dual to the point b does not intersect the set A∗
p.

So this hyperplane separates the point corresponding to the hyperplane L from the
set A∗

p. �

The following theorem gives a full description of the set (A∗
p)
∗
p.

Theorem. For any set A ⊂ RPn, the corresponding set (A∗
p)
∗
p consists of all points

a such that any hyperplane containing a intersects the set A. In other words, the
set (A∗

p)
∗
p coincides with the projectively separable hull of the set A.

Proof. A point a belongs to (A∗
p)
∗
p if and only if the corresponding hyperplane a∗ ⊂

(RPn)∗ is disjoint from the set A∗
p. To any point p ∈ (RPn)∗ of this hyperplane,

there corresponds a hyperplane p∗ ⊂ RPn containing the point a. The point
p ∈ (RPn)∗ does not belong to A∗

p if and only if the hyperplane p∗ ⊂ RPn intersects
the set A. So the condition that all points of the hyperplane a ⊂ (RPn)∗ do not
belong to A∗

p means that all hyperplanes in RPn containing the point a intersect
the set A. �

Corollary. The reflexivity property (A∗
p)
∗
p = A holds for all projectively separable

subsets of projective space and only for them.

Linear duality. The definition of affine separability differs from that of projective
separability: the former involves closed half-spaces, while the latter involves hyper-
planes. We can do the same with the duality theory developed above and define
the set A∗

a corresponding to a subset A of an affine space as the set of all closed
half-spaces disjoint from A. This definition is not very convenient, because the set
of all closed half-spaces does not have the structure of affine space. Moreover, this
set is topologically different from affine space: it is homeomorphic to the sphere Sn
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with two points removed (one point corresponding to the empty set and the other
to the whole space). We can overcome this difficulty by considering instead the set
of all closed half-spaces with some fixed point removed and one element added (this
element corresponds to the empty set regarded as a half-space at infinite distance
from the fixed point). This set has a natural structure of affine space. Namely,
taking the fixed point as the origin and denoting the obtained linear space by Rn,
we can parameterize the set described above by (Rn)∗: to each nonzero α ∈ (Rn)∗

we assigns the closed half-space defined by inequality 〈α, x〉 ≥ 1. To α = 0 the
empty set (defined by the same inequality 〈α, x〉 ≥ 1) is assigned.

When dealing with affine duality, it is more convenient to consider only sets
containing some fixed point. Taking this point as the origin, we get the well-known
theory of affine duality, which is parallel to the theory of projective duality. Its
main points are as follows.

To any subset A of linear space Rn, there corresponds the subset A∗
l of the dual

space (Rn)∗ consisting of all α ∈ (Rn)∗ such that the inequality 〈α, x〉 < 1 holds
for all x ∈ A.

Proposition. For any set A ⊂ Rn containing the origin, the corresponding dual
set A∗

l in the dual space has the property of affine separability. In particular, it is
convex.

Proposition. For any set A ⊂ Rn containing the origin, the set (A∗
l )
∗
l consists of

all points a ∈ Rn such that any closed half-space containing a intersects the set A.
In other words, the set (A∗

l )
∗
l is equal to the affinely separable hull of the set A.

Corollary. The reflexivity property (A∗
p)
∗
p = A holds for all affinely separable con-

vex sets containing the origin and only for them.

3. L-Duality

In this section, we define an L-duality. A subset A of projective space RPn

disjoint from some subspace L, is L-dual to a subset A⊥
L of the dual projective

space (RPn)∗ disjoint from the subspace L∗.
Any subset C in the projective space (RPn)∗ can be considered as a subset of

the set of all hyperplanes in the projective space RPn. We shall also denote it by C.
Let L be some projective subspace of RPn, and let A be an arbitrary set disjoint

from L. For a hyperplane π not containing the subspace L, we denote the subspace
L∩ π by Lπ. Consider quotient space (RPn)/Lπ. The image πL of the hyperplane
π is a hyperplane in the quotient space (RPn)/Lπ.

Definition. We say that a hyperplane π belongs to the L-dual set A⊥
L if π does

not contain L and the hyperplane πL is contained in the projection of the set A on
the quotient space (RPn)/Lπ.

In other words, a hyperplane π belongs to the set A⊥
L if the projection of π from

the center Lπ belongs to B∗
p , where B is the complement to the projection of the

set A on the space RPn/Lπ.
Another description of the set A⊥

L is as follows. The complement RPn \ L to
the subspace L is fibered by the spaces N ⊃ L of dimension dim N = dimL + 1.
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A hyperplane π belongs to A⊥
L if and only if the intersection of any fiber N with

the set A∩π is non-empty, i. e., N ∩A∩π 6= ∅. In other words, π ∈ A⊥
L if and only

if π intersects the section of A by any (dim L + 1)-dimensional space containing L.

Example. Let L be a hyperplane, and let A be a set disjoint from L, i. e., A∩L = ∅.
Then A⊥

L is the union of all hyperplanes intersecting the set A. In other words,
the set A⊥

L is the complement to the set A∗
p. Indeed, in this case, the only space N

containing L is projective space RPn itself. Note that, in this case, the set L-dual
to A does not depend on the choice of the hyperplane L (we can take any L disjoint
from A).

Proposition. If A ⊂ B and B ∩ L = ∅, then (A⊥
L ) ⊂ (B⊥

L ).

Proof. If a hyperplane intersects all the sections A ∩ N , then it intersects all the
sections B ∩N . �

Proposition. Let M be a projective subspace in RPn not intersecting L and having
maximal possible dimension, i. e., such that dim M = dim L∗ = n−dim L−1. Then
M⊥

L = M∗.

Proof. Any section of M by a (dim L+1)-dimensional space containing L is a point,
and any point of M is a section of M by such a space. By the definition of M⊥

L ,
a hyperplane π belongs to M⊥

L if and only if it intersects all such sections, i. e.,
contains all points of M . This is exactly the definition of M∗. �

Let L∗ ⊂ (RPn)∗ be the space dual to L. What can be said about (i) the sections
of the set A⊥

L by (dim L∗ + 1)-dimensional spaces N ⊃ L∗ and (ii) the projections
of the set A⊥

L from the (dim L∗ − 1)-dimensional subspaces T of the space L∗? We
give answers to these questions below.

Sections of L-dual sets. First, recall of the duality between sections and projec-
tions. Let N be a projective subspace in (RPn)∗. Consider the subspace N∗ ⊂ RPn

dual to N . We will need the isomorphism and the projection described below.
There is a natural isomorphism between the space dual to the quotient space

RPn/N∗ and the space N . This isomorphism is the projectivisation of the natural
isomorphism between the space dual to the quotient space and the subspace of the
dual space dual to the kernel of the factorisation. Each hyperplane containing the
space N∗ projects onto a hyperplane in RPn/N∗. (If a hyperplane does not contain
the space N∗, then its projection is the whole space RPn/N∗.)

Using this isomorphism, we can describe the section of a set C ⊂ (RPn)∗ by
the space N in terms of space RPn. Consider the subset CN∗ ⊂ (RPn)∗ of the
set of hyperplanes C which consists of all hyperplanes containing N∗ (equivalently,
CN∗ = C ∩ N). Each hyperplane from CN∗ projects onto a hyperplane in the
quotient space RPn/N∗. But the space (RPn/N∗)∗ is identified with the space N .
Thus, the required section C ∩N is obtained from the set CN∗ by projection and
identification.

Theorem 1. Let A be a subset of RPn not intersecting L, and let N be any subspace
of (RPn)∗ containing L∗ as a hyperplane (i. e., such that dim N = dim L + 1 and
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N ⊃ L∗). Then the section A⊥
L ∩ N is equal to B∗

p , where B ⊂ (RPn/N∗) is the
complement to the projection of the set A on the space (RPn)/N∗.

Proof. This theorem follows from the description of the sections of the subsets of
(RPn)∗ given above. Consider the set of hyperplanes C = A⊥

L . By the definition of
the set A⊥

L , the set CN∗ consists of all hyperplanes containing the projective space
N∗ and such that, projecting them from N∗ onto RPN/N∗, we obtain subsets of
A. In other words, their projections are hyperplanes in RPN/N∗ not intersecting
the complement to the projection of the set A. Vice versa, any hyperplane not
intersecting this complement B is, by the definition of the set A⊥

L , a projection of
some hyperplane belonging to the set CN∗ . Therefore, A⊥

L ∩N = B∗
p . �

Projections of L-dual sets. Recall of the duality between projections and sec-
tions.

Let Q denote the subspace in RPn dual to the center of projection T ⊂ (RPn)∗.
There is a natural isomorphism between the space Q∗, which consists of all hy-
perplanes of the space Q, and the quotient space (RPn)∗/T . Namely, consider
the points of (RPn)∗/T as equivalence classes in the set of all hyperplanes in the
space RPn not containing the space Q with respect to the following equivalence
relation: two hyperplanes are equivalent if and only if their intersections with Q
coincide. This intersection is the hyperplane in the space Q that corresponds to
the equivalence class under consideration.

The projection of a subset C of (RPn)∗ from a center T can be described as
follows. A set of hyperplanes C in RPn determines some set of hyperplanes C(Q)
in the subspace Q = T ∗; namely, a hyperplane Q1 ⊂ Q belongs to the set C(Q)
if and only if there exists a hyperplane belonging to the set C and intersecting Q
exactly in Q1. The projection of the set C from the center T is exactly the set
C(Q) of hyperplanes in Q after Q∗ and (RPn)∗/T are identified.

Theorem 2. Let A be a set in RPn not intersecting L, and let T be a hyperplane
in the dual space L∗ ⊂ (RPn)∗. Then the projection of the set A⊥

L from the center
T can be described as the set of all hyperplanes p in the space Q = T ∗ ⊃ L such
that, for each of them, there exists a hyperplane π ⊂ A⊥

L whose intersection with Q
is p, i. e., p = π ∩Q.

Proof. This theorem follows from the description of the projections of subsets C ⊂
(RPn)∗ given above. �

Definition. We say that a set A is coseparable relative to L if A∩L = ∅ and, for
any hyperplane L1 ⊂ L, the complement to the projection of the set A from the
center L1 has the property of affine separability in the space (RPn)/L1.

Corollary. If all conditions of Theorem 2 and the set A is coseparable relative to
L, then the complement to the projection of the set A⊥

L from the center T is dual
to the section A ∩ T ∗ (i. e., it is equal to (A ∩ T ∗)∗p).

Description of the set (A⊥
L )⊥L∗ . Let A be a subset of RPn not intersecting L,

and let L∗ be the subspace of (RPn)∗ dual to L. What can be said about the subset
of RPn L∗-dual to the subset A⊥

L of the space (RPn)∗? From Theorems 1 and 2,
we easily obtain the folowing description of this set (A⊥

L )⊥L∗ .
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Theorem 3. The set (A⊥
L )⊥L∗ does not intersect L and consists of all points a ∈

RPn satisfying the following condition. Let La be the space spanned by L and a.
For any hyperplane p in La containing the point a (i. e., such that a ∈ p ⊂ La),
there is a hyperplane π ⊂ RPn such that π ∈ A⊥

L and p = π ∩ La.

Proof. According to Theorem 1 (applied to the subset A⊥
L of the space (RPn)∗ and

to the subspace L∗ of this space), the section of the set (A⊥
L )⊥L∗ by the subspace

La can be described as the set of hyperplanes in (RPn)∗/L∗a disjoint from the
complement to the projection of the set A⊥

L on the space (RPn)∗/L∗a.
So the point a ∈ RPn lies in (A⊥

L )⊥L∗ if and only if the hyperplane in (RPn)∗/L∗a
corresponding to this point a ∈ RPn (a ∈ La) is contained in the projection of
the set A⊥

L . This means that any hyperplane p of La (P ⊂ La) containing the
point a lies in the projection of the set A⊥

L when considered as a point of the space
(RPn)∗/L∗a. According to Theorem 2, this means that, for the hyperplane p, there
exists a hyperplane π ∈ A⊥

l such that π ∩ La = p. �

Let us reformulate Theorem 3. A point a belongs to the set (A⊥
L )⊥L∗ if the

following two conditions hold.

Condition 1. The point a in the space La spanned by L and a has the following
property: any hyperplane p ⊂ La containing a intersects the set La ∩ A. In other
words, the point a belongs to the set ((La ∩A)∗p)

∗
p.

Condition 2. The projection of the point a from any center L1 ⊂ L, where L1 is
a hyperplane in L, belongs to some hyperplane in the space (RPn)/L1 contained
in the projection of the set A on the space (RPn)/L1.

Theorem 4. Conditions 1 and 2 are equivalent to the condition that the point a
belongs to the set (A⊥

L )⊥L∗ .

Proof. Indeed, according to Theorem 3, if a ∈ (A⊥
L )⊥L∗ , then any hyperplane p in

La containing the point a is the intersection of La and a hyperplane π ∈ A⊥
L . This

means that, first, the hyperplane p intersects A and, secondly, that the projection of
the point a from L1 = L∩π belongs to in a hyperplane in the factor-space RPn/L1,
which, in turn, is contained in the projection of the set A. The first property is
equivalent to Condition 1, and the second is equivalent to Condition 2. �

Corollary. Suppose that a set A does not intersect the space L and the intersection
of A with any subspace N containing L as a hyperplane is projectively the separable
in projective space N . Then (A⊥

L )⊥L∗ ⊂ A.

Proof. Indeed, condition 1 guarantees that, for any space N containing L as a
hyperplane, the inclusion (A⊥

L )⊥L∗∩N ⊂ ((N∩A)∗p)
∗
p holds. But ((N∩A)∗p)

∗
p = N∩A,

since N ∩A is projectively separable. Therefore, (A⊥
L )⊥L∗ ⊂ A. �

Corollary. Suppose that a set A is coseparable relative to L. Then the intersection
of the set (A⊥

L )⊥L∗ with any space N containing L as a hyperplane depends only on
the subset A ∩N of the projective space N and coincides with the set ((A ∩N)∗p)

∗
p.

In particular, A ⊆ (A⊥
L )⊥L∗ .
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Proof. If the set A is coseparable relative to L, then condition 2 holds for all points
satisfying condition 1. This is exactly what the corollary asserts. �

Properties of L-coseparable and L-separable sets. Let us summarize the facts
about L-coseparable and L-separable subsets of projective space proved above.

Let a subset A of projective space RPn be coseparable relative to a space L;
suppose that any section of A by a space containing L as a hyperplane is projectively
separable.

Then the set A⊥
L in the dual projective space (RPn)∗ has the same properties

relative to the dual space L∗. Moreover, any section of A⊥
L by a subspace N

containing L∗ as a hyperplane is dual to the set B (i. e., is equal to B∗
p), where B

is the complement to the projection of the set A on (RPn)/N∗ from the center N∗.
The projection of the set A⊥

L from the center T , where T is an arbitrary hyperplane
in space L∗, is dual to the section of A by T ∗ (i. e., it is equal to (A ∩ T ∗)∗p).
Furthermore, the reflexivity relation (A⊥

L )⊥L = A holds.
If the set A⊥

L contains a projective space M∗ of dimension equal to the dimension
of the space L, then the set A contains its dual space M of dimension equal to the
dimension of the space L∗.

L-convex-concave sets are L-separable and L-coseparable, because closed sets
and open sets are both separable. Therefore, L-convex-concave sets have all the
aforementioned properties.

Semialgebraic L-convex-concave sets. Here, we shall apply integration along
the Euler characteristic introduced by Viro (see [Vi]). We denote the Euler char-
acteristic of a set X by χ(X).

Theorem. Let A be an L-convex-concave closed semialgebraic set in RPn, and let
dim L = k. Then, for any hyperplane π ⊂ RPn, χ(A ∩ π) is equal to χ(RPn−k−1)
or to χ(RPn−k−2). In the first case, the hyperplane π considered as a point of
(RPn)∗ belongs to the set A⊥

L L-dual to A. In the second case, the hyperplane π
does not belong to the set A⊥

L .

Proof. The complement to L in RPn is a union of non-intersecting fibers, each fiber
being a (k + 1)-dimensional space N containing L. The set A is L-convex-concave,
so its intersection with each fiber N is convex and closed. Therefore, for each space
N , the intersection A∩N ∩π of the set A∩N with a hyperplane π either is empty
or is a closed convex set.

Suppose that the hyperplane π does not contain the space L. Let us denote the
space L∩π by Lπ. In the quotient space RPn/Lπ, we have a fixed point π(L) (the
projection of the space L), a set B (the complement to the projection of the set A
from Lπ), and a hyperplane πL (the projection of the hyperplane π). To each point
a of the hyperplane πL in the quotient space, there corresponds a space N(a) in
RPn (N(a) ⊃ L) whose projection is equal to the line passing through a and π(L).
The intersection N(a) ∩ A ∩ π is empty if a belongs to the set B. Otherwise, the
intersection N(a) ∩ A ∩ π is a closed convex set. The Euler characteristic of the
set N(a) ∩ A ∩ π is equal to 0 in the first case, and it is equal to 1 in the second
case. Using the Fubini theorem for an integral along the Euler characteristics for
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Figure 1. (a) A cone K; (b) A set A pointed with respect to the
cone K.

the projection of the set A ∩ π on the quotient space RPn/Lπ, we obtain

χ(A ∩ π) = χ(πL \ (πL ∩B)).

So χ(A∩π) = χ(πL) = χ(RPn−k−1), if πL∩B = ∅. Otherwise, i. e., if πL∩B 6= ∅,
we have χ(A∩π) = χ(RPn−k−2). In the first case, πL ∈ A⊥

L by definition, and in the
second case, πL /∈ A⊥

L . This proves the theorem for the hyperplanes not containing
the space L. If L ⊂ π, similar considerations imply χ(π ∩A) = χ(RPn−k−2). �

Corollary. For a semi-algebraic L-convex-concave set A, the L-dual set is defined
canonically (i. e., A⊥

L does not depend on the choice of the space L relative to which
the set A is L-convex-concave).

Remark. For the semialgebraic L-convex-concave sets, the reflexivity relation

(A⊥
L )⊥L∗ = A

can be proved by using only this theorem and the Radon transform of the integral
along the Euler characteristic (see [Vi], [PKh]).

4. Duality between Pointed Convex Sections of Convex-Concave
Sets and an Affine Dependence of Convex Sections on a Parameter

In this section, we define the properties of being pointed (with respect to a cone)
and of affine dependence on a parameter (for parameters belonging to some convex
domain) of sections.

We begin with the affine versions of these notions and then give the corresponding
projective definitions. We prove that the property of being pointed is dual to an
affine dependence on a parameter.

Pointed sections. We start with affine settings. Let K be a pointed (i. e., con-
taining no linear subspaces) closed convex cone in a linear space N with vertex at
the origin.

We say that a set A is pointed with respect to K if there is a point a ∈ A such
that the set A lies entirely in the shifted cone (K + a) with vertex at the point a.
This point a is called the vertex of the set A relative to the cone K. Obviously, the
vertex of the set A relative to K is determined uniquely.

In affine space, we deal with pointed cones K which are unions of rays beginning
at the vertex of the cone containing no lines.
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Figure 2. (a) A projectively pointed cone K̃; (b) A set A pointed
with respect to the cone K̃.

In the projective setting, it is more natural to consider cones K̃ which are unions
of lines. Such a cone K̃ is said to be projectively pointed if the set of lines lying in
the cone forms a convex set in RPn−1. Evidently, a cone K̃ is projectively pointed
if and only if it is a union of an affine pointed cone K with its opposite cone (−K):
K̃ = K ∪ (−K).

We say that a set A in affine space is pointed with respect to a cone K̃ = K∪(−K)
if the set A is pointed with respect to both the cone K and the cone (−K).

A set A pointed with respect to a cone K̃ has two vertices a and b relative to
the cones K and (−K), respectively.

The following statement is evident.

Proposition. Suppose that a connected set A is pointed with respect to a cone
K̃ = K ∪ (−K) and a and b are the vertices of A relative to K̃. Let Q̃ be a
hyperplane intersecting K̃ at only one point (the origin). Then an affine hyperplane
Q parallel to the hyperplane Q̃ intersects the set A if and only if Q intersects the
segment joining the points a and b. Vice versa, if a connected set A with fixed
points a and b has this property, then the set A is pointed with respect to the cone
K̃ = K ∪ (−K) and a and b are the vertices of A.

Now, consider the projective setting. Suppose that N is a projective space,
L ⊂ N is a fixed hyperplane, and ∆ ⊂ L is a closed convex set in L.

We say that a connected set A ⊂ N not intersecting the hyperplane L is pointed
with respect to the convex set ∆ if there exist two points a and b in the set A (the
vertices of the set A with respect to ∆) such that any hyperplane p in N disjoint
from the convex set ∆ ⊂ L intersects A if and only if p intersects the segment
joining the points a and b and lying in the affine space N ⊂ L.

This projective definition is a projective reformulation of the affine definition.
Indeed, projective space is a linear space to which a hyperplane at infinity is added.
To a convex set ∆ lying in the hyperplane at infinity, there corresponds a pointed
cone K̃ being the union of all lines passing through the origin and points of the
set ∆.

According to the proposition, a set A in the affine space N \ L is pointed with
respect to the cone K̃ if and only if this set A considered as a subset of projective
space is pointed with respect to the convex set ∆ = K̃ ∩ L.
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Families of convex sets affinely dependent on parameters. We begin with
an affine setting. Fix a linear subspace N of linear space Rn. Linear space Rn is
fibered by affine subspaces Nm parallel to N and parameterized by the points m
of the quotient space Rn/N . Fix a convex domain ∆ in the space of parameters
Rn/N . Suppose that, for each point m ∈ ∆, a closed convex set Am ⊂ Nm is given.

We say that a family of convex sets {Am} depends affinely on the parameter
m ∈ ∆ if, for any two points m1, m2 ∈ ∆ and any 0 ≤ t ≤ 1, the set Amt

corresponding to the parameter mt = tm1 + (1 − t)m2 is a linear combination
tAm1 + (1− t)Am2 of sets Am1 and Am2 in the sense of Minkowski.

Proposition. A family of convex sets Am, where m ∈ ∆, depends affinely on the
parameter if and only if for any simplex ∆(a1, . . . , ak) ⊂ ∆ with linearly indepen-
dent vertices a1, . . . , ak ∈ ∆, the convex hull of the union of the sets Aa1 . . . , Aak

coincides with the union of the sets Am over all parameters m ∈ ∆(a1, . . . , ak).

The particular case of one-dimensional space N = (l) is especially simple. In
this case, the convex sets Am are simply segments, and the proposition reads as
follows.

Proposition. A family of parallel segments Am in Rn depends affinely on the
parameter m belonging to a convex domain ∆ ⊂ Rn/(l) if and only if there exist
two hyperplanes Γ1 and Γ2 in the space Rn such that, first, for any m ∈ ∆ the end
points of the segment A(m) coincide with intersection points of the line Nm with
the hyperplanes Γ1 and Γ2 and, secondly, the projection along N of the intersection
of Γ1 and Γ2 is disjoint from the interior of ∆.

The general definition of affine dependence on a parameter can be reduced to
the case of one-dimensional space by using projections. Let Q be a subspace of the
space N . The quotient space Rn/Q contains the subspace π(N) = N/Q. The spaces
(Rn/Q)/π(N) and Rn/N are naturally isomorphic; we shall use this isomorphism
below.

We say that a family of convex sets Am ⊂ Nm depends affinely on the parameter
m ∈ ∆ ⊂ Rn/N in the direction of the hyperplane Q in the space N if the segments
π(Am) on the lines Nm/Q, where π : Rn → Rn/Q is the projection, depend affinely
on the parameter m ∈ ∆. (Using the isomorphism of (Rn/Q)/π(N) and Rn/N , we
consider ∆ ⊂ Rn/N as a set in (Rn/G)/π(N).)

Theorem. A family of convex sets Am ⊂ Nm depends affinely on the parameter
m ∈ ∆ if and only if the family Am ⊂ Nm depends affinely on the parameter m ∈ ∆
in the direction of Q for any hyperplane Q.

Proof. Taking a subspace M transversal to N , we identify all parallel spaces Nm

(two points of different sections are identified if they lie in the same translate of M).
Then all dual spaces N∗

m are identified with the space N∗, and all support functions
Hm(ξ) = max

x∈Am

(ξ, x) of convex sets Am can be considered as functions on the same

space N∗.
To a linear combination (in Minkowski sense) of convex sets, there corresponds

a linear combination of their support functions. So the dependence of the family of
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convex sets Am on the parameter m ∈ ∆ is affine if and only if, for any fixed covector
ξ ∈ N∗, the support function Hm(ξ) is linear with respect to the parameter m.

Let us rewrite this condition for ξ and −ξ simultaneously. We denote the hy-
perplane in N defined by the equation (ξ, x) = (−ξ, x) = 0 by Q. Consider the
projection of the set A =

⋃
m∈∆

Am along the space Q. The projection π(A) lies in

the space Rn/Q with marked one-dimensional subspace l = N/Q. Each line lm,
where m ∈ Rn/N = (Rn/Q)/l, contains a segment π(Am) equal to the projection
of the convex set Am.

By assumption, the segments π(Am) lie between two hyperplanes Γ1 and Γ2.
Furthermore, the endpoints x(m) and y(m) of these segments lie on the line lm,
and they are defined by equations Hm(ξ) = 〈ξ, x(m)〉 and Hm(−ξ) = 〈−ξ, y(m)〉.
Therefore, the affine dependence of the convex sets Am, m ∈ Q, in the direction
Q means that the support functions Hξ(m) and H−ξ(m), where ξ are covectors
orthogonal to Q, are first-degree polynomials in m ∈ ∆. Since this is true for any
hyperplane Q ⊂ N , the function Hξ(m) depends linearly on m for any fixed ξ. �

Now, consider the projective settings. Instead of linear space Rn fibered by affine
subspaces Nm parallel to a space N and parameterized by the points of the quotient
space Rn/N , we shall deal with a projective space RPn containing a projective
subspace L and fibered by the subspaces Nm of dimension dim Nm = dim L + 1
which contain the space L. The subspaces Nm are parameterized by the points
of the quotient space M = (RPn)/N . Consider the parameters m belonging to a
convex set ∆ ⊂ M .

Let T ⊂ L be a hyperplane in L. We denote a projection of the projective
space from the center T by π. The projection of the space L is a point π(L).
The projection of the space N is a line l belonging to the bundle of all lines
lm = π(Nm) containing the marked point π(L). After the natural identification
of the quotient spaces (RPn)/L and (RPn/T )/π(L), the space Nm ⊂ RPn and
the line lm = π(Nm) ⊂ RPn/T correspond to the same parameter m ∈ RPn/L =
(RPn/T )/π(L). The domain ∆ ⊂ RPn/L can be considered as a domain in the
space (RPn/T )/π(L).

We use the following notation. Let Γ1 and Γ2 be two hyperplanes in projective
space not containing the point π(L), and let l be a line containing this point. Inter-
section points of Γ1 and Γ2 with the line l divide this line into two segments. The
segment not containing the point π(L) is called the segment between hyperplanes
Γ1 and Γ2 on the line l exterior relative to the point π(L).

Let A be a set not intersecting space L and such that its sections Am by the
spaces Nm ⊃ L are convex. We say that the sections Am depend affinely on the
parameter m belonging to a convex domain ∆ ⊂ RPn/L in the direction of the
hyperplane T ⊂ L if the sections of the set π(A) by the lines lm containing the
point π(L) depend affinely on m ∈ ∆ ⊂ RPn/L (= (RPn/T )/(π(L)). In other
words, there exist two hyperplanes Γ1 and Γ2 in RPn/T not containing π(L) and
such that, first, the intersection of π(A) with any line lm, m ∈ ∆, is equal to the
segment of the line lm lying between Γ1 and Γ2 exterior relative to π(L), and,
secondly, the projection of Γ1 ∩ Γ2 on RPn/L does not intersect ∆.
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Now, we can give a definition of affine dependence of sections on a parameter
belonging to a convex domain in the space of parameters.

We say that the sections Am of the set A by projective spaces Nm ⊃ L depend
affinely on the parameter m in a domain ∆ if Am depend affinely on the parameter
m in the domain ∆ with respect to any hyperplane T ⊂ L. The following statement
can be easily checked.

Proposition. Let Γ be a projective hyperplane containing the space L and such that
its projection to the space (RPn)/L does not intersect a convex set ∆ ⊂ RPn/L.
Consider the affine chart U = RPn \ Γ of the projective space. The sections of a
set A ⊂ RPn, where A ∩ L = ∅, by spaces Nm depend affinely on the parameter
m in the domain ∆ if and only if the sections of the set A ∩ U in the affine space
U by the parallel spaces Nm \ Γ depend affinely on the parameter m in the domain
∆ ⊂ ((RPn)/L) \ (Γ/L).

Duality. Let ∆ be a convex domain in the space L, and let ∆∗
p be the dual con-

vex domain in the space (RPn)∗/L∗. The space (RPn)∗/L∗ parameterizes the
(dim L∗ + 1)-dimensional subspaces of (RPn)∗ containing L∗. The domain ∆∗ cor-
responds to subspaces Q∗ ⊂ (RPn)∗ of this type which are dual to subspaces Q ⊂ L
not intersecting the domain ∆.

Theorem. Let A be an L-convex-concave subset of projective space RPn. A section
A∩N of the set A by a (dim L+1)-dimensional subspace N containing L is pointed
relative to a convex domain ∆ ⊂ L if and only if the following dual condition holds:
the subset A⊥

L of the dual space (RPn)∗ L-dual to the A depends affinely on the
parameter belonging to the domain ∆∗

p in the direction of the hyperplane N∗ ⊂ L∗.

Proof. The set A is L-convex-concave, so the section A ∩N is dual to the comple-
ment to the projection from the center N∗ ⊂ L∗ of the set A⊥

L .
Let a and b be the vertices of the pointed set A ∩ N relative to the convex set

∆ ⊂ L. Fix a hyperplane qL in L disjoint from the convex set ∆ ⊂ L. Consider
a one-dimensional bundle {pt} of hyperplanes containing the space qL in N . This
bundle contains the following three hyperplanes: the hyperplane L, a hyperplane
pa containing the vertex a of the set A, and a hyperplane pb containing the vertex
b of the set A.

take the segment [pa, pb] with endpoints pa and pb not containing the point L.
Any hyperplane pt (except the hyperplane L itself) intersects L in a subspace qL,
and qL does not intersect ∆. The set A is pointed with respect to ∆, so a hyperplane
pt0 intersects A ∩N if and only if the point pt0 belongs to the segment [pa, pb].

Consider the dual space (RPn)∗. To the section A ∩N of the set A, there cor-
responds the projection of the set A⊥

L from the center N∗. Hyperplanes in N cor-
respond to points in the quotient space (RPn)∗/N∗. In particular, the hyperplane
L in N corresponds to the marked point π(L∗) in the quotient space (RPn)∗/N∗,
namely, the projection of the space L∗ from the center N∗. The bundle of hyper-
planes {pt} corresponds to a line passing through π(L∗). This line intersects the
projection of the set A⊥

L exactly in the segment [pa, pb] not containing the point
π(L∗).
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To different hyperplanes qL in the space L, there correspond different one-
dimensional bundles of hyperplanes {pt} in N , i. e., different lines in (RPn)∗/N∗,
containing the marked point π(L∗). The hyperplane qL in the space L does not
intersect ∆, so the dual space q∗L ⊃ L∗ is parameterized by a point of ∆∗

p ⊂
(RPn)∗/L∗. The projection of the space q∗L from the center N∗ is a line in the
space (RPn)∗/N parameterized by the same point of the domain ∆∗. Every such
line intersects the projection of the set A⊥

L in the segment [pa, pb]. The point pa

lies in the hyperplane Γa of the space (RPn)∗/N∗ dual to the point a ∈ N . The
point pb lies in the hyperplane Γb of the space (RPn)∗/N∗ dual to the point b ∈ N .

The two hyperplanes Γa and Γb divide the space (RPn)∗/N∗ into two parts.
Let Γ(a, b) denote the closure of the part not containing the point π(L∗). We
have just proved that the set Γ(a, b) and the projection of the set A⊥

L to the space
(RPn)∗/N∗ have the same intersections with the lines passing through the point
π(L∗) and parameterized by points of the domain ∆∗

p. This completes the proof of
the theorem. �

5. L-Convex-Concave Sets with Plane Sections Being Octagons
with Four Pairs of Parallel Sides

Consider a subset A of RPn convex-concave with respect to a one-dimensional
space L. Fix four points a1, . . . , a4 lying on the line L in this order. These
points divide L into four pairwise disjoint intervals 〈a1, a2〉, 〈a2, a3〉, 〈a3, a4〉, and
〈a4, a1〉. We denote their complements to L by I1 = [a1, a2] = L\〈a1, a2〉, . . . , I4 =
[a4, a1] = L \ 〈a4, a1〉 (these segments are intersecting). In this section, we prove
the main conjecture for L-convex-concave sets A whose sections N ∩ A by two-
dimensional planes N containing the line L are pointed relative to the segments
I1, . . . , I4.

Theorem. Suppose that all plane sections A ∩N of an L-convex-concave set A ⊂
RPn, where dim L = 1, by two-dimensional planes N containing L are pointed with
respect to four segments I1, . . . , I4 on the line L. Suppose also that the union of Ii

coincides with L and that the complements L \ Ii are pairwise disjoint. Then the
set A contains a projective space M of dimension (n− 2).

Before proceeding to the proof we shall make two remarks.
First, the assumptions of the theorem about the convex-concave set A are easier

to understand in an affine chart Rn not containing the line L. In this chart, the
family of two-dimensional planes containing L becomes a family of parallel two-
dimensional planes. In space Rn, four classes of parallel lines are fixed, each passing
through one of the points a1, . . . , a4 of the line L at infinity. The assumptions of the
theorem mean that each section of the set A by a plane N is an octagon with sides
belonging to these four fixed classes of parallel lines. (Some sides of this octagon
may degenerate into a point, and the number of sides of the octagon (A ∩N) will
then be smaller than 8.)

Furthermore, there is a natural isomorphism between (RP 1)∗ and RP 1. Indeed,
each point c ∈ RP 1 of projective line is also a hyperplane in RP 1. However,
a segment [a, b] on the projective line RP 1 is dual to its complement 〈a, b〉 =
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(RP 1) \ [a, b], and it is not dual to itself. Indeed, by definition, the set ∆∗
p dual to

a convex set ∆ consists of all hyperplanes not intersecting ∆.

Proof of the theorem. Consider the dual projective space (RPn)∗ and its subspace
L∗, dim L∗ = (n−2), dual to the line L. The projective line (RPn)∗/L∗ isomorphic
to the line dual to L is divided by the points a∗1, . . . , a∗4 into four intervals 〈a∗1, a∗2〉,
〈a∗2, a∗3〉, 〈a∗3, a∗4〉, 〈a∗4, a∗1〉 dual to the segments I1, . . . , I4. The set A⊥

L L-dual to A
affinely depends on a parameter on these intervals, since the set A is pointed relative
to the segments I1, . . . , I4. Therefore, the set A⊥

L is a linear interpolation of its
four sections. In other words, this set has four sections by the planes corresponding
to a∗1, . . . , a∗4, and all other sections of A⊥

L are affine combinations (in the sense of
Minkowski) of the sections corresponding to the endpoints of the intervals. The L∗-
convex-concave sets of this type contain a line (see the introduction and [KhN1]).
Let us denote this line by l. The set A contains the (n − 2)-dimensional space
l∗ ⊂ RPn dual to the line l. �

6. Surgeries on Convex-Concave Sets

In this section, we describe two special surgeries on L-convex-concave subsets of
RPn; one of them applies when dim L = n− 2 and the other one when dim L = 1.
These two surgeries are dual.

The first surgery: dim L = n − 2. An (n − 2)-dimensional subspace L of RPn

corresponds to a one-dimensional bundle of hyperplanes containing L. These hy-
perplanes are parameterized by the points of the projective line RPn/L. Fix two
points a and b and a segment [a, b] on this line being one of the two segments into
which the points a and b divide the projective line RPn/L.

For any L-convex-concave set A and the segment [a, b] ⊂ RPn/L, we define a
set S[a,b](A), which is also L-convex-concave as follows. The hyperplanes Γa and Γb

corresponding to the parameters a and b have the property L = Γa ∩Γb and divide
the set RPn \ L into two half-spaces: the first half-space Γ1[a, b] is projected onto
the segment [a, b], and the second one Γ2[a, b] is projected onto its complement.

Let c be some point on the line RPn/L not belonging to the segment [a, b], and
let Γc be the corresponding hyperplane in RPn.

Definition. The set S[a,b](A) is defined by the following conditions:
(1) the set S[a,b](A) does not intersect the space L, i. e., S[a,b](A) ∩ L = ∅;
(2) the set S[a,b](A) ∩ Γ1

[a,b] coincides with the convex hull of the union of the
sections A ∩ Γ(a) and A ∩ Γ(b) in the affine chart RPn \ Γc;

(3) the set S[a,b](A) ∩ Γ2
[a,b] coincides with A ∩ Γ2

[a,b].

It is easy to see that the set S[a,b](A) is well-defined, i. e., it does not depend on
the choice of the hyperplane Γc.

Theorem. For any L-convex-concave set A, the set S[a,b](A) is also L-convex-
concave.

Proof. Any section of the set S[a,b](A) by a hyperplane Γd containing L is convex.
Indeed, if d /∈ [a, b], then Γd ∩ S[a,b](A) = Γd ∩ A, and the set Γd ∩ A is convex by
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Figure 3. (a) The complement B to the projection π(A) of the
set A; (b) The complement B[a,b] to the projection π(S[a,b](A)) of
the set S[a,b](A).

definition. Otherwise, i. e., if d ∈ [a, b], Γd ∩ S[a,b](A) is a linear combination (in
the sense of Minkowski) of the convex sections A ∩ Γa and A ∩ Γb (in any affine
chart RPn \ Γc, c /∈ [a, d]), so it is convex.

Let us prove that the complement to the projection of the set S[a,b](A) from
an arbitrary center L1 ⊂ L, where L1 is a hyperplane in L, is a convex open set.
Consider the projection π(A) of the set A on the projective plane RPn/L1. The
set A is L-convex-concave, so the complement B to the projection π(A) is an open
convex set containing the marked point π(L). The plane RPn/L1 contains two
lines, la = π(Γa) and lb = π(Γb) passing through the point π(L), the half-plane
l1[a,b] = π(Γ1

[a,b]), and the complementary half-plane l2[a,b] = π(Γ2
[a,b]).

From the definition of the set S[a,b](A), we see that the complement B[a,b] to its
projection π(S[a,b](A)) has the following structure.

(1) The set B[a,b] contains the point π(L);
(2) Consider two closed triangles with vertices at the point π(L) lying in

l1[a, b]and such that one side of each of them is the segment lying inside
l1[a, b] and joining the intersection points of lines la and lb with the bound-
ary of the domain B (see Fig. 3). The set B[a,b] ∩ l1[a, b] is the union of
these triangles from which the sides described above are removed;

(3) The set B[a,b] ∩ l2[a, b] coincides with the set B ∩ l2[a, b].

From this description, we see that the set B[a,b] is convex and open. �

If two segment [a, b] and [c, d] on the line RPn/L do not have common interior
points, then the surgeries S[a,b] and S[c,d] commute. We can divide the line RPn/L
into a finite set of segments [a1, a2], . . . , [ak−1, ak], [ak, a1] and apply the surgeries
corresponding to these segments to an L-convex-concave set A. As a result, we
obtain an L-convex-concave set D such that the sections of D by hyperplanes
Γa1 , . . . , Γan

coincide with the sections A∩Γai
of the set A by the same hyperplanes.

For an intermediate value ai < a < ai+1, the section D ∩ Γa coincides with the
section by the same hyperplane of the convex hull of the union of the sections
A∩Γai and A∩Γal+1 in the affine chart RPn \Γc (where c is any point of the line
RPn/L not belonging to the segment [ai, ai+1]).
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The second surgery: dim L = 1. A one-dimensional space L corresponds to an
(n − 2)-dimensional bundle of two-dimensional planes containing the line L. Fix
two points a and b and a segment [a, b] on the line L being one of the two segments
into which the points a and b divide the line L. For any L-convex-concave set A
and the segment [a, b] ⊂ L, we construct a new L-convex-concave set P[a,b](A).
The section of P[a,b](A) by any two-dimensional plane N , N ⊃ L, depends only on
the section of the set A by this plane N .

We define first an operation F[a,b] on two-dimensional convex sets. This operation
F[a,b] transforms plane sections A∩N of the set A into plane sections P[a,b](A)∩N
of the set P[a,b](A).

Consider a two-dimensional projective plane N with a distinguished projective
line L and a segment [a, b] ⊂ L. Let ∆ ⊂ N be any closed convex subset of the
plane N not intersecting the line L.

By definition, the operation F[a,b] transforms a set ∆ ⊂ N into the smallest
convex set F[a,b](∆) containing the set ∆ and pointed relative to the segment [a, b].

A more explicit description of the set F(a,b)(∆) is as follows.

Figure 4. (a) The set ∆ and its tangents passing through the
points a and b; (b) The set F(a,b)(∆).

Let us draw four tangents, q1
a, q2

a and q1
b , q2

b , to the set ∆ passing through the
points a and b, respectively (see Fig. 4). The convex quadrangle ∆1 in the affine
plane N \ L with sides on the lines q1

a, q2
a and q1

b , q2
b has exactly two vertices A

and B such that the support lines to the quadrangle ∆1 at these vertices do not
intersect the segment [a, b]. The vertex A corresponds to a curvilinear triangle ∆A

with two sides lying on the two sides of the quadrangle ∆1 adjacent to the vertex A.
The third side of ∆A coincides with the part of the boundary of the set ∆ visible
from the point A.

A similar curvilinear triangle ∆b corresponds to the vertex B. Evidently, the set
F[a,b](∆) coincides with the set ∆A ∪∆ ∪∆B .

Now, we can define the set P[a,b](A).

Definition. For any L-convex-concave subset A of RPn, where dim L = 1 and
for any segment [a, b] of the line L, we define the set P[a,b](A) by the following
condition: the section P[a,b](A) ∩ N of this set by an arbitrary two-dimensional
plane N containing L is obtained from the section A ∩N of the set A by applying
the operation F[a,b] in the plane N : P[a,b](A) ∩N = F[a,b](A ∩N).
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Theorem. For any L-convex-concave set A, where dim L = 1, and any segment
[a, b] ⊂ L on the line L, the set P[a,b](A) is L-convex-concave.

Proof. Each L-convex-concave set A in RPn corresponds to its L-dual D = (A⊥
L )

in the dual projective space (RPn)∗. The set D is an L∗-convex-concave set, and
dim L∗ = n − 2. The line L is dual to the set of parameters (RPn)∗/L∗. The
segment [a, b] ⊂ L corresponds to the dual interval 〈a∗, b∗〉 ⊂ (RPn)∗/L∗. We use
the segment [a∗, b∗] ⊂ (RPn)∗/L∗ and the L∗-convex-concave set D = A⊥

L to define
a new L∗-convex-concave set S[a∗,b∗](D). To prove the theorem, it is sufficient to
check that the set P[a,b](A) is L∗-dual to the set S[a∗,b∗](D), where D = A⊥

L . This
is proved below. �

Proposition. The set P[a,b](A) is L∗-dual to the set S[a∗,b∗](D).

Proof. We have proved that, if the set D is L∗-convex-concave, then S[a∗,b∗](D) is
also L∗-convex-concave and described how to obtain the plane projections of the
set S[a∗,b∗](D) from the plane projections of the set D.

Consider the sets D⊥
L∗ = A and S[a∗,b∗](D)⊥L∗ L∗-dual to D and S[a∗,b∗](D),

respectively. The plane projections of the sets D and S[a∗,b∗](D) are dual to the
plane sections of the sets A and (S[a∗,b∗](D))⊥L∗ . Looking at the plane pictures, we
see that the sections of the set (S[a∗,b∗](D))⊥L∗ are obtained from the sections of the
set A by the surgery F[a,b]. Therefore, (S[a∗,b∗](D))⊥L∗ = P[a,b](A). �

If the complements 〈a, b〉0 and 〈c, d〉0 to the segments [a, b] and [c, d] do not
intersect, then the operations P[a,b] and P[c,d] commute. Let us divide the line L into
a finite number of intervals 〈a1, a2〉0, . . . , 〈ak+1, a1〉0 complementary to segments
[a1, a2], . . . , [ak+1, a1] (the segments intersect each other) and apply the operations
P[ai,ai+1](A) corresponding to all these segments to the L-convex-concave set A. As
a result, we obtain an L-convex-concave set D whose section by any two-dimensional
plane N containing the line L is a polygon with 2k sides circumscribed about the
section A ∩ N (some of the sides of the resulting polygons may degenerate into
points). To each point ai, there correspond two parallel sides of the polygon which
pass through the point ai and lying on the support lines to the section (A ∩N).

Remark. To a three-dimensional set A ⊂ RP 3 L-convex-concave with respect to
a line L, both surgeries can be applied, since dim L = 1 = n − 2 for n = 3. Let
[a, b] be a segment on the line L, and let [c, d] be a segment on the line RP 3/L.
Then, as can easily be proved, the surgeries P[a,b] and S[c,d] commute.

A space intersecting support half-planes to sections. As above, let A be
an L-convex-concave subset of RPn, where dim L = 1. Consider the following
problem. Suppose given a certain set {Nα}, α ∈ I, of two-dimensional planes
containing the line L, and suppose that, on each affine plane Nα \ L, some half-
plane p+

α ⊂ Nα supporting to the convex section Nα ∩ A is fixed. We want to find
an (n− 2)-dimensional subspace of RPn intersecting all the half-planes p+

α , α ∈ I.

Theorem. Suppose that the set Q = {∂p+
α ∩ L}, where α ∈ Iand ∂p+

α denotes
the boundary line of the half-plane p+

α supporting for the section Nα ∩ A of an L-
convex-concave set A ⊂ RPn, contains at most four points. Then there exists an
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(n−2)-dimensional subspace of RPn intersecting all the supporting half-planes p+
α ,

α ∈ I.

Proof. Suppose that the set Q contains exactly four points a1, . . . , a4 (otherwise,
we add a necessary amount of some other points to Q). The points ai divide the
projective line into four segments 〈a1, a2〉, 〈a2, a3〉, 〈a3, a4〉, 〈a4, a1〉. Let I1, . . . , I4

denote the complementary segments (these segments intersect each other). We
apply the four surgeries PIi to the set A and denote the resulting set by D.

By the very definition of the set D, the half-planes p+
α ⊂ Nα are supporting

half-planes for the sections D ∩ Nα, so any space lying inside D intersects the
half-planes p+

α . According to the theorem of Section 5 there exists an (n − 2)-
dimensional subspace of RPn lying inside the set D. This space intersects all the
half-planes π+

α . �
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