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Introduction

For two monic polynomials depending on a single variable, the following identity
holds: the product of the values of the first polynomial at the roots of the second
polynomial is equal to the product of the values of the second polynomial at the
roots of the first one apart from the sign.

Andre Weil found a far-reaching generalization of this identity. It can be used
for any pair of non-zero meromorphic functions on a compact complex curve.

We present definitions necessary for the formulation of Weil's theorem. Let

/ = C l u b l +••• , g = C 2 U 6 a + · · • , ( * )

where C\ φ 0 and c-2 Φ 0 are the highest-order terms of the Laurent series of
meromorphic functions / and g in a neighbourhood of a point a, and u is a local
parameter such that u(a) = 0.

This investigation was carried out during a visit to Ecole Normale Superieure and was partially
supported by the Russian Foundation for Fundamental Research under grant 95-011-8701 and by
the Grant of Canada no. 0GP0156833. I am grateful to French colleagues for their hospitality.
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For a vector-function (/, g), we call a non-cancellable integer-valued vector
η = (ni,ri2) proportional to its exponent vector b = (61,62) with a positive integer
coefficient k,b = kit, the type of the germ at the point a. The coefficient k is called
the multiplicity of the germ of the vector-function. We call the number c^c^"2

the reduced Weil number of the germ (*), where {111,712) are the components of the
type η of this germ.

Starting from a compact complex curve Γ and a meromorphic function (/, g)
on it, we define a function Mul r/9 mapping the product Zfr χ C*, where Z2

r is a
set of non-cancellable integer-valued vectors on the plane, to the set C* of non-zero
complex numbers (the name of the function is derived from the word 'multiplicity').
The function Mul = Mulr/9 has non-negative integer values and is equal to zero
everywhere except at a finite number of points. By definition, its value on a pair
(n, c) is equal to the total multiplicity of points on the complex curve Γ at which
the germ (/, g) has the type η and the reduced Weil number c.

In these terms, Weil's theorem is formulated as follows.

Weil's theorem.

JJ(-c ) M u l ( "- c ) = 1. (1)
The degrees of the divisors / and g vanish on a compact curve Γ. In terms of

the function Mul = Mulr/9, these relations are of the form

Mul(n, c)n = 0. (2)

The present results are based on the following simple observation: the Weil num-
bers of the germ (f,g) and of the germ (F,G), where F = failgai2, G = fa21ga22

and A = {cif/} is an integer-valued matrix with determinant 1, are equal to one
another. This observation suggests that Weil's theorem must be related to the
two-dimensional torus geometry (the matrix A specifies an automorphism of the
two-dimensional torus C*2) and to the Newton polygon theory. We show that this
is indeed so. First, the Weil numbers simplify and refine the classical theorem on
Newton polygons (see §2). On the other hand, by using Newton polygons, one can
offer a very simple proof of Weil's theorem: it is reduced to the Vieta formula for
the product of roots of a polynomial (see §§1-2 and §9).

Is Weil's theorem invertible? That is, is it true that for any function Mul satisfy-
ing conditions (l)-(2), there exists a triple Γ,/, </ such that Mul = Mulr/fl? In our
paper we show that if the function Mul has more than two characteristic vectors
(that is, vectors η £ Z2

r such that the function Mul(n, ·) does not vanish identi-
cally on C ) , then we can answer this question affirmatively. We offer a complete
description of triples Γ, f,g such that Mul = Mulr/9·

In the exceptional case when the function Mulp/g has two characteristic vectors,
Weil's theorem can be refined. In this case, the function Mul = Mulr/S has the
reflexivity property

Mul(n,c) =Mul(-n,iT 1 ).

In §9 a simple independent proof of this property is given. The refined Weil theorem
proves to be also invertible in this exceptional case.
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With a triple Γ,/, g we associate a polygon called the Newton polygon. This
polygon can be recovered from the function Mul = Mulr/9- We show that it plays
the same role as the usual Newton polygon (see §11).

Another theme of our paper is the following one. Let D be a divisor lying on
the union M^ of one-dimensional orbits of a torus surface M. Is there a curve
Γ C Μ that does not cross null-dimensional orbits of the surface Μ for which the
divisor D is a divisor of the intersection of the curve Γ with the union of one-
dimensional orbits MQO? We denote the space of such curves Γ by CR(D), and call
the divisor D admissible if the space R(D) is not empty. We encode divisors D
with some function Mul = MUID on Ζ?Γ χ C*. The admissibility condition for the
divisor D proves to be identical to the condition for the existence of a triple Γ, /, g
such that Mul = Mulr/S ·

In §§6—7 a general curve in the space R(D) is described. The admissible divisor
D is related to a polygon AD- The problem of describing a general curve in the
space 3?(-D) is equivalent to investigating the general equation Ρ = 0 with a given
Newton polygon Δ(Ρ) = Δβ and fixed coefficients of monomials corresponding to
the boundary points of the polygon Δ.

The investigation of the general equation with a given Newton polyhedron is a
traditional problem. The initial data in this problem (the Newton polyhedron) are
discrete. Besides discrete data (the Newton polygon) we also include continuous
data (coefficients on the boundary). In particular, the solution of our problem
involves a description of all curves Ρ = 0 for which the Newton polygon does not
include interior integer-valued points. This can be carried out because there are
not many polygons without interior integer points (see §5).

The conditions for admissibility of a divisor D include a discrete and a continuous
condition (the Vieta condition, see §4). In §10 a version of Abel's theorem is
presented that gives an independent explanation of the Vieta condition.

Let Ρ be a Laurent polynomial on the complex plane. In our paper we define
a function Mul = Mulp on the space Ζ? χ C*. Given the function Mul, does a
Laurent polynomial Ρ exist such that Mul = Mulp?

This rather obvious problem plays a key role in our paper. Conditions on the
function Mul sufficient for the existence of a Laurent polynomial Ρ such that
Mul = Mulp prove to be just the same as the conditions described above (that
is, the conditions for the existence of a triple T,f,g such that Mul = Mulr/5, or
the condition for admissibility of a divisor D such that Mul = Mul/j).

The problem of existence of a Laurent polynomial Ρ such that Mul = Mulp can
be completely solved using only elementary plane geometry (Pascal's condition for
convex polygons) and elementary algebra (Vieta's formula for the product of roots
of a polynomial). We start our paper with the solution of this problem.

A remark on the terminology: the words 'polyhedron' and 'polygon' mean a
convex polyhedron and a convex polygon.

§1. Newton polygons, the Pascal relation, and the Vieta relation

Let P(x,y) be a Laurent polynomial on the complex plane and Δ = Δ(Ρ) its
Newton polygon lying in the plane of exponents. The plane of exponents M2 is
supposed to be oriented. (Its orientation is fixed by the order of the variables x, y.)
A lattice of integer exponents is fixed in it. Consequently, the dual plane K2* is also
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oriented and the dual lattice is defined in it, which we call the lattice of powers. Let
Z2

r denote the subset of non-cancellable non-zero vectors in the lattice of powers.
Each vector η (Ξ Z2

r determines the orientation of a line in the plane of exponents
that is orthogonal to the vector n. Namely, the line is oriented as the boundary
of the region in which the scalar product by the vector ή is positive. For example,
for the usual orientation of the plane, the interior normal η to a side of the two-
dimensional polygon Δ is oriented so that the motion along the polygon boundary
is counter-clockwise.

For each vector η £ Z2

r, we denote by Δ" a side or a vertex of the polygon Δ
where the scalar product with the vector η is minimum.

For each integer-valued polygon Δ, a function LenA on Z? is defined by calcu-
lating the integer length of the face Δ η associated with the vector n. By definition,
the integer-valued length of a vertex is equal to zero, and the integer-valued length
of a side containing m + 1 integer-valued points is equal to m.

By the famous Minkowski theorem, a multidimensional polyhedron can be
uniquely recovered (up to a parallel translation) from the function S(n) which
takes the normals η to the area 5 of the corresponding faces. The polyhedron
exists if and only if the Pascal condition Σ S(n)n = 0 holds.

The following simple lemma is a two-dimensional integer version of the
Minkowski theorem. Let Len be a function on Z2

r with non-negative integer values.

Lemma (an integer version of the two-dimensional Minkowski theorem). For a
non-zero function Len there exists an integer-valued polygon Δ such that Len = Len^
if and only if this function is non-zero only on a finite set and the Pascal condition

2_] n)n = 0

holds. The polygon Δ is uniquely defined by the function Len up to a parallel
translation.

Proof. We show how to construct a polygon satisfying the Pascal condition, starting
from the function Len. Let us fix the structure of a complex line on the plane E2 and
thus identify E2 and E2*. Let us consider a finite set of vectors from Z2

r for which
the function Len does not vanish. We number the vectors of this set in the order in
which they occur in a rotation of a ruler around the origin of coordinates counter-
clockwise. We put lfij = (—i)Len(nj)(n,j), where i is the imaginary unit. Using
the vectors /#., we construct a polygonal line joining the origin of the following
vector to the end-point of the previous one. The closure condition of the polygonal
line is equivalent to the Pascal condition. The polygonal line thus constructed is
the boundary of the desired polygon. The remaining statements of the lemma are
proved just as simply as this one.

For each vector η S Z2

r, using the Laurent polynomial Ρ we define the following
polynomial Pa of one variable. If Δ" is the vertex Q, then the polynomial Pa is
defined as a constant equal to the coefficient of the monomial corresponding to the
vertex Q in the Laurent polynomial P. Now let Δ" be a side / of the Newton
polygon Δ.
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We call vertices A and Β on the side / senior and junior, respectively, if the
motion along I from the point A to the point Β corresponds to the orientation of
the side I related to the vector n. Let the side / have an integer-valued length m,
that is, let it contain m + 1 integer-valued points. We number the integer-valued
points on the side I by numbers from 0 to m, starting from the junior vertex B.
Let the coefficient of the monomial in the Laurent polynomial Ρ corresponding
to the ith integer-valued point be equal to Cj. We define a polynomial Pa by the
formula Pa {ξ) = Σ"1οϋ«^- Thus, the degree of the polynomial Pa is equal to the
integer-valued length m of the side I. Its senior coefficient is equal to the coefficient
of the vertex A in the Laurent polynomial P. The constant term of the polynomial
Pa is equal to the coefficient of the vertex Β in the Laurent polynomial P.

To each Laurent polynomial P(x,y) there corresponds a function Mulp on
Z?r χ C* that associates with a vector η and a complex number c the multiplicity
of c as a root of the polynomial Ρα{ζ)- Each of the polynomials Pa can be recov-
ered from the function Mulp up to a multiplier. In particular, the degrees of these
polynomials, that is, the function Len/\(p), can be recovered. Therefore, the follow-
ing question is an algebraic version of the Minkowski question: given the function
Mul: Z?r x C M N+, does a Laurent polynomial Ρ exist such that Mul = Mulp?
In what follows we completely answer this question.

We say that a vector it, G Z?r is characteristic for the function Mul if the restric-
tion Mul(n, ·) of this function to C* is not identically zero.

Theorem (an algebraic analogue of the two-dimensional Minkowski theorem). For
the non-zero function Mul there exists a Laurent polynomial Ρ such that
Mul = Mulp if and only if the function Mul has finitely many characteristic vectors
and

(1) (the one-dimensional case) if there are at most two characteristic vectors,
then the reflexivity condition

Mul(n,c) =Mul(-n,c" 1 )

holds;
(2) (the two-dimensional case) if there are more than two characteristic vectors,

then
(a) the Pascal condition holds: ^Mul(n, c)n = 0,
(b) the Vieta condition holds: ]7(-c)Mul("'c) = 1.

Proof. We start with the one-dimensional case.
First we note that the reflexivity condition implies both the Pascal condition

and the Vieta condition. Moreover, if the non-zero function Mul has the reflexivity
property, then it has exactly two characteristic vectors ή\ and n*i that are related
by Hi + n2 = 0.

If the Newton polygon of a Laurent polynomial Ρ is a segment I, then the
polynomial Pa does not equal a constant for exactly two vectors, namely, for
the vectors nj and η·ι that are orthogonal to the segment I. In this case we
have the obvious relations n\ = — n2 and ζτηΡα1(ζ~ι) = Ρα2(ζ): where τη is the
integer-valued length of the segment /. It follows that the reflexivity condition
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Mulp(ni,c) = Mulp(—ni,c-1) holds. Conversely, let the function Mul be reflexive
and have two characteristic vectors ηχ and n2, with n\ + n2 = 0. A polygon con-
structed from the function Len(n) = Σ Mul(n, c)n is a segment that is orthogonal
to the vector ni and has the integer-valued length Len(nx) = 53Mul(ni,c).

We consider the Laurent polynomial Ρ for which the Newton polygon coincides
with the constructed segment, and the polynomial Ρηλ (ξ) is equal to
co ΓΊ(£ ~ c)Mui(ni.c)# These conditions define the Laurent polynomial P.

The function Mul(P) coincides with the function Mul, since the polynomial
Pn2(£) = ^Len^"1'Pfii (ξ*1) has roots inverse to the roots of the polynomial P ^ . In
the one-dimensional case, both assertions of our theorem are proved.

Now we prove it for the two-dimensional case. Let the Laurent polynomial Ρ
have a two-dimensional Newton polygon. For a side In of a Newton polygon Δ with
interior normal n, the following relation holds:

ΤΤ(_(Λ
Μ"1Ρ(«>< :) = zJL

where A and Β are the senior and the junior vertices on the side I, respectively,
and PA , PB are the coefficients in the Laurent polynomial Ρ corresponding to these
vertices. In fact, this relation is the Vieta formula for the product of roots of the
polynomial Ρβ. The product Π(~c)M u l f >("'c) is equal to unity, since each vertex
of the Newton polygon is the junior vertex for one side and the senior vertex for
another.

Now we prove the converse statement. In case 2) the Pascal condition is postu-
lated. Therefore, one can construct a polygon from the function Mul. Obviously,
it is two-dimensional. Our knowledge of the function Mul(n, c), the vector η being
fixed, provides the possibility of recovering all coefficients of the Laurent polynomial
Ρ on the side ln up to an arbitrary multiplier c0, Ρη{ξ) = CQ Π (ξ - c)M u l("' c).

We show that the Vieta condition guarantees the possibility of a concordant
choice of arbitrary multipliers in the polynomials Pn- Indeed, the sides of a two-
dimensional polygon intersect only at vertices. Let us move along the sides 11,..., IN
at the boundary of the polygon Δ and write out the polynomials P ^ , . . . , PnN

corresponding to the interior normals to these sides. We denote the product
Π(~c) M u l ( n i ' c ' by Vj. We fix the multiplier Co = Q at the senior vertex of the side
h and put Ρ Λ ι (£) = Q 1\{ξ - c)Mu](-Rl'cl Then the coefficient at the junior vertex of
this side is equal to QV\. The junior vertex of the side l\ is the senior vertex of the
side l2. Therefore, the polynomial Ρη2{ξ) must be equal to QVi Υ\(ξ - c)

Mul(-n2'cK
The coefficient of the junior vertex of the side Z2 is equal to QV1V2. Moving along
the polygon boundary, we come to the vertex that we have started from. We do
not obtain a contradiction, since QV\ • • • VN = Q and the product Π(~c) M u l ' n > c '
is equal to unity by virtue of the Vieta condition. Thus, we have recovered the
coefficients of the Laurent polynomial Ρ at the boundary of the polygon Δ up to a
common factor. Choosing arbitrarily the coefficients of the monomials correspond-
ing to interior points of the polygon Δ, we obtain the polynomial Ρ such that
Mul = Mul(P). The theorem is proved.

The following corollary has a rather unexpected reformulation in the geometry
of torus surfaces (see Theorem 2 in §10).
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Corollary. For each integer-valued polygon Δ there exists a Laurent polynomial Q
such that its Newton polygon is Δ and it has the following property: all polynomials
Qa, η S ZfT, have no roots different from — 1.

This corollary follows immediately from the theorem. However, it has an even
simpler proof.

Proof of Corollary. If the minimum of the scalar product by the vector ή € Zfr is
attained at a side I of the polygon Δ and the integer-valued length of the side I is
equal to m(l), then we put Qn(O — (1 + ξ)"1^. If the minimum is attained at a
vertex, then we put <3n(0 = 1- Both the senior and the junior coefficients of the
polynomial (1 + ξ)πι are equal to 1. Therefore, if the polygon Δ is two-dimensional,
then by writing the polynomial (1 + £)mC' on each side I of it, we do not get a
contradiction: the polygon sides intersect only at vertices, and the coefficient 1
will be written at each vertex. On the other hand, if the polygon is reduced to a
single segment, we also do not get a contradiction, since the polynomial (1 + ξ)"1

is reflexive, £ m ( l + ξ" 1 )" 1 = (ξ + l ) m · At all interior integer-valued points of the
polygon Δ, we can write any coefficients. Thus, we obtain the desired Laurent
polynomial Q.

Let us sum up the results. We call a function Mul admissible if it satisfies the con-
ditions of the theorem. Given an admissible function Mul, the polygon Δ = A(Mul)
is uniquely constructed (up to a parallel transfer). Given an admissible function
Mul, for any Laurent polynomial Ρ such that Mulp = Mul, all coefficients of the
monomials corresponding to the points on the boundary of the polygon Δ can be
uniquely recovered (up to a common non-zero constant multiplier). The coefficients
of the interior monomials can be chosen arbitrarily. Therefore, the Laurent poly-
nomials Ρ for which Mulp = Mul are a set of non-zero vectors in the complex
linear space whose dimension is equal to -Β(Δ) + 1, where B(A) is the number of
interior integer-valued points of the polygon Δ = Δ (Mul).

§2. Newton polygons and Weil numbers

Let Γ be the germ of an analytical curve at the point a, and let u be a local
parameter, u: Τ —> C, such that u(a) = 0. We consider the germ of (/,g), a
meromorphic function on Γ. Let

/ = C l u » i + • • • , g = c2u
b* + ••• , ( 1 )

where C\ φ 0 and c-ι φ 0 are the higher-order terms of the Laurent series of these
functions. (Here and in what follows, we assume that neither the germ of / nor
the germ of g vanishes identically. We also always assume that the germ of (/, g)
is not the germ of a constant vector-function.)

We call the number

the Weil number of the germ of the vector-function (/, g)
It is easy to check that the number {/, g}a is well defined, that is, it does not

depend on the choice of the local parameter u.
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The Weil numbers occur in Weil's theorem (see §9), which is closely related to
the present investigation.

We present definitions of a number of invariants of the germ of the vector-
function (/, g). We call a non-cancellable integer-valued vector η = (ηχ, 712) propor-
tional to its exponent vector b= (^1,62) with integer coefficient k,b = kn, the type
of the germ of the vector-function (/, g). The coefficient k is called the multiplicity
of the germ. The reduced Weil number [/, g]a of the germ of the vector-function
(/, g) is the number [/, g] = οψό^ηι, where {τΐχ, 712) are the components of the type
η of this germ.

The next statement follows from the definitions.

Lemma 1. The Weil number is expressed in terms of the reduced Weil number
and the germ multiplicity as follows:

The invariants of the germ of the meromorphic function that we are dealing
with are preserved under power transformations. Let A = {a,ij} be a unimodular
2 χ 2-matrix (that is, a matrix with integer coefficients and unit determinant). Let
a power transformation of the vector-function (/, g) be given by the matrix A. The
germ of (/, g) is transformed to the germ of (F, G), where

F = f 11 g 12 and G — f 21 g 2 2 .

Lemma 2. For each unimodular matrix A, the germ type of the vector-function
(F, G) is equal to An, where η is the germ type of the vector-function (/, g). The
multiplicity, the reduced Weil number and the Weil number for the germ of the
vector-function (F,G) are the same as for the vector-function (f,g).

Lemma 2 can be proved by straightforward calculation. It suggests that the
Weil numbers are to be related to the theory of Newton polygons and to the two-
dimensional torus geometry.

In the present paper we show that this is indeed so. First of all, by using the
Weil numbers we can simplify the formulation of the classical theorem on Newton
polygons that will be discussed below.

Let an algebraic curve Γ lie within a torus C*2, χ and y being the coordinate
functions. On the normalization Γ of this curve we define two meromorphic func-
tions χ and y that meromorphically map the curve Γ on the torus C*2 onto the
curve Γ C C*2. The following theorem goes back to Newton.

Theorem 1 (on Newton polygons). Let a curve Γ in C*2 be defined by the equation
P(x,y) = 0, and suppose that it has no multiple components. On the normalization
Γ of this curve there exist points at which the vector-function (x, y) is of type η φ 0
if and only if the minimum of the scalar product by the vector n, on the Newton
polygon Δ(Ρ) , is attained on a side of this polygon. Moreover, calculated with regard
to multiplicity, the number of points where the vector-function (x, y) is of type ft
and its reduced Weil number is a fixed number ξο is equal to the degree οτάξ0 Ρα of
the polynomial Ρ a at the point ξο.



Newton polygons, curves on torus surfaces, and the converse Weil theorem 1259

Proof. We perform a power transformation of the (a;,i/)-plane by using a unimod-
ular matrix A that takes a non-cancellable vector η to the vector (1,0). This
transformation changes neither the reduced Weil numbers nor the multiplicity of
the germs of the vector-function (x,y) on the curve Γ (see Lemma 1). We are
interested in points on the curve Γ in a neighbourhood of which the functions χ
and y are of the form

x = c\ uk + • • • ,

y - c2 Η ,

where c\Ci φ 0, k > 0. We assume that the minimum of the scalar product by
the vector (1,0) is reached on a side I of the polygon Δ(Ρ) . Let us perform a
parallel transfer of the polygon Δ(Ρ) in such a way that the junior vertex on the
side I coincides with the origin of coordinates. The parallel transfer corresponds to
multiplication of the Laurent polynomial Ρ by a monomial and does not change
the curve Γ defined on the torus C*2 by the equation Ρ = 0.

After such a transformation, the restriction of the Laurent polynomial Ρ to the
j/-axis is defined for y / 0. The polynomial P(0, y) coincides with the polynomial
Ρη{ξ) defined above when ξ = y. On the one hand, the multiplicity of the intersec-
tion of the y-axis with the closure of the curve Γ C C*2 at the point (0, ξο) is equal
to the multiplicity of the root ξο of the polynomial P(0, y) = Pn(y)- On the other
hand, this multiplicity is equal to the number of points on the normalized curve Γ
in the neighbourhood of which

χ = C\Uk + • • • ,

1/ = & + · • · ,

with regard to their multiplicities k. This completes the proof.

If the minimum of the scalar product by the vector η is reached at a vertex of
the polygon Δ(Ρ) , then the theorem is proved similarly (and even more simply: in
this case the polynomial P,% is constant and has no roots at all).

The theorem on Newton polygons can immediately be generalized to algebraic
curves with multiple components. For the germ (1) of a vector-function on a com-
ponent of an algebraic curve of multiplicity μ, the total multiplicity is the number
kμ, where k is the multiplicity for the germ (1).

Theorem 1' (on Newton polygons). On the normalization Γ of the curve Γ in C*2

defined by the equation P(x,y) = 0 there exist points at which the vector-function
(x, y) is of type η φ 0 if and only if the minimum of the scalar product by the vector
η is attained on the Newton polygon Δ(Ρ) on a side of this polygon. Moreover,
the number of points (calculated with regard to total multiplicities) at which the
vector-function (x, y) is of type η and its reduced Weil number is a fixed number ξο
is equal to the degree ord^0 P^ of the polynomial P^ at the point ξο.

Theorem 1' follows automatically from Theorem 1. As a matter of fact, the
Laurent polynomial can be expressed as the product of irreducible Laurent poly-
nomials for which Theorem 1 is satisfied.
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§3. Parametrization of one-dimensional orbits on a torus surface

As is well known, the Newton polyhedra are most closely related to the torus
compactifications of a torus [4].

The two-dimensional situation is a special one. The group C* has only one non-
trivial automorphism (that takes a point t to i~x). The specific character of a two-
dimensional torus is the existence of a simultaneous natural choice of parametr-
ization on each of its connected quotient groups of dimension 1. This parametriza-
tion depends only on the orientation of the plane of one-parameter groups and is
changed to the opposite under change of the orientation. Let us determine this
parametrization. We fix the orientation of the plane of one-parameter groups. Let
Οζ be a one-parameter subgroup of C*2 corresponding to the vector b — (61,62),
6 φ 0. (Such a group is defined by a homomorphism of the standard group C*
to the group C*2 taking the point r to the point rb = (rbl,Tb2).) Let TTJ denote
the projection of the group C*2 onto a quotient group of C*2 with respect to the
subgroup Οζ.

Definition. The parametrization t of a quotient group C*2/Oj is called the para-
metrization consistent with the orientation of the plane of one-parameter groups
if for any integer-valued vector m such that the pair of vectors (6, m) defines the
correct orientation of one-parameter groups, the following equality holds:

It is easy to verify that there exists a parametrization consistent with the orien-
tation of the plane of one-parameter groups. Let us describe this parametrization
in coordinates. We consider a standard two-dimensional torus C 2 with coordinate
functions (x,y) and with the standard orientation of the plane of one-parameter
groups. Let 6 = (61,62) a non-zero integer-valued vector, η = (ηχ,Π2) a non-
cancellable integer-valued vector such that 6 = kn, where k is a positive integer,
and 7rg the projection of C*2 onto the quotient group C*2/Og.

It is easy to check the following statement.

L e m m a . A mapping taking a point c 6 C*2 to the parameter t of the point 7Tg(c)
is described by the formula t = c^c^"2, where c = (01,02) and η = (η.1,712), under
the quotient group parametrization described above.

If we fix an isomorphism between one-dimensional quotient groups of the torus
C*2 and the group C*, we obtain the following corollary.

Assertion 1. On any torus surface there exists a natural parametrization of each
one-dimensional orbit depending only on the orientation of the plane of one-
parameter groups.

Proof. Let M£, be a one-dimensional orbit corresponding to the ray generated by
the vector η in the fan of this surface (see [3], [7]). The points of the torus C*2 tend
to this orbit under the action of the one-parameter group t" as t -> 0. The orbit

is naturally isomorphic to the quotient group of the torus C*2 with respect
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to the subgroup tn. The above described parametrization of this quotient group
presents a natural parametrization of the orbit.

This torus construction is related to the Weil numbers as follows. Let / =
Ciubl +• • •, g = C2Ub2 + • • • be a germ of a meromorphic mapping of the curve (Γ, α)
to the torus C*2. Let b = kn, k > 0, and let Mn D C*2 be a torus surface whose
fan is a ray generated by the vector n. The surface M" contains exactly one one-
dimensional orbit M^. The order of the components / and g in the vector-function
(/, g) fixes the orientation of the plane, and consequently fixes the parametrization
of the one-dimensional orbit M^.

Assertion 2. The germ of a meromorphic mapping (f,g): Γ —¥ C*2 can be con-
tinued to the germ of the analytic mapping (/,(?): Γ —¥ Mn. This analytic mapping
takes a point a to a point of the one-dimensional orbit M^ with the parameter t
equal to the reduced Weil number [/, g]n. The image of the curve Γ intersects the
orbit M^ with multiplicity k equal to the multiplicity of the germ of {f,g).

Proof. As u -> 0 the point {c\ubl + • • • , c2u
b2 + · · •) tends to a point on the orbit

M Ĵ, that, by the lemma, has parameter equal to c '̂cj"™2. This number is equal to
the reduced Weil number. The remaining facts of the statement are easily verified
by inspection.

§4. Curves on a torus surface

Let Μ be a compact torus surface, possibly having singularities at points that are
null-dimensional orbits. Let finitely many points with given positive multiplicities
be fixed on the union M^ of one-dimensional orbits of the surface Μ. Does there
exist a curve on the surface Μ that does not pass through null-dimensional orbits
and intersects one-dimensional orbits at given points with given multiplicities? We
present here the complete answer to this question.

In order to formulate it, we first encode the divisors D, whose supports lie in the
union of one-dimensional orbits of M, by the function

MulD: Z2

r x C - > N +

to be defined below. We fix the orientation in the plane of one-parameter groups of
the torus C*2. Thereby we fix the parametrization of each one-dimensional orbit on
any torus compactification Μ of the torus C*2. Let a vector η € Z2

r correspond to
the one-dimensional orbit M£, on the surface M. In this case we set the function
Mulij(n, c) equal to the multiplicity with which a point having parameter c on
the one-dimensional orbit M^ is included in the divisor D. If the vector η £ Z2

r

corresponds to a null-dimensional orbit on Μ, then we set the function Mulo(n,c)
equal to zero for all points c G C*.

Theorem. A divisor D is the divisor of the intersection of a curve not passing
through null-dimensional orbits of a torus surface Μ with the union M^ of one-
dimensional orbits of Μ if and only if this curve is the closure of the curve defined
in C*2 by the equation Ρ = 0, the function Mulp of the Laurent polynomial Ρ being
equal to the function Mulrj of the divisor D: Mulp = Mulrj.
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Proof. The torus surface Μ contains the torus C*2. Any algebraic curve lying on
the surface Μ and including no one-dimensional orbits as components is the closure
of a curve lying in the torus C2*. Each curve in C2* is given by an equation Ρ = 0,
where Ρ is a Laurent polynomial. Let us consider the function Mulp constructed
from such a Laurent polynomial. If the vector η £ ZfT in the fan of the surface Μ
corresponds to a null-dimensional orbit A, then the function Mulp(n, •) must vanish
identically on C*. Otherwise, as one can see from Theorem 1' on Newton polygons,
the closure of the curve Ρ = 0 in the surface Μ contains the null-dimensional
orbit A. Let a vector η e Z?r in the fan of the surface Μ correspond to the one-
dimensional orbit M^. Then, by virtue of Theorem 1' on Newton polygons and
Assertion 2 of §3, the closure of the curve Ρ = 0 intersects the orbit M£, only
at points whose parameters are roots of the polynomial Pn- The multiplicity of
the intersection point is equal to the multiplicity of the corresponding root of the
polynomial P^. The theorem is proved.

Let us summarize. Suppose that the support of a divisor D lies on at most two
orbits. Then the desired curve exists if and only if

(1) there are exactly two such orbits with corresponding opposite vectors ni
and H2, ni + n-z = 0;

(2) the point on the orbit M^ with parameter c is included in the divisor D
with the same multiplicity as the point that is included in D with parameter
c~l on the orbit M£g.

Let a divisor D be included in the union of at least three one-dimensional orbits.
Then the desired curve exists if and only if

(1) the Pascal condition ^ Mul/?(n,c) = 0 holds,
(2) the Vieta condition r](-c)Mul*>("-c) = 1 holds.

If conditions (1) and (2) are satisfied, then the desired curve Γ can be defined as
follows. From the function MUID we construct a Newton polygon Δ# such that

D(n) = y^Mulo(n,c).

This polygon is uniquely defined up to a parallel transfer. Further, for the Laurent
polynomial Ρ we single out the coefficients of all monomials corresponding to the
boundary points of the polygon Δ. These coefficients are uniquely defined up to
a common multiplier from the condition that the degree of the polynomial Pa at
the point c is equal to MUID (n, c). All the remaining coefficients of the Laurent
polynomial Ρ are arbitrary.

We denote by 9l(D) the space of all curves on the surface Μ not passing through
null-dimensional orbits and intersecting the union of one-dimensional orbits with
respect to the divisor D. Since proportional equations define the same curve,
is a projectivization of the space of Laurent polynomials Ρ for which Mulp =

The space of Mulp is the complement to the point 0 in a linear space of dimen-
sion Β (A) + 1, where Β (A) is the number of interior integer-valued points of the
polygon Δ, Δβ = A(P). (We identify Laurent polynomials whose quotient is a
monomial.) Therefore the space Jl(D) is a projective space of dimension Β (A).
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§5. Polygons without interior integer-valued points

We begin with a list of exceptional polygons, none of which contains interior
integer-valued points.

List of exceptional polygons.

1. A segment of integer length πι. It is transformed by some unimodular
transformation to the interval with vertices (0,0), (m,0).

2. A triangle whose sides have the integer-valued length 2. It is transformed
by some unimodular transformation to the simplex with vertices (0,0),
(2,0), (2,0).

3. A triangle of integer-valued height 1 whose base is of integer-valued length
equal to m. It is transformed by some unimodular transformation to the
simplex with vertices (0,0), (m,0), (1,0).

4. A trapezium of integer-valued height 1 whose bases are integer-valued of
lengths k and m, where 0 < k ^ m. It is transformed by an integer-valued
transformation to the trapezium with the vertices (0,0), (m, 0), (1,0), (1, k).

Theorem. // an integer-valued polygon contains interior integer-valued points,
then for each side I of it there exists an integer-valued interior point whose integer-
valued height with respect to the side I is equal to 1. All integer-valued polygons
without interior integer-valued points are included in the list of exceptional polygons.

Proof. We show that if an integer-valued polygon is not included in the list of
exceptional polygons, then for each side / of it there exists an interior integer-valued
point whose integer-valued height with respect to / is equal to 1. Obviously, this
implies both assertions of the theorem. We perform a unimodular transformation
of the plane (u, v) so that the polygon Δ lies in the upper half-plane ν ^ 0, whereas
the side / lies on the axis υ = 0. If the intersection of the polygon Δ with the line
ν = 1 is empty, then the integer-valued polygon Δ is a segment. If this intersection
is a point, then Δ is a triangle of integer-valued height 1. If the segment Δ Π (ν = 1)
contains an interior integer-valued point, then either this point is an interior point
of the polygon Δ whose integer-valued height with respect to the side / is equal
to 1, or the segment Δ Π (υ = 1) is a side of the polygon Δ. In the latter case,
the polygon Δ is an integer-valued trapezium with integer-valued height equal to 1.
We show that if the segment Δ Π (ν = 1) does not contain an interior integer-
valued point, then the polygon Δ is an exceptional polygon. Indeed, in this case
the segment Δ Π (υ = 1) is transformed to the band 0 ^ u ^ 1 by a unimodular
transformation of the plane fixing all points of the horizontal coordinate axis and
mapping all horizontal lines to themselves.

Let the segment Af l (« = 1) coincide with the segment ( 0 ^ i t ^ l , u = l).
The following situations are possible. If the side / is of length 1, then the polygon
Δ lies in the band 0 ^ u ^ 1 and is a trapezium with integer-valued height equal
to 1. If the side I is of length 2, then the polygon Δ is a simplex (u > 0, ν ^ 0,
u + ν ^ 2) with integer-valued sides equal to 2. In our case, there are no integer-
valued polygons Δ with sides I of length larger than 2.

If the length of the segment Δ Π (ν — 1) is less than 1, then the only possible
cases are those in which the length of the side I is equal to 1, whereas the polygon Δ



1264 A. G. Khovanskii

is a triangle with integer-valued height equal to 1 (with vertex on the line u = 0 or
on the line u = 1). The theorem is proved.

§6. Polygon AD with an interior integer-valued point

In this section we describe a general curve in the space R(D) (see §4) in the case
when the polygon Δβ contains an interior integer-valued point.

Lemma. Suppose that a point a lies on the one-dimensional orbit M^ of a surface
Μ and is included in a divisor D with multiplicity k(a). Let the divisor D be
admissible and let the polygon AD contain an interior integer-valued point. Then
a general curve Γ in the space Jt(D) is smooth around the point a and Γ is tangent
to the orbit M^ with multiplicity k(a).

Proof. Let c be the parameter of the point a on the orbit M" and let Ρ = 0 be the
equation of the curve in C*2, where Mulp = Mul^j.

We perform a unimodular power transformation of the torus C*2 that takes the
vector ή to the vector e\. After such a transformation and cancellation by an
appropriate monomial, the equation Ρ = 0 will have the following properties:

1) the Laurent polynomial Ρ will be regular in the plane (x, y) outside the axis

i/ = 0;
2) its restriction P(0,y) to the axis x = 0 will coincide with the polynomial

Pn(y).

In the coordinates (x,y) the axis χ = 0 coincides with the orbit M^,, and the
point a coincides with the point (0,c). If the polynomial Pa has a root of multi-
plicity 1 at the point c, then our lemma follows from the implicit function theorem.
Now let c be a root of multiplicity ^ 2 of the polynomial Pa- By the theorem in §5,
there is an integer-valued point with coordinates (l,fc) inside the Newton polygon
Δ, where k is some integer.

Therefore, for any values of the parameter λ, the polygon P\ = Ρ + \xyk lies
dP

in the space considered, that is, Mulp. = Mul/j. If λ φ — c~k-^— (0,c), then the
oy

implicit function theorem can be applied to the equation P\ = 0 around the point
(0,c). Our lemma is proved.

Theorem. Let a divisor D be admissible, and let its Newton polygon Δ contain an
interior integer-valued point. Then a general curve in the space Ol(D) is a smooth
irreducible curve of genus g = B(A), where -Β(Δ) is the number of interior points
of A. The intersection of the general curve in the space $(Δ) with the torus C*2

is a sphere with g handles and with q points removed, where q is the number of
geometrically distinct points in the support of the divisor D.

Proof. The general equation Ρ — 0, where Mulp = Mul/j, defines a non-singular
curve in the torus C*2. Indeed, let a point (k,m) be interior for the polygon Δ.
We rewrite the equation P(x,y) = 0 in the form Px~ky~m = λ, where Ρ =
Ρ — \xkym. By virtue of the Sard-Bertini theorem, the curve Px~ky~m = λ is
non-singular for almost all values of the parameter λ. By our lemma, a general
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curve in the space R(D) is non-singular also at the points of intersection with one-
dimensional orbits of the surface M. Therefore the general curve in the space 3?(.D)
has no singular points at all. By the implicit function theorem, a small change of
coefficients of the equation of a smooth curve does not change the topology of this
curve. Changing the coefficients of all monomials a little, we can make this equation
Δ-non-degenerate. Applying well-known results on Δ-non-degenerate curves [5], we
can make the general curve R(D) irreducible and have genus Β (A). The number
of geometrically distinct points of intersection of a smooth curve in the space Ol(D)
with the union of one-dimensional orbits is equal to the number of geometrically
distinct points in the divisor D.

§7. Polygon Δχ> without interior integer-valued points

Let a divisor D on the union of one-dimensional orbits of a torus surface Μ
be admissible, and let us assume that its Newton polygon AQ does not contain
interior integer-valued points. The complete description of this case is based on the
complete enumeration of polygons without interior integer-valued points (see §5).
If Δ(£>) has no interior integer-valued points, then, up to a multiplier, there exists
only one Laurent polynomial Ρ such that Mulp = MUIA and only one curve in the
space R(D). We denote this curve by r(D).

Theorem 1. By a power unimodular change of coordinates and multiplication by
a monomial, the Laurent polynomial Ρ can be reduced either to a polynomial of
degree m with non-zero constant term independent of the first coordinate function,
or to a quadratic polynomial with non-zero constant term and with non-zero coeffi-
cients of x2 and y2, or to the polynomial ySk(x) + Qm{x)> where Sk and Qm are
polynomials of degrees k and m, m > 0, m ^ k ^ 0, with non-zero constant terms.

Proof. This follows immediately from the consideration of the list of polynomials
without interior integer-valued points (see §5).

We additionally assume that the equation Ρ = 0 is irreducible. Then after the
power change of coordinates, this equation defines a horizontal line in the first case,
a smooth quadric in the second case, and the graph of a rational function in the
third case. We see that the irreducible curve r(D) behaves exactly like a general
curve in the space CR(D) if the polygon Ap has interior integer-valued points.

Theorem 2. Suppose that a divisor D is admissible and its Newton polygon A does
not contain interior integer-valued points. Additionally, suppose that the unique
curve r(D) in the space R(D) is irreducible. Then it is a smooth rational curve on
the surface M. If D contains a point a with multiplicity k(a), then the curve r{D)
is tangent at the point a to the one-dimensional orbit passing through the point a
with multiplicity k(a).

It remains to describe conditions for irreducibility of the curve in terms of the
divisor D and to analyse this case.

The case of a segment. Let the function Mul/j of the divisor D have exactly
two characteristic vectors n\ and ni such that n*\ + n<2 = 0, and let it possess the
reflexivity property Mul£>(ni,c) = Mul£>(ri2, c~1).
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The Newton polynomial AD is a segment in this case. To describe the curve
r(D), we perform a unimodular automorphism of the torus C*2 C Μ taking the
vector ni from the Lie algebra of the torus C*2 to the vector e\, where e\ — (1,0).
After such a transformation, the curve r(D) in C*2 with coordinates (x,y) will
consist of the union of horizontal lines y = cf, each line y = C{ is included in the
curve r(D) with multiplicity equal to the multiplicity of the point with parameter
c, on the orbit M " 1 with which it is included in the divisor D.

In particular, the curve r(D) does not contain multiple components if and only
if the function Mulp is equal to 0 or 1. The curve r(D) is not multiple and irre-
ducible if and only if the function Mul/j is equal to 1 at exactly two points (Hi, c)
and (—ni,c~1) and vanishes at all the remaining points.

Now we pass to the case of two-dimensional polygons Δ υ . In this case the admis-
sible divisors D satisfy the Vieta condition. The combinatorial types of polygons
Δ differ in the cases considered below, and the Pascal conditions are of different
form.

Simplex with sides of integer-valued length 2. In this case the divisor D
contains 2 points (taking account of multiplicity) on each of the three orbits corre-
sponding to the vectors n\, Η2, n^. The Pascal condition is of the form

n\ + n,2 + n$ = 0.

Assertion 1. The curve r(D) is reducible if and only if one can choose, in the
support of the divisor D, one point on each of the three orbits so that the product of
their parameters is — 1. In this case the curve consists of two components. These
components merge into one multiple component if and only if, in addition, all points
of the divisor are multiple. If these components differ, then they intersect at exactly
one point of the surface Μ. This point is not a point of the torus C*2 if and only
if one point of the divisor D is multiple.

Proof. With a power transformation, the curve r(D) is transformed to a quadric.
The assertion is obvious for quadrics.

Remark. If an admissible divisor contains three double points, then by the Vieta
condition [(—£i)(—(,2)(—ζ3)]2 = 1, where & are the parameters of these points. Two
cases are possible:

(1) the case (—£i)(—&)(—£3) = 1 corresponds to one component of multiplic-
ity 2,

(2) the case (—£i)(—&)(—£3) = —1 corresponds to a non-singular curve; with
a power transformation, such a curve can be transformed to a parabola
tangent to the coordinate axes.

The case of a triangle of integer-valued height 1. Let the divisor D contain
points on the three orbits corresponding to the vectors n x , n-2, «3. Suppose that
on the orbit corresponding to the vector n\ the divisor D contains at least as many
points as on either of the remaining orbits. Let this number of points be equal to
the number k ^ 1. Our case is defined by the following conditions:

(1) the divisor has exactly one point on each of the remaining orbits,
(2) the following relations hold: kni+n,2+n3 = 0 , | det(ni,n2)| = | det(ni,n3)| = l.
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Under conditions (1) and (2) the admissibility condition for the divisor D is the
Vieta condition.

Assertion 2. Under these conditions, the curve r(D) is always irreducible.

Proof. A triangle with integer-valued height 1 cannot be decomposed into the
Minkowski sum of integer-valued polygons. The Laurent polynomial with such
a Newton polygon is irreducible.

Trapezium of integer-valued height 1. This case appears under the following
circumstances: the divisor D contains points on the four orbits corresponding to
the vectors Hi, n-2, r?3, n±. On one of the orbits there are at least as many points
as on the other orbits. Let this orbit correspond to the vector H\. We denote
the number of points on it by m, m > 1. One of the vectors nj, n-j, H4 is the
vector —r?i. Assume that it is the vector H3. The divisor must have exactly one
point on each of the orbits corresponding to the vectors rii and H4 and a number
k, k Ji 1, of points on the orbit corresponding to the vector — H\ = η·$. The Pascal
relation τηΗχ + Π2 + fcn3 + n4 = 0 and the relation \άβί(ηχ,τΐ2)\ = |det(ni,n 3) | = 1
must hold.

These discrete conditions are equivalent to the Pascal condition for the existence
of a trapezium AD and the requirement that Δβ does not contain interior integer-
valued points. These conditions imply that the divisor D is admissible if and only
if the Vieta relation holds.

Now let us expand the divisor D in a linear combination with non-negative inte-
ger coefficients of some effective divisors D;. Let c\,... ,Cj be the parameters of
geometrically distinct points in the support of the divisor D on the orbit corre-
sponding to the vector Hi. We associate with each number i, 1 ^ i ζ. j , the
following two-point divisor D^. the divisor contains the point Ai with parameter
Ci on the orbit M^1 and the point Bi with parameter c~l on the orbit M^" 1 . We
put k(i) equal to the minimum of the multiplicities of the points A; and Bi in the
divisor D. Let Dv = Σ Μ*) A , and Do = D - Dv.

Assertion 3. The above described expansion of the divisor D into the sum D =
DQ + Σ k(i)Di corresponds to the expansion of the curve r(D) into irreducible
components

4 = 1

Each of the curves r{Di) is a smooth rational curve on a torus surface Μ. The
curve r{D) is irreducible if and only if all numbers k(i) are equal to 0. The curve
r(D) contains no multiple components if and only if all numbers k{i) are less than 2.
Fori > 0 the different curves r{Di) on the torus surface do not intersect each other.
Each of the curves r(£),) for i > 0 intersects the curve r(Do) on the surface Μ at
a single point. This intersection point does not lie in the torus C*2 if and only if
the supports of the divisors Do and Di intersect.

Proof. The polynomial ySk{x) + Qm(x) is irreducible if and only if it is divisible
by a polynomial G(x). The components of the expansion correspond to the roots
Cj of the polynomial G(x), and the numbers kt correspond to the multiplicities of
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these roots. The curves r(Di) correspond to the vertical lines χ = Cj, and the curve
r(D0) to the graph of the rational function y = Sk(x)/Qm(x) (the numerator and
denominator of the fraction are to be divided by a common factor G{x)).

§8. Meromorphic vector functions on compact curves

We consider a triple Γ, /, g that consists of a compact (not necessarily connected)
curve Γ and a meromorphic function (/, g) on it. We assume everywhere that on
each connected component of the curve Γ

(1) neither of the functions /, g vanishes identically,
(2) the vector-function (/, g) is not a constant.

With each triple Γ, /, g we associate a function Mulr/S on the product Ζ? χ C*
that maps a non-cancellable vector η and a non-zero complex number c to the sum
of the multiplicities of germs at all points of the curve Γ at which the germ of the
vector-function has type n, and where the reduced Weil number of this germ is
equal to c (see §2). In other words,

Mulr/g (n,c) = ^ f c ( a ) ,
a

where the summation is performed over all points a at which the type of the germ
of (/,£?) is equal to η and [f,g]a = c.

In the present section we solve the following problems 1-3.

Problem 1. Given a function Mul on Zfr χ C* having non-negative integer values
and equal to zero everywhere except finitely many points, to find triples Γ, /, g for
which Mulr/S is equal to Mul.

Solutions of Problem 1 are twofold: multiple and non-multiple. We say that
a triple Γ, /, g is non-multiple if the vector-function (/, g) glues together at most
finitely many points of the curve Γ.

Problem 1 has the following versions.

Problem 2. To find non-multiple solutions of Problem 1.

Problem 3. To find non-multiple solutions Γ, /, g of Problem 1 for which the curve
Γ is connected.

Lemma 1. Let π: (Τ, b) —» (Γ, α) be the germ of an l-sheeted mapping of the curve
Τ to the curve Γ and let (/, g) be the germ of a meromorphic function at the point
a G Γ. Then the germ {n*f,n*g) of a meromorphic vector-function at the point
b G Τ has the same type as the germ (f,g), and its multiplicity is I times larger
than the multiplicity of the germ {f,g). The following equalities hold:

(1) [ir*f,^g]b = [f,9]a,

(2) {π·/,7Γ·ί7}6 = {/,ί7}'ο.

Proof. One can choose local parameters u and ν on the germs of the curves Γ and
Τ in such a way that the mapping π is defined by the formula π (υ) = ν1 = u. If
/ = ciubl Λ , g = c2u

b2 Η , then π* f = civibl Η ,n*g = c2v
lb2 Η . From

here the desired equations follow.
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Let the curve Γ consist of the connected components Γ ι , . . . , I V Each triple
Γ, /, g is related to k triples Γι, f,g;.. -;Tk, f,g. (The same symbol denotes a func-
tion on the curve Γ and the restriction of this function to the connected component
Γ{ of this curve.) Let ττ: ϊ -> Γ be a ramified covering of the curve Τ over the
curve Γ such that the number of points in the inverse image π""1 (α) of a common
point ο on the component Γ̂  is equal to μ, (we do not assume that the full inverse
image π - 1 ( Γ ί ) of the component Fj is connected).

Lemma 2. The following equation holds:

M U I T F G =

where F = π* f and G = n*g.

Lemma 2 follows immediately from Lemma 1.
With a triple Τ ,F,G we associate a plane curve r g e o m that is the closure of the

image of the curve Τ in the torus C*2 under a meromorphic mapping taking the
point a to the point (F(a),G(a)).

For each irreducible component of this curve, its multiplicity μ.; is defined to
be equal to the number of inverse images of the common point on this component
under the mapping (F, G): Τ -»· C*2.

A plane algebraic curve F a l g geometrically coinciding with the curve r g e o m so
that each component of it is considered as having the multiplicity μι is called the
characteristic plane curve for the triple T,F,G.

A Laurent polynomial P(x,y) = Y\Pi'{x,y), where Pi(x,y) is an irreducible
Laurent polynomial vanishing at the ith component and μ, is the multiplicity of this
component, is called the characteristic Laurent polynomial for the triple T,F,G.
The characteristic polynomial is defined up to multiplication by a non-zero constant
(we identify two Laurent polynomials whose quotient is a monomial). The curve
F a l g is defined by the equation Ρ = 0.

The normalization Γ of the characteristic curve r g e o m consists of components Ti
that are the normalizations of the components rf e o m of the characteristic curve.
On the normalization Γ a meromorphic vector-function (x,y): Γ —• C*2 is defined
that specifies its birational isomorphism with the curve r s e o m .

Theorem 1. Let π: Τ —>· Γ be a ramified covering over the normalization of the
curve r g e o m such that the number of inverse images of the common point on the
component Ti is equal to the multiplicity μι of this component. Then the charac-
teristic curve for the triple T,F,G, where F = π*χ and G = n*y, coincides with
the curve F a l g . Conversely, if the characteristic curve for the triple T,F,G coin-
cides with the curve F a l g , then there exists a ramified covering π: Τ —> Γ such that
F = π*χ, G = n*y, and the number of inverse images of the common point on the
component Ti is equal to the multiplicity μ» of the component r g e o m in r g e o m .

Theorem 1 immediately follows from the definitions.

Corollary 1. // the characteristic curve has no multiple components, then the
triple T,F,G is uniquely defined by the characteristic curve up to an isomorphism.
It is the normalization of the characteristic curve together with the vector-function
(x, y) on it.
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Corollary 1 follows from Theorem 1, since in this case the ramified covering is
an isomorphism.

Corollary 2. // the characteristic curve has multiple components, then the triple
T,F,G can be uniquely recovered by fixing the following data: a collection of any
finite sets Ai on irreducible components Fj of the normalization of the character-
istic curve having multiplicities μί ^ 2, and a collection of homomorphisms of the
fundamental groups πι(Γ; \ Ai) to groups of permutations of μι elements.

Corollary 2 follows from Theorem 1 and the classification of ramified cover-
ings. Corollary 2 shows that there exist multiparameter families of different triples
T,F,G with a fixed characteristic curve having multiple components. The contin-
uous parameters are sets of branch points Ai on the multiple components that can
be chosen arbitrarily (and that can include any number of points).

Theorem 2. For any triple T,F, G, the following equality holds:

G = Mulp,

where Ρ is the characteristic Laurent polynomial of the triple T,F, G.

Proof. It suffices to use Theorem 1' on Newton polygons for the equation Ρ = 0 of
the characteristic curve of the triple T,F,G and Theorem 1 from this section.

Now we have the complete solution of Problem 1.
Indeed, we know the conditions necessary and sufficient for the function Mul to

be the function Mulp of a Laurent polynomial P. Each solution Ρ of the problem
Mulp = Mul is related to the solutions of Problem 1 for which the curve Ρ — 0
in C*2 is characteristic. If the curve Ρ = 0 has no multiple components, then
up to isomorphism exactly one triple solving Problem 1 is related to it. Namely,
such a triple is the normalization of the characteristic curve together with the
vector-function (x,y) on it (see Corollary 1). But if the curve Ρ = 0 has multiple
components, then there are many solutions of Problem 1 related to it, but all of
them are multiple. Each triple with the characteristic curve Ρ = 0 is obtained
from the covering over the characteristic curve. The set of such coverings contains
infinitely many components of increasing dimension (see Corollary 2).

Now we proceed to Problems 2 and 3. In view of Theorems 1 and 2, the solution
of Problem 2 (Problem 3) uses Laurent polynomials Ρ without multiple factors
(irreducible Laurent polynomials P) such that Mulp = Mul. Solutions of Problem 2
(Problem 3) provide the normalizations of the curves Ρ = 0 along with the vector-
functions (x,y) on them.

We consider the cases that are possible here.

1. The case when A(Mul) contains an interior integer-valued point.

Let the function Mul satisfy the conditions for the existence of a Laurent poly-
nomial Ρ such that Mulp = Mul, and let the polygon A(Mul) contain an inte-
rior integer-valued point. Then, for a general Laurent polynomial Ρ such that
Mulp = Mul, the curve Ρ = 0 in C*2 is connected and non-singular (see §6). There-
fore, in this case the solubility of Problem 1 implies the solubility of both Prob-
lem 2 and Problem 3. Solutions of these problems form complex manifolds of dimen-
sion -Β(Δ), where B(A) is the number of interior points of the polygon A(Mul).
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2. Tie case when A(Mul) does not contain an interior integer-valued point.

If the problem of finding the Laurent polynomial such that Mulp = Mul is
soluble, then it has a unique solution up to an invertible multiplier. If the cor-
responding Laurent polynomial Ρ is irreducible, then the curve Ρ = 0 together
with the vector-function (a;, y) presents a unique solution of Problems 1-3. If the
corresponding Laurent polynomial is reducible but has no multiple roots, then the
curve Ρ = 0 together with the vector-function (x,y) presents a unique solution of
Problems 1 and 2. Problem 3 is insoluble in this case.

If the curve Ρ = 0 has multiple components, then Problems 2 and 3 are insoluble
(whereas Problem 1 has infinitely many solutions).

Using the function Mul, we can easily recognize the case we are dealing with
(see §7). Thus, we have obtained the solubility conditions for Problems 1, 2 and 3,
and completely described the solutions of these problems.

§9. Refinement of Weil's theorem

How can necessary and sufficient conditions for Mul to be the function Mulr/S

be interpreted in the theory of functions on curves?
1. The Pascal condition ^ Mul(n, c)n = 0. The Pascal condition for the function

Mul = Mulr/fl means that the degree of the divisor as a meromorphic function / or g
on a compact curve Γ is equal to zero. In the geometry of curves, the validity of this
condition is obvious. If it holds, then one can construct the polygon Δ = A(Mul)
from the function Mul.

2. The Vieta condition £(- c)
M u l(«,c) = 1. The Vieta condition for the function

Mul = Mulr/g coincides with the following theorem of Weil.

The Weil theorem. For any compact analytic curve Γ and two meromorphic
functions f and g on it, the following relation holds:

aer

By these arguments, firstly we have proved the Weil theorem. Secondly, we have
shown that if the discrete Pascal condition Σ Mul(n, c) — 0 holds and the polygon
Δ (Mul) is not a segment, then Weil's theorem provides a unique necessary condition
for the existence of a curve Γ and a vector-function (/,</) such that Mulr/S = Mul.

3. The reflexivity condition Mul(n, c) = Mul(-n,c~ l). This condition must
necessarily hold only in the special case when the function Mul has at most two
characteristic vectors n\ and n2. We already have a complete description of this
case. However, since firstly we are dealing with a refinement of Weil's theorem in
this special case, and secondly the complete analysis of this case is also very simple
using the theory of functions on the curve Γ, we present it here.

We say that the triple T,f,g is exceptional if there are no more than two non-
zero vectors that are of the type of the germ of (f,g)a for some point ο € Γ. We
say that a vector η e Zfr is characteristic for the function Mulr/S if there exists a
number c e C * such that Mulr/9(n, c) φ 0.
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Lemma 1. For any exceptional triple T,f,g there exist exactly two characteristic
vectors, and their sum vanishes.

This lemma follows from the Pascal condition.
We show that the case of any pair of characteristic vectors Hi, H^ such that

Hi + n.2 = 0 is reduced to the easily described case when one of them (say the
vector Hi) is equal to the vector ei = (1,0). Let us denote by A a unimodular
matrix such that Ae\ = n\.

Lemma 2. (1) A triple T,f,g is exceptional with characteristic vectors Hi and
—Hi if and only if the triple Γ, F, G, in which the vector-function (F, G) is obtained
by the power transformation with matrix A"1 from the vector-function {f,g), has
characteristic vectors e\ and —e\.

(2) An exceptional triple Γ, F, G has characteristic vectors e\ and —e\ if and
only if the function G is constant on each connected component of the curve Γ.

Proof. The first statement of Lemma 2 follows from Lemma 2 of §2. The vector-
function (F, G) has characteristic vectors ei and —ei if and only if the function G
does not vanish at any point of the curve and has no poles. Such a function is
constant on each connected component of the curve Γ. Lemma 2 is proved.

Theorem 1. For each exceptional triple Γ, /, g the function Mul = Mul r/5 has the
reflexivity property

Mulr/9(n, c) = Mulr/ s(-n, c" 1). (*)

Proof. (1) Suppose that the curve Γ is connected and the function g is constant:
g = c. Then at zero points a of the function / we have [/, c]a = c; therefore the
function Mulr/S on the pair (ei,c) is equal to deg/. At poles of the function /
we have [/,c]c = c" 1; therefore the function Mulr/9 on the pair (—e\,c~1) is equal
to deg/. At all the remaining points the function Mulr/p vanishes.

(2) Lemma 2 reduces the general case to the case considered in item (1).

Theorem 2. Suppose that a function Mul with characteristic vectors Hi and —Hi
has the reflexivity property, the function φ(ο) = Mul(ni, c) does not vanish at the
points Ci,...,cm, and y(cj) = fcj. The triples T,f,g for which Mulr/9 = Mul
are in one-to-one correspondence with collections of m ramified coverings over the
Riemann sphere TTJ : Ι\ —> C of degrees ki (the curves Γ; are not necessarily con-
nected). The following triple T,f,g corresponds to a collection of coverings. Sup-
pose that F,F, G is a triple in which the curve Γ = Ul\ and (F,G) is a vector-
function such that its restriction to the curve Fj is the vector-function ( C J , ^ ) . The
triple Γ, /, g is a power transformation of the triple Γ, F, G with unimodular matrix
A such that ASi = Hi.

The proof of Theorem 2 follows from Lemma 2 and the calculation of the function
Mulr/s for the triple in which the curve Γ is connected and the function g is constant
(see item 1 of the proof of Theorem 1).



Newton polygons, curves on torus surfaces, and the converse Weil theorem 1273

Corollary. 1. For any non-zero exceptional function Mul possessing the reflexivity
property there exist triples T,f,g for which Mulr/ff = Mul.

2. Non-multiple triples T,f,g exist if and only if all non-zero values of the
function Mul are equal to 1. For each such function Mul there exists exactly one
triple r,f,g.

3. A non-multiple tripleF', f', g in which the curveT is connected exists if and only
if the functionMul is non-zero at exactly two points and is equal to 1 at thesepoints.

We have repeated the analysis of the exceptional case without resorting to
Newton polygons explicitly, but using only the simplest properties of meromor-
phic functions on compact curves.

§10. Abel's theorem and the Vieta relation

Let D be a divisor lying on the union of one-dimensional orbits Moo of the torus
surface M. Among conditions for the existence of a curve intersecting M^ along
the divisor D there is the continuous Vieta condition (see §4). Usually, a continuous
condition of this kind arises from theorems of the type of Abel's theorem (see [6]).
In this section we present the simplest version of Abel's theorem, which is closely
connected with the Vieta relation.

Let a finite collection {Α{\ of non-intersecting finite sets A\,... ,Am, AidAj = 0,
be defined on a compact (but not necessarily connected) curve Λ.

We say that a meromorphic form ω on a curve Λ is {Ai}-regular if

(1) the form ω is regular on the complement of the curve Λ to the set (J^Li -^i!
(2) the form ω has poles of order not higher than 1 at the points of the set

(3) for each set Ai the sum of residues of the form ω at the points of the set Ai
is equal to 0.

We say that a meromorphic function ipona curve Λ is {A^}-meromorphic if the
function φ has one and the same value (possibly oo) at all points of the set Ai, that
is, for i = I,... ,m, ii a,b & Ai then φ(α) = φ(ο).

Theorem 1 (a version of Abel's theorem). The trace of the {Ai}-regular form u>
of the {A{\-meromorphic mapping ψ: Λ -4 C vanishes identically.

Proof. We start with a local evaluation. Let ψ(υ) = uk and ω — a 1- ω\. where
u

u>\ is a holomorphic form. Then the trace of the form ω has a pole of multiplicity 1
with the same residue as the form ω. Indeed, let υ = uk, let vxlk be a branch of a
root, and let ε̂ , i = 1,..., k, be /cth roots of 1. Then

Ύτω = Ύτωι+α V (Sf*^lL\dv = Ττω, + a— .

By Abel's theorem, the trace of the holomorphic form ω\ is holomorphic.
From the local evaluation and the usual Abel theorem, it follows firstly that the

form Ύΐω could only have poles of order not greater than 1 and only at points
of the image of the set |J Ai. Secondly, it follows from the local evaluation a'nd
the definition of a {Aj}-regular form and of a {.4i}-meromorphic mapping that the
form Ύτω has no poles at all. Consequently, Trw Ξ Ο .
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As in the usual Abel theorem, the vanishing of the trace of the form implies the
following corollary.

Corollary. Let φ be a {Ai}-meromorphic function on the curve Λ, whose divisor
has a support not intersecting the union of the sets Ai. Let η be a 1-chain on the
curve Λ such that d-y coincides with the divisor of the function ψ. Then for each
{At}-regular form ω the relation

hω = Ο mod(/?u;)

holds, where RLJ is the lattice of periods for the form ω on the manifold A\

Let us consider a special case. Let the curve Λ consist of n copies of the Riemann
sphere Aj, numbered cyclically. On each sphere Ai; two different points (Pi, Qi) are
selected. We consider the curve A with a collection of sets of points Ai,... ,An,
where the set Ai for 1 ^ i < n contains the pair of points (Qi,Pi+i) and the set
An contains the pair of points (Qn, Pi). The curve A with the collection {Ai} can
be interpreted as an 'algebraic polygon' with 'sides' A» and 'vertices' Ai, at which
the points Qi and Pj+j are glued together.

An example of such an algebraic polygon is the normalization of a set of one-
dimensional orbits on a torus surface. The inverse image of each null-dimensional
orbit arises on the normalization of two one-dimensional orbits. These normaliza-
tions must be glued together along inverse images of the common null-dimensional
orbits.

On an algebraic polygon A there exists only one {Aj}-regular form ω up to a
coefficient, namely, a form ω such that its restriction to Aj has poles of order 1
only at the points Qi and Pi, its residue at the point Qi being equal to +1, and its
residue at the point Pi being equal to —1.

The existence of one {Aj}-meromorphic form implies the existence of one restric-
tion to divisors of {^4j}-meromorphic functions. This restriction is as follows. Let
ti be a parameter on a sphere A; having a zero of order 1 at the point Qi and a pole
of order 1 at the point Pi. Such a parameter is unique up to a non-zero constant
multiplier.

Suppose that φ is a {Ai}-meromorphic function, Ni and Li are the sets of zeros
and poles of its restriction to the component Ai, μ is the multiplicity of a zero or
a pole, and ji is a 1-chain whose boundary d-fi coincides with the divisor of the
restriction of the function φ to the component Aj.

Assertion 1. For any algebraic polygon A and any {Ai}-meromorphic function on
it, the following equality holds:

π π (*«(̂ ))μ(βί) = π π ( w r ^ . (υ
Proof. Indeed, by Abel's theorem we have

Integrating and exponentiating, we obtain the desired relation.
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Assertion 1 is invertible (as expected, since Assertion 1 is a special case of the
version of Abel's theorem considered).

Assertion 2. Any divisor on an algebraic polygon A for which the Abel relation (1)
holds is the divisor of an {Ai}-meromorphic function.

Proof. The restriction of a function φ to a sphere Aj is uniquely recovered from
its zeros and poles up to a multiplier. The question is whether it is possible to
choose these multipliers consistently on all spheres A*. Let us recover the ratio
ip(Pi)/ip(Qi). Writing the rational function φ on the sphere A* explicitly, we obtain

φ(Ρι) Π kiatfM = <p{Qi) Π W ( M - (2)

The numbers ζι — φ(Ρί)/φ(€}ι) found from (2) are connected with the Abel relation
\\zi — 1. Using this relation we can consistently recover the multipliers on the
spheres Aj (compare with the proof of the theorem from §1).

Remark. The Abel relation (1) for algebraic polygons is reduced to the Vieta for-
mula for the product of roots of a polynomial. Indeed, relation (2) is none other
than the Vieta formula for a rational function φ on the Riemann sphere Aj. Mul-
tiplying these relations on all spheres, we obtain the Abel relation (1).

We need the following rather unexpected statement.

Theorem 2. Let Τ be a curve on a torus surface Μ not passing through its fixed
points. Then there is a linearly equivalent curve Γ not passing though the fixed
points that intersects one-dimensional orbits only at points with parameter ξ equal
to - 1 .

Proof. Let a curve Γ be defined in C*2 by the equation Ρ = 0, and let Δ be the
Newton polygon for the Laurent polynomial P. We consider the Laurent poly-
nomial Q described in the corollary from §1 that was constructed from the poly-
gon Δ. For this Laurent polynomial Q, all polynomials Q^, ή 6 Z2

r, have no roots
different from — 1. The closure Γ of the curve defined in C*2 by the equation
Q = 0 has the desired properties. Indeed, the divisor of the rational function

Ρ
Φ = — on the surface Μ is equal to Γ - Γ. (The divisor does not contain one-

Q
dimensional orbits, since the Newton polygons for the Laurent polynomials Ρ

and Q are equal.) That is, the curves Γ and Γ are linearly equivalent. Further,
the curve Γ intersects one-dimensional orbits only at points with parameter — 1,
since all the polynomials Qn have no roots different from —1.

Now we explain the Vieta relation (see §4) using Abel's theorem and Theorem 2.
For a curve Γ not passing through the fixed points of the torus surface, we con-
sider an equivalent curve Γ intersecting one-dimensional orbits only at points with
parameters equal to — 1. Such a curve exists by Theorem 2.

Let Φ be a meromorphic function on the torus surface Μ whose zeros coincide
with the curve Γ, and whose poles coincide with the curve Γ. Applying Assertion 1
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to the restriction ψ of this curve to the union of one-dimensional orbits, we obtain

Π Π (Μ*ί))μ1αι) = Π ( - ΐ ) Σ ^ μ Κ )

or

We have obtained the Vieta relation once again. So, from the viewpoint of
Abel's theorem, the sign —1 in this relation can be explained by the existence in
each equivalence class of a curve Γ intersecting one-dimensional orbits only at points
whose parameters are equal to —1.

§11. Singularities of the characteristic curve and Newton polygons

A Newton polygon Δ corresponds to each triple Γ, /, g; it is a polygon con-
structed from the function Mul = Mulr/9 (see §1). For each polygon Δ there
exist non-multiple triples Γ, /, g for which Δ is a Newton polygon. The situation
is changed if we impose a restriction on the curve Γ. Below we will present a nec-
essary condition for the polygon Δ to be the Newton polygon of a non-multiple
triple Γ, f,g, in which Γ is a connected curve of genus g (see Corollary 1 in this
section). The restriction to the polygon Δ is a consequence of an evaluation of the
sum of the genera of singular points of the characteristic curve of a non-multiple
triple Γ, /, g. We present this evaluation below.

We consider a triple Γ, /, g in which Γ is a compact but not necessarily connected
curve and (/, g) is a meromorphic vector-function. Let V C Z2

r denote a set of
characteristic vectors of the function Mulr/5. In other words, the vector η £ Z2

r

is contained in the set V if and only if it is the type of the germ of (/, g) at some
point of the curve. We say that a torus surface Μ D C*2 is sufficiently complete
for a triple Γ, /, g if the fan of this surface contains rays generated by all vectors ή
from the set V. Let π: Γ —> C*2 denote a characteristic meromorphic mapping of
the triple Γ,/, g to the torus C*2 taking the point α to a point π(α) = (f(a),g(a)).

Lemma 1. Let Μ D C*2 be a torus surface that is sufficiently complete for the
triple F,f,g. Then the characteristic meromorphic mapping π: Γ -» C*2 is con-
tinued to an analytic mapping π: Γ —> Μ. Under this holomorphic mapping, the
image of Γ does not pass through the null-dimensional orbits of the surface M.

The proof follows from the Assertion of §3.
We need some invariants of isolated singular points (see [1]). Let Ρ be the germ

of a holomorphic function of two variables, having an isolated singularity at the
point a. We fix a small ball Β with the centre at the point a. For small ε φ 0 the
equation Ρ = ε defines in the ball Β a non-singular connected curve that is a sphere
with q handles and k holes. The number of holes k is equal to the number of locally
irreducible branches of the analytic curve Ρ — 0 passing through the point a. The
genus of a singular point α of the curve Ρ = 0 is the number (k — 1) + q.

Assertion 1. The genus of the curve Ρ = 0 is equal to | (χο ~ Χε)> where χο and
χΕ are Euler characteristics of the normalizations of curves defined in the ball Β by
the equations Ρ = 0 and Ρ = ε, where ε φ 0 is a sufficiently small complex number.
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Proof. The number χο is equal to the number k of locally irreducible branches of
the curve Ρ — 0 passing through the point a. The number χε is equal to 2 — 2q — k.
From here the assertion follows.

Theorem 1. If a triple T,f,g is non-multiple and the corresponding Newton poly-
gon A is two-dimensional (that is, it does not degenerate to a segment), then
the sum of the genera of singular points of the closure of its characteristic curve
ΤΓ(Γ) C C*2 in a sufficiently complete torus surface Μ D C*2 is equal to (K — 1) 4-
(Β(Δ) — g), where Κ is the number of connected components of the curve Γ, g is its
genus, and B(A) is the number of interior integer-valued points in the polygon A.

Proof. We consider the equation Ρ = 0 of a characteristic curve π(Γ) C C*2. The
Newton polygon of a Laurent polynomial Ρ coincides with the Newton polygon of
the triple Γ, /, g. By a small change of the coefficients of the Laurent polynomial P,
we obtain a Laurent polynomial Ρ that is Δ-non-degenerate for the polynomial Δ
(see [4]). By the theory of Newton polygons (see [5]), if the Newton polygon Δ is
two-dimensional, then the closure of the curve Ρ = 0 in the sufficiently complete
torus surface is a sphere with B(A) handles.

In the same torus surface we consider the closure of the original characteristic
curve Ρ = 0. Let us encircle singular points a* of the closure of this curve with
small balls B^. Outside the union of the balls Bi, the closures of the curves Ρ = 0
and Ρ = 0 are topologically equivalent and have the same Euler characteristics.
The curve Γ is the normalization of its own characteristic curve. For the ball Bi,
by virtue of Assertion 1 we have the relation

χ(π-1(Βί))-χ(ΓηΒί)=29(αί), (*)

where χ is the Euler characteristic and g(aj) the genus at the singular point a* of
the characteristic curve. The Euler characteristic is additive. Therefore the sum
of the differences (*) of the Euler characteristics over all balls Bi is equal to the
difference of the Euler characteristics of the curve Γ and of the closure of the curve
Ρ = 0, that is, it is equal to (2K - 2g) - (2 - 2B(A)). Theorem 1 is proved.

Corollary 1. On a connected curve Γ of genus g there exists no vector-function
(/, g) such that the triple Γ, /, g is non-multiple and the Newton polygon of this
triple is two-dimensional and includes fewer than g interior integer-valued points.

The curve Γ defined in the torus C*2 by the general equation Ρ = 0, with Newton
polygon Δ, together with the vector-function (x,y) presents an example of a non-
multiple triple for which Γ is connected and its genus is equal to the number of
integer-valued points inside the Newton polygon of this triple.

Corollary 2. Up to an isomorphism, there exist no other triples Γ, /, g having this
property.

Corollary 3. // the genus of a connected curve Γ is less than the number of integer-
valued points in the Newton polygon of the non-multiple triple Γ, /, g, then the
closure of the characteristic curve of this triple in the sufficiently complete torus
surface has singular points.
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For sufficiently general triples Γ, /, g, all singular points of the closure of the char-
acteristic curve lie in the torus C*2 and are not the points of one-dimensional orbits
of a sufficiently complete torus surface. We explicitly describe the corresponding
conditions in the general case. To do this, it is not sufficient to know only the first
terms of the expansions of the functions / and g; information on the second terms
is required. Let us consider the germ of the analytic curve Γ at a point a with local
parameter u, u(a) = 0, and the germ of the vector-function (/, g)

f = C l u b l ( 1 + p x u + • • • ) , 9 = c 2 u b 2 ( l + p 2 u + · · • ) ,

for ci φ 0, c2 Φ 0 and a non-zero vector b = (bi, b2). Let η be the type of this germ,
and let k be its multiplicity, that is, ή Ε Z 2

r, b = kn, where k is a positive integer.
Let π : Γ —> C*2 denote the germ of the characteristic mapping, and let π : Γ —> Μ
be its analytic continuation to the torus surface containing the one-dimensional
orbit M£j corresponding to the vector n.

Assertion 2. The image of the germ π(Γ) on the surface Μ is the germ of a
smooth curve that transversely intersects the orbit M^ if and only if the exponent
vector b is irreducible (that is, the multiplicity k is equal to 1). The image of the
germ π (Γ) on the surface Μ is the germ of a smooth curve tangent to the orbit M^
if and only if the exponent vector b is reducible (that is, the multiplicity k is greater
than 1) and the coefficients p\ and p2 are not connected by the relation b\p2 = b2p\.

This statement is verified by straightforward calculation.

Remark. The coefficients C\, p\, c2, p2 depend on the choice of the local parame-
ter u. But the relations Ci φ 0, c2 φ 0, b\p2 φ b2p\ are invariant with respect to a
change of the local parameter.

We say that a germ (/, g) is smooth at infinity if it satisfies the conditions of
Assertion 2.

Theorem 2. 1/ a triple Γ, f,g is non-multiple and the corresponding Newton poly-
gon is two-dimensional, then the sum of the genera of the singular points of its
characteristic curve π(Γ) C C*2 does not exceed the number (K — 1) 4- (-0(Δ) — g),
where Κ, B(A) and g are the same as in Theorem 1. Equality is attained if and
only if all germs of the vector-function (/, g) of non-zero type ή are smooth at infin-
ity, and there is no pair of different points at which the germs of the vector-function
have the same non-zero type and identical reduced Weil numbers.

Proof. Indeed, the genus of a singular point is non-negative and vanishes only for a
non-singular point. Therefore the inequality in Theorem 2 follows from Theorem 1.
The inequality proves to be an equality if and only if the closure of the characteristic
curve is non-singular at the points of its intersection with one-dimensional orbits
on the surface M. This is possible if two smooth branches do not intersect at one
point. To complete the proof it suffices to use Assertion 2 from this section and
Assertion 2 from §3.

The following Theorem 3 (along with Theorems 1 and 2) shows that the Newton
polygons of the triples Γ, f,g play the same role as the usual Newton polygons.
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We say that for two triples Γι, /ι, g\ and Γ2, ft, #2 the non-degeneracy condition

holds if there is no pair of points ο £ Γι and b (Ξ Γ 2 at which the germs of the

vector-functions (/i,gi) and (/2,172) have the same type and identical reduced Weil

numbers.

Theorem 3. For any two triples Ti,fi,gi and r-2,f-2,g2 the number of isolated

points of intersection of their images under characteristic mappings (calculated with

regard to their multiplicity) does not exceed twice the mixed volume of their Newton

polygons. Equality is attained if and only if the triples possess the non-degeneracy

property.

Proof. This follows from Bernstein's theorem [2] applied to characteristic curves of

the triples I\, /ι, gi and Γ2, h > 9i •
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