
Theorem 2. Let ~p = ~oE, let 0 E E ,  and let a pair (G,A) be admissible. Then {Vj) is a multireso- 
lution in L2(G), and the corresponding orthogonal wavelets r . . . ,  r can be constructed by the above 
scheme. 

Under the assumptions of Theorem 2, the relation L2(G) = (~jez Wj represents an analog of the 
classical Littlewood-Paley binary decomposition. 
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O n  a L e m m a  o f  K o n t s e v i c h  

A. G. Khovanskii* UDC 517.55 

To V. L Arnold on the occasion of his sixtieth birthday 

Kontsevich recently constructed a universal quantization theory. Among the facts discovered, the 
following assertion is contained. Let fl ,  . . . ,  f2n be 2n rational functions on a complete complex algebraic 
variety M whose complex dimension is equal to n. Let M0 be the set of nonsingular points of the algebraic 
variety M from which the union of the supports of the divisors of the functions f l , . . . ,  f2n is deleted. 
Denote by arg f i  the argument of the function f i .  

Kontsevich 's  Lemma.  fM.  d arg fl  A""  A d arg f2n = O. 

In the last list of Arnold's problems, there is the following problem: to give a visual proof of Kontsevich's 
lemma. In this note we present such a proof. 

1. Transformat ion of the  Differential Form. 

Lemma 1. The following identity holds: 

darg f l  A..- A darg h• -- din If~l A. . .  A din Ih . I .  

Proof. Let Ix be the operator of multiplication by the imaginary unit in the tangent space to the 
variety M at a nonsingular point x. We shall regard Ix as a real linear transformation. First, the 
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determinant  of this t ransformation is equal to one. Second, since the function In fi is analytic, we have 
the identity 

I~darg fi = d in  Ifil. 

This implies Lemma 1. 

In contrast  to arg f i ,  the functions In Ifi l are single-valued. Therefore, Lemma 1 explains the Kontsevich 
lemma almost completely. The only remaining difficulty lies in the singularities of the functions in If~l. 
Let us show how it can be overcome. 

2. R e s o l u t i o n  o f  S i n g u l a r i t i e s .  Consider a rational mapping F :  M --+ (CP1) 2n that  takes a point x 
to ( f l ( x ) , . . . ,  f 2 , ( x ) ) .  According to the Hironaka theorem, there exists a nonsingular compact complex 
variety N and a regular mapping ~r: N -+ M such that  

1) a generic point of the variety M has a unique preimage under the mapping lr ; 
2) the mapping G = F o r is regular; 
3) the union F of the supports of the divisors of the functions gi = f i  o ~r consists of transversally 

intersecting smooth  hypersurfaces in the variety N.  
It suffices to prove the Kontsevich lemma for the variety N and the functions gl,  . . . ,  g2n- Indeed, 

the varieties M and N differ only by a set of lower dimension, and this distinction does not affect the 
integrals. 

3. P o l a r  C o o r d i n a t e s .  It is convenient to introduce polar coordinates near the points of the hypersur- 
face F on the variety N .  Let U be the coordinate neighborhood on the variety N and let zl ,  . . . ,  z~ be 
coordinates such tha t  the hypersurface F in the chart U is described by the equation z l ' " z k  = O, 
where k is a nonnegative number. Let us identify the domain U with its image in C ~ under the 
embedding specified by the coordinate functions zj .  Let R 2" be the space with coordinate functions 
r l ,  ~ol, . . . ,  rk,  ~ok, xk+l ,  Yk+l, . . . ,  x , ,  y ,  and let V C_ R 2~ be the domain defined by the inequalities 
r l  _>0, . . . ,  rk >_ 0, 0 < ~ol _< 2~r, . . . ,  0_< ~k _< 2~r. 

Consider the mapping p of the domain V into C n determined by the formulas zj = r je  iP# for 1 < j < k 
and z j = x j + i y j  for k < j < _ n .  

L e m m a  2. The form p*dln [gl[A---  A p*dln [g2n[ is smooth in the preimage of the domain U. 

P r o o f .  Let g be one of the functions g l , . . . ,  g2n. By assumption, the function g can be represented 
ink. Therefore, in the domain U as the product of a nowhere vanishing function by a monomial  z~  1 .- .  z k 

din[g[ = ~ r n j  drj + a ,  where a is a smooth 1-form in the domain U.  Let us expand the smooth 
r j  

1-form p*a with respect to the coordinate basis in the domain V. The coefficient Aj in d~oj entering 
this expansion is divisible by r j ,  i.e., Aj = r j B j ,  where Bj is a smooth function. Hence, the negative 
powers of all coordinate functions r j  in the product p 'd in  Igll A . . .  A p* In [g2,,[ are cancelled out and the 
resulting form is smooth.  

C o r o l l a r y .  The integral in the Kontsevich lemma is absolutely convergent. 

After the resolution of singularities, the corollary follows fxom Lemma 2. Indeed, the compact variety 
N is covered by finitely many charts U to which this lemma applies. 

4. Z e r o - D e g r e e  M a p p i n g .  With a complex number we associate its modulus. This mapping can be 
extended by continuity to a mapping of the complex projective line into the real projective line. Denote 
by /~: (CP1) 2n --+ (RP1) 2n the Cartesian power of this mapping. The image of the variety (CP1) 2~ under 
the mapping # is the closure of the positive cone (R+) 2~ in (RP1) 2~ . 

Let G: N -+ (CP1) 2n , G = (gl, . - - ,  g2n), be a regular mapping of the n-dimensional variety N into 
(CP1) 2" and let F be the union of the supports of the divisors of the functions g l , - - . ,  g2n. 

L e m m a  3. The restriction of the mapping Iz o G to the domain N \ F is a proper mapping of this 
domain into the interior of the positive cone. The degree of this proper mapping is equal to zero. 
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Proof .  The preimage of the boundary of the positive cone in the variety (RIP 1)2" under the mapping 
/z o G coincides with the hypersurface F. Therefore, the restriction of this mapping to the domain N \ F 
is proper. 

We consider the highest-degree form 

dxx dx2n 
W 2 n  ---- - -  A ' "  A - -  

X l  X 2 n  

on the c o n e  (R+) 2n . The volume of the cone with respect to this form is infinite. However, the integral 
fN\r(l~oG)*w2n is absolutely convergent (see the corollary in Sec. 2). Hence, almost every point of the 
positive cone lies outside of the image of the domain N \ F.  Thus, the degree of the mapping # o G is 
equal to zero. 

5. E n d  o f  t h e  P r o o f .  According to the corollary in Sec. 2, the integral in the Kontsevich lemma is 
absolutely convergent. By Lemma 3, it is equal to zero. 

6. R e m a r k .  After this note was written I got became acquainted with the original proof of Kontsevich 
(Kontsevich M. Deformation quantization of Poisson manifolds. Preliminary version). It is based on a 
similar idea. However, the details are different, and they are simpler in our version. 

Translated by A. I. Shtern 
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