Theorem 2. Let ¢ = g, let 0 € E, and let a pair (G, A) be admissible. Then {V;} is a multireso-
lution in L?(G), and the corresponding orthogonal wavelets 9, ...,%s_1 can be constructed by the above
scheme.

Under the assumptions of Theorem 2, the relation L%(G) = D,cz W; represents an analog of the
classical Littlewood—Paley binary decomposition.
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On a Lemma of Kontsevich

A. G. Khovanskii* UDC 517.55

To V. I. Arnold on the occasion of his sirtieth birthday

Kontsevich recently constructed a unmiversal quantization theory. Among the facts discovered, the
following assertion is contained. Let fi, ..., fon be 2n rational functions on a complete complex algebraic
variety M whose complex dimension is equal to n. Let My be the set of nonsingular points of the algebraic
variety M from which the union of the supports of the divisors of the functions fi,..., fon is deleted.
Denote by arg f; the argument of the function f;.

Kontsevich’s Lemma. / darg fi A---Adarg fa, =0.
Mo

In the last list of Arnold’s problems, there is the following problem: to give a visual proof of Kontsevich’s
lemma. In this note we present such a proof.
1. Transformation of the Differential Form.

Lemma 1. The following identity holds:
da.rgf1 /\"'/\darngn EdlnlfllA"'AdlnlenI‘

Proof. Let I, be the operator of multiplication by the imaginary unit in the tangent space to the
variety M at a nonsingular point x. We shall regard I, as a real linear transformation. First, the
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determinant of this transformation is equal to one. Second, since the function In f; is analytic, we have
the identity

I darg fi = dIn|f;].

This implies Lemma 1.

In contrast to arg f;, the functions In |f;| are single-valued. Therefore, Lemma 1 explains the Kontsevich
lemma almost completely. The only remaining difficulty lies in the singularities of the functions In|f;|
Let us show how it can be overcome.

2. Resolution of Singularities. Consider a rational mapping F': M — (CP')?" that takes a point z
to (fi(z),..., fan(z)). According to the Hironaka theorem, there exists a nonsingular compact complex
variety N and a regular mapping n: N — M such that

1) a generic point of the variety M has a unique preimage under the mapping ;

2) the mapping G = F o is regular;

3) the union I' of the supports of the divisors of the functions g; = f; o7 consists of transversally
intersecting smooth hypersurfaces in the variety N.

It suffices to prove the Kontsevich lemma for the variety N and the functions gi,..., g2,. Indeed,

the varieties M and N differ only by a set of lower dimension, and this distinction does not affect the
integrals.

3. Polar Coordinates. It is convenient to introduce polar coordinates near the points of the hypersur-
face I' on the variety V. Let U be the coordinate neighborhood on the variety N and let z,..., 2z, be
coordinates such that the hypersurface I' in the chart U is described by the equation z;---2zx = 0,
where k is a nonnegative number. Let us identify the domain U with its image in C® under the
embedding specified by the coordinate functions z;. Let R2™ be the space with coordinate functions
T1,Ply--vsThky Pks Thils Yk41lys -« Tn,Yn and let V C R?™ be the domain defined by the inequalities
r120,..., 120, 03‘/’15271', SRR OS‘Pkﬁzf-

Consider the mapping p of the domain V into C™ determined by the formulas z; = r;je*% for 1 < j <k
and z; = z; +1iy; for k< j<n.

Lemma 2. The form p*dln|gi|A--- A p*dln|gs,| is smooth in the preimage of the domain U.

Proof. Let g be one of the functions g¢;, ..., g2, . By assumption, the function g can be represented
in the domain U as the product of a nowhere vanishing function by a monomial 27" ---z**. Therefore,

dr; . . .
dlnlg| =3 mjL + «, where a is a smooth 1-form in the domain U. Let us expand the smooth
Tj

1-form p*a with respect to the coordinate basis in the domain V. The coefficient A; in dp; entering
this expansion is divisible by r;, i.e., A; = r;B;, where B; is a smooth function. Hence, the negative
powers of all coordinate functions r; in the product p*dln|gi|A---Ap*In|ge,| are cancelled out and the
resulting form is smooth.

Corollary. The integral in the Kontsevich lemma is absolutely convergent.

After the resolution of singularities, the corollary follows from Lemma 2. Indeed, the compact variety
N is covered by finitely many charts U to which this lemma applies.

4. Zero-Degree Mapping. With a complex number we associate its modulus. This mapping can be
extencded by continuity to a mapping of the complex projective line into the real projective line. Denote
by p: (CP')?® — (RP!)2" the Cartesian power of this mapping. The image of the variety (CP')?" under
the mapping p is the closure of the positive cone (R, )2" in (RP!)%".

Let G: N — (CPY)?*, G = (g1,---,92n), be a regular mapping of the n-dimensional variety N into
(CPY)?" and let [ be the union of the supports of the divisors of the functions gy, ..., gon.

Lemma 3. The restriction of the mapping poG to the domain N \T is a proper mapping of this
domain into the interior of the positive cone. The degree of this proper mapping is equal to zero.
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Proof. The preimage of the boundary of the positive cone in the variety (RP!)2" under the mapping
po G coincides with the hypersurface I'. Therefore, the restriction of this mapping to the domain N\ T
is proper.

We consider the highest-degree form

d d
wznzﬂ/\.../\ Ton
I I2n
on the cone (Ry)?®. The volume of the cone with respect to this form is infinite. However, the integral
I} N\F(poG)‘wgn is absolutely convergent (see the corollary in Sec. 2). Hence, almost every point of the

positive cone lies outside of the image of the domain N \ T'. Thus, the degree of the mapping poG is
equal to zero.

5. End of the Proof. According to the corollary in Sec. 2, the integral in the Kontsevich lemma is
absolutely convergent. By Lemma 3, it is equal to zero.

6. Remark. After this note was written I got became acquainted with the original proof of Kontsevich
(Kontsevich M. Deformation quantization of Poisson manifolds. Preliminary version). It is based on a
similar idea. However, the details are different, and they are simpler in our version.

Translated by A. I. Shtern
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