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We study branched covers of S?, i.e. meromorphic functions on Riemann sur-
faces, up to topological equivalence. Luroth (1871) and Clebsch (1873) proved that
the topological type of a branched cover of $? in generic position is determined by
the number of branch points (critical values) and the number of leaves of the cover.
We give some conditions for the local characteristics around the critical values of a
nongeneric branched cover to determine its topological type.

Specifically, (1) in the case of polynomial maps §% — S? we prove that the topo-
logical type of the cover is uniquely determined by its local characteristics not only
in the generic case, but also for all degenerate maps of sufficiently small codimen-
sion. Namely, we prove the uniqueness of the topological type for all degeneracies
up to codimension about k/4, where k is the degree of the polynomial, and give
examples to show the nonuniqueness in codimension about k/2.

(2) We give an elementary combinatorial proof showing that the topological type
of a map with only one degenerate critical value is determined by its local branching
characteristics. A topological proof of this was given by Natanzon (1988).

(3) We give the topological classification of polynomials of degree < 6 and com-
pute the number of topological classes of some special 3- and 4-fold covers of S2.

(4) We prove the statement of Thom (1965) that each set of local character-
istics satisfying some simple (necessary) conditions actually does correspond to a
polynomial.

Some of our proofs are based on the action of the braid group on the set of
branched covers of S2. The reduction of the topological classification of branched
covers of S? to the orbits of this action was described in [22). In the actual calcula-
tion of the topological classes of polynomial maps, the “pictures” considered in [22]
are helpful. For the special case of polynomial mappings with three critical values,
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these pictures reduce to the dessins d’enfant introduced later by Grothendieck in
the more general situation of algebraic maps with three critical values.

Note that some conditions on the local branching characteristics guaranteeing
the topological uniqueness of the branched cover were announced by Protopopov
(1988). However, for polynomial maps, Protopopov’s statements give only Luroth-
Clebsch’s result.

1. Introduction

Let f : M — S? be a k-fold cover of the 2-sphere S? by a surface M of genus g > 0
that is branched over n points by,...,b, (ie., f~1(b;), i =1,...,n, consists of < k
points; the b;’s will be called the critical values of f).

Two such covers f; and f, are said to be T-equivalent (“T” for “Thom” and
“topological”) if there exist orientation-preserving homeomorphisms g : M — M
and h: S? — S? such that

faog=hof.
These T-equivalence classes of maps were considered by Thom [20] in his solution
of the problem of the existence of a complex polynomial with prescribed critical
values (the analogous real problem was posed and solved by Davis [9]). Thom also
asked for a T-classification of such covers of S2.

Consider the set N C S? consisting of n-th roots of 1. It is easy to see that
each cover of S2 that is branched over n points is T-equivalent to a cover that is
branched over N.

Take N as base point in the space C™ of unordered n-tuples of points in S2\ oo,
and identify the plane C equipped with the segment [1,n] with $2 \ co equipped
with e2"®/" t € [1,n]. This determines an isomorphism of the Artin braid group
B(n) with the fundamental group of C" based at N, and an action of B(n) on the
space of covers over S? that are branched over N.

The following Theorem is contained in [22]:

Theorem. There is a one-to-one correspondence between the set of T-equivalence
classes of covers of 8% branched over n points and the orbits of the action of the
Artin braid group B(n) on the set of covers of S? that are branched over N.

Note that the number & of sheets of the cover and the number »n of critical values
are obvious invariants under T-equivalence.

Further, to each critical value b there corresponds a partition of k into summands
d; (equal to the orders of the points of f~1(b); if z; € f~1(b) has order d; > 1, then
z; is called a critical point and d; — 1 is its multiplicity). Call this partition the type
of the critical value. We thus get a set & of n partitions of k. This set ¥ of local
data is also a T-invariant, which we call (following Protopopov [18]) the passport of
the cover.

The set of topological classes (up to homeomorphism of the domain) of covers
of 52 branched over N and with given passport is finite and can be computed
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explicitly. The action of the n — 1 standard generators of B(n) on this set also can
be computed explicitly. Thus, we can explicitly enumerate all the T-equivalence
classes of covers of S$% branched over N.

In the actual calculations of T-equivalence classes of polynomials, the “pictures”
that were considered in [22] are helpful. Let P : §2 — S? be a polynomial in one
complex variable such that the set of finite critical values of P is the set N of nth
roots of 1. The picture of P is the inverse image under P of the unit disc.

The purpose of this paper is to investigate the following

Problem. Give conditions on a set ¥ of partitions of k that imply that there is a
unique T'-equivalence class of branched covers of S? with passport ¥.

Here are some earlier results of this kind.

Luroth [15] and Clebsch [8] showed that if all the critical values of f : M — S2
are simple (a critical value b € S? of a k-fold branched cover f : M — S? is said to be
simple if f~1(b) consists of k — 1 points), then f is determined up to T-equivalence
by the number k of sheets of f and the number n of critical values.

Natanzon [17] extended this result to the case in which all but possibly one of
the critical values of f are simple, by using the topology of surfaces (cut-and-paste
arguments).

Other authors (see, for example, [5], [10]) have extended Clebsch’s theorem to
the case of branched covers f : M; — M, between two surfaces with only simple
critical values.

In Sec. 2 we shall give an elementary combinatorial proof of Natanzon’s theorem.

Of particular interest are the branched covers f : S2 — S? that are T-equivalent
to a polynomial map of one complex variable. These are characterised by the fact
that the inverse image of one of the critical values consists of exactly one point (cf.
[20]): If one fixes a diffeomorphism C 22 §2 \ oo in the range of f, such a branched
cover corresponds to a polynomial, unique up to an affine change of the variable.

More generally,

Theorem. Any branched cover f : S — 82 is T-equivalent to a rational map.

Indeed, the complex structure of the range sphere induces via f a complex
structure on the domain sphere which is unique up to a linear fractional change of
the variable, and with this complex structure on the domain sphere, f is a rational
map. O

Thus, a polynomial f : S — S? of degree k has passport

= {{dllv‘ .. )dlll},' . '7{dnl" .. ,d‘nl.,.}v{k}},

where

i
E d,’j=k, z=1,...,n,
j=1
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and

n I
Zz(dij -1)=k-1

i=1 j=1

(the first condition applies to any passport and reflects the fundamental theorem
of algebra; the second condition means that the Euler characteristic of the covering
space is equal to 2).

Call a passport satisfying the conditions above a polynomial passport.

Conversely, for any polynomial passport ¥ there is a branched cover f : §% — §2
with passport ¥ (and hence a polynomial with passport X). We shall give a proof
of this fact in Sec. 3, as the one given in [20] seems to us to be incomplete.

Consider the space P of polynomials in one complex variable. To each polyno-
mial passport X there corresponds a subspace Px of P consisting of the polynomials
with passport X. This gives a stratification of P. The path connected strata Pg
correspond to passports ¥ with a unique T-equivalence class. Thus, in this paper
we are concerned with conditions on a polynomial passport ¥ for Pg to be path
connected. A much harder problem is the study of the topology of Py, say its higher
homology groups. These groups seem to be unknown even for the generic stratum
in Py (the subspace of polynomials of degree < k), even for small values of k.

In Sec. 4, we give an analytic proof of a result on polynomial maps P : S — S?
which states, roughly, that if the number of critical values of a polynomial P of
degree k is greater than about 3k /4, then the T-equivalence class of P is determined
by the passport of P. In other words, we prove that all strata Py of codimension up
to about k/4 are path-connected, whereas in Sec. 5 we show that there are strata
of codimension about k/2 that are not path-connected.

Finally, in Sec. 5, we shall give some examples of polynomial passports & corre-
sponding to strata Py that are not path-connected; we shall list some related open
problems; and we shall give the T-classification of branched covers of S? of degree
3 all of whose critical values have type {3}, and of branched covers of 52 of order
4 all of whose critical values have type {2,2}.

We would like to point out related papers by Arnold (we quote only his first [1)
and his last paper [2] on the subject), Barannikov [3], Catanese and Paluszny [7],
Gabrielov {11], Glutsyuk [12], Lyashko [16], and Looijenga [14].

2. A Combinatorial Result

We start by giving a combinatorial translation of the statement of Natanzon’s the-
orem [17].

There is a classical one-to-one correspondence between {topological (up to home-
omorphism of the domain) classes of k-sheeted covers of S? branched over n given
points} and {conjugacy classes of homomorphisms of the free group on n given
generators to the symmetric group on k elements such that the product g --- gn
of the images of the generators is the identity permutation}, with connected covers
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corresponding to homomorphisms with transitive image; see, for example, [7] or [18]
for an exposition suitable for our purposes.

Let £ € N, let S(k) be the permutation group on k elements {1,...,k}, let
a € S(k) be arbitrary, and let gy, ..., g, € S(k) be such that g; --- 9, = a and such
that the group ' = (g1,...,g9,) < S(k) generated by the g; is transitive. Let B(n)
denote the braid group on n strings with the usual generators oy,...,0,-1.

B(n) acts on the set of such n-tuples (g1, ..., gn) by

0i(9:) = gis1, 0i(giy1) = 95319i 9iv1, and 0i(g;) =g; forj#i, i+ 1.

Call this action p.

Note that the product a = g, - - g, is invariant under this action of B(n) on
g1,---,9n- Consider two n-tuples of g;’s to be B-equivalent if they belong to the
same orbit under the action p.

In the case when the g;’s are transpositions, we shall represent the data g;,..., g,
by a graph (the monodromy graph) G on k vertices vy, ...,vx and n edges ey, ..., €,:
two vertices v; and v; are connected by an edge e, if and only if g, transposes ¢ and
J. The subscript of the vertex [edge] is called the label of the vertex [edge]. Denote
by V(G) the set of vertices of G, and by E(G) its set of edges. We shall consider
the g;’s as acting on V(G).

Since T = {g1,...,9n) is transitive, G is connected. The triple (k,n, a) is called
the type of G.

The action p induces an action of B(n) on the set of such graphs. Say that two
graphs are B-equivalent if they belong to the same orbit under this action. Clearly,
two B-equivalent graphs have the same type.

We shall repeatedly use the following three remarks.

Remark 1. If two edges e;, ;41 € E(G) have either no or two vertices in common,
then o; (and hence o ') transposes the labels of these edges and leaves the rest of
G undisturbed.

Remark 2. If two edges e;, ;41 € E(G) have exactly one vertex in common, Fig. 1
shows the action of o; and o on the portion of G consisting of these two edges;
the rest of G is undisturbed.

Us Vs Vs
-1
€it+1 - —> ..
€ H
: Cit+1
° o
Uy e; vt v vt v €i+1 Ut

Fig. 1
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Given a subset X C E(G), let X denote the union of X and the subset of V(G)
consisting of those vertices that are connected by edges in X.

Remark 3. If X C E(G) consists of 7 edges with labels t + 1,...,¢ + 7 and if X’
is obtained from X by acting by (o441, ..,04r—1) < B(n), then X’ U (G\X) is
B-equivalent to G.

The main result of this section is the following.

Theorem 1. Given k € N and a € S(k), let G be a graph of type (k,n,a) for some
n € N. Then G is B-equivalent to any other graph of type (k,n,a).

We start by proving a special case of this theorem. (After writing this paper we
discovered that the unpublished part of R. Lawrence’s 1989 Oxford University D.
Phil. thesis Homology representations of braid groups contains a similar Lemma in
another context; see Sec. 8.2 in that Thesis.)

Lemma 1. Let G be a tree on k vertices, i.e. a graph of type (k,k —1,a) for some
a € S(k), and let v, € V(G). Then G is B-equivalent to a chain C ending in v,
and such that the labels of the edges are in increasing order: 1,...,k — 1.

Proof. Assume the result true for trees with < k—1 edges, and let G be a tree with
k—1 edges. Let e; be a free edge with free vertex v,. By Remarks 1 and 2, action of
o; on G shows that G is B-equivalent to a tree with free edge e;;; and free vertex
v,. By consecutively acting with o;41,...,0,_2, we see that G is B-equivalent to a
tree G’ with free edge e;_, with free vertex v,. Let v, be the other vertex of e;_;
in G'.

Delete v, and ex—; from G’ and use the inductive hypothesis to show that the
remaining tree is B-equivalent (by using only the action of B(k — 2)) to a chain
ending in v; and whose edges are labelled in increasing order. By Remark 3, G is
B-equivalent to a chain C' ending in v, and whose edges are labelled in increasing
order.

If » = ¢, this finishes the proof. If not, it is sufficient to show that C’ is B-
equivalent to a tree with free vertex v, and then repeat the above argument to
obtain the result.

There are two cases: either v, is the beginning vertex of C’ and we are done; or
v, is the common vertex of two consecutively labelled edges, say e, and e,y 1, in C".
In the second case, by applying o, we see that C’ is B-equivalent to a tree with free
edge e, with free vertex v;. This finishes the proof. O

Remark 4. Lemma 1 implies that

(a) for a graph of type (k,k — 1,a), a € S(k) is a cycle of length k;

(b) the order of the vertices in C is a*~1vy,...,av;, vy;

(c) given any vertex v in a tree G, G is B-equivalent to a chain whose edges are
labelled in increasing order 1,...,k — 1 and vertices are in the following order:

v,a"t,...,a %1y, It is easy to adjust the argument of Lemma 1 to show that
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if X C E(G) for some graph G consists of edges with labels ¢t +1,...,t+k~—1,
such that X is a tree, and if v is a vertex of X, then G is B-equivalent to G’
obtained from G by replacing X by a chain ending [starting] at v with edges
labelled in increasing order t+1,...,t+ k — 1, whose vertices are consecutively
b*—ly,...,v [v,...,b**1y], where b = g44; ‘- gt+k-1, and the rest of G and
G’ coincide.

Lemma 2. Let a graph G contain a subset X of r edges labelled iy, ... ,i,, with
1< < <i,<m Let1<j <+ <jr <n. Then G is B-equivalent to a
graph G' containing the same set X of edges but with the label j; replacing the label
is fors=1,...,r.

Proof. We shall first show that G is B-equivalent to a graph G” containing the
set X of edges but with the label s replacing the label ¢; for s = 1,...,7. Indeed,
if 4; # 1, by Remarks 1 and 2, G is B-equivalent to a graph in which the label 7,
is replaced by i; — 1 and all the other edges in X are unchanged. Iterating this
process, we can arrange for 7; to be replaced by 1. Then we can arrange for ¢z to
be replaced by 2, ..., then i, to be replaced by r.

Now we can use the reverse process to first replace the label r by j,, then r — 1
by jr—1,-.-, and finally 1 by j;, thus obtaining the required G’. This finishes the
proof. [J

Lemma 3. Let a graph G of type (k,n,a) contain at least one cycle Z. Then G is
B-equivalent to G' containing a cycle {e1,e2} of length 2 and with labels 1, 2.

Proof. By Lemma 2 we can assume that the labels of the edges in Z are 1,...,r
in some order. Assume r > 2. Let v; and v; be the vertices of e;. Since Z\{e1} isa
tree, it follows by Lemma 1 that it is B-equivalent to a chain C starting at vs; whose
edges are labelled in increasing order 2,...,7 — 1. A subchain C’ of C with labels
2,...,j, say, connects v, to v;. By Remark 4, C’ is equivalent to a chain beginning
at v, in which the edge labelled 2 connects v; to v,. Hence G is B-equivalent to a
graph with cycle {e;,e2} of length 2 connecting the vertices v, and v;. O

We shall say that G and G’ have the same geography if G' is obtained from G
only by changing the labels of some edges.

Lemma 4. Let G contain a cycle {es,es41}, £+1 < n. Then G is B-equivalent to a
graph G' with the same geography as G and with cycle {eg41,€e+2}. More precisely,
G' differs from G only in that the labels of ey and epqo have been interchanged.

Proof. If e, and e,45 have 2 common vertices, there is nothing to prove.

If ey12 has no common vertex with e;; (and hence with e;), then applying
Remark 1 twice, first to the pair esy2, €41 and then to e, €,4;, we obtain the
result.
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If ;1o has one common vertex with e;1; (and hence with e;), then applying
Remark 2 twice, first to the pair esy o, es41 and then to ey, €gq1, we obtain the
result (see Fig. 2). O

Te41 e+1 oy
—— —_—
£+1 £+ 2
0+2
0+2 m . ¢ 0+1
Up Us vy vy Vs v, Ur Vs vt
Fig. 2

Remark 5. Note that after this relabelling, the order of the labels in the comple-
ment of the cycle {es,e,41} has not changed, i.e. if in G the label of an edge € is
less than the label of an edge f, then in G’ the label of e is less than the label of f.

Lemma 5. Let X; and Xy be subsets of E(G) with r and s edges, respectively,
such that X, N Xy = ¢ and the labels of X, U Xy aret+1,...,t +7+s. Then G
is B-equivalent to G' with the same geography as G and such that the labels of the
edges in X1 aret+1,...,t+r, the labels of the edges in Xo aret+r+1,...,t+7r+s,
and the remaining edges have their original labels.

Proof. Let the labels in X, be ji,...,j, with j; < --- < j,. If j1 # ¢+ 1, since
X; N X, = ¢ and the label j; — 1 is in X3, by Remark 1, G is B-equivalent to a
graph with the same geography which differs from G in that the labels j; and j; —1
have been interchanged. Iterating this process, we can reduce j; to ¢t + 1 without
changing the geography of G. Then we can reduce j; to t +2,..., and finally j,. to
t+r. O

Corollary. Let Xy,...,Xm C E(G) be such that X; N X; = ¢ fori # j, with X;
having r; edges, and let the labels of the edges in UM X; run from t+1 tot+Y o ri.
Then G is B-equivalent to a graph with the same geography but in which the labels
in X; run fromt+ Z;;ll ri+ltot+3 5 ;75

The next lemma allows us to move each vertex of a cycle Z = {eg,es41} in its
connected component in G\Z.

Lemma 6. Let G be a graph containing a cycle Z = {eg,ep41}. Let v, and vy be
the vertices of eq (and hence of epy1); and let e; be an edge of G with vertices vs
and v,. Then G is B-equivalent to a graph G' which differs from G only in that e,
and eqy1 are replaced by edges e, and ep+1 connecting v, and v, instead of v, and
v;.
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Proof. Assume i > £+ 1 (the proof is similar if 1 < £). By Lemma 4, G is B-
equivalent to a graph G with the same geography but in which the labels of Z are
1—2,1—1. Apply 0;—; and o;_5 as in Fig. 3.

-1

i1
—_—
;=1
1—2 1
Uy Us Ut

Fig. 3

Then use Lemma 4 to interchange the labels i — 2 and 4, and finally use Lemma
4 again to change the labels ¢ — 1 and i — 2 back to ¢,£ + 1 without changing the
geography. By Remark 5 all the edges in G\Z have their original labels. The
resulting graph is the required G'. O

We now define what we mean by a graph G of type (k,n,a) being in standard
form. Suppose a is the product of m cycles. A graph G of type (k,n,a) is said to
be in standard form if:

(i) For each orbit O;, 1 < i < m, in V(G) of the action of a consisting of r; vertices,
there is a subchain C; of G consisting of r; — 1 edges connecting the vertices in
O:; in the appropriate order; the labels of these edges run from Z;;ll (rj—1)+1
to Z;‘:l(’rj - 1)

(ii) The remaining edges in E(G)\U™, C; decompose into cycles {e;, e,4+1} of length
2,0=3" (ri-1)+1, X" (ri-1)+3,...,n—1.

We are now ready to prove the Theorem. We shall show that G is B-equivalent
to a graph of type (k,n,a) in standard form and that any two graphs G’ and G”
of type (k,n,a) in standard form are B-equivalent. We shall use induction on the
number of edges of G.

So let G be of type (k,n,a). If G is a tree, then by Lemma 1, G is B-equivalent
to a chain, which is a standard form.

If G is not a tree, then G contains a cycle. By Lemmas 3 and 4, G is B-equivalent
to a graph G’ containing a cycle {e,—1,e,}. If G” = G'\{en—1,€n} is connected,
then G” is a graph of type (k,n — 2,a) and by the inductive hypothesis it can be
reduced to standard form using the action of B(n — 1). Adding {e,—1,€,} to this
standard form, we obtain that G can be reduced to standard form.

If G” is not connected, then it decomposes into two components with edge sets
X; and X, containing s and ¢ edges, respectively. By Lemma 2, we can arrange
for the labels in X; to be 1,...,s, and those in X, to be s+ 1,...,8 +¢t. By the
inductive hypothesis, X; and X, can be reduced to standard form (using the action
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of B(s) and of (0541,...,054t—1) = B(t), respectively). By adding {en~1,€e,} and
relabelling some of the edges in the cycles of length 2 if necessary, we see that G
can be reduced to standard form. It remains to prove that any two graphs G’ and
G" of type (k,n,a) in standard form are B-equivalent.

As G" and G’ are both of type (k,n,a), they have the same vertex set, V(G") =
V(G'), and for each i € {1,...,m} there is a j(i) € {1,...,m} such that the orbit
Oj(s) = O

The chains C; and C;.( ;) may start in a different vertex in O;, but they connect
the vertices in O; in the same cyclic order according to the corresponding cycle of
a.

The remaining edges (i.e. those not in the C;’s) are divided into cycles of length
2 and join the various O;’s so that the resulting graph is connected. _

By Remark 4, we can have the chains C; and C]’.(i) start at the same vertex (and
then they will connect the remaining vertices in O; in the same order).

By the Corollary to Lemma 5, for each i € {1,...,m}, we can relabel the edges
in C;.(i) to coincide with the labels in C;. By Lemma 6, we can move the edges
{ee,ep41} to coincide with {eg,e,y1}, without changing the rest of the graph.
This finishes the proof of the Theorem. 0O

3. Polynomial Passports

In this section we shall prove the following theorem (cf. [20], which does not seem
to contain a complete proof of this result, though).

Theorem 2. Let
= {{d117 v yd111}7 sy {d’n17 v 9dnl"}1 {k}}a

be a polynomial passport, i.e., let

I
1) > dij=k i=1,..,n,
i=1

and :
(2 Y ) (d-1)=k-1
=1 j=1
Then there is a representation o of the free group F, = {(g1,...,9n) on n generators

into the symmetric group Sy on k elements such that o(g;) decomposes into cycles
of lengths d;y, ..., diy;, and o([1i—, ¢:) is a cycle of length k.

Proof. We shall describe ¢ as a tree (the monodromy tree) T on k vertices and
k — 1 oriented edges, each edge with a label from the set {1,...,n}: for each d;;, T
will have a subchain with d;; — 1 oriented edges:

i ) %
o — 06— - — @
Uy Vs Ut

meaning that o(g;) sends v, to v,, etc., and v; to v,.



Branched Covers of $2 and Braid Groups 65

Then, by relabelling the edges of T with {1,...,k —1} in increasing order along
the ordered cycles with increasing labels (so that the product in order of increasing
labels of the transpositions in the newly labelled tree is equal to o(I]\—, ¢:)), and
by using Remark 4 (a) in Sec. 2, it follows that the product of the generators of F,
gets mapped under o to a cycle of length k.

We shall build T inductively, starting from the set V = {vy,...,v;} of vertices,
then adding d;; — 1 oriented edges forming a chain Ci; as above, each edge with
label 1, then adding dj2 — 1 oriented edges forming a chain Cyo disjoint from Ci,,
each edge with label 1, etc., dy;, — 1 oriented edges in a chain Cy;, disjoint from all
the previous ones, each edge with label 1; then we shall add d21 — 1 oriented edges
forming a chain Cs; each edge with label 2, etc., dn;, oriented edges in a chain Cyy,
disjoint from all the previously built chains Cp;, j = 1,...,I, — 1, each edge with
label n.

For convenience, we shall assume, for each ¢, that

dig 2dig > -+ > dy,,

so that those d;;’s that are equal to 1 occur at the end of the sequence d;1, ..., da,.
So let Ty = V. Pick the first dy; vertices of Ty and connect them with oriented
edges into a chain as follows:

Then pick the next dy vertices of V and connect them similarly into a chain, etc.
Note that if dj; = 1 then we do not add any further edges after the jth step.
Because of (1), there are enough new points at each stage of the above construction
to build these chains.

We thus obtain a forest 77".

Suppose that the forest Tij has been constructed, 7 < l;. We shall show how to
construct 71! if j < I;, and T, if j = 1,4 < n.

Case 7 = l;. In each path component of Tij pick the vertex with smallest
subscript. Because of (2), there are at least d;;;, path components in Tij, and
hence at least that many vertices picked. Connect the first d;;1; vertices thus
obtained in increasing order into an oriented chain, each edge labelled by ¢ + 1, to
obtain the forest T}, ;. ‘

Case j < l;,1 < n. In each path component of T} pick the vertex with smallest
subscript that is not adjacent to an edge with label i. We shall show below why
there are at least d; j+1 such vertices. Connect the first d; ;41 vertices thus obtained
in increasing order into an oriented chain, each edge labelled by ¢, to obtain the
forest T/ %

It remains to show that there are at least d; ;41 vertices as described above.
Because of (2), there are at least d;;41 path components in T’. 1If each path
component of Tij contains a vertex that is not adjacent to an edge with label 4,
then we are done. If one path component K of Tij consists of vertices all adjacent
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to edges with label ¢, then it follows from the construction that all the other path
components of Tij consist of just one vertex, so by (1) there are at least d; ;41 of
them.

Continue this process until all k¥ — 1 oriented edges are used, thus obtaining the
required tree, and hence the required representation of F;, into S,. 0O

Note that there is a very simple connection between the graphs in this section
and the plane “pictures” from {22]. For a polynomial P of degree k whose critical
values are the nth roots of 1, the picture of P is the inverse image under P of
the unit disc. Given a graph with labelled oriented edges as described in this
section, the picture corresponding to the polynomial associated to this graph is
topologically the following: take & topological discs (one for each vertex of the
graph) on which n points are marked (“the nth roots of 1”). Attach two discs at
their points “exp 2mis/n” if the corresponding vertices are joined by an edge with
label s; if more than two discs are attached at a point, their corresponding vertices
form a chain in the graph; the cyclic order of the discs on the plane is the order of
the corresponding vertices on the chain.

4. Analytical Results

The aim of this section is to prove the topological uniqueness of polynomial maps
with certain passports.

Theorem 3. Let P : S — S? be a polynomial of degree k, with passport Tp.
Let {89....,b9,} be the set of nonsimple critical values of P, let a%,,...,a% be the
critical points of P corresponding to b9, and let di; — 1 be the multiplicity of a?j. If
the defect

of P is < k+1, then P is T-equivalent to any polynomial with passport p.

Proof. We need to show that the space of polynomials with passport Xp is path
connected.

Step 1. Recall the classical proof of the existence and uniqueness of a Lagrange
interpolation polynomial L with multiple roots. The problem is to find a polynomial
of degree < k such that for given z;, y;;, 0 < j <r;, 1<i<s, 30 (ri—1) = k-1,
the following are satisfied:

(%) L(j)(xi)=yij, 0<j<r, 1<i<s.

First of all, the uniqueness of L is clear: if there were two solutions L; and L2 to
(*), then their difference L; — Ly would be a polynomial of degree < k with k + 1
roots counted with multiplicities.

To prove the existence of L = ap + 012 + - - + apz” satisfying (), consider
(*) as a system of linear equations in the coefficients a; of L. The matrix of that
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system is nonsingular because the associated homogeneous system has at most one
(and hence exactly one) solution, as noted above. Note that the a;’s are rational
functions of the xz;,y;’s.

Step 2. If d < k+1, add k + 1 — d regular values b3, ,,,...,b% ., , and
pick corresponding points al, ,,,...,a% ;i g4 such that P(a?) =52, m +1<i <
m+k+1-d

It follows from Step 1 that the data

0 0 0 0 0 0
bl""7bm+k+1—d’ all,...,amlm, am+1,...,am+k+1_d

uniquely determine P through the system (we omit the superscript 0 for later con-
venience):

(x%) P(ai;) = by, P(j)(aij) =0,1<i<m, 1<j<y,
P(a,-):bi, m+1 Sz$m+k+1—d
Note that any other choice of b;, a;5,a; € C with

(k% %) b # by, aij #ayjr, ai #ap fori £, j#5,

also determines a unique polynomial with critical values b;, 1 < i < m, and corre-
sponding critical points a;; of multiplicity d;; — 1.
Let

C= {(au, eyl s Cm41,y .- ,am+k+1_d,b1, .o ,bm+k+1—d) = (a, b);
aij,a;,b; € C such that (***) holds}

Denote by L(a, b) the Lagrange polynomial determined by (**) that corresponds
to (a,b) € C. The map L : C — P, to the space of polynomials of degree < k,
parametrised by the coefficients of the polynomials, is rational. The image of L
clearly contains all the polynomials with passport £p.

But for some points (a,b) € C, L(a,b) might have passport differing from £,
because extra degeneracy might arise (either extra critical points may merge or
their corresponding critical values may do so). In Py, this happens on a union D
of affine subspaces of real codimension > 2. Hence, L=1(D) is a subvariety of C,
which is proper because P ¢ L~1(C).

Thus, C \ L~!(D) is path connected, and hence L(C \ L~%(D)) is also path
connected, as required. 0O

We shall call a polynomial passport satisfying the conditions of Theorem 3 a
Lagrangian passport.
Note that we actually proved the following stronger

Theorem 4. For each Lagrangian passport T, the corresponding stratum Ps of
polynomials with passport ¥ is biregularly isomorphic to a Zariski open set in affine
space. O
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Remark. Note that the passport of a polynomial of degree k with at least 3k/4
critical values is Lagrangian.

The following theorem was stated in [22].

Theorem 5. Let P : S? — $? be a polynomial of degree k with critical values
(b9, ...,8%) such that to each critical value b? there corresponds ezactly one (possibly
multiple) critical point a?. Then P is T-equivalent to any polynomial with passport
Tp.

Proof. Let d; — 1 be the multiplicity of a. Consider the space
A={a=(by,01,...,an), Gibo €C, a; #a; fori#j, 1 <i,j<n}.

Define a polynomial Qa : §% — 52 of degree k by
Qa(z) = H(fli —a)%7!, Qal(0) = bo.
=1

Then Q : A — Pi is a map into the space of polynomials of degree < k
parametrised by their coefficients.

As before, let D C P; be the codimension > 2 subspace of P; of polynomials
with higher degeneracies than those of P (due to the fact that the values of some
critical points may have merged). Again, Q~1(D) is a proper subvariety of A
because P ¢ Q~1(D), hence A\ Q~1(D) is path connected, as required. O

5. Examples and Questions

We start with the case of polynomials because it is the simplest and also the most
interesting one.

Let P be the space of polynomials of one complex variable, let P;. be the (com-
plex) (k + 1)-dimensional linear subspace of P consisting of polynomials of degree
< k, and for each polynomial passport ¥ let Py be the subspace of P consisting of
polynomials with passport X.

Theorem 6. For any polynomial passport T, the stratum Ps; of polynomials with
passport £ is aspherical.

Proof. Let £ be a polynomial passport with n; decompositions D; of k, ¢ =
1,...,m, D,’ #DJ fOI‘i;éj, E?;lnizn.

By Theorem 2, at least one representation o of the free group F, on n gen-
erators into the symmetric group Sx on k elements corresponds to ¥. Two such
representations o will be called equivalent if they differ by an inner automorphism
of § k-

Fix n distinct complex numbers

blly‘")b1n11"-,bmla"'1bmnm-
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To each equivalence class of representations for which the first n; generators get
mapped to permutations of type D;, the next n, generators get mapped to permu-
tations of type Dy, etc., there corresponds a cover f : $2 — S2 for which b;; is a
critical value of type D;, which is unique up to a homeomorphism of the domain;
i.e., if fi and f, correspond to the same equivalence class of o and have the b;;’s as
critical values of type D;, then there is a homeomorphism g : $2 — S? such that
fi = f2g. By giving the domain $?’s the complex structure induced by f, and f,,
respectively, from the complex structure on the range S?, f, and f, are easily seen
to be polynomial and ¢ a linear map

g=a1x+az, (a1,az)€ (C\0)xC.

Let F denote the finite set of equivalence classes of such representations ¢. Let
B be the space of n-tuples

011y -3 b1y oy bmay oo bmny,)

of distinct points in C factored by the action of S,, X --- x S, in which Sy,
permutes the first n, coordinates, S,, permutes the next ny coordinates, etc. It
is well known that B is a K(B(ny,...,nm),1), where B(n,,...,n,,) is the group
of braids on n = ny + - - - + n,, strings, the first n; colored in color 1, the next n,
colored in color 2, etc.
Let
v:Ps— B

be the map that sends a polynomial P with passport £ to its n-tuple (b11,. .., bmn,,)
of critical values, where the n; critical values of type D; provide the first n; coor-
dinates, the nqo critical values of type D, the next ny coordinates, etc.

Then v is a fibre bundle, and by the above, the fibre of v is F x (C\0) x C. As
the fibre and base are aspherical, so is the total space Pz, which was to be proved.
O

In the case in which Py is path connected, Theorem 6 implies that Pg is a
K(rs,1) for some group 7g which is an extension

0-Z—-7ng—>m—0,

where 7 is a subgroup of index |F| of the braid group B(ny,...,nnm).
Problem. Compute the homology of 7.

If P has at least about 3k/4 critical values, then P is Lagrangian, and hence the
stratum containing P is path connected.

Thus any stratum of complex codimension up to about k/4 in P; is path con-
nected.

At the other end of the interval of codimensions, if P has just one critical value,
then the corresponding stratum is path connected (say, by Theorem 5).
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But if P has 2 critical values, the corresponding stratum consists, in general,
of many path components. Such polynomials are being extensively studied (see
the excellent survey article by Shabat and Zvonkin [19]) because of the following
remarkable theorem of Belyi [4]:

Belyi’s Theorem. For a Riemann surface X, a meromorphic function f : X — §2
with only three critical values 0, 1 and 0o exists if and only if the surface X is defined
over the field Q of algebraic numbers.

For a polynomial with just two critical values, say +1, —1, the inverse image of a
segment connecting +1 and —1 is a plane tree (“dessin d’enfant” in Grothendieck’s
terminology [Gr]) with each vertex colored white or black depending on whether it
maps to +1 or —1. These trees are closely related to the “pictures” considered in
{22] in the case of two critical values.

Define ¢, to be the least integer such that for polynomials of degree k¥ with > ¢,
critical values the corresponding stratum in P is path connected.

Question. What is the value of ci ?

As noted above, i is less than about 3k/4.
The following example shows that ¢, is greater than about k/2.

Example 1. Consider the polynomial passport (from now on, we shall omit the
1’s in the notation for passports)

= {{2),{2,2},....{2,2}, (k}}

{m = (k — 2)/2 occurences of {2,2}). In the notation of Sec. 3, the polynomials P
and @ with passport ¥ that correspond to the representation of the free group F
on m + 1 generators into the symmetric group Sy on k elements given by the trees

1 2 m m+1 m m~—1 1
¢ — 0 — - — 0 —H> @@ — - — @
and
1 2 m 1 2 m m+1
O — O — t — P ——y P — s — @ — @

(we assume m > 2) are not topologically equivalent. Indeed, one can show that P
can be represented as P, ((z + b)?) for some polynomial P; of degree m + 1 with m
different critical values, whereas @ cannot be so represented. Combinatorially, the
tree corresponding to P admits a map to a tree with m edges under which edges
with the same label are identified, whereas the tree corresponding to ¢ does not
admit such a map. As this property is invariant under the action of the braid group,
the result follows.

We conjecture that a combinatorial proof of Theorem 3 might lead to an im-
proved upper bound for ¢, of about 2k/3.

Problem. Find a combinatorial proof of Theorem 3.



Branched Covers of S2 and Braid Groups 71

Example 2. In Example 1 we saw that one cannot say by looking at a polyno-
mial passport ¥ whether T is the passport of a polynomial of the form P(z? + a).
It is natural to ask whether one can characterise the passports of polynomials of
degree k of the form (P(zx))? + b, or, more generally, of the form

%) Q=P™...P™M4b m;>2i=1,..,1L
1 !

The answer is “yes”. Namely, a necessary and sufficient condition for a polyno-
mial passport T to be the passport of a polynomial of the form (x) is the following:
(#+) there is an integer r > 1 and integers a;; > 0fori=1,...l,5=1,...7, such
that one of the partitions of k£ in X, call it S, has the form

S={oymi + - +aumy,...,anmy + -+ aymy}.

Indeed, if @ has the form (x), then each root a of P; of multiplicity a;(a) is a
critical point of @ of order

ar(a)ymy + -+~ + aya)my,

and the corresponding critical value is b. So the partition of k corresponding to the
critical value b is as in (¥x).

Conversely, if @ has passport of the form (xx), then there exist polynomials
Py,..., P such that @ has the form (*); indeed, let b be the critical value of @
corresponding to the partition S. Let a4,...,a, be the critical points of Q corre-
sponding to b. By assumption, a; is a critical point of @ of order Ei.:l aiym;. Let
Py,..., P, be such that a; is a zero of multiplicity a;; of P;. These are the required
polynomials.

Remark that if all the other critical values of Q) are simple, then ¥ is a Lagrangian
passport, hence there is a unique class of polynomials corresponding to it.

As noted in [22], for polynomials P of degree < 5, the corresponding stratum in
P is path connected. For polynomials of degree 6, the list of T-equivalence classes
given in [22] is incomplete, so we give the full list here.

Example 3. T-equivalence classes of polynomials of degree 6.

Case of 1 critical value. Clearly, there is only one class.

Case of 2 critical values. This is the very interesting case discussed in [19]. Table
1 lists all classes of such polynomials by giving their passports, their monodromy
trees as described in Sec. 3, their “dessins d’enfant” (see also [19]), and whether or
not they satisfy the conditions of Theorems 3 and/or 5.
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Passport

{{2}, {5}

{{3},{4}}

{{2},{2,4}}

{{2},{3,3}}

{3},{2,2,2}}

{{2,2},{2,2,2}}

{{2.2},{3,2}}

{{2,2},{4}}

{{3},{3,2}}

Table 1.

Monodromy trees

Dessins d’enfant

EEIIRERRLERT,

Satisfies
conditions

of Thm(s)

3,5

3,5
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Case of 3 critical values. These polynomials have one of the following passports:
{{2}, {2}, {4}, {6}}, {{2}. {2}, {3, 2}, {6}}, {{2}, {2}, {2, 2,2}, {6}},
{{2}, {3}, {3}, {61}, {{2}. {3}, {2, 2}, {6}}, {{2}, {2, 2}, {2, 2}, {6} }.

All but the last are Lagrangian passports, so to each of them there corresponds a
single T-equivalence class of polynomials.

The last is a special case (m = 2) of Example 1, and therefore there are at least
two classes corresponding to this passport. Action by the braid group B(3) shows
that there are exactly two.

Case of 4 critical values. There are only two passports, {{3}, {2}, {2}, {2}, {6}}
and {{2,2}, {2}, {2}, {2}, {6}}, and they are both Lagrangian, so for each of these
there is only one class.

Case of 5 critical values. This is the classical case studied by Clebsch who proved
that there is only one class.

Going back to meromorphic functions f : M — S2, here are two more examples.

Example 4. Here is the T-classification of 3-sheeted branched covers of $% with
n critical values, each of type {3}.

Given such a cover f, under the corresponding representation o of the free group
F, = (¢1,...,9.) on n generators into the symmetric group S3 on 3 elements men-
tioned at the beginning of Sec. 2, let n; of the g;’s get mapped to the permutation
a = (1,2,3), and let n; of the g;’s get mapped to a® = (1,3,2). As o([]-, ) is
the identity permutation,

n—ny =0 mod 3.

As o(F,) is commutative, the action of the braid group on it is trivial. Also, an
inner automorphism of S3 (i.e. a renumbering of the sheets of the cover), does not
change the unordered pair {a,a?}. Thus, two such covers are T-equivalent if and
only if they are equivalent as covers: they must have the same number n of critical
values, and the same unordered pair {n;,n2}.

Hence, for each n, the number ¢ of T-equivalence classes of such covers is equal
to the number of ways of representing n as n; + ny with n; — n2 =0 mod 3.

For n < 2, t = 0. One can show that for n > 2, if n is represented as n = 6g +c,
c=0,1,2,3,4,5, thent =g+ 1lifc#landt=qifc=1.

Example 5. Here is the T-classification of 4-sheeted branched covers of S? with
n critical values, each of type {2,2}.

Given such a cover f, under the corresponding representation o of the free
group F,, on n generators g;,i = 1,...,n, into the symmetric group on 4 elements
mentioned at the beginning of Sec. 2, let n, of the g;’s get mapped to a = (12)(34),
ny to b = (13)(24), and n3 to ¢ = (14)(23).

The subgroup (a, b, c) of S, is commutative, hence under the action of the braid
group B(n) on these covers the numbers n;,ns,n3 do not change. Also, the inner
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automorphisms of S, leave the set {a, b, ¢} invariant and moreover any permutation
of this set of three elements is induced by an inner automorphism of Sy.

As o ([T, ¢:) is the identity permutation on 4 elements, either n;,ny,n3 are all
even or they are all odd. Moreover, at least two of them must be positive for the
covering space to be connected.

So the number ¢ of T-equivalence classes of such branched covers is equal to the
number of ways of representing n as a sum of three natural numbers of the same
parity, two of which are positive.

Using standard combinatorial calculations (cf., e.g., Example 15.1 , pp. 132-133,
of the book by van Lint and Wilson [21]), one obtains the following values of ¢ as a
function of n.

1. If n is even, then #(n) is the least integer greater than

n(n + 12)
48

2. If n is odd, then t(n) is the least integer greater than

-1

(n = 3)(n+9)
48 '

Remark that for n odd, all covers of $? with such a passport are connected,
while for n even, there is also one additional nonconnected cover with the same
passport; hence the —1 term in the formula for ¢(n) for n even.

6. Acknowledgment

We wish to express our deep gratitude to V. I. Arnold for very useful comments
and discussions concerning this paper.

We would also like to thank T. Belokrinitskaya and D. Latterner for help with
their TEXpertise and the Universities of Minnesota and of Toronto for their hospi-
tality.

Note Added in Proof
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