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§1. Statement  of the Results  

If A,  B are subsets of a commutat ive semigroup G,  then we can define the sum A + B as the set of 
points z = a + b, where a E A and b E B .  Denote by N *  A the sum of N copies of A. 

Theorem 1. For arbitrary finite subsets A and B of G,  the number of elements of the set B + N * A 
with large enough natural N is a polynomial in N .  The degree of this polynomial is less than the number 
of elements of A .  

Theorem 1 is a special case of Theorem 2 of § 2. The polynomials in Theorems 1 and 2 are Hilbert 
polynomials of certain graded modules over the ring of polynomials in several variables. 

If a semigroup G is an abelian group without elements of finite order, then it is possible to calculate 
the degree and the leading coefficient of the polynomial in Theorem 1. Let us introduce some necessary 
notation. Denote by G (A) the subgroup of the group G generated by the differences of the elements 
of a set A (the group G(A)  consists of the elements of the form ~niai, where ai E A ,  n i E Z, and 
~ n i  = 0). Since G has no elements of finite order, G(A) is isomorphic to the group Z n , where n is 
the rank of G(A). The set A - -  A - a ,  where a is an element of A,  is contained in G ( A ) .  

Definit ion.  The reduced Newton polyhedron of a set A C G is the convex hull, in the space ] ~  
containing the lattice Z ~ , of the image of A under an isomorphism of the groups G(A)  and Z n . 

The reduced Newton polyhedron is defined up to an affine transformation x ~-~ z "4- Ux ,  where z E Z n 
and U is a unimodular transformation. In particular, the volume of the reduced Newton polyhedron is 
well-defined. We denote by i ( A ,  B) the number of cosets of the group G modulo the subgroup G(A) 
that contain points of the set B .  

Theorem 4. Let a semigroup G be an abeIian group without elements of finite order. Then the ratio 
of the number of points in B + N . A to N '~, where n is the rank of G(A)  , tends, as N - *  c~ , to the 
product of the volume of the reduced Newton polyhedron of A and the number i ( A ,  B) .  

Theorem 4 is proved in § 3, which is devoted mainly to the group G = Z" . Let A C Z" be a finite 
set such that the group Z"(A) is equal to Z n,  and let A be the convex hull of A in ]R " ,  Z" C]R n. 
According to Theorem 3 of § 3, every integral point of the polyhedron N - A  lying far enough from its 

boundary belongs to the set N * A. 
In § 4 we show how it is possible, using Hilbert polynomials and Theorem 3, to prove the Kushnirenko 

theorem (in this theorem, the number of solutions of a generic system of n polynomial equations in n 
unknowns is calculated for the case in which the polynomials have equal Newton's polyhedra). The results 
of the present paper arose from the attempts to find the simplest proof of this theorem. 

In § 5 we calculate Grothendieck groups of the semigroup of compact subsets in IRn and of the semigroup 

of finite subsets in Z" . 
The results of the paper were presented to the International Topological Conference in Baku, 1988, and 

since then have passed into the folklore, but they have never been published. Here we fill this gap. 
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§2. Hi lbert  P o l y n o m i a l  and the  N u m b e r  o f  Po ints  in the  S u m  of  F in i te  Sets 

Let G be a set, let B be a finite subset of it, and let A = (Uij) be a set of m commut ing  maps of G 

into itself, ai o aj  =- -dj o -ai, 1 ~_ i ,  j < m .  Denote by B ( N )  the set [.Jl<ij<mUil o . . .  o U i ~ ( B ) .  

T h e o r e m  2. The number of elements of B ( N )  is a polynomial in N for suj~cientiy large natural N .  
The degree of this polynomial is less than rn. 

Theorem 1 of § 1 is a special case of Theorem 2. To derive Theorem 1 from Theorem 2, it is sufficient 
to consider the set G of all the points of the semigroup G,  the  set B tha t  is equal to B ,  and the set 
A of maps tha t  are shifts ui of G corresponding to ai E A (i.e., Ui(g) = g + ai). In this case, the set 
B ( N )  coincides with B + N * A ,  and so Theorem 1 is reduced to Theorem 2. 

P r o o f  of  T h e o r e m  2. Let us consider a countable set of nonintersecting copies GI ,  i = 0, 1, . . .  , of 
G together  with one-to-one correspondences ~ri: G --~ GI.  Denote by X the union of Gi, X = U Gi, 
and by L the space of complex-valued linear functions on X ,  that  are nonvanishing only on finite sets 
of points. The  space L is generated by the functions 5~ that  vanish at all points except x E X and 
are equal to 1 at x .  It is possible to define a grading in L :  a function belongs to the  component of 
degree /c if it does not vanish only on the copy Gk of the set G .  The space L can be t ransformed into a 
graded module over the ring C[xl  , . . .  , xm] of polynomials in m variables: by definition, the generator 
xi transforms the functions ~x, where x = 7rj(g), g E G,  j = 0, 1, . . .  , into the functions ~y, where 
y = 7rj+l(U,(g)). This action can be extended uniquely to the action of the ring C [ x l ,  . . . ,  Xm] on the 
space L .  Let us consider the submodule L~- in L generated by the elements ~ , where x = 7r0(b), 

b E B .  The component  of the module L~- of degree N consists of all linear combinations of the functions 
~ corresponding to x = teN(g), g E B ( N ) .  The dimension of this component  is equal to the  number  of 
points in t?(N) .  Therefore,  Theorem 2 follows from Hilbert 's theorem (see [1, Theorem 6.21]). 

§3. S u m s  of  Fini te  Subsets  of  the  Integral  Latt ice  

Let A be a finite subset of Z '~ , ~'~ C R '~ , such that  the subgroup generated by the elements of A 
coincides with the group 2~ ~ . 

Propos i t ion  1. There exists a constant C with the following property: for every linear combination 
/~iai of  vectors  ai E A with real coeJ~cients /~i such that ~/~iai iS an integral vector, there exists a 

linear combination ~ niai of ai with integer coe]ficients such that it is equal to ~ Aiai and ~ ] n i -  
A~I < C .  

Proof.  For every x from the finite set X of integral vectors represented in the form x = ~ Aiai with 
0 < Ai < 1, we fix a representat ion of the form x = ~ ni(x) ai, hi(X) e Z .  Such a representat ion exists 
because the elements ai C A generate the group Z ~ . Now it is sufficient to take C = m + q, where m 

r a  
is the number  of elements in A and q = max~ex  ~ i=1  Ini(x)l • Indeed, for any integral vector z E Z n of 
the form ~ A i a i ,  the vector x = z - ~ [ A i ] a i  belongs to X .  Hence, x = ~ n i ( x )  ai and z = ~ n i a i ,  
where ni =[Ai] + hi(X). Proposit ion 1 is proved. 

Denote by A the convex hull of the set A in the space R n containing the latt ice Z ~ . If A contains 
the origin and N is a na tura l  number,  then  the polyhedron N - A  can be defined as the  set of linear 
combinations ~ A ~ a i  of vectors ai C A with A~ >_ 0 and ~ A ~  < N .  Denote  by A ( N ,  C) the 
polyhedron consisting of linear combinations ~ Aiai, where Ai _> C and ~ Ai _< N - C .  

Propos i t ion  2. Let the group Z~(A) generated by the differences of the elements of A coincide with 
Z n, and let the origin belong to A .  Then every integral point of the polyhedron A ( N ,  C),  where C is 
the constant occurring in Proposition 1, belongs to N * A .  

P r o o f .  As the set A contains 0, the set N * A consists of the points of the form ~ n i a i ,  where 
ai C A ,  ni >_ 0,  and ~-~ni <_ N .  According to Proposit ion 1, an arbi t rary  integral point of A ( N ,  C) 
admits such a representation.  

We fix an arb i t rary  Eucl idean metr ic  in N ~ . Let A be a finite subset of the group Z ~ C N ~ , and let 
A be its convex hull in ]R n . 
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T h e o r e m  3. Suppose that the group Zn(A) coincides with Z n . Then there exists a constant p with 
the following property: for an arbitrary natural N ,  every integral point of the polyhedron N . A  whose 
distance from the boundary of the polyhedron is not less than p belongs to N * A .  

P r o o f .  Wi thout  loss of generality, we can suppose tha t  A contains the origin (otherwise we have to 
consider, instead of A ,  a shifted set A - a ,  where a is a vector belonging to A). Let us index the 
elements of A : A = {ai} ,  i = 1, . . .  , m .  Consider the space ]R m , whose dimension is equal to the 
number  of elements of A ,  and the  map ~r : N r~ --~ R" that  t ransforms the  i th  vector of the s tandard  basis 
in R m into the vector al E IR ~ • Denote  by K ( N )  and K ( N ,  C) the  simplexes in N m defined by the 
inequalities Ai _> 0,  ~-~im 1 )~i _< N and Ai _> C ,  ~-]~im 1 ,~i < N - C ,  respectively. The polyhedra  N. A 
and A ( N ,  C) are the images of the  simplexes K ( N )  and K ( N ,  C) under  the map  ~r. Each point of the 
simplex K ( N )  whose distance from its boundary  is not less than  Cv/-~ belongs to K ( N ,  C) .  Therefore, 
each point of the  polyhedron N- A whose distance from its boundary  is not  less than  p = C v ~  117rll, 
where II ll is the  norm of the operator  7r, lies in A ( N ,  C) .  Now, to complete the  proof  of Theorem 3, 
it remains to use Proposit ion 2. 

Below we assume tha t  the metr ic  in N" is normalized by the following condition: the  volume of par- 
allelepiped I I ( e l ,  . . . ,  en) spanned by the  basis e~, . . . ,  en of the latt ice Z ~ (x e I I (e~,  . . . ,  e~) -', " 
X --= ~ )~iel, 0 ~_ ,'~i ~_ 1) is equal to 1. 

C o r o l l a r y  1. Suppose that the group Z~(A) coincides with Z ~ . Then the ratio of the number of 
points lying in N * A to the number N n V ( A ) ,  where V(A)  is the volume of the convex hull A of A ,  
tends to 1 as N--~ oz .  

P r o o f .  The set N .  A is contained in the set of integral points of the polyhedron N . A .  So we obtain 
an upper  bound for the number  of integral points lying in N * A.  The  lower bound  is obtained from 
Theorem 3. Both bounds are of order N n V ( A )  as N -+ oz .  

C o r o l l a r y  2. Suppose that the group Z~(A) has a finite index in the group Z n ; denote it by i n d A .  
Then the ratio of the number of points lying in N * A to N n tends to ( i n d A ) - l V ( A )  as N ~ oz.  

P r o o f .  We may  assume tha t  the set A is contained in the group Zn(A) (otherwise we consider a 
shifted set A - a ,  where a is an element of A). In this case we can use Corollary 1 with the lattice 
Zn(A) instead of Z ~ . To do this, we have only to renormalize the metric: the ratio of the volumes of the 
parallelepipeds I I ( f ~ , . . . ,  f=)  and I I ( e l , . . . ,  e~) ,  where f ~ , . . . ,  f~ and e l , . . . ,  en are the bases of 
the lattices Zn(A)  and Z ~ , is equal to i n d A .  Corollary 2 is proved. 

C o r o l l a r y  3. Suppose that A and B are finite subsets of Z n and the group Zn(A) coincides with 
Z" . Then the ratio of the number of points lying in N * A + B to N n V ( A ) ,  where V(A)  is the volume 
of the convex hull of A ,  tends to 1 as N --+ oz . 

P r o o f .  The  set N * A + B is contained in the set of integral points of the  polyhedron N.  A + A B , 
where A and AB are the convex hulls of A and B .  This gives an upper  bound  for the number  of points 
of N * A + B .  On the other  hand,  the number  of points lying in N *  A + B is not less than  the number  of 
points lying in N • A .  Both bounds are of order N n V ( A )  as N -~ oz (for the lower bound  this follows 
from Corollary 2). Corollary 3 is proved. 

Now we shall prove Theorem 4, which was s ta ted in § 1. 
First of all, note tha t  the sets bl + N * A and b2 + N * A are disjoint when the  elements b~ and b2 

belong to distinct cosets of the  group G modulo the subgroup G (A) .  Therefore,  we can restrict  ourselves 
to the case in which the  whole set B is contained in one coset. Further,  we can assume tha t  B ,  as well 
as A ,  lies in G ( A ) .  (Otherwise we can consider the sets A - a ,  B = B -  b instead of A and B ,  where 
a and b are elements of A and B ,  respectively.) But in this case Theorem 4 is reduced to Corollary 3; 
the group G ( A ) ,  according to the definition, has no dem en t s  of finite order  and hence is isomorphic to 
Z ~' . Theorem 4 is proved. 
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At the end of this section we prove a property of semigroups in Z" , which follows from Proposition 1. 
Let A be a finite subset of Z" , and let K(A)  be the cone in R" generated by this subset: z E K(A)  
x = ~/~ia i ,  )~i >_ O, ai E A .  

P r o p o s i t i o n  3. Suppose that the group generated by A coincides with Z n . Then every integral point 
of the shifted cone K + x ,  where x = C ~a~e A ai and C is the constant occurring in Proposition !, 
belongs to the sernigroup generated by A .  

Proof .  If the vector z - x lies in the cone K ,  then this vector can be represented in the form z -  x = 
/~iai, /~i >_ O. Therefore, each integral vector z can be represented in the form z = ~ ( ~ i  + C)ai ,  

where Ai >__ 0. According to Proposition 1, every integral vector z of this form can be represented as a 
linear combination of vectors ai with natural coefficients. 

R e m a r k .  The statement of Proposition 3 can be regarded as a multi-dimensional generalization of the 
following simple problem addressed to high school pupils: show that it is possible to pay without a change 
an arbitrary large natural sum of rubies (actually, an arbitrary sum greater than 7) using only 3-ruble 
and 5-ruble bank-notes. (Indeed, the group generated by the numbers 3 and 5 coincides with Z ,  the 
cone generated by them coincides with the set of positive integers, and the shifted cone K + C coincides 
with the set of integers not less than C .) 

§4. T h e  N u m b e r  of  R o o t s  of  a G e n e r i c  S y s t e m  of  E q u a t i o n s  

First we remind of some known facts from algebraic geometry (see [1]). Then we derive the Kushnirenko 
theorem from these facts and Theorem 2. 

4.1. Let X be an open subset in the Zariski topology of an irreducible n-dimensional complex 
algebraic manifold, and let L be a finite-dimensional linear space of regular functions on X .  What could 
be said about the solutions of the system of n equations f l  . . . . .  f ,  = 0, where fi are generic 
functions from L ? This question was well investigated in algebraic geometry. Let us formulate a version 
of the answer. Denote by X0 the subset of X where all the functions from L vanish. 

Denote by rrc t h e  map of the set X \ X0 to the projective space CP 151-1 defined by the relation 
rrt(x) = ca(x) : e 2 ( z ) : . . . :  em(Z) ,where  e l , . . . , e m  form the bas isof  L (the map 7rr is defined up 
to a projective transformation). If the image of 7rr(X \ X0) is of dimension less than n ,  then a generic 
system of equations f l  . . . . .  f~ = 0 on X \X0 is inconsistent. Suppose that the image 7rL(X \Xo)  is 
of dimension n .  In this case the roots of an almost arbitrary system fl  . . . . .  f ,  = 0 lie only at smooth 
points of the set X \ X0 and are nondegenerate. Almost all such systems have the same number of roots. 
This number is equal to the product of the degree of the map 7rr : X \ X0 --* 7rc (X \ X0) and the degree of 
the closure of the set 7rL(X\Xo)  in the projective space. The degree of the map 7rL: X \ X o  ~ 7rL(X\Xo)  
is equal to the number of preimages 7rLl(y) for an almost arbitrary point y E 7rL(X \ Xo) .  The degree 
of the closure of the set 7rL(X \ X0) in the projective space can be calculated using Hilbert polynomials. 
Let us consider the linear space L N consisting of linear combinations of functions f = f~ .. .  f N ,  where 
fi E L .  According to Hilbert's theorem, the dimension of the space L N for a sufficiently large natural 
number N is a polynomial in N .  The degree d of this polynomial coincides with the dimension of 
the closure of the set 7rL(X \ Xo) ,  and the product of d! and the coefficient of N d in this polynomial 
coincides with the degree of the closure of the set ¢rL(X \ Xo) in the projective space. 

4.2. Now we turn to the Kushnirenko theorem. Let us introduce necessary definitions and notation. 
To every character X = xF 1 "'" z~ m" of the torus ( C -  0) n there corresponds the point rn = rnl ,  . . .  , rn, 
of the integral lattice Z" C IR" • A finite linear combination of characters P = ~ )~iXi is called a Laurent 
polynomial P on the torus ( C - 0 )  '~ . The support supp(P)  of a Laurent polynomial P is, by definition, 
the finite subset of the lattice Z ~ corresponding to the characters Xi occurring in the polynomial P with 
nonzero coefficients Ai. 

Let us fix a finite subset A of Z n . How many roots in (C - 0) n has a generic system of equations 
P1 . . . . .  P ,  = 0, where Pi are Laurent polynomials with support A ? The answer to this question is 
given by the following theorem. 
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T h e o r e m  (Kushnirenko [2]). The number of roots in ( C -  O) n of a generic system of equations P1 = 
• .. = Pn = 0 with supp(Pj )  = A is n[ times the volume of the convex hull of the set A .  

P r o o f .  To prove this theorem, we use the facts of algebraic geometry formulated in 4.1 for the case 
X = (C - 0) n and the space L consisting of linear combinations of the characters corresponding to the 
points of A.  The dimension of the image of the space (C - 0) n under the map 71" n t o  the projective 
space equals the rank of the group Zn(A) generated by the differences of the elements of -A. The rank 
of the group Zn(A) is less than  n if and only if the volume of the convex hull of A is zero. It is obvious 
that  in this case the corresponding generic system of equations is inconsistent. If the rank of the group 
Zn(A) is equal to n ,  then the degree of the map of the torus (C - 0) n onto its image coincides with the 
index indA of the subgroup Zn(A) in Z n (every point of the image has exactly i ndA pre-images in 
(C - 0)'~). The space L N consists of linear combinations of the characters corresponding to the points in 
N * A.  The dimension of L N is equal to the number of points of N * A.  According to Corollary 2 of 
Theorem 3 (see § 3), the leading coefficient of the Hilbert polynomial is equal to the volume V(A) of the 
convex hull A of A divided by ind A .  Therefore, the number  of roots of a generic system of equations 
P1 . . . . .  P n = 0  in ( C - 0 ) "  i sequal  to n! i n d A . ( Y ( A ) / i n d A ) = n ! V ( A ) .  

§5. G r o t h e n d i e c k  G r o u p s  o f  t h e  S e m i g r o u p s  o f  
F i n i t e  S u b s e t s  o f  Z '~ a n d  C o m p a c t  S u b s e t s  o f  IR n 

Let A be a compact subset of a finite-dimensional linear space L and A its convex hull of dimension k. 

L e m m a .  For each point x of the polyhedron h . A ,  where h is an arbitrary number non less than 
k + 1, there exists a point a E A such that the vector x - a lies in the polyhedron (h - 1). A .  

P r o o f .  The point y = h - i x  lies in the polyhedron A .  Since the dimension of A is equal to k,  
the point y lies in one of the k-dimensional simplexes whose vertices a0, . . .  , ak lie in the set A,  
Y = ~'-]0<i<k h ia i ,  hi > 0, ~-']0<i<k hi = 1. One of the hj 's  is not less than (k + 1) - I  . The point x - aj 
belongs to (k - 1). A .  

C o r o l l a r y  1. For an arbitrary homomorphism of the semigroup (with respect to addition) of compact 
subsets of the linear space in an abelian group, the images of a finite-dimensional subsets having common 
convex hull coincide. 

P r o o f .  Let A be the convex hull of compact subsets A and B .  Then the sets A + k .  A and B + k .  A ,  
where k is equal to the dimension of the linear space, coincide. Indeed, according to the Lemma, both 
sets coincide with (k + 1). A .  Since A + k. A = B + k. A ,  the images of elements of A and B under a 
homomorphism into an abelian group coincide. 

The formal differences A1 - A2 of convex sets A 1 and A2 with the natural  equivalence relation 
A1 - A2 "~ As -- A4 ". '." A1 + A4 = A2 + A3 form an abelian group. Corollary 1 shows that  this group 
is the Grothendieck group of the semigroup (with respect to addition) of compact subsets of L .  

Let A and B be finite subsets of Z n , let A be the convex hull of A,  and let B be the set of integral 
points of the polyhedron K -  A ,  where K E Z ,  K > n .  

The Lemma immediately implies the following corollary. 

C o r o l l a r y  2. The set A + B consists of all integral points of the polyhedron ( K  + 1). A .  

C o r o l l a r y  3. For every integral polyhedron A the number of integral points of the polyhedron N.  A 
is a polynomial on the set of suJi~ciently large natural number N .  

Corollary 3 follows from Theorem 1, applied to subsets A and B of the lattice Z n , where A is the 
set of integral points of the polyhedron A and B is the set of integral points of the polyhedron n. A 
(see Corollary 2). 

R e m a r k .  A stronger theorem due to McDonald [3] is valid: the number  of integral points of the 
polyhedron N. A is a polynomial on the set of all natural  numbers N .  The algebraic proof [4] of the 
McDonald theorem uses not only the Hilbert polynomial, but  also the fact that  a torus manifold has zero 
cohomologies with coefficients in a specially constructed sheaf depending on the polyhedron A .  
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Corollary 4 can be proved in the same manner as Corollary 1. The  formal differences of integral 
polyhedra with the natural equivalence relation form an abelian group. Corollary 4 shows that this group 
is the Grothendieck group of the semigroup of finite subsets of the lattice. 

R e m a r k .  Corollary 4 clarifies why discrete characteristics of a hypersurface P = 0 in the torus 
(C - 0) n depend not on the support supp(P) of the Laurent polynomial P ,  but on the convex hull 
A(P)  of this support. The proof of this fact is based on different ideas, which can be found in [4]. 
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