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A RIEMANN-ROCH THEOREM FOR INTEGRALS AND SUMS
OF QUASIPOLYNOMIALS OVER VIRTUAL POLYTOPES

A. V. PUKHLIKOV AND A. G. KHOVANSKII

ABsTRACT. This paper is devoted to the proof of a theorem (which the authors call a
Riemann-Roch theorem) connecting the integral and the lattice sum of a quasipolyno-
mial over a convex chain belonging to some family. We show that there exists a linear
difterential operator (the Todd operator) transforming the integral to the sum. This
gives a higher-dimensional generalization of the well-known Euler-Maclaurin formula,

INTRODUCTION

This paper is a direct continuation of [1], by the same authors. The theory devel-
oped in [1] concerning convex chains and finitely additive measures on them realizes
one possible approach to studying them; in this paper we propose another, “transver-
sal”, approach, based on the systematic use of the idea of a conical representation of
a convex chain, i.e., a representation of a chain as an integral lincar combination of
characteristic functions of cones. This theme was touched on once in [1]: when the
question of the recovery of a convex chain from its support function was considered
(§4, Proposition 2, where in essence the general lines of the technique on which the
present paper is constructed were considered).

The object of our study is special measures of convex chains—integrals and lattice
sums (i.e., sums over the points of a discrete lattice) of quasipolynomials. We give
a rather detailed computation of these measures, which allows us to obtain the main
result—a “Riemann-Roch theorem”, connecting the lattice sum and the integral of
the (same) quasipolynomial over a family of convex chains, The one-dimensional
‘variant of this theorem is the old Euler-Maclaurin formula for a special class of
functions (quasipolynomials), so our “Riemann-Roch theorem™ can be interpreted
as a higher-dimensional gencralization of the Euler-Maclaurin formula (see [2], for
example, for details).

We shall freely and without special references use the language of the previous
paper [1], especially the concepts of a convex chain and its support function. Aside
from this the present paper is almost independent of [1]—from the results proved in
[1] we essentially need only the almost trivial Proposition 2 of §4, mentioned above.

The numbering scheme for assertions and definitions is the same as in [1].
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41, STATEMENT OF THE MAIN THEOREM

In this section we introduce the concepts and constructions that will be nceded
for the statement of the Riemann-Roch theorem. In addition, we briefly explain the
algebro-geometric origin of this theorem.

1. Basic concepts and constructions. Let (¥, A) be an admissible pair [1], where
IV is an n-dimensional real linear space and A in this case is a discrete complete
lattice. We fix an isomorphism I = R" relative to which A becomes a naturally
embedded integer lattice Z" C R"; the points x € A will be referred to as integral
vectors. Let A* = {l € V*|I[(A) C Z} € V* be the dual lattice. Its elements will be
called integral covectors.

Most of the concepts we shall use are generally accepted ones. However, to avoid
possible confusion we give a list of them with their precise meaning.

(1) A ray 1s a closed affine half-line in V', the vertex of a ray is its origin, and a ray
is a A-ray (or an integer ray) if it contains at least two (and hence infinitely many)
points of A, one of which 1is its vertex.

(2) An affine subspace W C A is a A-space (or a lattice subspace) if W 1is the
affine hull of W NnA.

(3) A cone C C V is the convex hull of a finite set of rays Ry, ..., Ry with
a common vertex; C is a A-cone (or lattice cone) if the rays Ry, ..., Ry can be
chosen to be integer. We denote by (C) and vs(C) the affine hull and the vertex
space, respectively, of the cone €. Obviously, if C is a A-cone, then (C} and
vs((C') are A-spaces. Any face of a A-cone is obviously a A-cone.

(4) A cone C is said to be developed if dimvs(C) > 1. Otherwise the cone
C is said to be pointed. In the latter case its vertex i1s the point vs{C) and ecdges
(one-dimensional faces), where C is the convex hull of its edges.

(5) Let R be a ray with vertex x. The direction vector of the ray R 1s y — x,
where y € R\{x} is the closest integer point to x if R isa A-ray, and y is any
point otherwise.

(6) A simple cone C is a pointed cone C for which the direction vectors of an
edge are linearly independent. A simple A-cone (or a simple lattice cone) C is a
simple cone C which is a A-cone such that the direction vectors of its edges form a
basis of the lattice {C)NA.

(7) The dimension of a cone is dim(C) ., and the /nterior Int C' of a cone 1s always
understood as its interior in {C) . We stress that a conc in our usage is always closed.

All of these concepts are of course applicable to any spacc and any discrete com-
plete lattice (in fact to any admissible pair in the sense of [1]). Applying them to the
pair (F*, A*), we give one more definition.

(8) A decomposition of the space V™ is a finite set of cones X = {C} C V|i e I}
with the following propertics:

(a) 0evs(Cr), iel.

(b) It C;nIntCy =@ fora#b,a,bel.

(c) €rn€;=C; forsome e ld.

(d) C; c C; implies: C; is a face of Cj .

(@) #* =]z IOLCT

A decomposition is simple if all the cones C; are simple, and simple lattice (or
A-) if all the €7 are simple A-cones. The edges of a simple (lattice] decomposition
are all the edges of the cones C; . and the direction vectors of a decomposition are
the direction vectors of the edges.

(9) A convex polytope 4 € Z(V) of full dimension (i.e., (4) = V) is said to be
simple, lattice (A-). or simple lattice if all the cones for its vertices are respectively
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simple, lattice, or simple lattice. (We stress that in our terminology “simple lattice” is
a stronger condition than “both simple and lattice™!) It is not hard to see that a simple
lattice polytope A generates a simple lattice decomposition X, of the space V=
(called the dual of A): let T'(A4) be the set of faces of A4, andlet Cy 4 for A€ I'(A)
be the cone for the face A (i.e., vs(Ca 4) = {A) and for any x € IntA there exists
a neighborhood U 3 x such that Cy yNU =4AnU); then £, = {CF 4lAeT(4)},
where C; , C V'* is the cone dual to Cs 4 C V translated so that the origin lies in
its vertex space.

It is well known (in the theory of toric varieties this means that every complete
toric variety extends to a nonsingular projective toric variety) that every lattice de-
composition of the space V'* (i.e., decomposition with lattice cones) is refined to a
simple lattice decomposition that is dual to a simple lattice polytope.

With each simple lattice decomposition X we associate the following four subsets
of the group of convex chains Z(V): Z(V, X) are chains whose support functions
are linear in X; Z(A,Z) are the integral chains: Z(A,Z) = Z(A)n Z(V, X);
PV E) =22 (V)N Z(V, X) are virtual polytopes whose support functions are
linear in X; and S*(A,X) = Z#"(A)n Z(V,X) are the lattice virtual polytopes
from Z*(V, ).

The groups of virtual polytopes Z#*(V, Z) and 2*(A, X) have a natural pa-
rametrization which is constructed canonically from a given decomposition £. Let
L, ..., Iy € A* be the integral direction vectors of the edges of the decomposition
Y. Obviously the piecewise linear function f: F* — R, linear in the decomposition
%, is uniquely determined by its “coordinates” z; = f(/;), 1 <7 < N. Morcover,
from the condition that X is a simple lattice decomposition it follows easily that for
any set (zy,..., zy) € BY there exists a piecewise linear function £, linear in X,
such that z; = f(/;), 1 </ < N, and the virtual polytope corresponding to f and
denoted by w(z,, ..., zy) 1s lattice if and only if z; € Z, 1 < { < N. Thus, we
have a diagram

Z__.'\-' & R:\"

(t(-)l | =)
i

ZANE)y —— Z(V, %)
The support function of the virtual polytope «(zy, ..., zy) will be denoted by
S(z1, ..., zy), and its value on a covector & € V= by f(zy,..., zx, &) or simply
by f(z,¢).
2. Integrals and sums over convex chains,

Definition 1. (A) Let 4: I/ — C be a continuous function. Its integral over a convex
chain « € Z(V') is the number

Fold = / el doe,
S

where the volume element dx is generated by the integer lattice A ¢ V', and the
integral always exists since the support of « is compact.

(B} Let #: A — C be an arbitrary function. [ts ({attice) sum over a chain o € Z(V)
is the number

Syla) = Z alx)h(x),
xeh

which is defined since the support of « is compact, so that the sum has only a finite
number of nonzero terms.
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The main result of this paper is the determination of the connection between the
mappings I,(-) and S,(-) (obviously these are measures on the group of convex
chains) for a special class of functions 4, restricted to suitable families of chains.
More precisely, let € Z(A,Z) and a(z) € #*(V,X), (z) = (21, ..., Zn)3 then
for fixed 4 we have a pair of mappings

(B *a()): RY = C, Sp(Bxa()):ZY —C.

We wish to recover the second of these mappings from the first, where A(x) is
taken to be a polynomial on 7. We recall that according to [1] (Corollaries 2.4 and
2.5) in this case both these mappings are polynomial in (z) of degree deg h+dim V.
The problem is thus reduced to finding the coefficients of the polynomial S,(f#a(z))
from the coefficients of the polynomial I,(f *«(z)), or, more precisely, to construct-
ing a linear operator mapping the first polynomial to the second. Such an operator
(the Todd operator) exists and solves our problem. However, in order to prove this
we need to consider a wider class of functions A(x). the class of quasipolynomials,
i.e., linear combinations of functions of the form P(x)exp<(x), where P is a poly-
nomial and &: ¥V — C is a complex covector, & € Homg(}', C). The action of the
(complex) covector £ on a vector x € V' will be denoted &(x) or (€-x).

3. The Todd operator. Let z;, ..., zy be independent variables, rcal or complex,
and (8/dz;) the corresponding partial differential operators.

Definition 2. The Todd mapping is a function
Td(z): RY =R or Td(z):CY-—-C,
real-analytic in the first case and meromorphic in the second, defined by the equality

N B
Td(z) = E T tnil—) )

Properties of the Todd mapping. (i) It is symmetric relative 1o permutations of the
variables.

(i) Lot (2] evvy Zp) © (81, voe n2N), M < N  be some subset of the variables.
The mapping Td(z) on the plane of the variables (z') is Td(z'). This follows from
the fact that Td(0)=1.

(iii) The meromorphic function Td(z) has poles of multiplicity 1 along the hy-
perplanes z; = 2mv/—Im, m € Z\{0}. In particular, the radius of convergence of
the power series Td(z) at the origin is equal to 27 in each of the variables z,, and
the series itself has the form

'l a0
; 1 — . Bi

=

where B is the kth Bernoulli number.

Removing the parentheses in the last formula, we write
Tdiz)y= Y wrz’
Ieny

in the usual multi-index notation: [ = (i, ..., iy). |[{| = Z;?':l i, . Abusing the no-
tation, we shall write this representation for different ~: Td(z) = oy 1;z! , without
indicating the number N . This is legal by property (ii) and does not causc confusion.

In our understanding the Todd operator is the result of substituting the differenti-
ation operator 8/dz; for the variables z; in this expansion. The functions to which
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it can be applied will be complex-valued analytic functions of the real variables z;
which are the restrictions of holomorphic functions on D C C C" to the real domain
DN RY (the coordinates are fixed and the embedding of BY c €V is the natural
one).

Definition 3. The function f(z) is said to admit the Todd operator Td(d/dz) if the

series

25 ff— -1(2)

fexy
is absolutely convergent on the domain of definition of f, uniformly on compact
subsets, to the function #(z), and then A(z) = Td(d/dz)f(z

We consider the action of the Todd operator on certain classes of functions.

(1) It is obvious that polynomials P(z) admit the Todd operator, and its action
does not require any comments. Unfortunately, we cannot restrict ourselves to the
class of polynomials, for reasons that will become clear below.

(ii) Let p;, i =1,..., N, be complex coordinates. It is easy to see that for

|p;| < 2m the exponential exp Z; , piz; admits the Todd operator and

4 N
Td( )emzpw—Td(m ..',p;\-)epopsz;.

i=1
Moreover, it is not hard to see that the series that realizes the action of the Todd
operator converges uniformly on compact sets in Dy = {(p)|pi| < 27} .
(111) We consider exp E; , piz; asa function of (p, z). Then for any polynomial
P(z) we obviously have

CXDZP; 1'—P( )EKDZPI Zi.
All the concrete computations of the action of the Todd operator that we shall need

below are contained in the following assertion.

Lemma 1. The quasipolynomial P(z)exp ZI pizi Jor |pi| < 2m admits the Todd
operator, and the result of its action is given by

; N 5 N
ra () e piz = P (2] (Td(qi s q,w}epoqu;)
g i=1

i=1

4i=p;
Proof. We apply the Todd operator, using the representation of the polynomial writ-
ten above:

3, ol
Td Zi
(9 )P{ cxp;p [z = ZT*’()“ (U‘p )epop;
-5 () (ot o T
7 apr’ ok .

=1

Since 3, 1/p’ exp ZL p;z; converges absolutely and uniformly on compact sets for
p in Ds,. and its terms are holomorphic, this is also true for all its derivatives with
respect to p ., so that the required series also converges absolutely and uniformly on
compact sets, the operator P(3/dp;) can be taken outside the summation sign, and
we obtain the answer written in the lemma, a function that is holomorphic in Dj,
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in the variable p and holomorphic everywhere with respect to z. This proves the
lemma,

4. The main theorem and its origin. We shall now state the main result.

Riemann-Roch theorem for integrals and sums of quasipolynomials. In the above no-
tation, for a fixed simple lattice decomposition T there exists a neighborhood of the
origin 0 € U € V* such that for any quasipolynomial

f=3 Pixexpé;(x),

JEJS
where £ € U, j€.J, the function
]’{(ﬁ 2 f.l'(z; g ey Z\-)) R_N — C

admits the Todd operator and, for (¢, ..., cy) € ZY,

Td ( : ) (B +el(z . Zy)) %

=
1<i<N

= S_I.r(ﬁ =e(Cr, ..., CN)).

Roughly speaking, the Todd operator transforms the integration of a quasipolyno-
mial (with sufficiently small exponents) over a convex chain into its lattice sum. For
the proof of the theorem we need explicit formulas for /¢(f=a(z)) and Sy(fxa(z))
which will be obtained below. These formulas are also of independent interest. Su(.h
formulas have been obtained previously by other methods (see, for example, [3]).
But the striking connection between integration and lattice summation has not been
known until now.

We briefly explain the algebro-geometric origin of our theorem (and its name at
the same time). It is well known (see [4] and [5]) that with each simple lattice
decomposition X of the space V'* one can associate in a natural way a smooth toric
variety Xy (the elements of the lattice A* correspond to one-parameter subgroups
of the torus (CY{0})", the elements of A to its characters). For a virtual polytope
a € (A, ) we denote the corresponding invertible sheaf by % (). We have (see

[5])

M
x(X, F () =) (1) dim H(X, F (a)) = Sy (c).
i=0
where 1: 7 — R is a constant function, 1.e., the Euler characteristic of the sheaf is
the “number of lattice points” of the corresponding virtual polytope. According to
the usual algebro-geometric Riemann-Roch theorem [6]. [7],

72X, F (o) = deg(ch{F («)) - td(Fx))n .
where

ch(F (a) = 3 =l (F(a))

is the exponential Chern character of the invertible sheaf 7 («). and td(Fy) is the
Todd class of the tangent sheaf of the variety X .

The method of computing the number of lattice points of a polyhedron using a
Riemann-Roch theorem was proposed in [5]; in that paper this method was used
to prove the polynomiality of the number of lattice points of the polyhedron nA4
relative to n € Z, and the corresponding special case of Ehrhardt’s duality theorem
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(see Theorems 1.1 and 1.2 of [1]); the duality theorem followed from the algebro-
geometric Serre duality theorem. Now, however, we can say considerably more. Let
v: RY — R be the volume function of the virtual polytope,

V(Z1y0ees Zn) = I1lalz1, ..., ZN)) = / alz, x)dx
"

(relative to the volume element defined by the lattice A C V). Obviously, v(z) is
a polynomial of degree dim V7. Let J, € Q[x, ..., xy] be the ideal consisting of
the polynomials p(xy, ..., xy) suchthat p(3/8z,,...,8/0zy)v(z), ..., z5)=0.
We have the following fact.

Theorem. The Chow ring A(X) @ Q = @B_, A(X) @ Q of algebraic cycles on the va-
riety X modulo numerical equivalence, graa’ea’ by codimension of cyeles, Is isomorphic
as a graded algebra to the ring Q[xy, ..., xy1/ 1.

One can also show that the Chern class of the invertible sheaf .% (n), where i
alby, ..., by), is represented in Q[x,, ..., xy]/J, by the polynomial ZI 1B
and the corrcspondmg exponential Chern character by a truncated series for the
function exp(Y.Y, b.x;), and finally, the Todd class of the tangent bundle Jx is
represented by a truncated series of the function

N

e
LT exp(—xy)

From this it i1s not hard to deduce that

. 8/0z .
S — i —_"f i )| e,
1la)=x(X, 5 (a)) = H T —eap(—0 0z Uz, N)lzi=8,
i.e., a special case (for f = 1) of our Riemann-Roch theorem (since v(z) =
Igla(zy ;- n2n))) - A detailed presentation of these arguments and facts will be

published elsewhere.

5. Plan of the proof of the Riemann-Roch theorem. The idea of the proof of the
Riemann-Roch theorem presented below (the remainder of the paper is devoted to
it) 1s as follows. In the previous paper [1] we showed (Proposition 4.2) that a convex
chain can be recovered from its support function as a linear combination of charac-
teristic functions of cones, where as cones we can take the translations of the dual
cones 1o the cones of the decomposition £. As z,, ..., zy vary the chain f *a(z)
itself varies in a complicated way, but the motion of each cone of it is simply its par-
allel transport, where the transport vector depends linearly on the coordinates (z). If
the integral (sum) of a quasipolynomial over a concrele simple cone exists (thanks to
the exponential), then for this separate cone and quasipolynomial the Riemann-Roch
theorem (i.c., the connection between sum and integral) is stated and proved without
difficulty (this is done in §2).

For this, in order to “glue” these facts into our Riemann-Roch theorem, we need
to know how to decompose a convex chain into a linear combination of cones so that
a quasipolynomial with given exponent & € * in the exponential can be integrated
over each of them. This goal is achieved via the technique of conic representations
of convex chains, considered in §3. The prototype of our technique is the well-known
construction of Varchenko and Gel'fand [8].

Finally, combining the results of §§2 and 3 in §4, we shall prove that the integral
(sum) of a quasipolynomial over suitable cones extends to a meromorphic-valued
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measure on the set of conical chains. This allows us to work as if we could integrate
(sum) any quasipolynomial over any cone, without fear of divergences. Hence it is
easy 1o compute rather explicit formulas for the integral and sum of a quasipoly-
nomial over a convex chain and (independently of these formulas) to prove the
Riemann-Roch theorem (§3).

From this superficial description it is already clear why we cannot restrict our
attention to sums and integrals of polynomials over convex chains—for a cone they
do not exist and an exponential is necessary to ensure convergence.

§2. RIEMANN-ROCH THEOREM FOR A SIMPLE CONE

. Universal exponential. Let 17 = V*®C = Homg(V ., C) be the complexification
of *,and V= =V~® | — FZ be the natural embedding of real vector spaces, so
that over R we have V7 = V*@laeV*©yv—1 and accordingly for & € V7 we have the
canonical decomposition & = Re&++/—1Im¢ . Every time when coordinate notation
appears, it is understood that a coordinate system x;.....x, € F* 1sgiven on V',
relative to which the discrete lattice A € 7 is realized as the standard integer lattice
(we shall call such coordinate systems “integral coordinate systems™), and that on V'*
there is the dual coordinate system &, ..., &, € V', (& - x;) = d;;, where the &; are
extended naturally to JZ as complex coordinates,

Ei(Rel+v—11Im/) =& (Rel)+ vV—1&(Iml).
We call the function
exp: Vx VT —=C, exp:(x,&)—expl(x)

the universal exponential. Obviously, the universal exponential i1s analytic in (x, &)
and, in particular, is holomorphic as a function of the complex variables &; .

2. Statement of the theorem. We fix a pair (€', C~) of dual simple lattice cones in
V and V* respectively, with vertices at the origin (it is casy to show that if one of
the cones C or C* is simple lattice, so is the other)

Definition 1. A cone G C V 1is said to be reduced relative to a covector & € V*\{0}
if it is pointed and the function ¢|; attains its maximum at exactly one point, the
vertex of the cone.

For a given pointed cone G we denote by Uy the (obviously open) set of complex
covectors ¢ such that G is reduced relative to Reé. We also denote by G(x) the

translation of the cone G by a vector x € V', and we define the functions

iV xUe—C, i (x,8) / exp&(y)dy,
Clx)

s: VxUes—C, si(x, &) Z expc(y)
VEANC(x)

(obviously the integrals and series converge since the cone is reduced). Further, let
P: ¥V — C be a polynomial function. We set

i(P,x,&) = P(yyexpé()dy,  s(P,x,&= Y. P(y)expé(y)
JCYx) YEANC(X]

for & € Ue sothat, in particular, /(1, x, &) =i(x, &) and s(1, x, &) =s(x, ). We
note that the natural identification of V7 with the complexified tangent space 7: V" @
C at any covector ¢ allows us to interpret the polynomial P as a linear differential
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operator on VT with constant coefficients. More precisely, let (x, ..., x,) and
(&1, ..., &n) be a pair of dual integral coordinates on V' and F* C V¢ then the
polynomial P(x) = Z“!{K a;x! corresponds to the linear differential operator

9 b ol
Pl n o] =
(aél w1 ag“) 2o

\Fi<K >

in the usual multi-index notation. We obviously have

ad d
Pl—.,..., = |exp{f-x)=Plx, ..., xnexp( - x),
(dc_1 df;,_.) p(< - X) (X5 n)exp(< - x),
1.€., as in §1.3, we interpret the quasipolynomial on F as a result of applying a linear
differential operator to the universal exponential.

Let @y, ..., v, be the direction vectors of the edges of the cone C.

Propoesition 1. (A) For any x € V' the function i(x,&): Usr — C extends to a mero-
morphic function on Vi,

& [(=¢we) " expé(x),
k=1

with poles in the set of n hyperplanes E(v,) =0, k=1, ..., n, and this function is
also denoted i(x, &). Outside of this set of hyperplanes for any polynomial P: V — C
the function i(P, x, ) extends to a holomorphic (and meromorphic on V§) function
P(B]BE,, ..., 0]0&)ilx, &), which we also denote by i(P, x, &). '

(B) For any x € A the function s(x,¢&): Ur — C exiends to a meromorphic
Junction on VZ

& J](1 - expé(ve)) " expé(x),
k=1

with poles along the hyperplanes E(vy) = 2nv—1m, me Z, 1 <k < n, which we
denote by the same symbol s(x, &). Quiside of these hyperplanes for any polynomial
P:V — C the function s(P, x, ) extends to a holomorphic (meromorphic on V)
function
P(3/8E,, ..., 0[08)s(x, &),

which we also denote by s(P, x, &).
Proof. We consider only part (A). Part (B) is completely analogous. The computa-
tions become completely trivial in a suitable coordinate system. We construct it.

With a pair (C, C*) of dual simple lattice cones one can associate in a natural
way a pair of dual integral coordinate systems (x;), (&) on F and F*, unique up
to a permutation of the coordinate functions, Namely, it is uniquely determined by
the conditions that the edges of = have as direction vectors the vectors (£; = d;;) .,
i=1,...,n,1e. the unit coordinate vectors (in other words, &, = —v;, € V' = I"'**),
and the edges of C are the vectors (x; = —d;;), i =1...., n (in other words, the
coordinate functions x; € J* are precisely the direction vectors of the cone C*;
there 1s a natural one-to-one correspondence between the edges of the cones ¢ and
C*, as there is between the coordinates x; and &;). In the coordinates (x), ().
the lattices A and A* are 2", C = {(x;)|x; < 0},and C* = {(£;)|{; = 0} . In these
coordinates we have for £ € U- (Reé € Int C*)

x) Xn n 1 1 i
= /_x"“/_x.exl"ggfyid}’l coodyn = T“D;fa-xh

e

i s

Uy

n
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and the integral converges uniformly on compact sets in Ue- C V7, whereas the inte-

grand is holomorphic with respect to ¢. The remaining assertions are now obvious,
which proves the proposition.

In passing we point out an important property of these meromorphic functions.
Weset 1.(x, &) =i(x,&) and i (P, x,E=iP,x,<&); i(x,¢& and i_(P,x.&)
are the integrals of the universal exponential and quasipolynomial over the cone

C_, translated by the vector x, spanned by the vectors —u,, v2. ..., t,, so that
CuUC_ isthe developed cone with vertex space the line (v} . We set (; equal to the
simple lattice cone in (v, ..., ©,) spanned by 2, ..., vy, and s.(x, &) =s(x,¢),

s.(P,x, &) =s(P.x,&); s_(x,& and sy(x, <) are meromorphic functions on
V¢ . extending the functions

s (x, & AxUs —C, s lx,i) = Z exp&(y),
peC_{xINA
so(x, &) Ax U —C,  solx. &= Y expé(y),
VECa(XINA
and analogously for the quasipolynomial we define s (P, x, &) and sp(P, x, &).

Proposition 2. Forany P:V —C

FP R B TR 2 = S lP 3 85 8) (P, 8) S &P X8
Proof. The verification of these relations for P = 1 is an elementary computation.
An application of Proposition 1 then completes the proof.

Let (x;) and (;) be the coordinate systems naturally associated with the cones
C and C*, introduced in the proof of the proposition. We define the Todd operator
of the cone C as the operator Td¢ = Td(d/dx;).

Theorem 1 (Riemann-Roch theorem for a simple cone). For any polynomial P(x)

and any covector £ = (&, ..., &) € (C\{0N)" such that |&| < 2 (le, 0 #
IE(vy)| < 2m) the function (P, Xy, .... Xy, &) admits the Todd operator Td¢, and
Jor (x1.....Xxy) €Z" we have

T‘d(”P Yis ooy Yy f)\:\ = S(P: S R é:‘l'

T

where the series realizing the Todd operator converges with respect to & uniformly on
compact sets in the domain 0 £ |&| <2n, i=1,....1n.

3. Proof of the Riemann-Roch theorem. Before we prove Theorem 1, which is not
complicated, we give an argument (apparently analogous to the way in which Euler
and Maclaurin were led to their formula) which, although not a proof, is nevertheless
rather transparent and explanatory on the intuitional level for why this surprising
transformation of an integral to a sum takes place. Let f:}7 — C be a function,
F:V — C its “indefinite integral” over the cone C(x) (the coordinates (x), ({) are
as in the statement of the theorem): F(x) = [, f(»)dy . Obviously,
o & g :
vy F(x) = f(x).

We apply the Todd operator Tde to F(x) in the following way:

" ; —1
; d 3] d
TdeF(x) =[] (1 —exp (- = o o IR,
BeFion) ( exp( ax,)) (axl f‘)x”) W

ji]
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and the operator (1 —exp(—3/dx;))~! is considered (formally!) as the sum of the in-
finite series >~ exp(—k 8/8x;). But the operator exp(a 8/3z) can be interpreted
(Taylor’s formula) as the operator of translation by a, whence

TdeF(x)= Y. fla—ki, ., Xn—ka),

(K oo k) €

1.e., exactly what was neceded!

We pass to the rigorous proof of the Riemann-Roch theorem. It is completely
clementary and is obtained by a combination of the explicit formulas of Proposition
1 and the arguments of §1.3. For the universal exponential we have

mn
HO e s s €1s vin 1a) = I > expzx;in
Sl Ca =1
l n
S(Hy i Xyl Epg g dy) = . EXDZ-XJ@,
[T —exp(-&)) =

i=1

from which the theorem follows. The general case of arbitrary P follows from
Lemma 1.1 and its proof. This completely proves the theorem.

§3. CONICAL REPRESENTATIONS OF CONVEX CHAINS

I. Definition of the group of conical chains. Let (V. A) be an admissible pair [1]
(i.e., there exists an isomorphism V7 = R", relative to which A is either Z" or F7",
where I C R is a subfield). All the definitions of §1.1 are meaningful in this general
case, so that in fact the general case will also be considered in this section. To the
definitions and notation of §1.1 we add the following new concepts and symbols.

(1) The set of all A-cones will be denoted by C(A). In particular, the set of all
cones will be denoted by C(V).

(2) The set of all A-cones C' € C{A) such that x € vs(C) will be denoted by
C(A; x).

(3) The set of all developed A-cones will be denoted by C(A).

(4) We set C(A, x)=C(A, x)NC(A).

(5) A conical chain (resp. a conical A-chain) is a Z-valued function «: V — Z
with a representation of the form o = Yicrnile, , where #1 < o0, Ci € C(V) (resp.
C(A)). n; € Z, and 1, 1s the characteristic function of the set o. The additive
group of conical chains (resp. of A-chains) is denoted by ZC(V) (by ZC{A)).

(6) A conical chain o € ZC(V) (resp. ZC(A)) is developed if it has the repre-
sentation

= Z nile,,
gl

where the C; € E( I7) (resp. C'[A)} are developed cones. The subgroup of developed
conical chains is denoted by Zx(-.“[lf’] (resp. _Z___(:‘(A}).

(7) A conical chain o € él’f V') s developed at a point x € V' if there exist a
developed chain f € ZC(}') and a neighborhood U 3 x such that «|y = S|y .

(8) A point x € V' is called a vertex of a chain e € ZC(V) if « is not developed
at x.
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(9) For x € A we set

ZC(A, x) = {n: => nlc,

ic! |

CLEICTA, o) T8 1} ;

ZC(A, x)={a€ ZC(A, x)|a is developed at x}.

(10) A nonzero covector & € V*\{0} is in general position with a cone C €
C(V, x}\é[l", x) if the hyperplane H; , = {y € V|E(y) = &(x)} does not contain
edges of the cone C. A covector ¢ is in general position with a cone CeClV,x)
if Hy . 2 vs(C). A covector ¢ 1s in general position with a chain a € ZC(V, x)
if there exists a representation « = 3, #;1¢, such that C;eC(V,x) and ¢ 1sin
general position with C;, i € I. Finally, for an arbitrary conical chain « € ZC(V)
and a point x € V weset {a}, € ZC(V, x) 1o be a chain such that {a}sle = aly In
some neighborhood U 3 x (this condition determines {a}. uniquely). A covector
& is in general position with a conical chain « € ZC(V) if £ 15 in general position
with {a}, for each point x € J.

Remark. For brevity we shall usually consider the case A = 7. All the arguments

and assertions automatically carry over to the general case with the obvious changes
in the statements and notation.

Proposition 1. (A) The set of vertices of a conical chain is finite.

(B) A chain that is developed at every point is developed.

Proof. Part (A) is obvious. We prove (B). Let o = ), nilc, . Fix this representa-
tion. For x € V we set I(x) = {i € Ilvs(C;) = x}. If I(x) =@ forall x e V', then
all the cones C; are developed and there is nothing to prove. Otherwise there exists
a finite set of points X;, ..., xx € ¥ such that I(x;)# @, 1<k <K. Obviously,
I(x,)NI(xy) =@ for a #b. Since « is developed at each point, we have, for each

k. limilbs K,
> mile = Z mylp,
PE{xy) JEN,
Wi € &y Dyyie (".;( V', x). The chain on the right-hand side is developed. Setting
I'=I\UE_, I(xy) , we obtain

K
o= Z nile + Z Z Micjlog, .

el k=1 JEN,
i.e., a is a developed chain, as required.
2. Chains that are reduced relative to a covector.

Theorem 1. Let o € ZC(V , x) be a conical chain, & € V=\{0} a covector, and let
& and o be in general position. Then there exists a unique chain T(a, &) with the
following properties:

() T, &) =X nile,, CieCV,x\C(V,x).

(ii) €|, < &(x) and Hy ,nC;={x} forall iel.

In particular, £ is irLgene:'a! position with C;, i€ 1.

(iii) a = T(a, &) € ZC(V, x).

(Both the statement and the proof given below carry over without any changes to the
case of A-chains.)
Proof. Existence. It is obviously sufficient to establish the existence of T(a, &) for
a chain of the form « = 1¢, where C € C(V, x)\C(V, x) is a simple (pointed)
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cone and & is in general position with it. Let R, , Rg be the edges of the cone
¢ If &p=&lx) torall k=1, , K, then 1hcrc is nothing to prove. Otherwise
suppose, for cxample that &|p, > L,f:ﬂ Let R, be the ray with vertex x opposite 1o
the ray R;, and let C; be the convex hull of the rays R, Ra, ..., Rx,and C| the
convex hull of R>, ..., Rg. Obviously 1¢, +1c — EC: is the characteristic function
of the developed cone C; U C whose vertex space is the straight line R, U R;. But
the number of edges of the cones C; and C| for which £ > &(x) is less than this
number for C . Acting in this way, in a finite (< dim ") number of steps we obtain
a chain of the required form.

Unigueness. This is a less trivial fact. We shall gm, a transparent proof. It
obviously suffices to establish the following fact. Let o € 7C{ V', x} be a developed
chain in general position with the covector £ € IV*\{0} . Let

Ve, x = {y e V| £&(y) > {(x))

be the half-spaces into which H: , divides V. Thenif afy, =0, thenalso |y, =
0. We shall prove this assertion. ~

We write o = 3., mlc, , where the C; € C(V, x) are developed cones, and the
hyperplane I , does not contain their vertex spaces. Let H: = {y € V[¢(y) =
E(x) £ 1} be the hyperplanes parallel to H: . “above” and “below” respectively.

Let W be a linear space of dimension dim/f; ., and V 3 v # 0 a vector such
that £(v) = 1. We fix an isomorphism of affine spaces ¢: W — H: ., ¢(0) =
and we set ¢p~: W — Hy, po: wr— @(w)+v. We consider conical chains on W :

s =@ (aly, ) e ZC(W),

We know that o, = 0. We shall show that o = 0: this obviously completes the
proof of the theorem.

On the cones € € C(W) we define an operation # in the following way: 6(C)
is the translation of the cone C by the vector (-2v), 6(C) = —2v + C', where
v € vs(C) 1s any vector from the vertex space of the cone G,

Lemma 1. Let n; € Z and let D; € C(W), i € I, be such that Y ., milp, = 0.
Then ), cymilgp, =0.

End of the proof of the theorem. Above we wrote a = ;. nilc,, C; € 6([", X
vs(C;) & H: . Weset Df = (;JZ'[C]- N Hy), so that the representation «y =
> ier Milp= holds. Tt is not hard to see that D = 6(DF), so that we will obtain
a_ =0 in view of Lemma 1, as required.

Proof of Lemma 1. We prove it by decreasing induction on M = min{dim vs{D;)|
i€l}. If M =dimW, then all the D; = W, 8(D;) = W, and the lemma is
obvious. Suppose the lemma has been proved for M > m + 1. We establish it for
M=mz>=0.

For an affine subspace L ¢ W of dimension m weset I(L) ={i € I|L =vs(D;)}.
Obviously, there exists a finite set Ly, ..., Ly of m dlmensmnal affine planes such
that J(Lp)# @, 1 <k < K. Weseethat I{L,)nI(L,) =2 for a#h. We set

K
M=) T
k=1

Now [ is partitioned into K + 1 disjoint subsets (L), ..., {(Lx), I". We note
that vs(6(D)) = —vs(D) for any D € C(W). By hypothesis > .., m;Ip =0. From
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this it follows that for any &, 1 < k < K, there exists a representation of the form

Z m;lp, = Z ???;{__j]l(;k_f,

i€1(Ly) JEN,

where dimvs(Gy;) > m+ 1 and L, C vs(Gy;). Thus

K
Y omidp +> > myjlg, =0.

er k=1 jEN,

But it is not hard te check that

Z PTI,']I().;DI_) = Z —"-”kj]ll‘?{(;&_.-jl‘

iel{Ly) JTEN:

since if v, € Ly is an arbitrary vector, then for 7 € I(L,) and j € N, we have
0(Dj) = (=2v;) + D; and 6(Gy;) = (—2v) + Gy, , i.e., all the cones occurring in the
transformation of the chain “around” L, , are shifted by the same vector. In view
of. this we have

K K
Y midgpy = milgp, + Do milapy =Y midapy+ > > Mile,) -
k=1j

iel el k=1iel{L) iern JEN,
But the last chain is equal to zero by the induction hypothesis. The lemma is proved.

Corollary 1. If a nonzero conical chain o« € ZC(V) has compact support, i.e., o €
Z(V), then it has at least one vertex.

The proof is not hard and is left to the reader.

Definition 2. (i) A chain « € ZC(V, x) is reduced relative to a covector & € V*\{0}
if ¢ and o are in general position and o = T(w, &).

{11) Let « € ZC (V') be a conical chain. A reduced representation of the chain «
relative to a covector ¢ € V*\{0} is a set of chains {ay, € ZC(V, x;)|i € I} such
that

(1} @y isreduced relative to & for cach /€ I, and

(2) =375y, is developed everywhere (and thus is developed).

Proposition 2. (A) 4 reduced representation of the chain o« € ZC(V) relative to a
generic covector & € V=\{0} exists and is unique.

(B) Suppose that the chain o € ZC(V) has compact support (« € Z(V)) and
{ax, € ZC(V, x;)|i € I} is its reduced representation relative to the covector &. Then
G E."EJ’ o
Proof. (A) is obvious in view of Theorem 1. We establish (B). It is not hard to check:
for covectors n € V* sufficiently close to . {a,|i € I} will also be a reduced
representation of « relative to #. We consider the chain f =« — ¥ ertin. Bythe
above remark we may assume that this chain is in general position with the covector
¢ . On the other hand, it is developed. Finally. since the support of « is compact
and the chains a,, are reduced, we have Bli ey ey =0 for € > 0. Assume
that f# = 0. Let 2 = sup{&(2)|B(z) # 0} and x € SuppB n{z € V|&(z) = A}.
Then {f}, is a developed chain in general position with ¢ and equal to zero over
the hyperplane {{(z) = A}. According to Theorem I, {#}, =0,ie., f# =0 in some
neighborhood of x . This contradiction proves the proposition.

Definition 3. A chain o € ZC(V) is said to be reduced relative to a covector & €
V\({0} if @ = 3, ey, where {a,|i € I} is the reduced representation of the
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=

chain « relative to &. The chain « is said to be pointed if it is reduced relative to
some covector.

3, Criterion for the compactness of a conical chain.

Definition 4. Suppose that the chain a € ZC(V', x) is reduced relative to a covector
& e *\{0}. A ray R with vertex x, looking strictly “down” from the hyperplane
H;: ., is called an edge of the chain o if for the hyperplane H_ = {z |&(z) =¢&(x)—1}
the point Rn H_ is a vertex of the chain «|y_ € ZC(H_).

Proposition 3 (Criterion for compact support). Let o; € ZC(V,x;), i € I, be
conical chains, reduced relative to the covector & € V=\{0}. For an affine line LC V',
set
I(LYy={iel|x;€ L and «; has an edge R; 1 C L}.

The chain « =Y., a; has compact support (i.e., is a convex chain) if and only if, for
all affine lines L C V' such that I{L) # @, the following condition holds: the chain
Yoy T—siaie ZC(V ., 0) (where t,a(x) = a{x—h)) has no edges lying on the line
L shifted to 0.

The proof is not hard and is left to the reader.

4. To conclude this sectlon we consider the question of the explicit recovery of a
convex chain up to Zec (7)) from its support function—in the form in which we
need this to complete the proof of the Riemann-Roch theorem. Let £ = {C[|i € I'}
be a simple lattice decomposition of ¥"* (see §1.1 for the terminology and notation).
Weset / =I*UI, where i€ I* if d1m (*; =n and i€l if dim(C}) < n. Let
C; € C(A) be the cone dual to C, | . 0 € vs(C;). We note that the condition
that C; is pointed or developed 1s cxactly cquivalent to the condition i€ [* oriel
respectively.

let f € Z(V.,XZ) be a convex chain; then for any [/ € [ there exists a zero-
dimensional chain f; € Z[V] such that, under the identification V = V**, Bi|c-
realizes the support function of the chain f on C; and deg f = deg #; (see [1], §4).
If { € I=, then the chain f; is uniquely determined, where fS; € Z[A] forall i € I"
if and only if the chain £ 1is integral, f € Z(A,X).

We write the translation of the cone C € C(V) on the zero-dimensional chain
¥ = Z;GJ m;[v;] (where [v] for v € V' denotes the generator of the group algebra
corresponding to this vector) in terms of chains:

S milcwy =7l =1c*y.
jed
n [1] (Proposition 4.2) it was proved, in particular, that
B—3 Bixlc eZC(V)
igl
is a developed conical chain. In particular, modulo /F s Bralzy, ..., zZn) 18
represented by the conical chain

Z(ﬂ,- {21, .00 ZN ) ¥ e,
el
where the parentheses enclose zero-dimensional chains f; * a;(z, ... . zn) € Z[V].
We cxplain what «;(z,,.... zy) represents.
In the notation of §1.1, /;, ..., [y € A* are integral direction vectors of the edges
of the decomposition £. Let /; ,...,/;, be the direction vectors of the edges of
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the cone C;.and z; , ..., z; the corresponding coordinates on the space of virtual
polytope #*(V,X). The covectors /., ...,/ will bc considered as an integral
coordinate system on V. Now we have o;(z, ..., zy) = [wi(z,, ..., zy)], where
wi{zy, ..., zy) € V isa vector such that Iy, (W) = z;, . Wenote that w(z,, ..., zy)
really depends only on the variables z;,, ..., z;, .

§4. SUMS AND INTEGRALS OF QUASIPOLYNOMIALS OVER CONICAL CHAINS

[. Let C € C(V) be a pointed cone with vertex vs(C) € IV and complex covec-
tor ¢ € V7 such that C is reduced relative to Reé. Then the integral and lattice
sum of the universal exponential over the cone C are defined: Joexp&(x)dx and
> vecna 8XpE(x) . We have obtained two functions of two arguments: the cone C
and the covector ¢ € V7. In the second case (the sum) we shall only consider lattice
cones C' € C(A). The study of both functions is completely analogous, and the
proofs are repeated word for word with the sole difference that for the sums all the
work is carried out in the class of integral chains. We shall give the detailed presen-
tation for integrals and only the statements for sums. The required changes in the
arguments for sums reduce to obvious changes in concepts and notation (ZC(V) by
ZC(A), the letter I for the integral by the letter S for sums, etc.). We shall de-
note by .# (V¢ ) and & (V) the spaces of meromorphic and holomorphic functions,
respectively, on V7 = C".

Proposition 1. (A) The integral of the universal exponential over reduced lattice cones
extends to a meromorphic-valued measure on the group of conical chains. More pre-
cisely, there exisis a unique homomorphism of abelian groups 1: ZC(V) — # (V)
(the value of the function I(a), a € ZC(V), on a complex covector & € Vg will be
denoted by I(a, &) to shorten the notation) such that

(1) if the pointed cone C is reduced relative to Reé, then

I(10,¢8) = j expé(x)dx.
&

The mapping I possesses the following properiies:

(i) Itpe, &) =expl(h){a, &) for heV , and

(ii1) [ is identically zero on developed chains.

(B) The lattice sum of the universal exponential over reduced latiice cones extends to
a meromorphic-valued measure on the group of integral conical chains. More precisely,
there exists a unique homomorphism of abelian groups S: ZC(A) — A (VE) (the
value of the function S(a), a € ZC(A), on a covector & € Vi will be denoted by
S(ee, &)) such that

(1) if the pointed lattice cone C is reduced relative to Reé&, then

The mapping S possesses the following properties:

(ii) S{tpe, &) =exp&(M)S(a, &) for he A, and

(ii) S is identically zero on developed integral chains.
Proof. We shall prove part (A). The proof of (B) is exactly the same.

Let « € ZC(V') be a conical chain, reduced relative to the covector & € V*\{0}.
Then for £ € V7 such that Re is close to &, the integral ]J ca(x)expé(x)dx con-
verges absolutely and uniformly on compact subsets, defining a holomorphic function

o Ua e [ atveedx,
M



A RIEMANN-ROCH THEOREM 805

where U, C VZ is the open subset consisting of the covectors ¢ such that « is
reduced relative to Reé. It is clear that o has a representation of the form a =
> ics nile, , where the C; are simple cones, reduced relative to all the covectors Re¢,
& e U, . Hence,

/ a(x)expd(x)dx = Z H; / exp&(x)dx
Jy w1 JG
for & € U, . But on the right-hand side here, as shown in §2, we have a holomorphic
function on U, , extended to a meromorphic function on V. Thus, we have proved
that for any pointed chain the holomorphic function

U,2€& / alx)expé(x)dx
4

extends to a meromorphic function on V7, which we denote by /(a). We shall
show that the association (to pointed chains «) o — [(a) € #(VZ) extends in a
unique way to a homomorphism of abelian groups 7: ZC(V) — ./xé’(b’gj and that
I possesses the property (ii1). We note that because of the existence of the reduced
representation, [/ is uniquely determined by properties (1) and (i11).

We note that this mapping on pointed chains & — /() possesses a “local linearity”
property: if «;, i € 7 , isa finite set of chains such that all the «; are simultaneously
reduced relative to the covector &, then for any n; € Z

I (Z }1;(}:5) =3 Il

= [EF

The proposition will be proved if we establish that “local linearity” extends to “global
linearity™.

Lemma l. Let o, | €7, be a finite set of pointed chains such that the chain ), , w;
is developed. Then
> Ia;)=0e £ (V7).

e

Lemma 2. Let C; € C(V,x), 1 € F, be pointed cones with vertex x € V. If
Yicemile, =0 for m; €Z, then 3", . miI(1c) =0 £ (V¢).

Lemma 3. Let C € C (V, x) be a developed cone. Then there exist pointed cones
DieC(V,x), je#, suchthat 3. v rilp,=1c, r;€L, and 3, ,¥il(lp,) = 0.

Derivation of the proposition from Lemma 1. Let o« € ZC(V') be an arbitrary conical
chain, and {a; € ZC(V, x;)|i € I} its reduced representation relative to some
common covector. We set I{a) = > ..~ I{a;) € Z(VF). Lemma | guarantees that
this definition does not depend on the choice of the covector. Property (i) holds by

construction, (ii1) holds by Lemma 1, and (ii) is obvious. This proves the proposition.

=

Derivation of Lemma 1 from Lemimas 2 and 3. Obviously it suffices to prove Lemma
| for the case when all the chains have a common vertex x € V¥ and do not have
other vertices. We shall assume this and understand below that the vertex spaces of
all the cones occurring in the proof contain the point x .

Each chain «; can be represented in the form of a linear combination of char-
acteristic functions of pointed cones Cj;, j € #;, o; = EIE};,,[- Pijlc, , such that
o) = Z.;e;;;;'fjf_f”]lc}-;)- Furthermore, by hypothesis ¥, ; a; = > kek 9xlp, with
Dy e C(V, x). We apply Lemma 3 to each of the developed cones Dy, k € K: let
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Gra, a € Ay, be pointed and such that
> el =1p, and Y rl(la,)=0.

aE Ay acA;

Now it suffices to verify that

S 5" pyte)- X, 3 ownatia) =0

1eJ je#H] kEK acd,
Since
o> pile,— Y, D (@rka)l6, =0
ieJ jeit; keK as Ay

by construction, the required equality is a direct consequence of Lemma 2.

Proof of Lemma 2. Tt is not hard to construct a set of pointed cones F; € C(V, x),
j €7, such that

(i) IntF,NnIntF, =2 if a# b, and

(ii) for each i € . there is a distinguished subset _# (i) C . and there exists a
representation L, = 3 . -, Mij1r where F; C C; for j €. 7(i).

By the “local linearity” we now have I(l¢,) = ¢ 7, 7l (1r), so that

Z 'an'h:]l(.]] = Z Z (m,m”}f[]l;) :

i i€ je s (i)

On the other hand, by the hypothesis of the lemma

Z Z (mimj;)ly, = 0.

€7 jeF(I)

It is not hard to verify that thanks to property (i) of our set of cones for any fixed
J € F(i) we have Zieg,ﬁ._},[{f mim;; = 0 and thus Lemma 2 has been proved.

Lemma 3 is derived without difficulty from Proposition 2.2. We leave the detailed
arguments to the reader. This completes the proof of Proposition 1.

Now let &« € Z(17) be a conical chain with compact support. Then the meromor-
phic function I{«, ¢) is holomorphic everywhere on V7 and

IHea, &) :/ a(x)expl(x)dx.
i

Moreover, I(a) € #(VZ) if and only if a € Z(V). In particular, /{«, 0) is the
“volume” of the chain «.

2. Explicit formulas for the integrals and sums of exponentials. The technique de-
veloped above allows us to write down rather explicit formulas for the integral and
sum of the exponential over a convex chain by means of its support function. Let
% = {Cr|i € I'} be a simple lattice decomposition. In the notation of §§1.1 and 3.4,
for a chain f € Z(V,X) wehave ff—3> ;. fi+1lc, € ZC(V), so that

I8, 8) =) IBi+lc,<)-
N i
We define the value of the exponential on a zero-dimensional chain y = > m,;[v;]
by linearity: exp&(y) = > m;exp&{v;). Now I(f,¢) = 3, -expl(Bil(lc . &),
where the “coefficients™ I(1, . &) depend only on the decomposition X, but not
on the chain f € Z(V,X). Analogously, for an integral chain g € Z(A, X) we
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have S(f.&) =", exp&(Bi)S(1c,, &). Butif vy, ..., v, € A are the direction
vectors of the edges of the cone C;, i € I*, then, according to the results of §2,
—I £ 1
I.'[ Uin)
T1(1 —exp&(ui))

k=1

F{le

.rn
|

so that we eventually have

CJ—Z% and S(8,&) =) — expcfi)
j=fe = i) in ied- H“ _eXpé(”z'k))

(in the second case B € Z(A, X)). These formulas are true for a common covector
¢ € V& . We know, however, that for a convex chain # the functions I(f, &) and
S(f,¢) are globally holomorphic on V#. Therefore, in order to obtain the value of
I(f. &) and S(f, &) for an arbitrary covector &, we can proceed as follows. Let
t € C be a complex parameter, and n € V' a common covector. We carry out the
construction for the integral; for the sum they are entirely analogous. We consider

¢ & . [’—-1)”0}( ‘\{i 4 £ . \]
f(ﬁ\Go;n?):Z‘ )"exp((So + 117) - Bi)

"
o [ Cotvw) + tn(va))
k=1

as a function of the parameter 7. As ¢ — 0 the function remains bounded (a
removable singularity). Therefore in each term of the above sum we must separate
the term of degree zero in ¢ and sum all such terms over { € [*. We write the
resulting expressions in a more expanded form. Suppose &, vanishes on the vectors
Vi, k € K;, and suppose &y(vy) # 0 if k € K. We set v; = #K;. We write an
explicit representation for the zero-dimensional chain f; = zﬂem Mig[big], i €V .
Now, acting according to the scheme described above, we find that 7(f. &) isasum
> el 2oacs, Whose (i, ajth term appears as

g €XP C(}{bm]

H?fﬂ',g] H ot

kek, I _f\l_'

(-1)" <[],

where the square brackets contain the coefficient of ¢ in the series
o 1 o5
1%, oy — o (v (Vi)
5 —q-u-;m}) I (v
I
(;=o L kek: \I=0 “”“ )

This representation depends on the choice of the common covector #. An analogous
representation can be obtained for S(f, & ). The above formulas are the source of
many more special formulas and some assertions. We note some of them.

Corollary 1. If' f = B(yi, ..., Yu) depends linearly on arbitrary coordinates (y),
Le, all the by, 1 €17, ae A, depend linearly on (y), then, for fixed &, I(B(y), &)
is a quasipolynomial of the form

ZC‘(D[;a(H]QaUI o 5 VA s
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where the v,(v) are linear functions and the Qq(y) are polynomials of degree at most
(n—min{dimC}|iel. £ C}}).

If § €974V, Z) is a virtual polytope, then f;, = [b;], b € V', i € I", so that
the formulas are simplified: the sum over the a € A; vanishes. If & = 0, then the
formula can be written explicitly.

Corollary 2. For a common covector n € V¢ and f e *(V, X)

e (%
I(8,0)= ; nln(vi) - 1(Vin)

is the “volume™ of the virtual polytope f.

The last formula has a particularly transparent form for a simple complex polytope
(in the usual sense), since in this case the b;, i € I, are precisely its vertices, and
the v, are the direction vectors of edges of cones for the vertices.

3.. Integrals and sums of quasipolynomials. Let (x;,...,x,) and (&, ....¢&,) be
a pair of dual integral coordinates on ¥ and V'*, and consider the (£) as complex
coordinates on Fg . Asin §2, we interpret the quasipolynomial

P(x)exp&(x), P(x) = Z arx!, ar e C,

as the result of applying the linear differential operator P(8/9¢) to the universal
exponential.

Let « € ZC(V, x) be a reduced conical chain relative to the covector ¢ €
*\{0}. As above we set U, = {£ € V7| is reduced relative to Reé}. For ¢ € U,
we have I(a, &) = [}, o(x)exp&(x)dx, where the integral converges uniformly with
respect to ¢ on each compact subset in U, . Therefore, on U, we have

d a ) ;

P(—,,—“— In-,cf):/u{x)f’(xl,....x expl{x)dx.
dql an ( it ey 3 ”J (

What we have said carries over in an obvious way to lattice sums. Now from Propo-

sition 1, using the uniqueness theorem for analytic functions, we obtain

Proposition 2. (A) Let P(x) be a polynomial on V with complex coefficients; the
integral of the quasipolynomial P(x)exp&(x) with respect to conical chains reduced
relative to Rel extends 1o a meromorphic-valued measure on the group of conical
chains. More precisely, there exists a unique homomorphism of abelian groups (linear
with respect to P) I(P): ZC(V) — #(VE) (the image of the chain « and its value
on a covector & are denoted by I(P, «) and I(P, «, &) respectively) such that if the
pointed cone C Is reduced relative to Rel, then

I{P,1c,&) :/ Px)exp&(x)dx.
C

The mapping I(P) is identically zero on developed chains. Moreover, I(P, «, &) =
P33 (o, &), and if « € Z(V) is a chain with compact support, then I(P, a) €
@(Vg) is a global holomorphic function and

I(P,a, &)= / a(x)P(x) exp&(x) dx .
SV

3

In particular, 1(P, o, 0) is the “integral of the polynomial P over the chain o’
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(B) The lattice sum of the quasipolynomial P(x)exp&(x) with respect to inte-
gral conical chains reduced relative to Rel extends to a meromorphic-valued mea-
sure on the group of integral conical chains; there exists a unique homomorphism
S(P): ZC(A) — A (VE) of abelian groups, linear with respect to P (the image of
the chain « and its value on a covector & are denoted by S(P, «) and S(P,«a,&)
respectively), such that if the pointed cone C € C(A) is reduced relative to Re, then

S(P,1c,8) = ) P(x)expl(x).

xeCnA

The mapping S(P) is identically zero on developed chains. Moreover, S(P, a, &) =
P(0/0ES(a, &), and if « € Z(A) is a chain with compact support, then S(P, «) €
@(VE) is a holomorphic function and

S(P, o, &)= a(x)P(x)expé(x).
XEA
In particular, S(P, o, Q) is the “lattice sum of the polynomial P over the chain o”.

Explicit formulas for the integrals and sums of quasipolynomials over convex
chains, analogous to the formulas of §4.2, are obtained from the latter by apply-
ing the differential operator P(8/d¢&) and, as a consequence, lend themselves badly
to development. We note only some features of the computations. For a chain
B € Z(V, ) in the notation of §4.2 we have

S0P, B8 = P SelewE(B)E )¢ v
el
(and correspondingly for sums).
Corollary 3. If B = B(vi, ..., yu) depends linearly on the coordinates (y), then, for
fixed &, I(P, B(y), &) is a quasipolynomial of the form
Z CXD[?’a(J"nQaU’I LRSI J"MJ 3
acA

where the y,(v) are linear functions and the Q.(y) are polynomials of degree not
exceeding
deg P + (n —min{dimC]|ie I, e (C7}).

The analogous result is also true for lattice sums.

Corollary 4. Let P(x) be a homogeneous polynomial of degree p, and f € P*(V , X
a virtual polytope. In the notation Of§4.2,

' \ d n(bi)"?
] ID, . B T T
[\ E ﬁ O,-l Z n+p (a?}') ??('UH_J"'??(UM) n==£

where & € V¥ is a common covector. In particular, if p (ie., all the b;, i € I7)
depends hnean’} on the coordinates (v), then the integral of the polynomial P over
the virtual polytope B depends polynomially on (y) of degree < n+p.

We note that we have re-proved a special case of Proposition 2.5 of [1] for the
finitely additive measure which is the integral of a polynomial over a virtual polytope.
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§5. PROOF OF THE RIEMANN-ROCH THEOREM

1. We shall use the notation of the preceding sections without special reference. As

was shown in §3.4, modulo ZC (V) the chain f +a(z;,..., zy) has the represen-
tation

Z(ﬁs s [wizy, ..., zn)]) = 1¢,,

iel+
where the vector w;(zy,...,zx) € V is defined by the relations [ (w;) = z;,

k=1,...,n;the [, are the direction vectors of the edges of the cone . As was
shown in §4, for covectors & € V;* lying outside the hyperplanes (&-v;.) = 2rnv/—1m,
m € Z , we have the representations
. ; exp &(f; = [wy]
I(P, Bxofz), &) = (~1)"P (i)Z—DCU}I )

a¢ ieTr ¢(v) E(vin)

and

2

S{P; pwala) Ey=. P (

er

d ) expl(Bix[wi])
n

II,_ (1 —expé&(va))
the last of these for §,a € Z{A, Z). We know that the jth term in each of these
sums dependsonlyon z; , ..., z; . Onthe other hand, developing ! Y ac 4, Mialbia]
and applying the results of §2, we oblain that for small & for each 7 € /* the ith
term of the above representation for /(P, f x a(z), &) admits the Todd operator
Td(g/0z;,...,0/0z; ), and the result of this procedure for (z; ,...,z;) €Z" is
likewise the jth term of the representation for S(P, § = a(z), &). Using the prop-
erties of the Todd mapping (§1.3), we will obtain the Riemann-Roch theorem for
complex covectors ¢ outside some set of hyperplanes, which are sufficiently small in
modulus. We formulate what we have proved as follows: there exists a small neigh-
borhood of zero U C V7, not intersecting the affine hyperplanes (&-v;,) = 2nv—1m,
m € Z\{0} , such that if

X=Un ) {&w)=0},

el I<k<n
then for £ € U\X and an arbitrary polynomial P(x) for f = Pexp&(x) the func-
tion I¢e(f +a(zy, ..., zy)): BY — C admits the Todd operator Td(J/dz), and
the result for integer sets (z) 1s the function Sy(f + a(z;, ..., zy)). According to

Lemma 1.1, the series realizing the action of the Todd operator converges uniformly
on compact sets in U\ X . Furthermore, its terms

Tf—f (B*a(z))

are holomorphic functions of & on U (and even on all of V).
Indeed, reducing the sum of fractions
B exp&(Bi * [wi(zy, ..., Zx)])

Eiay. 0 Sl
Slwi) - ¢(Vin)

el
to a common denominator, we obtain a function of the form Q(z, &)/L(&), where
L(¢) is a product of lincar forms in & with constant coefficients, and the numerator
has the series expansion

glz,2) = ZZWH BN Z%ug

p=0|I|=p p=0
where deggy < |I| + M, M 1is some constant, and the coefficients of the series for
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z7&! have order (¢/(|I|+|J|))!1+7" as |I|+|J| — oc. Since I(Bxa(z), &) is globally
holomorphic with respect to ¢ for any (z), we obviously have L(&)|Q,(z, &) for
any p € Z; . Hence I(ff+=«(z), £) expands in a power series in (z, &) with infinite
radius of convergence, and hence the same is true for I(P, f +a(z), &), and we
obtain our claim.

The sum S;(f % a(z)] of the Todd series is also holomorphic as a function of &
for fixed (z,, ..., zx). From this, by clementary methods of complex analysis it is
easy to deduce that I.(f «a(z)) admits Td(d/0z) everywhere on U 3 &, and the
corresponding series converges uniformly on compact subsets of U (with respect to
&), and its sum for (z;, ..., zxy) € ZV is Sp(f+a(z2)).

This completes the proof of the Riemann-Roch theorem.

2. Concluding remarks. Some themes that could naturally have been included re-
main beyond the scope of this paper. These include the algebro-geometric topic, only
mentioned in §1, of describing relations in the group of lattice polylopes (see §2 of
[1]). and the more detailed study of the integrals and lattice sums of polynomials over
virtual polytopes. Moreover, similar to the way a holomorphic function can be ex-
panded in a power series around any point at which 1t 1s defined. the series Td(a/8z)
can be written at any point of holomorphy of the Todd mapping. This allows us to
“analytically continue” the Todd operator so that the Riemann-Roch theorem will be
true not for small ¢ € V7 but for & € 17\ X, where X is the union of a countable
set of complex hyperplanes, 0 ¢ X . These questions will be considered elsewhere.
Here we touch upon another theme, linking this paper with its predecessor [1].

The basic motif of our arguments in this paper is the “decomposition” of concrete
measures {integrals and lattice sums of quasipolynomials) over cones for the vertices
of chains. The following question arises: can one do this for an arbitrary finitely
additive measure ¢ that is polynomial relative to a translation? The answer is “yes”
in some sense. We outline the main ideas. Let £ = {C]|i € I} be a partition of
the space F7*. Then there exists a covector & € V*\{0} relative to which all the
chains « € Z(V,ZX) are reduced. Therefore for a measure of a chain « to be
expanded in the sum of the measures of the chains {n}, over all the vertices x of
the chain «, it is sufficient to define a suitable measure on cones that are reduced
relative to &. Let H: 5 be a hyperplane defined by an equation &(y) = 0. Then
for a cone C that is reduced relative to &, whose vertex lies above He o, we set
@(C) = p(C N {x|&(x) > 0}. It is not hard to verify that ¢ will be polynomial
relative to translations of € by a vector £ such that £(h) + (vs(C)) = 0. Hence,
¢ can be extended in a unique way, with polynomiality being preserved, to all cones
of the form A+ C, h € V. This measure on reduced cones relative to & can be
uniquely extended to the set of conical chains in general position with £, by requiring
it to vanish on developed chains. The resulting measure 1s polynomial relative to
translations, and solves the problem posed above for chains in general position with

i

the covector & . This series of problems will be considered in more detail elsewhere.
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