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FINITELY ADDITI}'E MEASURES OF YIRTUAL POLYTOPES

A. V. PUKHLIKOV AND A. G. KHOVANSKII

ABSrRAcr. This paper is devot€d to gcneralizing the classical theory of finitely additive
measules ofconvex pol)4opes. The technique of integrating over the Euler characteris_

tic is used to obtain simple proofs of much stronger facts than have been known until
now. The concept of a support function is generalized, and a geomet.ic construction
of "subtraction of polyhedra in the sense of Minkowski" is given.

INTRoDltcrIoN

Finitely additive measures of convex polytopes is an old and trusty topic. Related

to this topic are such problems as the equidecomposability of polyhedra [1], and
such results as the polynomiality of the number of lattice points in integer polyhedra
relative to their Minkowski sum [2]-[4]. The interest in these classical questions,

going back to elementary geometry, has recently increased in connection with the
algebro-geometric theory of toric varieties, in which they arose in a natural way (in
another language) t5l. The parallelism considered in [5] between objects of convex
geometry and algebro-geometric objects has enabled new simple proofs to be given

of some old theorems. For example, a polytope with integer vertices can be set

into correspondence with an invertible sheaf on some smooth toric variety, and the
number of lattice points of this polytope is equal to the Euler characteristic of the
variety with respect to cohomology with coefficients in this given sheaf. Via the
Riemann-Roch theorem we immediately get from this the classical theorem on the
polynomiality of the number of lattice points [5].

The "algebro-geometric" approach to the theory of convex polytopes motivates
the posing of new questions in the framework of the classical theory. Here is one of
them. Under the above-mentioned correspondence of polytopes to invertible sheaves

the Minkowski sum becomes the tensor product. But the invertible sheaves on an

algebraic variety form a group (the Picard group), while convex polytopes form only
a semigroup with a unique subtraction (if it can be realized). This generates a natural
problem: extend the semigroup of convex polyhedra to a group.

This paper is devoted to constructing a theory in whose framework this and other
problems have a simple and geometrically transparent solution. We generalize and
strengthen the results of the theory of finitely additive measures of convex polytopes

[3], and at the same time we shorten their proofs in an essential way. A very useful
tool in this has turned out to be the technique of integration over the Euler char-

acteristic. We note that, although all the work can be done by purely elementary
methods, without references to this apparatus, the very idea of such a "nonclassical"
integration to a large extent clarifies the heart of the matter.

The definitions, propositions, lemmas, theorems, and corollaries are numbered in-
dependently in each section, and a reference to "Definition (Proposition, etc.) a.b"
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means a reference to Definition (. . . ) b of $a; and "$a.b" has the analogous mean-

ing. We do not include the number of the section when referring lo an assertion or
subsection of the same section.

The authors thank the international scientific laboratory "Mathematical Methods
ofComputer Science and Control" and its director S. K. Korovin for financial support
of this work.

$1. FINITELY ADDITIVE MEASURES oF coNVEX PoLYToPES

In this section we give the original definitions, recall some classical concepts and

constructions and list a number of well-known theorems about finitely additive mea-

sures.

l. Definition 1. A pair (2, A) , where Z is a finite-dimensional real space and A
is an additive subgroup of I' , is said lo be admissible if there exists an isomorphism
rp:V--+Rn such that q(J.^):F', where either ,F clR is a subfield or F =ZcR.

If we define a morphism of admissible pairs O: (V , L) - (rrl, !) as a linear
mapping O e Home(Z, lll) such that O(A) c :, then the set of admissible pairs

becomes a category. The pair dual to (I', A) is a pair (I/., A-), where A. c tr/-

is the set of linear functionals that take values in -F on A. This pair is obviously
admissible.

We denote bv ,q 6) the set of bounded closed convex polytopes with vertices in
A. We call the elements of g(l:') lt-polytopes. If L= Z', then we speak of lattice
polytopes.

2. Recall Ihat for A, B e 9(V) their Minkowski sum is the polytope A o B -
{x+ylxeA,yeB}.
Definition 2. Let (V , lt) be an admissible pair. Lfinitely addilive measure on I (t\)
is a mapping q: I (lt) + M, where M is an abelian group that satisfies the following

additivity property: if At, ... , Au e I (L) are such that UL l, e I (tt) , and
Ai,ft...nA1, e 9(lt) for any iy ( ( i& , then the following "inclusion-exclusion"
relation holds:

q - \,tr,t, t - L,p, e, f A, 1't

A finitely additive measure on I(lt)
under translations of the polytope by

In what follows we shall speak simply about measures, omitting the words "finitely
additive".

Exarnple 1. (i) A : Iz. The measure is the volume relative to some Euclidean
structure (obviously this is invariant relative to translations).

(it ,/ : R' and A: Z' . The measure of a lattice polytope A is #{Aa7Z'} , the
number of lattice points. This is obviously Zn -invatianr.

The classical results concerning A-invariant measures are summed up in the fol-
lowing two theorems of McMullen [3].

Theorem l. Let q: g(L) - M be a A.-invariant
9 (lr) . Then the M-valued function

is said to be A,-invariant if it does not vary
)"€L.

g(n1A1 @ n2A2 @ - - - 0 np A 11)
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on (2,+)N is a polynomial with respect to the ni of total degree < dim V (see Defini-

tion 2.1, below).

the set of all faces of A
f(n) = q(nA) for n >- 0

Theorem 2. Let I be as above, A e 9(L)' and f(A)
(including A inen. Let f (t) be a polvnomial such that

iwhich erists by Theorem l). Then

,f(-t) : t (-1)ui'o(r(A).

^€I(,{)
If we apply Theorem 2 to the measure from Example l(ii)' then we obtain, as is not

nu.a to .i't."i, the following assertion ("Ehrhardt's duality theorem" t3l): /(-t) :
l- 1;ai" t lttu-Oer of interior lattice points in '4 ) ' Here and later on' when we talk

ubout th. interior of a polytope we mean its interior in its afrne hull'

3. We recall three
need later on.

(l) The support function
01: V' +R,

of a polytope A e 9(V) is a piecewise-linear function

OA: V->1,-sup{/(x)lxel}.
It is well known that a conYex pollt ope A e 9(V) generates a decomposition of the

dr,ut .pu"" I/* into cones, duai to the cones for the vertices and faces of '4 ' On these

.on".'o, is linear, and, moreover, the cones dual to the cones for the Yertices of '4
are maximal among the cones with this property. We note that if A c W ' where

WcV Is an affine subspace, then d,a is linear on AnnW c I/*, where WcV is

the "carrier" linear subspace for I/.-rc 
) e 9(L), then iht "lin.u. pieces" of o/ are represented by the vertices of

the polytope 
' 

'l' ii.e. Ay elements oi A as functions on I/* I A- ), and the cones of
the ieco-position of 7* generated by I are spanned by the elements of A. '"'-1il 

in"'trorc of a polyt6pe A € g(V) relative to a covector 0ll € tr/- is the

polltope
TrtA-IxeAll(x)=oll)j

We note that ]f A e g(L), then we also have Tr1 A e I(lt) for any /, and it is

obvious that Tr1, A:Tr1,A il lt : crl2 ' where o > 0 '
(3) The operaiion * . For a measure p on l(A) we set

,p-(4: , (-l)oi'op(A)'
A€I.(,4)

It is classical and easily verified fact about the operator * rt.ar q. is again a measure'

;;;,h."t q.- = 9. Theorem 2, stated above, shows the importance of this operation'

$2. THE ALGEBRA oF col'wEx cHAlNs

In thi.s section we give a noninvariant definition of the algebra of convex chains

urrJ dir"rr., its basic ;roperties. Invariant constructions and proofs of the key facts

are contained in $$3-5

l. The classical Theorems I and 2 of $l can be generalized in different directions:

a'*ide. cla., of measures can be admitted and we can consider not only Minkowski

summation of pol)topes, but also "motion of the walls"'

Definition l. (A) A mapping h: N '' L of abelian groups is called a polynomial of

degree 5 m if one of the following two conditions holds-:

\t) ^=O and h is a constant mapping, h(N): le L;

well-known constructions of convex geometry, which we shall
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(11) m2l and for any a € N the mapping ho: N - L, h,: xe h(x+a)-h(x),
is a polynomial of degree <m-1.

(B) A measure q: 9(L) - M is said to be polynomial of degree 1n if for each
A € g (.L) the function q(A + 1): A --+ M is a polynomial of degree 5, m .

Remarks. (i) Part (A) of Definition I can be reformulated as follows: ior any
d1 ,.. ,aaa1 €N

(-1)'h(x * ap, r ... * ap,) = 0.
o<i<n+t

t<kt< . <ki<m+l

(ii) If lr:N--I is a polynomial of degree !m,Ihen for any a1 ,...,ap € N
there exist bt , ... , b, € Z and integer polynomials (i.e., polynomials thal realize a
mapping Zk -Z) pi(nr,...,nk), 1<i < r, ofdegree 5m such that

/* \ ,

h Ir r,a,l = )-a,p,rr, ...., ttr).
\;ii1

(iii) Polynomial measures of degee 0 are simply invariant measures.

Example 1. (i) A: Z, andthe measure q is the integral of a polynomial /: Z-lR
over the polytope. Obviously p is polynomial of degree S deg/.

(ii) A is a discrete lattice, /: trz--+ R is a polynomial, and

a@)= L f@).
ir€,1n,{

Again g is polynomial of degree < deg/ (as a measure on g(L)).

Let A e 9(V) , with (l) : W , ,l the "carrier" linear subspace for I/, and let

{Rr,...,R-} be a set ofrays i^ V. lhal define cooriented linear hyperplanes of
the edges of maximal dimension of the polytope I . In other words, let 0 * Ii e Ri ;

then
A-{x€Wlli(x)<c1},

and none of these inequalities is redundant.

Definition 2. A polytope A' e 9(V) is obtained from I by a motion of the walls if
its support function is linear on the cones of the decomposition of tr/. generated by
I (see g 1.3).

Obviously, a polltope ,4/ that is obtained from I by a motion of the walls is
uniquely determined by the set of numbers (i : o,t,Qi) and the linear function
oA' xnnfu. If A e I(lt), then Ann I4l is spanned by covectors from A* ; one can

choose /; e A., and then (, € -F (recall that F c IR is a subfield or Z).
Now Theorem l.l can be generalized as follows.

Theorem l. For any polytope A e I(^) and any measure rp: I (L)1 - M which is
polynomial of degree < k, there exists a polynomial h (in the above notations) of
degree !k+dimV,

h: @rr,sA/(Ar ivt M.
,=l

such that, for any A' e 9(L) obtained from A by a motion of the walls,

h(((1 : o,1,(11), I < i < m), o,a' o" p): rp(.A').
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It is not hard to see that Theorem 1.1 follows from Theorem l, because the poly-

toDe ntAt a...@ nkAk for ni / 0 is obtained from 11 0 " o Aa by a motion of
the walls, and the parameters (; and oy,,,t, tnnfr depend linearly on n7.

However we shall prove another, moregeneral, fact, from which Theorem I follows
automatically. Namely, we shall prove, in particular, that the measure rp can be

extended in a natural way to objects of a wider class than convex poll'topes, and will
be polynomials relative to an additive structure on the set ofthese objects. Moreover,
assertions of the type of Theorem 1.2 receive a transparent geometric interpretation;
in particular, we attach a geometric meaning to formal sums n1,4r @ " @ nkAk,
where the ni are atbirtary integers (including negative ones). We shall call such

objecls virtual polytopes. In the framework of our theory Theorems l.l and 1.2 are

generalized by a single assertion about the polynomiality (of degree < drmY + m) of
a polynomial (of degree 1! n) measure relative to Minkowski summation of virtual
pol)4opes.

2. Definition of the algebra of convex chains. Let (Z, A) be an adrnissible pair.

Definition 4. A convex l\-chain is a function a:V "+ V' of the form ,;r-2!-rnin1,,
where l; e I( ) , llr is the characteristic function of the set Y, and ni € Z. We

denote the additive group of convex A-chains by Z(lt); in particular, if L = V ,

rhen Z(L) - Z(V) , and in this case we speak simply of convex chains.

To keep the notation simple, we shall carry out the presentation for the case A:
Iz. The naturality of the theory allows us to obtain both assertions and proofs in
the general case from this by replacing I/ everywhere by (l/, A) or A, by replacing
the linear mapping f : V "-, W by a morphism of pairs (2, L) - (W,Z), V.
bv (Z-, A.) or A* , etc. These changes are obvious each time; sometimes we shall

nevertheless make explanatory remarks. Finally, for brevity we shall omit the word
"convex" and speak simply about chains.

Proposition-Definition l. For any choi7: s : I nlX.1, , Ai € g (V) , the number I ni
depends only on a and is called the degree of the chain a. Notation: dega.

The proof is given ln $3.
Obviously deg: Z(V) - Z is a homomorphism of additive groups.
Let f: V -- W be a linear mapping of vector spaces.

Proposition-Definition 2. For any chain a =ln x1, e Z(V) Ihe chain lninpl; e

Z(ll) depends only on a. This homomorphism ofadditive groups is called the direet
image homomorphism and is denoted by f*. Moreover, degf.o: dega

The proof is given in $4.

Proposition-Definition 3. Minkowski summation of polytopes extends in a unique way

to a bilinear operation on the group of convex chains

*: Z(V) x Z(v) - Z(V) ,

X1*\s -1'163 for A' B €9(V) 
'

which is calted (Minkowski) multiplication of chains. The group Z(V) with this muhi-
plication (tryhich is commutative and associative) is called the algebra of contex chains

The direct image f. and degree mapping deg are ring homomorphisms.

The proof is given in $4.
Obviously 1101 functions as an identity element ofthe algebra Z(l/) . Minkowski

multiplication ilio admits the following description: let p'. V x V "+ V be the
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summation mapping, a, B e Z(.V) , and ax B(.x, y1 : a(.x)f (.y) the direct product
of the chains a and B. Then cr * lJ = p-(a x B) .

3. Zero-dimensional and one-dimensional chains. As usual, the support Suppa of
a chain rl is the closure of the set {.lr e I/ | n(x) I 0} , and the dimension of a chain
is the di.mension of its support. Obviously, together with 0 the zero-dimensional
chains form a subalgebra of Z(V), which is isomorphic to the group algebra zlvl
(]f L+V, rhen to Z[A]). The elemenrs of ZlVl are written as Lnilxil, xie v.

We consider chains on the line in more detail: suppose dim tr/ - I . The chains on
I/ have the form !n;11,{,, where the ,4r are closed intervals or points. We choose
an orientation on Z, i.e., we fix one of the two connected components of I/\i0].
Now for each interval we distinguish its right (left) end.

Proposition 4. The association of its right (left) end to each inlerval, \p, t1 * lbl ,

(111,,61 * lal) extends uniquely to a homomorphism of algebras

suP(in1): Z(V) "+ zlRl,
which commutes with deg. There is a relation

inf : (-1). osupo( 1)..

Moreover, the following sequence is exact:

0 - z(v) (sup,inr) 
, ztRl s ztRl tdcs' ded , z + 0.

The proof is obvious.
We note a simple method of recovering a chain o from its sup and its inL Suppose

supcr : !n;[x;] and infa : lzr[yi]. Now

q: f r?;lt1 *.,,1+lm1l,s,.-1 - degale.

4. Support functions of convex chains. The construction of a support function ($ 1.3)

can be extended to convex chains by linearity.

Definition 4. A function f: lV --+ ZlRj, where IIu is a linear space, is a piecewise-

linear posilive support function if there exists a set of piecewise-linear positive
support functions in the usual sense f: IZ - R and numbers n; € Z such that
f (x) : Dnilfi@)l for any x e I/ .

Definition 5. A support funcllan of a convex chain n e Z(tr/) is a function

A": Y- -+ V,lRl, O": / *' sup. /-n e Z[R] ,

where / e Z* is consldered as a mapping of linear spaces /: Z - lR .

Explicitly, if (}: tn,lt,4 , then

o,,(t) : Dnlo,r,(t)1.
(If lt I v , thtun in the definition of piecewiseJinearity we must consider ZlFl-vahed
functions on A*.) Obviously <D" is piecewiseJinear.

Proposition 5. The association of a chain to its suppott function, Z(V) I d F' O,,,
is an algebra isomorphism, commuting with deg, of Z(V) and the alSebra of all
piecewise-linear functions from y- inlo zIRl.
Proof. It is obvious that this association is a homomorphism and that it commutes
with deg. The surjectivity follows from the well-known fact that a piecewise-linear
function is the difference of two piecewise-linear convex functions, i.e., the suppon
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functions of convex polytopes, and from Proposition-Definition 6 and Theorem 2

below. The injectivity will be established in Ij4.

Corollary 1. Let A1 , ... , An and Bt , ... , B^ be convex polytopes Then li=t'!'1, :
Di:, na-, if and only {, lor earh covector I e y. ' the sets of numbers (oA'() ' '' '
o o,\tt\ and loRll)....,o8..\l\) difer only by a permutarion'

5. Operations on conv€x chains. The classical construction of $1 3 carry over to

arbitrary chains. We consider three operations: "star", "trace", and "shadow"'

The operation "star" in $ 1.3 was defined for finitely additive measures; however'

it can be realized on the level of chains. As usual, for A e 9(V) we set l(l) =

{the set of all faces of ,4, including l} .

Proposition-Definittot 6. The association

n/,-( 1)di-1nrn,/: t (-l)u''ono
ael('1)

extends to an involulive automorphism ofthe additive group of convex chains, denoted

+:0H*(}.

The proof is given in $4, but we mention here that the equality

(-l)d'-rn,n,r: t (- 1)o'-ono
A€f(,1)

can be verified directlY.

Proposition-Definition 7. The operation of taking lhe trace relative lo a covector ( e

tz.i1O1 , fra: A++TrgA, extends by linearity to a ring homomorphism Try:. Z(V) -
Z(V),

The proof is given in $4. Note that the relation

Tra(,4 o B) = Trt A @Trt B

(multiplicative homomorphy) is obvious.' It is not hard to verifylhai the trace and star commute with deg: deg : deg o Tr<

and deg = deg"+.

proposition-Definition 8. The shodow ofa polytope I e 9(y) in the direction of the

vector u +0 istheset

r,@) - \x € Alx + Iu S A for t > 0j.

Obviously T,(A) e Z(V). The operation of taking the shadow extends to a linear

degree-preseming endomorphism of Z (.V )

The proof is given in $4.
We note thai all three of these operations-star, trace, and shadow-map the

subgroup of A-chains into itself.

6. The group of Yirtual polltopes. The operation "star" has an interesting applica-

tion, explaining Theorem 1.2 (the "duality theorem" for finitely additive measures).

It turns out that it realizes "Minkowski inversion" of convex polytopes'

Theorem 2 (Minkowski inversion). For A e g(V) 
,

(-l)dt"lltnrt ;1 x n,a : 11 ,

where 1 = lp1 is the identitv of the ring Z(v) .

The proof will be given in $4.
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Definition 7. An invertible element d € Z(y) of degree 1 is called a virtual polytope.
We denote the multiplicative group (relative to Minkowski multiplication) of virtual
polltopes by 9. (V) (resp. 9.(A)).
Corollary 2 (of Theorem 2). g-(V) is generated by the characteristic functions of
polytopes tr,a, A e 9(y) . In fact, the imbedding 9(y) c 9.(V) is a canonical
extension ofa commutative semigroup with identity and unique division to a group.
Proof. l-nt d e 9.(V). We consider the corresponding support function (D". Ob-
viously, forany /e I/* we have O"(/) €ZtRl. and deg(D"(/) : l. Bur I €ZlRl is
invertible if and only if 7 : +[r] for r e lR. Hence, (Do : [/], where /: I/. - R
is a piecewiseJinear function. As was noted above, / is the diference of support
functions of polytopes, -f : o,t - os , A, B € 9(Y\ . But then we will obtain
e: x.t * (\a) I , as required.

7. Finitely additive measures of conyex chains,

Definition 8. Afnitely addit e measure on Z(V) is an arbitrary homomorphism of
additive groups q: Z(V) + M. (Analogously for Z(l\).) A measure is invariant
(resp. polynomial of degree { z) (relative to translations) if for each a e Z (V) the
function q(r1o), ,,. € A, does not depend (resp. depends polynomially of degree
< m) on ), € A, where 11: Z(.V) - Z(V) is the operator of translation by a vector
heV, r1,a(x): a(v h).

In the last case we may assume, for example, that M is an lr-module and
t2ftp): lt = Fdim I/ + Mp is a polynomial in the usual sense.

Thus, we have two definitions of finitely additive measures, Definitions | .2 and 2.7 .

It is understood that any measure on Z(V) (or on Z(A)), bounded on .Q(V) (.resp.
on 9(L)), defines a measure in the sense of the first definition-the characteristic
functions of the sets satisfy the inclusion-exclusion relation. Furthermore, a measure
on Z (lr) is uniquely determined by restriction Io 9(L). Naturally rhe question
arises: Does any measure extend from g(L) to Z(L)] The answer is amrmative,
and Definitions l-2 and 2-i are thus essentially equivalent. For the case when F c
R is a subfield this is not complicated to prove. For the case when A c I/ is
a discrete lattice, this is a nontrivial fact, which can be interpreted in the following
way. Let Z,\g (L)l be the free abelian group generated by the ser of all polyropes wirh
vertices in A. Then the kernel of the natural homomorphism n: Z(9(|t)J - Z(L) ,

tr:9(.L) ) A + \1, is generated by the inclusion-exclusion relations (91.2). The
authors were able to prove this fact; the corresponding argument will be published
elsewhere. It rests on the technique of conic representations of convex chains.

The algebra of convex chains was introduced by the aulhors as a "universal mea-
sure" p: 9(V) --+ Z(V), rp: O ,- tr t. What can be proposed as a "universal poly-
nomial measure"? Lel Jp C Z (V) be the subgroup generated by chains of the form

(rt, 1)o ..o(r7,0, l)(n)
for all possible (ht,...,hr)eV"k and. d e Z(V). We also deflne 9.2(V) to
be the ideal of chains of degree 0, I - Ker deg , and .,t c Z[Vl rhe ideal (in Z[r/l)
of zero-dimensional chains of degree 0.

Proposition 9. Jp : g*71y) . In particular, -Z :t Jp is an ideal.
Proof. (r1, - l)a : (Url - fOl) * o. .

The measures that are polynomial of degree ! k obviously vanish on .[a1 , and
conversely. Hence the ring homomorphism np: Z(V) - Z(.V)lJk+t can be consid-
ered as a universal polynomial measure of degree 5 k. We shall study it.

The central facl of our theory is
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Theorem 3 (concerning ideals in the algebra of convex chains). For t > l,
S,dimv+k C Jk.

(Analogously for any admissible pair (I/, A) .)

We devote $5 to the proof of this theorem.

Remark. )f,=r"ft : {0}, i.e. every nonzero chain a ( J1 for sufEciently large ft '
This is almost'obvious:' for a chain a I 0 it is sufficient to construct a polynomial

measure p such that q(a) 10. Multiplication of n by an invertible element can

be added to the fact that dim Supp <r - Oi. f . Suppose the smooth function .f
is chosen so that Ju o(,rr)/(x) dx I 0. Now if the polynomial / approximates

f sufrciently well in a bounded domain containing Suppo, then the polynomial

measure q(B) : J, B@)f(x) dx possesses the desired property'

Corollary 3 (of Theorem 3). In the quotient ring Z(V)l,lk the ideal of elements of
degree zero is nilpotent of degree (dim I/ + t).
Corollary 4. LeI ay,...,d,e Z(V)IJk be classes of degree l, and set &j:c'i-l
and de[a1 = O. Then for arbitrary integers m\, ... ' ffir € v' the follov)ing equality

holds in Z(V) I Jp:

all + Y ttl
mtlmr-Ll lmt n)+l)-.n
- ,t "' 'dl"

nj,..-,n,€Z+ t:l
D'lni<dimv+k t

Corollary 4 is obvious in view of the previous corollary.
When we consider thal virtual polytopes have degree l, we obtain

Corollary 5. A finitely additive measure A: Z(V) --' M ' polynomial of degree < k
relative io tranilations, restricted to the group of virtual polytopes rl : 9. (V) - M , is
a polynomial of degree < dim tr/ + k .

The last assertion contains Theorem I concerning the polynomiality of the measure

for a motion of the walls and, in particular, all of the classical theory of finitely

additive measures.
All of the presentation carries over without changes to the case of arbitrary admis-

sible pairs (I/, A) . As an application we obtain

Corollary 6. Let g: Z(V) ' M be a fnitely additive measure that is polynomial of
degree <k, where ltcV is a full discrete lattice and M has the structure ofa Q-

vector space. Then q extends uniquely to a fnitely additive measure q: Z (.L) ' M 
'

polynomial of degree < k . where  '-,tQ: lt and tp z'r. -Q-
Proof . We realize A as the integer lallrce Zn clR'. Let A € 'q(R') be a polytope

witlr rational vertices (i.e., A e.q(Q\). Then N'4 e 9(Z') for some 0 I N e Z1 '

Btft g@NA) -p(n) for n€Z+,where p(l) is a polvnomial. Se1 7(/) - p(.llN)
It is easy to see that @ is well defined and is a finitely additive measure on Z(Q'),
polynomial of degree 5 k , extending p . This proves the corollary.

The following three sections are technical in nature and contain the proofs of the

key assertions of the theory ol convex chains that we have omitted so far'

$3. INrrcru.l wITH REsPEcr ro lgE EuLgn cHARAcTERISTIC

The idea of integrating wilh respect to the Euler characteristic has very old roots

and is implicitly present in the proois of many classical theorems (for example, see

TI



346 A- V. PUK]]LIKOV AND A, G, KHOVANSKIi

the proof ofthe Riemann-Hurwitz theorem in [6], Chapter II, $l). In a modern form
this theory was developed by Viro [7]. Here we give the necessary definitions, facts,
and constructions in a form that we need (simplified). This section does not contain
new results and is included only for the convenience of the reader.

l. Definition l. Lel X be a topological space.
(A) If X is compact, Ihen a regular cellular structure on X is the structure of a

finite cell complex
x-

with the following additional properties:
(i) The characteristic mapping of any cell is a homeomorphism of the closed ball

onto its closure.
(ii) The boundary of any cell splits into a union of cells of smaller dimension.
Sets that can be represented as a union of cells are called cellular.
(B) If X is arbitrary, then a regular cellular structure on X is the following set of

data:
(i.) a dense imbedding X c i. where i is compact. and
(ii) a regular cellular structure on -i, relative to which X is an open (dense)

cellular subset.
Cellular subsets ol X are defined in the obvious way.
(C) On the algebra of cellular subsets of a space X with a regular cellular structure

we define a finitely additive measure / by setting ,{(e) - (-l)di'" for an open cell
e c X. This measure is called the Euler characteristic.

This definition of the Euler characteristic depends on an arbitrariness in the choice
of a regular cellular structure. However, this arbitrariness is formal.

Proposition L Let Z c X be a subset whose closure Z is compqc1 and on X let
there exist at leasl one regular cellular structure relatiye to which Z is cellular. Then
the Euler characteristic 7(Z) is defned and does not depend on the choice of this
struclure.

Sketch of the proof. First suppose that Z is compact. If Z is cellular, then it is
not hard to see thar x(z) in the sense of Definition I is ![o(-l)tdimHt(Z. R)
and therefore does not depend on the choice of a regular cellular structure. If Z is
not necessarily compact, then v{e construct a series of cellular sets (relative to some
fixed regular stmcture) Z'. ncZ.:20 -Z.Ztttt - Zt'\z". The Z' are
obviously compact, and Z(, - a f$ I >> 0 (because Z(t+r) consists of cells of
smaller dimension than the maximum of the dimensions of the cells that make up
Z(i)). From this we will find that xQ) - D=oe\'y"(Z(')) , and the invariance of
x has already been proved for Z''' .

Definition 2, LEI X be a topological space wiih a regular cellular slructure, ,'1 an
abelian group. A function f: X -- A is said to be cellular if f t(a) is a cellular set
for any a e I (in particular, / is finite-valued), and its integral with respect to the
Euler characteristic is

Definition 3. A function f: X - A, where ,{ is a topological space and ,4 is an
abelian group, is said to be admissible if it is cellular relative to some regular cellular
structure on X -

U U"l
qeZ+ ielq

I tax,- )-rLl-'io)r , a. L
Jx =.
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Corollary 1 (of Proposition l). If f: X "+ A is an admissible function v)ith compact

iipport, thei ix iitegral with respect to the Euler characteristic I"fdx do"t not

depend on the choice of a regular cellular structure on X '

2- Let f:X+Abeanadmissiblefunction, Q:X '-'Y a continuous mapping of
topological spaces. If a regular cellular structure is given on each fiber Xv : A^tq).'
y'e i", .auii". to which- fy = flx, is cellular' then the "direct image" of / is

i"nn.a, O./, Y -- A, A.i(y) : J*. f d x. This operation will be well defined if
O*/ , the result of "integration over the fibers", is again admissible' We give sufficient

conditions for this.

Definition 4. (A) A continuous mapping Q: X - Y of spaces with a regular cellular

structure is said'to be cellular if (D is an epimorphic map of each cell e c X onto

some cell ftc Y.- 
(B) The Cartesian product of spaces with a regular cellular structure is defined by

the multiplication of cells.
(C) Let O: X + y be a continuous mapping of spaces with a regular cellular

st-ciure. The following set of data is called a bundle structure for O: for each

cell e c Y a space F" with a regular cellular structure and a homeomorphism

O": O-t (e) -+ F" x e such ihat @" and O;l are cellular' 
--(D) 

A iellular function /: X ' A is compatible with a bundle

O lfl'for each cell e c Y , lhere exists a cellular function /!: d --'

flo'r4: f "pr1 "O".

structure for
..1 such that

Proposition 2 ("Fubini's Theorem"). In the situation desuibed in parts (C) and (D)

of the preceding definition, the function 6-f: Y "" A 
'

f" dX, y e e c Y ,

is cellular and IyA-f dx = Ix f dx.

In other words, a function can be integrated first over the fibers of the rnapping'

and then the resui of this operation, a function on the base, integrated over the base'

The proof of Proposition 2 is obvious.
We see that the':direct image" operation is connected with the concrete bundle

structure only by its realizability, but the result of this operation does not depend on

this structure (ProPosition 1).

Definition 5, We say that an admissible function f : X "+ A rs compatible wrlh

a bundle O: -Y -- y if there exists a bundle structure for O with which / is

compatible.

3. Radon transform for an integral over the Euler characteristic' Let X : lRPn ' 
and

let X. = RP'* be the dual projective space (i.e., the points of X. are hyperplanes

i" i); f"t Z c X x X- be the graph of the incidence relation {(x, h)l x e h} we

*uv iriur "" 
admissible functi on- f : x - A admits a Radon ftansform if the funcrion

iesz "prl(/): Z - A is compatible with the bundle pr2: Z "+ X* ' If this is so' its

Radon tiansform is a function .f ': X' - A ,

f - : (pr)- " resT o Prl(/),

i.e., f .(h)= Inf dx for a hvperplane fr cX'

o."r(y): I rar:I
J O-tly) J l:"
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Theorem l. If f admits a Radon transform and f- does too, then

lt
f"1I lIdX: I f'dX loreven n -dJmX.

J X J X.

f--:f foroddn-dirnX.
In particular, a function can be recovered from its Radon transform.

Sketch of the proof. For x € X we set Wx: {0, h) e X x X- | y e h ) x}.
Obviously,

t
f"txt- I l'fhldxrht

J lh. y- \, hj

ft
- I I Itytdxry1d11h1.

J {he 
^,1\. 

hl J lrey rchl
By Fubini's theorem /--(,r) : J.,prij)dX. On the other hand, the projecrion
onto the first factor pr1: \ -- X fibers t/,\pri'("y) over ,Y\{x} with fiber RF, 2,

and obviously pri("f) is constant on the fibers of pr,. Finally, pril(n) .: RF,' '.
Applying Fubini's theorem again (now for the mapping pr1 Il, + X), we obtain

f'-tx)- [ pr,Iax I pr;Idx
Jry,rp', ',* ./p',-,.,

= x(RF,-r) [ lO a xOl + x(]Rp 
r-,)lix)

,./x\t f )

:.{(RP'-':) [tor*(r(lRP'L) r (lRF " 1)).f(x).

For even m we have ,{(RP') : I , and for odd n we have 7(RFn) - 0. This
proves the theorem.

4. The above "integration" is very specific. It is not hard to see that all of the
complicated sets of data defining cellularity or admissibility, etc., are necessary only
in order to justify the possibility of integration, and the result of integrating is com-
pletely independeni of these data. The very use of the term "integral" is related to
the fact that this operation is well in agreement with the usual idea of integration; it
can be used in correspondence with the usual intuition. For example, it is not hard
to see that the integral over the Euler characleristic is a linear operation:

tft
I taft - llft)dx - " Lf,dx r f I Izdx,JY JX JX

but one must remember that this formula makes sense only if there exists a regular
cellular structure on X such that , and , (and thus (ai + f fz)) are admissible.
These circumstances force us to make a choice: either to restrict the (inevitably
rather narrow) class of sets and functions under consideration, so thal any finite set
of functions would automatically be admissible, or to stipulate in each theorem the
conditions under which its statement and proof make sense. We took the first path,
considering only functions having the lorm / = Dn,\o, , where l; € 9(V) . We see
that for these functions the justification of the possibility of integrating with respect
to the Euler characteristic (including a suitable compactification of Z) is trivial, and

llax:fr,:deg/
in the sense of Proposition-Definition 2. l, which is therefore proved.
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We note that it i.s not hard to give another, direct proof of Proposition-Definition
2.1: to each set of hyperplanes Ht , . . , H, c t/ one associates the natural decompo-

sition of z into open cells of diferent dimension, and, for a function that is constant

on each cell, we can define an integral, setting the measure of each cell A equal to

(-l;ai-l . Now induction on the number of hyperplanes forming the decomposition
gives the desired assertion. "Fubini's theorem" for linear mappings of linear spaces

6""o-"t completely trivial when we take convex chains as functions. Thus, we could

in general not use the integral wi.th respect to the Euler characteristic, but carry out

alllhe proofs on an elementary level. However, we have used the technique we

did for iwo reasons: first, the proofs (see the following section) become particularly

transparent if we use the intuition of "integration", and second, the constructions

and issertions of this paper are valid in a much more general situation than the one

considered, namely, whenever the technique of integration oYer the Euler character-

istic is applicable. For example, the "support function", obtained by the recipe of
Definition 2.5, can be associated to a geometric figure belonging to a very wide class,

and the original figure can be recovered from its support function' The proofs that

we give automaticily 
"u.ry 

over to the general case, but with numerous stipulations

needed e,rery time the integral with respect to the Euler characteristic is used'

Thus, the authors'desire to simplifying the presentation has led to the fact that

we speak practically only about convex chains, implying generalizations, however: to

th" aur" o1 A-chains and to the case of functions of a much more general form'

$4. INvlntaNr coNSTRUcrIoNs

This section is of a technical nature. Using the apparatus of integration over the

Euler characteristic described in $3, we shall prove the basic facts of the theory of
complex chains (except for Theorem 2.3).

l. As we noted in the preceding section, to prove Proposition-Definition 2'l it
sufrces to note that the degree of a chain is its integral over the Euler characteristic.

Sirnilarly, in order to prove Proposition-Definition 2.2 it suffices to consider that (in

the notation of $2.2)

f,q(v): [ ,ax
J t ttv)

for any y e,y,so that the equality degf-a: degn is a corollary of Fubini's

theorem.

Proof of Proposition-Dertni on2.3. On Z(V) we define a convolution operation rel-

ative to integration over the Euler characteristic:

a + l) (x) :

and we show that this invariant definition coincides with the noninvariant one from
g2.2, and verify that the properties of this multiplication hold. Let p:VxV 'V be

ihe iummation mapping, as in $2; for a, f e Z(V) we set cr x P(x ' 
y) : o(x)P(v)

for r"xB eZ(Vx tzj. Obviously, a*B: p'(a xp) . If A' B € 9(V)'then
!1x'X's :1,a's . We have

, ( l 1l AxBnp-t(x)+@, i.e.x€A@8,
1e*la- to other*ise, i.e.xeA@8.

Fubini's theorem implies that I and deg are homomorphisms' We verify this for

l,a(z)FG 
z) dxQ),



350 A. V- PUKHLIKOV AND A. G. KTOVANSKJi

the direct image. I,et f : V ---, W be linear; then there is a commutative diagram

v.v lf'f) w.w
.I I*
vf,w

l*t a,Be Z(V); Ihen o*B is obtained by integrating oxl onthe fibers of py,
and /l(o * p) by integration of n * f on the fibers of /, so that as a result

ax Bdx, x eW

(Fubini's theorem). Analogously
I

lI.o), l.f-p)tx) - I [.", I"! dx
J p; \y)
tf- I (,f .,f ),(." - lt)dx - I ",[dx.Jtw'^' J pa.o.r.t' tl1

as required. Proposition-Definition 2.3 is proved.

2. ln $2.4 the support function of a convex chain was defined. The injectivity of
the homomorphism

Z(V)>cre@':V. - ZlRl,
associating a suppofi function to a chain, remains unproved. We give some argunrents
that explain the connection between these two objects.

The Radon transform gives the first method of proof. Each chain (t e Z(I/)
can be considered as a function oi lRlPn -+ v,, V c RF', r = dimZ, defining
it as zero at the hyperplane at infinity of RIP'\r'. The Radon transform for (r is
always admissible and its result is a function n.: IRF' - Z, also admitting a Radon
transform, and o can be recovered from a* . We explain the connection between n*
and O". We consider a line (1) cV', I€ lz-\{0}. The mapping /: tr/-R fibers
,/ into the hyperplanes {/ : const} . It is clear that Lo(l) - d. (l-1 Q)) for I € lR .

Thus, o. defines a support function. On the other hand, according to Proposition
2.4, applied to O"(/) and O"( /), the converse is also true: the Radon transform
can be recovered from the support function, and thus rhe original chain can also be
recovered.

The second method of proving the injectivity of the association a r+ (D," is to
construct the inverse map explicitly. Let

I;,: ZlRl x V,lRl - v,

be a bilinear map such that

| ]f a> b,
0 if a<b.

Then
o{xr:r lrd'.' / 1 ,,O^ r1 t - lxt t tlt tl X

for x e V , :r(/) = /(:r). The simple verification is left 1o the reader.
As a third method of proving the one-to-one correspondence between chains and

their support functions we give an explicit geometric construction for recovering a
chain from a support function. First we consider an example.

7,1o r BSI.S- [
l11"P,1-t1'1

1>(ra1. t61)- {
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lgl A € g(v) be a convex polltope, \Al = v ' and F c I an arbitrary face'

With this face one associates a closed convex cone C(F) , containing the affine space

(,F) , defined by the condition that in a small neighborhood of any point .lr € IntF,
say U > x,wehave C(F) n U : A aU . From "Euler's identity" it is easy to deduce

that,fort€1,
! {-t)d''oltiol("r) : l'

F€f(,1)

In fact, the assertion

| (-l)di'Flc,o, = l,
r€I.(,4)

is true. We shall prove a substantially more general assertion' For this we consider as

admissible functions the characteristic functions (unbounded) of closed convex cones

rn V and linear combinations of them. Lel C a y be a cone We use the following

notational and conceptual conventions: vs(C) c C is the vertex subspace of the

cone, and G(C) is the translation of vs(C) by any vector belonging to (-vs(C)),
so that C is invariant relatiYe to translations by vectors from G(C) ' Also LL c y.

is the annihilator of the linear subspace L c V , C^c tr/ is the translation of the

cone C by any vector belonging to vs(C), and C":1te I/- l(1 'u)<0 for

al u e dj is ihe dual cone to e ; obviouslv e- c rA(C)a Finallv, Int C is the

relative interior of C (in (C)).
we remark that all of the technique of integration over the Euler characteristic

is applicable without changes to the given wider class of functions, including the

chaiacteristic functions of cones. We first compute the Radon 6ansform of the

function X6.

Proposition l. Let H c y be an afrne hyperplane. Then

I 1," d, - y(c ^ H t- i- 1ldrmv'cr,
Ju' "

if H can be defined by the equation l? = cons1, h € IrtC*, and H'C + a'
Otherwise xQ n H) :0.

The proo_f is obvious.
For / e d- the number max?€c 1(u) is defined, and it obviously equals the value

of / on any vector belongi.ng to the vertex space vs(C) . To the cone C c I/ we

associate the pair (d. , /c) , where fc: C- > / "' /(vs(C)) . This pair plavs the role

of the support function'oi the cone C . By the above, the Radon transform of the

charu"te.isti" function of the original cone is ni : i- I )diml(c) if the hyperplane is

defined by the equation h:y, h e IntC., y < fc(h), and is equal to 0 otherwise'

Thus, we have established a one-to-one correspondence between cones in I/ and

linear functions on cones in Z- . The procedure for recovering C from the pair

(i. , /c) goes as follows: we take the cone iC.;t c tr/ and lranslate it by a vector

x e I iucl ftat xl?. : fc under the identification of l' with I/.. ' In other words'

the vertex space vs(C) isasolutionof thesystem of equations {1(']r) : /c(1)U € 

''lNow let /: V. - ZlF'l be a continuous piecewise-linear (Definition 2'5) function

There existi a set of closed convex cones F,, i = 1,.. ' N, that satisfy the following

conditions:
(i) The interiors IntFi of the different cones do not intersect'

(ii) r. : u;:1, Int,Fi and 0 e vs(d) , I < I < N (such sets of cones are called
\Ji=l '"" '

decompositions ofthe dual space ,/.).
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(iii) /la is linear for each I ; that is, there exists a zero-dimensional chain ;r; €
ZlVl stJch that flr, : x;ll , i.e., if x1 = ltiplx'pl, x6 e V : Z**, then for a
covector 1 € ,Fr we have f (l) - Dtikll(xik)l € ZtRl .

If conditions (i)-(iii) hold, then we say that the function f is linear in the de-
composition {F,li : 1,..., N} of I'..

let Ci c y be lhe closed cone dual to ,Fj .

According to Proposition 2.5, which has already been proved, / is the support
function of some convex chain a e Z(V) .

Proposition 2.

(-l)o''no = !x;* tLc,. ( l)di'F,.
i:l

The proof is almost trivial: from the support function / we recover the Radon
transform of the chain o and compute the Radon transform of the chain on the
right-hand side, according to Proposition l. Our asserlion will be valid if they are
equal. But in turn it suffices to prove that they are equal on each line of the form
Il=tlt€[R],/€rl-\{0}.weremarkthateachsuchlineinrersectsexactlythreeof
the open cones Int lqr: {0} and two of positive dimension (the openness is taken in
the affine hull). Furthermore, it suffices to prove the proposition for a single-valued
piecewise-linear function /: Z- ' lR. We leave the details to the reader: we have
already essentially reduced it io the one-dimensional case, and there it is obvious (see

$2.3).
To conclude our discussion of support functions we make a remark, a technical

adjunction to the preceding construction. The characteristic functions of cones are
suitable in order to describe the (Minkowski) multiplicative structure of the algebra
of convex chains. They give a kind of "partition of unity". Let Ct, Cz c V be
closed convex cones. In the notation adopted above we have

Proposition 3. (i) lc, *llc,:0 if andonlyif i, n tit) + islct) nC\(Cz) (i.e., the
lefthand side strictly contains the right-hand side). The latter is equivalent to the fact
that IntCi .|lr,t C_; - o.

(lt) If Ct n (-Cr) = fs(Cr) n G(Cr) , /ien

tr6, * 116' : (-l)di'G(c')nc(c2)nc,ec 
'

where e as usual denotes Minkowski sum.

Proof. These are simple, geometrically almost obvious facts. The cone C1 is the
direct product of fs(C) by a cone whose vertex is a point; this reduces everything
to cones of the latter type. If C| n (-C:) I {0} (we assume that the vertices of
Ci are points), then C1 Tl(x-C2) lor any x€V is either u or a closed convex

unbounded set; its Euler characteristic is equal to zero. But if al n ( Cz) : {01 .

then Cr n (x C2) for any r e I/ is either empty (.r ( C1aC2) or a closed convex
bounded polytope. The rest is obvious.

Corollary l. Let a: tL( l )o'"'l,tl.t and B : IL( 1)d'",-,1p, be func-
tions, where l,i : G(C) =G(Di) , Ci : Di for I : 1 , . . . , N , and the cones Ci,
1 < i < lr', give a decomposition ofthe space V" . Then

c' * B : !1- t ;di^ 
L, 

n 1m l!.s,u,p,.
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3. We give an invariant definition of the three operations on convex chains: "star",
"trace", and "shadow".

"Star". we let -8,(:r) be an open ball of radius € with center at a point r relative

to some Euclidean metric on I/ . Then

-n(x)- lim I oax.
r*0 Js.1r1

The verification of the identity *[,a = ( l)di'1nl,. ,t for A e 9(V) is trivial. This
proves Proposition-Definition 2.6.

"Trace". For ( e Z.\{0} we set

ua." - B"(x) n {Y I (0) > 6(x)} ,

a half-ball. Then I
.Trr crr.r r __ r"r\ J,,,, o d r.

This proves Proposition-Definilion 2.1 .

"Shadow". For a vector u e tr/\{0} we set

L,."(x) :{/t' +x | 0 < t < e},

a half-open interval. Then

i,n1x; -lirr1 / .dx.
€_u Jr, .(, )

It is not hard to verify that the shadow of a polytope is homeomorphic to a closed

ball (the true shadow if the "illumination" is parallel rays), and therefore its Euler

characteristic is equal to l. This completely proves Proposilion-Definition 2.8.

We consider some applications of these constructions. We shall prove Theorem

2.2 on Minkowski inversion: for A e 9(V)
*n1-,ay x 117 : 1.

f
l; * 11n,, ,4,(xt - J ,,=,na{? 

)JI1n1 nIutdy
t: 
Jrl, n*,,1,,rt-,r1dx: X((A +r) nlnt(-l)).

In fact.

If .;r

then
= 0, we obtain (-1;ai'"'r . If x I 0, we obtain 0: if (-,a + x).lnl( A) + q 

,

(-A+ x) nlnt( ,4) = [Int( ,4 +x) nlnt(-l)] u [a(-l +r) nlnt( ,4)].

It is easy to see that the Euler characteristic of the set in the first set of the square

bracketJ is (-1)ai*'l , and that ofthe second is 1 l;ai''r+t , as required.
We return to the operation of taking the trace. We remark that the trace is con-

nected with the support function: for a chain a e Z(V) and a general covector
( € f.\{0} we have <D,,(() : (.Tr5o. An interesting application of the operation

Tr arises in the following problem.

Definition 1. We say that two polytopes A, B Q 9(V) are equivalent if !'1 n's e J1

(see $2.7).

Informally speaking, this means that I and B can be decomposed into pieces so

that the pieces of one are translations of the pieces of the other. Pieces of arbitrary
dimension are permitted here.

It turns out that this concept of equivalence has a trivial meaning'
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Proposition 4. The condition nA Xa.- Jt for A,B e 9(V) holds if and only if A
and B difer by a translation: A=u+8, uey.
Proof. For any covector / € I/.\{0} , we obviously have Tr7(-[ ) c -/r , which allows
us to apply induction on the dimension, taking account of the fact that the trace of
a polltope is a polltope of smaller dimension. We leave the details to the reader.

The concept of the shadow also has important applications: using it we prove the
main theorem of this paper (Theorem 2.3 on ideals in the algebra of convex chains):
see the following section. Other than that theorem, we have now proved all the
assertions stated in $2.

We stress that all the constructions and arguments ofthis section carry over without
any changes to the case of A-chains for an arbitrary admissible pair (I/, A) .

$5. PRooF oF THE THEoREM oN IDEALS

l. We use all the notations of $$2.7 and 4.

Definition 1. The vectors ai € Vi , i e 1 , are said lo be positively dependent if there
exist ,t; ) 0, i € 1, not all equal to zero, such lhal lp1 ).iu1 :0 .

The theorem on ideals in the algebra of convex chains is deduced from the follow-
ing important assertion.

Theorem I (theorem on shadows). Let ui * 0, i € I , be positively dependent. Then

t,(r,, id)cr; : Q

for any set of chains ai € Z(V), i e I .

Proof of the theorem on shadows. As usual, let tr// denote the linear space of f-
valued functions on 1 . We write

where I/,1 cfI is {(wili e l)ll,r,wi:-{i. Let L1 : \uil cV,let Hic I/ be an
arbitrarily chosen complementary subspace, and V - Li@H, . Ler ni: V - Hr be the
projection along L1 , and ui: V - Li lhe projection along H1, so that zi+zt: idr.
Also let

t:ll|:r,,'ti-.,i)€z(vt)
i€l

be the chain that must be integrated over I{.
Consider the mapping

n:flni v: 'I|Ht
iel i€l

By Fubini's theorem we can first integrate ), over the frbers of z, and then integrate
the resulting function over fl,er ll, . Hence, it suffices to prove that

I
I y dx : o, where lz : (h,li €. I) e n4i.Jn ,h I t

Now the mapping

u:flui: VI -nL,
i€1 iel

f ,(r,,oi - ^,)(r\ = l,,fJ;lr, o, ui) dx,
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embeds z-r(ft) as the subspace defined by Dietui='-L,.,ht' Here z is in fact

translation by ft, so that

I vax-[ tn/tlx'
Jn ,.a, Jn, ,1.

and since translation obviously commutes with the shadow operation, we find that it
suffices to prove that

t- ll, r idtn; r/1 - Q 'Jll'-'' 2?
where o; e Z(L) are chains on the lines l;. By multilinearity with respect to the

o,- it tom..t io'ur.rr-" that the oi are intervals; then (2,,' id)ni is simply an

interval without the end where the vector u; is directed'

Lemrna I (on positive dependence). Let uti€Y, i eI, be nonzero positirely depen-

dent vectors. Then
j. n1o,.,,y = 0.

The lemma obviously completes the proof of the theorem on shadows'

Proof of the lemma. We have

/( | l\
*. 1110.,,,(xr-x[{'',''clrlotr,< t' !r'u' I I

\[ 7 -^l)
we replace the set (?rili € 1) by a subset of it, srill all positively dependent' and such

that any (proper) subset of it is linea y independent' Then the set

('l
z' - { tr,li e tllO I r,< l. Ir;ur, -r }-t I ;i )

is at most one-dimensional. we shall show that if it is not emp1y, then it is a half-open

interval. Let Dier Aiwi :0 , )'i > 0 ' (,t) I 0; then

r': {(Z 
' 
+ e,trlt € 1)10 <ii-t 'i < l} 

'

where (7;) € 7} is an arbitrary point. Hence 4 is the intersection of a finite number

;iilflo;en iitervals, directed to the same side, and thus 4 is itself a half-open

interval. This proves the lemma.

Finally, we come to establishing the main theorem'

Lemma 2. Let tri e g(V) , i e I , where the linear "carrier" subspaces (Ai) of the.ir

,tir'"7iUt teS'ai "it ir^ a dircct sum Then the chain *161(L1,.- 1'.). can,!e

iiio*poua inio an tnteger linear combination of chains of the form *ier(nr, - n),

where Bi e 9(Y), and

!4m1.a,1 < !ai-11,1.
i€I iel

Theorem2.3isderivedfromthelemmaintheobviousway.Weprovethelemma.
For this we note that if ihe (1,) do not form a direct sum' then we can always find a

set ui € (,4r)\{0} of positively dependent vectors' Now, by the theorem on shadows'

t,$,t, - r,,(xt')) :0
or

j't(n,1, - t) - (I,,(1.{,)- 1)1 = 0
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Removing the square brackets and considering that the shadow of a polytope relative
to a vector of its linear "carrier" subspace is a linear combination of polltopes of
smaller dimension, we obtain the lemma.

Thus the main Theorem 2.3 is completely proved. The arguments carry over
without changes to the case of A-chains.
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