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FINITELY ADDITIVE MEASURES OF VIRTUAL POLYTOPES

A. V. PUKHLIKOV AND A. G. KHOVANSKII

ABSTRACT. This paper is devoted to generalizing the classical theory of finitely additive
measures of convex polytopes. The technique of integrating over the Euler characteris-
tic is used to obtain simple proofs of much stronger facts than have been known until
now. The concept of a support function is generalized, and a geometric construction
of “subtraction of polyhedra in the sense of Minkowski” is given.

INTRODUCTION

Finitely additive measures of convex polytopes is an old and trusty topic. Related
to this topic are such problems as the equidecomposability of polyhedra [1], and
such results as the polynomiality of the number of lattice points in integer polyhedra
relative to their Minkowski sum [2]-[4]. The interest in these classical questions,
going back to elementary geometry, has recently increased in connection with the
algebro-geometric theory of toric varieties, in which they arose in a natural way (in
another language) [5]. The parallelism considered in [5] between objects of convex
geometry and algebro-geometric objects has enabled new simple proofs to be given
of some old theorems. For example, a polytope with integer vertices can be set
into correspondence with an invertible sheaf on some smooth toric variety, and the
number of lattice points of this polytope is equal to the Euler characteristic of the
variety with respect to cohomology with coefficients in this given sheaf. Via the
Riemann-Roch theorem we immediately get from this the classical theorem on the
polynomiality of the number of lattice points [5].

The “algebro-geometric” approach to the theory of convex polytopes motivates
the posing of new questions in the framework of the classical theory. Here is one of
them. Under the above-mentioned correspondence of polytopes to invertible sheaves
the Minkowski sum becomes the tensor product. But the invertible sheaves on an
algebraic variety form a group (the Picard group), while convex polytopes form only
a semigroup with a unique subtraction (if it can be realized). This generates a natural
problem: extend the semigroup of convex polyhedra to a group.

This paper is devoted to constructing a theory in whose framework this and other
problems have a simple and geometrically transparent solution. We generalize and
strengthen the results of the theory of finitely additive measures of convex polytopes
[3], and at the same time we shorten their proofs in an essential way. A very useful
tool in this has turned out to be the technique of integration over the Euler char-
acteristic. We note that, although all the work can be done by purely elementary
methods, without references to this apparatus, the very idea of such a “nonclassical”
integration to a large extent clarifies the heart of the matter.

The definitions, propositions, lemmas, theorems, and corollaries are numbered in-
dependently in each section, and a reference to “Definition (Proposition, etc.) a.b”
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means a reference to Definition (...) b of §a; and “§a.b” has the analogous mean-
ing. We do not include the number of the section when referring to an assertion or
subsection of the same section.

The authors thank the international scientific laboratory “Mathematical Methods
of Computer Science and Control” and its director S. K. Korovin for financial support
of this work.

§1. FINITELY ADDITIVE MEASURES OF CONVEX POLYTOPES

In this section we give the original definitions, recall some classical concepts and
constructions and list a number of well-known theorems about finitely additive mea-
Sures.

1. Definition 1. A pair (', A), where V is a finite-dimensional real space and A
is an additive subgroup of ¥, is said to be admissible if there exists an isomorphism
@: V — R" such that ¢(A) = F", where either /' C R is a subfield or F =Z CR.

If we define a morphism of admissible pairs ®: (V, A) — (W ,X) as a linear
mapping ® € Homg(V , W) such that ®(A) C X, then the set of admissible pairs
becomes a category. The pair dual to (¥, A) is a pair (V*, A*), where A* C V"
is the set of linear functionals that take values in F on A. This pair is obviously
admissible.

We denote by #(A) the set of bounded closed convex polytopes with vertices in
A . We call the elements of Z?(A) A-polytopes. If A = Z" , then we speak of lattice
polytopes.

2. Recall that for 4, B € (V) their Minkowski sum is the polytope 4 @& B =
{x+y|x€eAd,yeB}.

Definition 2. Let (', A) be an admissible pair. A finitely additive measure on F(A)
isamapping ¢: %(A) — M , where M isan abelian group that satisfies the following
additivity property: if 4;,..., Ay € (A) are such that UL A € P(A), and
A N---NA;, € P(A) forany iy < - < iy, then the following “inclusion-exclusion™

relation holds:
N
v (UA,) =Y o) =D eAind)+---.
i=1 i

]

A finitely additive measure on #(A) is said to be A-invariant if it does not vary
under translations of the polytope by A € A.

In what follows we shall speak simply about measures, omitting the words “finitely
additive”.

Example 1. (i) A = V. The measure is the volume relative to some Euclidean
structure (obviously this is invariant relative to translations).

(ii) ¥ =R* and A = Z". The measure of a lattice polytope A4 is #{ANZ"}, the
number of lattice points. This is obviously Z"-invariant.

The classical results concerning A-invariant measures are summed up in the fol-
lowing two theorems of McMullen [3].

Theorem 1. Let ¢: P(A) — M be a A-invariant measure, and let Ay, ..., Ay €
F(N). Then the M-valued function

p(mA; &npAr ®---®nyAy)
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on (Z,)N is a polynomial with respect to the n; of total degree < dimV (see Defini-
tion 2.1, below).

Theorem 2. Let ¢ be as above, A € P(A), and T(A) the set of all faces of A
(including A itself). Let f(t) be a polynomial such that f(n) = ¢(nA) for n >0
(which exists by Theorem 1). Then

f(=1) =Y (=D)m4p(A).

AeT(A4)

If we apply Theorem 2 to the measure from Example 1(ii), then we obtain, as is not
hard to check, the following assertion (“Ehrhardt’s duality theorem” [3]): f(=1) =
(—1)dim4 x (number of interior lattice points in 4 ). Here and later on, when we talk
about the interior of a polytope we mean its interior in its affine hull.

3.  We recall three well-known constructions of convex geometry, which we shall
need later on.

(1) The support function of a polytope A4 € P (V) is a piecewise-linear function
gq: V*—= R,

g4: V* 31 sup{l(x) | x € 4}
It is well known that a convex polytope A4 € & (V) generates a decomposition of the
dual space V* into cones, dual to the cones for the vertices and faces of 4. On these
cones ¢4 is linear, and, moreover, the cones dual to the cones for the vertices of 4
are maximal among the cones with this property. We note that if A C W, where
W C V is an affine subspace, then o, is linear on Ann W C V', where WcV is
the “carrier” linear subspace for W .

If A e %P(A), then the “linear pieces” of o, are represented by the vertices of
the polytope A (i.e. by elements of A as functions on J7* o A*), and the cones of
the decomposition of V* generated by A are spanned by the elements of A*.

(2) The trace of a polytope A € (V) relative to a covector 0#1[eV* is the
polytope

T A= {xed|l(x)=04()}
We note that if 4 € Z(A), then we also have Tr; 4 € #(A) for any /, and it is
obvious that Tr; A =Tr, A if [} = al,, where a > 0.
(3) The operation * . For a measure ¢ on (N) we set

pr(d) = Y, (-1)Im4p(A).
AeI'(A4)
It is classical and easily verified fact about the operator * that ¢* is again a measure,
and that ¢** = p. Theorem 2, stated above, shows the importance of this operation.

§2. THE ALGEBRA OF CONVEX CHAINS

In this section we give a noninvariant definition of the algebra of convex chains
and discuss its basic properties. Invariant constructions and proofs of the key facts
are contained in §§3-5.

. The classical Theorems 1 and 2 of §1 can be generalized in different directions:
a wider class of measures can be admitted and we can consider not only Minkowski
summation of polytopes, but also “motion of the walls™.

Definition 1. (A) A mapping /: N — L of abelian groups is called a polynomial of
degree < m if one of the following two conditions holds:
(i) m =0 and k is a constant mapping, h(N)=1[l€e L,
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(ii) m > 1 and forany a € N the mapping h,: N — L, hy: x — hix+a)—h(x),
is a polynomial of degree <m — 1.

(B) A measure ¢: #(A) — M is said to be polynomial of degree < m if for each
A e ZP(A) the function ¢(A4+ A): A — M is a polynomial of degree < m.

Remarks. (i) Part (A) of Definition 1 can be reformulated as follows: for any
Af 5 wow s Al eN

> (=Dh(x+ag +-+ag)=0.

0<i<m+1
1<ky <<k, <m+1

(i) If ~: N — L 1s a polynomial of degree < m, then forany a;,...,a; € N
there exist b, ..., b, € L and integer polynomials (i.e., polynomials that rcalize a
mapping Z* — Z) pi(ny, ..., ng), 1 <i<r,of degree < m such that

k ¥
h (Z njaj) = 3" Bipi(s oon 5 Bichs
F=1 =1

(i1i) Polynomial measures of degree 0 are simply invariant measures.

Example 1. (i) A =17, and the measure ¢ is the integral of a polynomial f: V' — R
over the polytope. Obviously ¢ is polynomial of degree < deg /.
(i1) A is a discrete lattice, f: V' — R is a polynomial, and

p(d)= > flx).

XEANA

Again ¢ is polynomial of degree < deg /' (as a measure on #(A)).

Let 4 e #(V), with (A) =W, W the “carrier” linear subspace for W, and let
{Ry,..., Ry} be aset of rays in V* that define cooriented linear hyperplanes of
the edges of maximal dimension of the polytope A . In other words, let 0 #£ /[, € R; ;
then

A={xe W |l(x)<a},
and none of these inequalities is redundant.

Definition 2. A polytope A’ € (V) is obtained from 4 by a motion of the walls if
its support function is linear on the cones of the decomposition of I'* generated by
A (see §1.3).

Obviously, a polytope A’ that is obtained from A4 by a motion of the walls 1s
uniquely determined by the set of numbers & = o4 (/;) and the linear function
Oly - If A€ ZP(A), then Ann W is spanned by covectors from A*; one can

choose /; € A*, and then & € F (recall that F C R 1s a subfield or Z).
Now Theorem 1.1 can be generalized as follows.

Theorem 1. For any polytope A € P(A) and any measure ¢: P(A) — M which is
polynomial of degree < k, there exists a polynomial h (in the above notations) of
degree <k +dim V",
m
h: PFoANANW)— M,
i=1

such that, for any A' € F(A) obtained from A by a motion of the walls,
h((&=04(li), 1 Si<m), an], 5)=0p(d).
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It is not hard to see that Theorem 1.1 follows from Theorem 1, because the poly-
tope nyA; @ --- @ ng A, for n; > 0 is obtained from A, & --- @ A, by a motion of
the walls, and the parameters & and 05, i) b depend linearly on #; .

A1) nn B

However we shall prove another, more general, fact, from which Theorem 1 follows
automatically. Namely, we shall prove, in particular, that the measure ¢ can be
extended in a natural way to objects of a wider class than convex polytopes, and will
be polynomials relative to an additive structure on the set of these objects. Moreover,
assertions of the type of Theorem 1.2 receive a transparent geometric interpretation;
in particular, we attach a geometric meaning to formal sums n 4, & -+ @ ngAg,
where the n; are arbitrary integers (including negative ones). We shall call such
objects virtual polytopes. In the framework of our theory Theorems 1.1 and 1.2 are
generalized by a single assertion about the polynomiality (of degree < dim V' +m) of
a polynomial (of degree < m) measure relative to Minkowski summation of virtual
polytopes.

2. Definition of the algebra of convex chains. Let (V, A) be an admissible pair.

Definition 4. A convex A-chain is a function «: V — Z of the form o = ):le nily, ,
where A; € (A), 1y is the characteristic function of the set V', and n; € Z. We
denote the additive group of convex A-chains by Z(A); in particular, if A =V,
then Z(A) = Z(V), and in this case we speak simply of convex chains.

To keep the notation simple, we shall carry out the presentation for the case A =
V . The naturality of the theory allows us to obtain both assertions and proofs in
the general case from this by replacing V' everywhere by (¥, A) or A, by replacing
the linear mapping f: ¥V — W by a morphism of pairs (V,A) — (W, %), V*
by (V*, A*) or A*, etc. These changes are obvious each time; sometimes we shall
nevertheless make explanatory remarks. Finally, for brevity we shall omit the word
“convex” and speak simply about chains.

Proposition-Definition 1. For any chain a =Y n;ly., A; € P(V), the number 3 n;
depends only on « and is called the degree of the chain o . Notation: dego.

The proof is given in §3.

Obviously deg: Z(V) — Z is a homomorphism of additive groups.

Let f: ¥V — W be a linear mapping of vector spaces.
Proposition-Definition 2. For any chain « =3 n;ly, € Z(V) the chain ) nilr 4, €
Z(W) depends only on «. This homomorphism of additive groups is called the direct
image homomorphism and is denoted by f.. Moreover, deg f.a = dega.

The proof is given in §4.

Proposition-Definition 3. Minkowski summation of polytopes extends in a unique way
to a bilinear operation on the group of convex chains

x: Z(VYx Z(V)— Z(V),
]]-A*]lB:]lA@B fOrA,BE;@(V),
which is called (Minkowski) multiplication of chains. The group Z (V') with this multi-

plication (which is commutative and associative) is called the algebra of convex chains.
The direct image f. and degree mapping deg are ring homomorphisms.

The proof is given in §4.
Obviously 1(; functions as an identity element of the algebra Z (V') . Minkowski
multiplication also admits the following description: let u: V' x V° — V' be the
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summation mapping, «, f € Z(V),and ax f(x, y) = alx)f(y) the direct product
of the chains @ and f. Then ax* f = p.(a x f).

3. Zero-dimensional and one-dimensional chains. As usual, the support Suppa of
a chain « is the closure of the set {x € ' | a(x) # 0}, and the dimension of a chain
is the dimension of its support. Obviously, together with 0 the zero-dimensional
chains form a subalgebra of Z(17), which is isomorphic to the group algebra Z[V]
(if A # ¥V, then to Z[A]). The elements of Z[V] are written as y_ n;[x;], x; € V.

We consider chains on the line in more detail: suppose dim }” = 1. The chains on
V' have the form Y n;1,,, where the A; are closed intervals or points. We choose
an orientation on V, i.e., we fix one of the two connected components of F\{0}.
Now for each interval we distinguish its right (left) end.

Proposition 4. The association of its right (left) end to each interval, 1, 5 — [b],
(1a,5) = [a]) extends uniquely to a homomorphism of algebras

sup(inf): Z(V) — Z[R],
which commutes with deg. There is a relation

inf = (—1), osupo(—1)..
Moreover, the following sequence is exact:

(deg, — deg)
et

0— Z(v) 22, 7IR] © Z[R] Z 0.

The proof is obvious.
We note a simple method of recovering a chain « from its sup and its inf. Suppose
supa = y_n;[x;] and infa =3 m;[y;]. Now

a = Z Hf]l(,oc‘x{.] + Z m’,']].[}.f‘m) —degalg.

4, Support functions of convex chains. The construction of a support function (§1.3)
can be extended to convex chains by linearity.

Definition 4. A function f: W — Z[R], where I is a linear space, is a piecewise-
linear positive support function if there exists a set of piecewise-linear positive
support functions in the usual sense fi: W — R and numbers »; € Z such that
f(x) =3 nifi(x)] forany x e W .

Definition 5. A support function of a convex chain « € Z(}') is a function
D, V" — Z[R], ®,: [ — supol,a € Z[R],
where [ € * is considered as a mapping of linear spaces /: IV — R.

Explicitly, if e =3 n,;1,, . then
®,(0) = miloa (D).

(If A # V7, then in the definition of piecewise-linearity we must consider Z[["]-valued
functions on A*.) Obviously ®, is piccewise-linear.

Proposition 5. The association of a chain to its support function, Z(V) > a — @, ,
is an algebra isomorphism, commuting with deg, of Z(V) and the algebra of all
plecewise-linear functions from V* into Z[R].

Proof. Tt is obvious that this association is a homomorphism and that it commutes
with deg. The surjectivity follows from the well-known fact that a piecewise-linear
function is the difference of two piecewise-linear convex functions, i.e., the support
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functions of convex polytopes, and from Proposition-Definition 6 and Theorem 2
below. The injectivity will be established in §4.

Corollary 1. Let Ay, ..., A, and By, ..., By be convex polytopes. Then Y. | 14, =
YL 1g, ifand only if, for each covector | € V*, the sets of numbers (a4,(1), ...,
o4, (1) and (o5 (1), ..., ag,(l)) differ only by a permutation.

5. Operations on convex chains. The classical construction of §1.3 carry over to
arbitrary chains. We consider three operations: “star”, “trace”, and “shadow”.

The operation “star” in §1.3 was defined for finitely additive measures; however,
it can be realized on the level of chains. As usual, for 4 € P(V) we set I'(4) =
{the set of all faces of A, including A}.

Proposition-Definition 6. The association
Lo (D)3 = 0 (=)™,
A€T(A)

extends to an involutive automorphism of the additive group of convex chains, denoted
k106 kK.

The proof is given in §4, but we mention here that the equality
()8 gy = ) (1)
AEL(A)
can be verified directly.

Proposition-Definition 7. The operation of taking the trace relative to a covector & €
V\{0}, Trg: A — Try A, extends by linearity to a ring homomorphism Try: Z(V) —
AL
The proof is given in §4. Note that the relation
TI’é(A D B) = T]'i A @E’TT{B
(muitiplicative homomorphy) is obvious.

It is not hard to verify that the trace and star commute with deg: deg = degoTr:
and deg = degox.

Proposition-Definition 8. The shadow of a polytope A € F(V) in the direction of the
vector v # 0 is the set

T,(A)={xecAx+1tw ¢ A fort>0}

Obviously T,(A) € Z(V). The operation of taking the shadow extends to a linear
degree-preserving endomorphism of Z(V').

The proof is given in §4.
We note that all three of these operations—star, trace, and shadow—map the
subgroup of A-chains into itself.

6. The group of virtual polytopes. The operation “star” has an interesting applica-
tion, explaining Theorem 1.2 (the “duality theorem” for finitely additive measures).
It turns out that it realizes “Minkowski inversion™ of convex polytopes.

Theorem 2 (Minkowski inversion). For A € (V),
(—DEm Ay x 14 =1,
where 1 =14y is the identity of the ring Z(V').
The proof will be given in §4.
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Definition 7. An invertible element « € Z (V) of degree 1 is called a virtual polytope.
We denote the multiplicative group (relative to Minkowski multiplication) of virtual
polytopes by Z2*(V) (resp. Z7*(A)).

Corollary 2 (of Theorem 2). %°*(V) is generated by the characteristic functions of
polytopes 14, A € P(V). In fact, the imbedding (V) c P*(V) is a canonical
extension of a commutative semigroup with identity and unique division to a group.
Proof. Let o € °*(V). We consider the corresponding support function ®,. Ob-
viously, for any / € V* we have ®,(/) € Z[R]* and deg®,(/) = 1. But y € Z[R] is
invertible if and only if y = £[r] for r € R. Hence, ®, = [f], where f: V* - R
is a piecewise-linear function. As was noted above, f is the difference of support
functions of polytopes, f = g4 — gz, 4, B € Z(V). But then we will obtain
a=1,4x(15)"!, as required.

7. Finitely additive measures of convex chains.

Definition 8. A finitely additive measure on Z (V) is an arbitrary homomorphism of
additive groups ¢: Z(V) — M. (Analogously for Z(A).) A measure is invariant
(resp. polynomial of degree < m) (relative to translations) if for each o € Z (V) the
function ¢(7;2), 4 € A, does not depend (resp. depends polynomially of degree
<m)on A€ A, where 7;,: Z(VV) — Z(V) is the operator of translation by a vector
heV, tha(x)=alx—~h).

In the last case we may assume, for example, that M is an F-module and
p(t;a): A= FOmY _, My is a polynomial in the usual sense.

Thus, we have two definitions of finitely additive measures, Definitions 1.2 and 2.7.
It is understood that any measure on Z(J') (oron Z(A)), bounded on (V) (resp.
on #(A)), defines a measure in the sense of the first definition—the characteristic
functions of the sets satisfy the inclusion-exclusion relation. Furthermore, a measure
on Z(A) is uniquely determined by restriction to S”(A). Naturally the question
arises: Does any measure extend from .%2(A) to Z(A)? The answer is affirmative,
and Definitions 1.2 and 2.7 are thus essentially equivalent. For the case when F C
R is a subfield this is not complicated to prove. For the case when A C V' is
a discrete lattice, this is a nontrivial fact, which can be interpreted in the following
way. Let Z(Z(A)) be the free abelian group generated by the set of all polytopes with
vertices in A. Then the kernel of the natural homomorphism 7: Z{Z(A)) — Z(A),
m: P(A) 34— 1,, is generated by the inclusion-exclusion relations (§1.2). The
authors were able to prove this fact; the corresponding argument will be published
elsewhere. It rests on the technique of conic representations of convex chains.

The algebra of convex chains was introduced by the authors as a “universal mea-
sure” ¢: P(V)— Z(V), ¢: A— 1,. What can be proposed as a “universal poly-
nomial measure”? Let J, C Z(V') be the subgroup generated by chains of the form

(thy —1) ooty — 1))
for all possible (A, ..., ) € V*K and o € Z(V). We also define %% c Z(V) to
be the ideal of chains of degree 0, .2 = Kerdeg, and .# < Z[V] the ideal (in Z[V])
of zero-dimensional chains of degree 0.
Proposition 9. J, = #%Z (V). In particular, ¥ > J, is an ideal.
Proof. (1p — Da=([A]-[0D) +ax. @

The measures that are polynomial of degree < k obviously vanish on J,;, and
conversely. Hence the ring homomorphism 7,: Z(V) — Z(V)/J,,, can be consid-
ered as a universal polynomial measure of degree < k. We shall study it.

The central fact of our theory is



FINITELY ADDITIVE MEASURES OF VIRTUAL POLYTOPES 345

Theorem 3 (concerning ideals in the algebra of convex chains). For kel
u-_gydim V+k c Jk-

(Analogously for any admissible pair (V', A).)

We devote §5 to the proof of this theorem.
Remark. N2, Ji = {0}, i.e. every nonzero chain « ¢ J for sufficiently large k.
This is almost obvious: for a chain « # 0 it is sufficient to construct a polynomial
measure ¢ such that ¢(a) # 0. Multiplication of « by an invertible element can
be added to the fact that dimSuppa = dim V. Suppose the smooth function f
is chosen so that [, a(x)f(x)dx # 0. Now if the polynomial f approximates
f sufficiently well in a bounded domain containing Suppa, then the polynomial
measure ¢(f) = [, B(x)f(x)dx possesses the desired property.

Corollary 3 (of Theorem 3). In the quotient ring Z(V)/Ji the ideal of elements of
degree zero is nilpotent of degree (dimV + k).

Corollary 4. Let a1, ..., o, € Z(V)/Ji be classes of degree 1, and set & = aj — |
and degé; = 0. Then for arbitrary integers my, ..., m, € 7 the following equality
holds in Z(V')[Jy:
.
* * m(mél)(?n*?’t-‘rl)"* ~ %
ap™ ke k o™ = Z H Loy P ) 1 a3tk way
Ry, NEZL, J=1

Z’I ny<dim ¥V +k—1

Corollary 4 is obvious in view of the previous corollary.
When we consider that virtual polytopes have degree 1, we obtain

Corollary 5. A finitely additive measure ¢: Z(V) — M, polynomial of degree < k
relative to translations, restricted to the group of virtual polytopes ¢ : F* (V) — M , is
a polynomial of degree < dimV + k.

The last assertion contains Theorem 1 concerning the polynomiality of the measure
for a motion of the walls and, in particular, all of the classical theory of finitely
additive measures.

All of the presentation carries over without changes to the case of arbitrary admis-
sible pairs (¥, A). As an application we obtain

Corollary 6. Let ¢: Z(V) — M be a finitely additive measure that is polynomial of
degree < k, where A C V is a full discrete lattice and M has the structure of a Q-
vector space. Then ¢ extends uniquely to a finitely additive measure @: Z(A) — M,
polynomial of degree < k, where A=AQDA and Plzin=9.

Proof. We realize A as the integer lattice Z" C R". Let 4 € F(R") be a polytope
with rational vertices (i.c., 4 € Z(Q")). Then NA € F(Z") for some 0 # N € Z, .
But ¢(nNA) = p(n) for n € Z, , where p(f) is a polynomial. Set ?(A4)=p(1/N).
It is easy to see that @ is well defined and is a finitely additive measure on Z(Q"),
polynomial of degree < k, extending ¢ . This proves the corollary.

The following three sections are technical in nature and contain the proofs of the
key assertions of the theory of convex chains that we have omitted so far.

§3. INTEGRAL WITH RESPECT TO THE EULER CHARACTERISTIC

The idea of integrating with respect to the Euler characteristic has very old roots
and is implicitly present in the proofs of many classical theorems (for example, see
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the proof of the Riemann-Hurwitz theorem in [6], Chapter I, §1). In a modern form
this theory was developed by Viro [7]. Here we give the necessary definitions, facts,
and constructions in a form that we need (simplified). This section does not contain
new results and is included only for the convenience of the reader.

1. Definition 1. Let X be a topological space.
(A) If X 1s compact, then a regular cellular structure on X is the structure of a

finite cell complex
o B U U el
qeZ, icl,
with the following additional properties:

(1) The characteristic mapping of any cell is a homeomorphism of the closed ball
onto its closure.

(i1) The boundary of any cell splits into a union of cells of smaller dimension.

Sets that can be represented as a union of cells are called cellular.

(B) If X is arbitrary, then a regular cellular structure on X is the following set of
data:

(i) a dense imbedding X C X, where X is compact, and

(ii) a regular cellular structure on X, relative to which X is an open (dense)
cellular subset.

Cellular subsets of X are defined in the obvious way.

(C) On the algebra of cellular subsets of a space X with a regular cellular structure
we define a finitely additive measure y by setting x(e) = (—1)4™¢ for an open cell
e X . This measure is called the Euler characteristic.

This definition of the Euler characteristic depends on an arbitrariness in the choice
of a regular cellular structure. However, this arbitrariness is formal.

Proposition 1. Let Z C X be a subset whose closure Z is compact, and on X let
there exist at least one regular cellular structure relative to which 7 is cellular. Then
the Euler characteristic y(Z) is defined and does not depend on the choice of this
structure.

Sketch of the proof. First suppose that Z is compact. If Z is cellular, then it is
not hard to see that y(Z) in the sense of Definition 1 is 3 = (—1)'dim H'(Z, R)
and therefore does not depend on the choice of a regular cellular structure. If Z is
not necessarily compact, then we construct a series of cellular sets (relative to some
fixed regular structure) Z"W, n e Z,: Z© =z Z0+) = ZUN\Z)  The ZU) are
obviously compact, and Z') = @ for i » 0 (because Z(*+!) consists of cells of
smaller dimension than the maximum of the dimensions of the cells that make up
Z0). From this we will find that y(Z) = Ei&—l)ﬁg(?ﬁn), and the invariance of
x has already been proved for Z) .

Definition 2. Let X be a topological space with a regular cellular structure, 4 an
abelian group. A function f: X — A4 is said to be cellular if f~'(a) is a cellular set
for any a € A (in particular, f is finite-valued), and its integral with respect to the
Euler characteristic is

[ rax=Yar@).  aca

acA

Definition 3. A function f: X — A4, where X is a topological space and A is an
abelian group, 1s said to be admissible if it is cellular relative to some regular cellular
structure on X .
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Corollary 1 (of Proposition 1). If f: X — A isan admissible function with compact
support, then its integral with respect lo the Euler characteristic jX fdy does not
depend on the choice of a regular cellular structure on X .

2. Let f: X — A be an admissible function, ®: X - Y a continuous mapping of
topological spaces. If a regular cellular structure is given on each fiber X, = dL(y),
y € Y, relative to which f, = flx, is cellular, then the “direct image” of [ is
defined: ®@./:Y — 4, O.f(y) = jX; fdy . This operation will be well defined if
@, f, the result of “integration over the fibers”, is again admissible. We give sufficient
conditions for this.

Definition 4. (A) A continuous mapping ®: X — Y of spaces with a regular cellular
structure is said to be cellular if @ is an epimorphic map of each cell ¢ C X' onto
some cell hC Y.

(B) The Cartesian product of spaces with a regular cellular structure is defined by
the multiplication of cells.

(C) Let ®: X — Y be a continuous mapping of spaces with a regular cellular
structure. The following set of data is called a bundle structure for ®: for each
cell ¢ C Y a space F, with a regular cellular structure and a homeomorphism
®,: d~'(e) — F, x e such that @, and @, ! are cellular.

(D) A cellular function f: X — A is compatible with a bundle structure for
@ if, for each cell ¢ C Y, there exists a cellular function f,: F, — A such that

fI(D*l(t’) = Ji’ o pr; o@D, .

Proposition 2 (“Fubini’s Theorem”). [n the situation described in parts (C) and (D)
of the preceding definition, the function ®,[:Y — 4,

‘D*‘f(.v)=f fdxzf fedyx, yeec?Y,
@-(y) F,

is cellular and [, ®.fdy = [, fdx.

In other words, a function can be integrated first over the fibers of the mapping,
and then the result of this operation, a function on the base, integrated over the base.

The proof of Proposition 2 is obvious.

We see that the “direct image™ operation is connected with the concrete bundle
structure only by its realizability, but the result of this operation does not depend on
this structure (Proposition 1).

Definition 5. We say that an admissible function f: X — 4 is compatible with
a bundle @: X — Y if there exists a bundle structure for @ with which o 18
compatible.

3 Radon transform for an integral over the Euler characteristic. Let X =RP", and
let X* = RP"™ be the dual projective space (i.e., the points of X™* are hyperplanes
in X);let Z C X x X* be the graph of the incidence relation {(x, k)| x € h}. We
say that an admissible function f: X — A admits a Radon transform if the function
resz opri(f): Z — A is compatible with the bundle pry: Z — X*. If this is so, its
Radon transform is a function f*: X* — 4,

£* = (pry).oreszopri(f),

i.e., f*(h)= [, fdy forahyperplane 1 C X.
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Theorem 1. If [ admits a Radon transform and f* does too, then

f“Jrf/ de:/ f*dy foreven n=dimlX,
X X
*=f foroddn=dimX.

In particular, a function can be recovered from its Radon transform.

Sketch of the proof. For x € X weset Wy = {(y,h) € X x X* |y € h > x}.
Obviously,

£ (x) = / £(h) dx(h)
{heXx~|xeh}

- / f F)dx(y)dyx(h).
{heX=|xeh} J{yeX|yeh}

By Fubini’s theorem f**(x) = fWr pri(f)dy. On the other hand, the projection
onto the first factor pr;: Wy — X fibers W, \ pr; '(x) over X\{x} with fiber RP"2,

and obviously pri(f) is constant on the fibers of pr,. Finally, pr; '(x) = RP*!.
Applying Fubini’s theorem again (now for the mapping pr,: W, — X), we obtain

= | prifdy+ [ | prifdy
W\ pry ! (x) pr; ! (x)

— 2(RP"2) [ SOV dx () + 2 (RE"™) £(x)
Jx\gx)

— 2(RP"2) /X Fdx+ (R(RP™) = x(RE"™)) f(x).

For even m we have x(RP”) = 1, and for odd m we have y(RP™) = 0. This
proves the theorem.

4. The above “integration™ is very specific. It is not hard to see that all of the
complicated sets of data defining cellularity or admissibility, etc., are necessary only
in order to justify the possibility of integration, and the result of integrating is com-
pletely independent of these data. The very use of the term “integral” is related to
the fact that this operation is well in agreement with the usual idea of integration; it
can be used in correspondence with the usual intuition. For example, it is not hard
to see that the integral over the Euler characteristic is a linear operation:

/X(aﬂ +ﬁ.ﬁ)dxw/Xﬁdx+ﬁI[Xﬁdx,

but one must remember that this formula makes sense only if there exists a regular
cellular structure on X such that f; and f; (and thus (af, + ff2)) are admissible.
These circumstances force us to make a choice: either to restrict the (inevitably
rather narrow) class of sets and functions under consideration, so that any finite set
of functions would automatically be admissible, or to stipulate in each theorem the
conditions under which its statement and proof make sense. We took the first path,
considering only functions having the form f = 3" n;1,, , where 4; € 2(V). We see
that for these functions the justification of the possibility of integrating with respect
to the Euler characteristic (including a suitable compactification of V) is trivial, and

[ rax =Y ni—dess

in the sense of Proposition-Definition 2.1, which is therefore proved.
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We note that it is not hard to give another, direct proof of Proposition-Definition
2.1: to each set of hyperplanes H,, ..., H, C V' one associates the natural decompo-
sition of ¥ into open cells of different dimension, and, for a function that is constant
on each cell, we can define an integral, setting the measure of each cell A equal to
(—1)dimA  Now induction on the number of hyperplanes forming the decomposition
gives the desired assertion. “Fubini’s theorem” for linear mappings of linear spaces
becomes completely trivial when we take convex chains as functions. Thus, we could
in general not use the integral with respect to the Euler characteristic, but carry out
all the proofs on an elementary level. However, we have used the technique we
did for two reasons: first, the proofs (see the following section) become particularly
transparent if we use the intuition of “integration”, and second, the constructions
and assertions of this paper are valid in a much more general situation than the one
considered, namely, whenever the technique of integration over the Euler character-
istic is applicable. For example, the “support function”, obtained by the recipe of
Definition 2.5, can be associated to a geometric figure belonging to a very wide class,
and the original figure can be recovered from its support function. The proofs that
we give automatically carry over to the general case, but with numerous stipulations
needed every time the integral with respect to the Euler characteristic is used.

Thus, the authors’ desire to simplifying the presentation has led to the fact that
we speak practically only about convex chains, implying generalizations, however: to
the case of A-chains and to the case of functions of a much more general form.

§4. INVARIANT CONSTRUCTIONS

This section is of a technical nature. Using the apparatus of integration over the
Euler characteristic described in §3, we shall prove the basic facts of the theory of
complex chains (except for Theorem 2.3).

1. As we noted in the preceding section, to prove Proposition-Definition 2.1 it
suffices to note that the degree of a chain is its integral over the Euler characteristic.
Similarly, in order to prove Proposition-Definition 2.2 it suffices to consider that (in
the notation of §2.2)

Fcily) = f ady
Sy

for any y € W, so that the equality degfia = dega is a corollary of Fubini’s
theorem.

Proof of Proposition-Definition 2.3. On Z (V) we define a convolution operation rel-
ative to integration over the Euler characteristic:

axp(x) = [ alz)Bx - 2)dx(2),

and we show that this invariant definition coincides with the noninvariant one from
§2.2, and verify that the properties of this multiplication hold. Let u: V'xV — V be
the summation mapping, as in §2; for a, f € Z(V) we set a x B(x,y)=a(x)B(y)
for ax f € Z(V x V). Obviously, a* f = u.(a x ff). If A, B € &#(V), then
1,x1p=14xp5. We have

1 ifABrp~tx#e, ie.xed®B,

14x1lpg= -
0 otherwise, i.e. x ¢ 4 B.

Fubini’s theorem implies that f. and deg are homomorphisms. We verify this for
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the direct image. Let f: V' — W be linear; then there is a commutative diagram

yrxy LD wrew

”"l Iz

v b W

Let a, B € Z(V); then ax f is obtained by integrating « x £ on the fibers of uy ,
and f,(a* ) by integration of « * 8 on the fibers of f, so that as a result

flaxB)0x) = [ ax fdy, xeW
(foup)='{x)
(Fubini’s theorem). Analogously

()« (LB = [ | fuax LB

Ly (x)

= [, et praz= ax pdy,

(ewo(f, /)~ 1x)
as required. Proposition-Definition 2.3 is proved.

2. In §2.4 the support function of a convex chain was defined. The injectivity of
the homomorphism
Z(V)3a @, V* — Z[R],

associating a support function to a chain, remains unproved. We give some arguments
that explain the connection between these two objects.

The Radon transform gives the first method of proof. Each chain « € Z(V)
can be considered as a function «o: RP* — Z, V C RP", n = dim} , defining
it as zero at the hyperplane at infinity of RP"\F' . The Radon transform for o is
always admissible and its result is a function o*: RP? — Z, also admitting a Radon
transform, and « can be recovered from «o* . We explain the connection between «”
and ®,. We consider a line (/) C V*, [ € V*\{0}. The mapping /: V' — R fhbers
V' into the hyperplanes {/ = const}. It is clear that /,a(t) = a*(I7!(¢)) for t € R.
Thus, o* defines a support function. On the other hand, according to Proposition
2.4, applied to ®,(/) and ®,(—{), the converse is also true: the Radon transform
can be recovered from the support function, and thus the original chain can also be
recovered.

The second method of proving the injectivity of the association a — @, is to
construct the inverse map explicitly. Let

I.: Z[R] x Z[R] — Z
be a bilinear map such that
1 ifa>hb,
I « [B]) = L
2([a). 5 {0 if a < b.
Then
o) = (-1 [ L@, 1x() dx
JPE
for x € V', x(I) =I{(x). The simple verification is left to the reader.
As a third method of proving the one-to-one correspondence between chains and

their support functions we give an explicit geometric construction for recovering a
chain from a support function. First we consider an example.
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Let A € (V) be a convex polytope, (4) =V ,and ' C 4 an arbitrary face.
With this face one associates a closed convex cone C(F), containing the affine space
(FY, defined by the condition that in a small neighborhood of any point x € Int F,
say U 3 x, we have C(F)NU = AnU . From “Euler’s identity™ it is easy to deduce
that, for x € A,

> (~)TF 1 (x) = L.

Fer(4)
In fact, the assertion
Y (=D =1y

Fer(A)
is true. We shall prove a substantially more general assertion. For this we consider as
admissible functions the characteristic functions (unbounded) of closed convex cones
in V and linear combinations of them. Let C C V' be a cone. We use the following
notational and conceptual conventions: vs(C) C C is the vertex subspace of the
cone, and vs(C) is the translation of vs(C) by any vector belonging to (=vs(C)),
so that C is invariant relative to translations by vectors from vs(C). Also L T™
is the annihilator of the linear subspace L C V', Cic 7 is the translation of the
cone C by any vector belonging to —vs(C), and C* = {leV*|({-v) <0 for
all v e 6} is the dual cone to 6; obviously C* ¢ v§(C)L. Finally, IntC is the
relative interior of C (in (C)).

We remark that all of the technique of integration over the Euler characteristic
is applicable without changes to the given wider class of functions, including the
characteristic functions of cones. We first compute the Radon transform of the
function 1. .

Proposition 1. Let H C V be an affine hyperplane. Then
/ 1c dx = X(C NH)= (_l)dimvs((?) i
H

if H can be defined by the equation h = const, helIntC*, and HNC # @.
Otherwise y(CNH)=0.

The prooj is obvious.

For / € C* the number max,ec /(v) is defined, and it obviously equals the value
of I on any vector belonging to the vertex space vs(C). To the cone CclV we
associate the pair (C*, fc), where fc: C* 31— I(vs(C)). This pair plays the role
of the support function of the cone C. By the above, the Radon transform of the
characteristic function of the original cone is 1} = (—1)4™¥(€) if the hyperplane is
defined by the equation A=y, h e IntC*, y < fc(h), and is equal to 0 otherwise.

Thus, we have established a one-to-one correspondence between cones in F° and
linear functions on cones in V*. The procedure for recovering C from the pair
(C*, Jfc) goes as follows: we take the cone (6 *)* ¢ V' and translate it by a vector
x € V such that x|z, = fc under the identification of ¥ with ¥"**. In other words,

the vertex space vs(C) is a solution of the system of equations {/(x) = fc(/)|/ € CF}.
Now let f: V'* — Z[R] be a continuous piecewise-linear (Definition 2.5) function.

There exists a set of closed convex cones F;, i =1, ..., N, that satisfy the following
conditions:

(i) The interiors Int F; of the different cones do not intersect.

() V* = ;.N:] IntF; and 0 € vs(F;), 1 <i < N (such sets of cones are called

decompositions of the dual space V7).
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(ii1) f|g, is linear for each i; that is, there exists a zero-dimensional chain x; €
Z[V] such that f|r = xllp ie., if x, = Y tiulxil, xie € V = V**, then for a
covector [ € F; we have f(/) E ti[l(x;)] € Z[R].

If conditions (i)—(iii) hold then we say that the function f is /inear in the de-
composition {Fjli=1,..., N} of V"*.

Let C; C V' be the closed cone dual to F;.

According to Proposition 2.5, which has already been proved, [ is the support
function of some convex chain a € Z(V).

Proposition 2.
}dlmV in " ]]-C )dlmF

The proof is almost trivial: from the support function / we recover the Radon
transform of the chain « and compute the Radon transform of the chain on the
right-hand side, according to Proposition 1. Our assertion will be valid if they are
equal. But in turn it suffices to prove that they are equal on each line of the form
{{=t|teR}, [ € V*\{0}. We remark that each such line intersects exactly three of
the open cones Int F;: {0} and two of positive dimension (the openness is taken in
the affine hull). Furthermore, it suffices to prove the proposition for a single-valued
piecewise-linear function f: F* — R. We leave the details to the reader: we have
already essentially reduced it to the one-dimensional case, and there it is obvious (see
§2.3).

To conclude our discussion of support functions we make a remark, a technical
adjunction to the preceding construction. The characteristic functions of cones are
suitable in order to describe the (Minkowski) multiplicative structure of the algebra
of convex chains. They give a kind of “partition of unity”. Let C;, C; C V' be
closed convex cones. In the notation adopted above we have

Proposition 3. (i) 1¢, * 1, =0 if and only if Ci N (—GCy) # v8(C ) NVS(Cy) (ie., the
lefi-hand side strictly contains the right-hand side). The latter is equivalent to the fact
that Int C* n lnt CZ" =.

(i) If C, N (—Cy) = V8(C,) NV8(Cy), then

l('! " ]ng X (ﬁl)dimvs(( )Nvs(Ca) ]l(]@(

where & as usual denotes Minkowski sum.

Proof. These are simple, geometrically almost obvious facts. The cone C; is the
direct product of v5(C;) by a cone whose vertex is a point; this reduces everything
to cones of the latter type. If Cl (— C‘z # {0} (we assume that the vertices of
C; are points), then C, N (x — C3) forany x € V is either @ or a closed convex
unbounded set; its Euler characteristic 1s equal to zero. But if ¢, n (=) = {0},
then CyN(x—C,) forany x € V is eitherempty (x ¢ C; @ ;) or a closed convex
bounded polytope. The rest is obvious.

Corollary 1. Let o = Efil(—l)diml*n 1c, and B = ZN (_l)dim]‘“m,]l;)’ be func-
tions, where L; = vs(C;) = v§(D,), (, =D; for i=1, , NV, and the cones C},
1 < i< N, give a decomposition of the space V*. Then

N
axf = Z(—])dimL'n!'f”!'l(‘!gapl.
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3. We give an invariant definition of the three operations on convex chains: “star”,
“trace”, and “shadow”.

“Star”, We let B,(x) be an open ball of radius & with center at a point x relative
to some Euclidean metric on ¥ . Then

*a(x) = lim ady.
el e

The verification of the identity 14 = (—=1)d™4 1y, , for 4 € (V) is trivial. This
proves Proposition-Definition 2.6.

“Trace”. For & € V*\{0} we set

Us . = Be(x) N {y | &(y) = E(x)},
a half-ball. Then
*Trz a(x) = lim ady.
e=0.J, u(x)
This proves Proposition-Definition 2.7.
“Shadow”. For a vector v € F'\{0} we set

L, (x)={f+x|0=1<g},
a half-open interval. Then

Tyo{x) = lim ady.
£—0 Ly o(x)

It is not hard to verify that the shadow of a polytope is homeomorphic to a closed
ball (the true shadow if the “illumination™ is parallel rays), and therefore its Euler
characteristic is equal to 1. This completely proves Proposition-Definition 2.8.

We consider some applications of these constructions. We shall prove Theorem
2.2 on Minkowski inversion: for 4 € S (V)

*]1(,(4) * 1_4 =l
In fact,

Lol = [ L@ lmn(w)dx

vH+uw=x
= [ At dx = 2((=A+ ) N Int(~4)
Vv

If x =0, we obtain (—1)dim4 If x # 0, we obtain 0: if (-4 +x)NInt(—4) # &,
then

(—A + x) N Int(—A4) = [Int(—A4 + x) N Int(—A)] U [(~A + x) N Int(=4)].

It is easy to see that the Euler characteristic of the set in the first set of the square
brackets is (—1)dm4  and that of the second is (—1)%m4+! “as required.

We return to the operation of taking the trace. We remark that the trace is con-
nected with the support function: for a chain « € Z(}) and a general covector
£ € V*\{0} we have ®,(&) = &, Trza. An interesting application of the operation
Tr arises in the following problem.

Definition 1. We say that two polytopes 4, B € (V) are equivalent if 14— 15 € Ji
(see §2.7).

Informally speaking, this means that 4 and B can be decomposed into pieces SO
that the pieces of one are translations of the pieces of the other. Pieces of arbitrary
dimension are permitted here.

It turns out that this concept of equivalence has a trivial meaning.
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Proposition 4. The condition 1, — 15 € J, for A, B € (V) holds if and only if A
and B differ by a translation: A=v+B, vel .

Proof. For any covector / € *\{0}, we obviously have Tr;(J;) C J;, which allows
us to apply induction on the dimension, taking account of the fact that the trace of
a polytope is a polytope of smaller dimension. We leave the details to the reader.

The concept of the shadow also has important applications: using it we prove the
main theorem of this paper (Theorem 2.3 on ideals in the algebra of convex chains):
see the following section. Other than that theorem, we have now proved all the
assertions stated in §2.

We stress that all the constructions and arguments of this section carry over without
any changes to the case of A-chains for an arbitrary admissible pair (', A).

§5. PROOF OF THE THEOREM ON IDEALS
1. We use all the notations of §§2.7 and 4.

Definition 1. The vectors v; € V;, [ € I, are said to be positively dependent if there
exist 4; >0, i € I, not all equal to zero, such that >, 4,v; =0.

The theorem on ideals in the algebra of convex chains is deduced from the follow-
ing important assertion.

Theorem 1 (theorem on shadows). Let v; #£ 0, i € I, be positively dependent. Then

* (T, —id)a; =0

el
Jor any set of chains o; € Z(V), ie€l.

Proof of the theorem on shadows. As usual, let V! denote the linear space of V-
valued functions on /. We write

T =) = | T1(T:i- )z,
where ¥/ c V' is {(wili e I)|¥;c;wi=x}. Let Ly =(v;)) C V,let H;CV bean
arbitrarily chosen complementary subspace, and V' = L;$H,;. Let n;: V' — H; be the
projection along L;,and v;: VV — L, the projection along H,, so that &, +v;, = idy .
Also let
y=[[(Thoi— ) € Z(V)
i€l
be the chain that must be integrated over V.
Consider the mapping

n=]]z: V-] H.
er el
By Fubini’s theorem we can first integrate y over the fibers of 7, and then integrate

the resulting function over [],., H;. Hence, it suffices to prove that

f ydy =0, whereh=(hlicl)e][]H.
) iel
Now the mapping

v :Hu,-: 1 —}HL,-

el el
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embeds 7~ !(h) as the subspace defined by 3., u;i = X — Yies hi. Here v isin fact
translation by 4, so that

/ ydx=/ Twrdx,
n_l(}"') e 1

1=y

and since translation obviously commutes with the shadow operation, we find that it
suffices to prove that

[[(To, —id)eidx =0,
H.EJ L; el
where «; € Z(L;) are chains on the lines L;. By multilinearity with respect to the
«a; it suffices to assume that the o; are intervals; then (7, —id)a; 1s simply an
interval without the end where the vector v; is directed.

Lemma 1 (on positive dependence). Let w; € V', i €1, be nonzero positively depen-
dent vectors. Then

* 19w, = 0.

fe

The lemma obviously completes the proof of the theorem on shadows.
Proof of the lemma. We have

’_:)6!(‘,]1-[0,1(1‘-)(1\:) =X ({ (tl'” € I)

0=zl Z!;?U[f}’}).

icl
We replace the set (w;|i € I) by a subset of it, still all positively dependent, and such
that any (proper) subset of it is linearly independent. Then the set

0<t <1, Zt,-u:,- :x}

iel

T = {(mie I

is at most one-dimensional. We shall show that if it is not empty, then it is a half-open
interval. Let >, ., Aiw; = 0, 4; =0, (4)#0; then

Ty = {(; +e]i € D|0 <T; +&h; < 1},
where (7;) € Ty is an arbitrary point. Hence 7 is the intersection of a finite number

of half-open intervals, directed to the same side, and thus 7 is itself a half-open
interval. This proves the lemma.

Finally, we come to establishing the main theorem.

Lemma 2. Let A; € P(V), i €1, where the linear “carrier” subspaces {A;) of their
affine hulls {A;) do not form a direct sum. Then the chain *icr(14, — 1) can be
decomposed into an integer linear combination of chains of the form *;cr(1p, — 1),
where B; € P(V), and
S dim(B;) < Y dim{4,).
i€l iel
Theorem 2.3 is derived from the lemma in the obvious way. We prove the lemma.
For this we note that if the (f?,‘) do not form a direct sum, then we can always find a
set v; € (1;191-)\{0} of positively dependent vectors. Now, by the theorem on shadows,
¥ (14, — To,(14,)) =0
iel
or
*[(14 — 1) — (Tp,(1L4) —D]=0.
iel
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Removing the square brackets and considering that the shadow of a polytope relative
to a vector of its linear “carrier” subspace is a linear combination of polytopes of
smaller dimension, we obtain the lemma.

Thus the main Theorem 2.3 is completely proved. The arguments carry over
without changes to the case of A-chains.
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