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$27. Addendum 3. Algebra and Mixed Volumes
(A. G. Khovanskii)

Herc we discuss the rccently discovered intimate relationship between the theory
of mixed volumes and algebra. This relationship enables one, in particular, to
give an algebraic proofofthe Alexandrov-Fenchel inequality, supplementing the
ones known earlier.

27.1. Outlinc of the Algebreh Proof of ahe Alexrndrov-Fenchel Inequality. Wc
first describe the outline of the proof; in subsections 27.11 -27.13 the proof is

dcveloped in detail.

27.1.1. To every monomial of the form czf' ...2!" in n complex variables
21, . . . , zl with complex coellicient c we relate the point with integer coordinates
6 : {mr,...,m") in the space R'. It may be viewed as the power of the monomial.
By a laurent polynomial we mean a finite sum of monomials in which the integers
mt may be both positive and negative. By the Newton polyhedron of a Laurent
polynomial we mean the convex envclogre in R" of all thc points with integer
coordinates corresponding to all the monomials which appear in this polynomial
with non-zero coeflicients.

ln this subsection we will agree to consider only polynomials with non-zero
constant term. Thc Ncwton polyhedra of such polynomials contain the origin.
The relationship between algebra and the theory of mixed volumes is established
by the following theorem concerning the number of roots [BerD].

21.l.LTlrl,rem (on the number o[rootsl. T'he number of complex'roots of the
general (typicall system of polynomial equations & : 0, ..., P^ : O with fixed
Newton polyhedrons tt,..., l^ is equal to the mixed oolume of the Newton
polyhedra multiplied hy nt..

27.13. Remerk. It is not necessary to assume that all the polynomials P1 have
a non-zero constant term. The theorem will remain valid in the general case i[
instead of the number of roots, we compute the number of complex roots all of
whose coordinales are non-zero.

27.lA.The key role in the sequel is played by the Hodge inequality, well in
algebraic geometry. Here is the statement of this inequality. Suppose f, and f,
are two complex curves contained in a compact complex algebraic surface F.
Supposc the index ol self-intersection6 ol one of these curves is positive. Then we
have the rorrowing t*t:ji:5t') 

,,.,,11> <r.2, r.2>.

where (/,, t\) is the intersection irulex6 ol the curves I and fr, while (/-,, [ )
and (l'2, /lr) are the self-intersection indices of these curves. Recall that the index
of self-interseclion of the curve is defined as the index of intersection of the curve

6Scr 27.11.4-27.11.7
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with its second copy obtained by slightly deforming the original, making the

intersections transversal.

27.1.5. The Alexandrov-Fenchel inequatity can bc deduced from the Hodge
inequality and the theorem on the number of roots. Let us indicate how this is
done.

Consider a non-compact algebraic surface defined in C'by a general system

of n - 2 polynomial equations Pr:0,.. , P":0 with Newton polyhedra /t,
,.., / o. On the surface consider two curves r4, and A 2 defined respectively by the
general polynomialequations & :0and Pr :0with Newton polyhedra/t and
lr.The number of intersection points of the curves A, and 24, on our non-
compact surface is equal to the number of solutions of the system of equations
Pr : Pz: Pr : "' : P.= 0. This number,according to the theorem on a num-
ber of roots, is equal lo nlV(lr,...,/,). Together with the curve,4, consider a
slighily deformed copy of this curve A'r: the curve l', is defined by the equation
Pi : 0 which contains the same terms as the equation & : 0 but with slightly
changed coeflicient (in particular, the polynomials Pt and Pi have the same

Ncwton polyhcdron). According to the samc thcorem, the numbcr of intersection
pointsof thecurve/, withthecurver{', equalsn!lz(/,,11,/1,...,/,).Similarly
we can construct the curve A', for which the number of intersection points with
the curve zl2 equals nlV(lr,/r,/t,...,/,).

The ncxt step consists in the compactification of the non-compact surface
Pt: h, P" : 0.

There exists a special compactification of this surface for which the closures
ft, f;, t'2, / j of thc non-compact curves / ,, A'1, Az, A'2 have no "points at
infinity" as intersection points. The absence of "points at infinity", where the
curves [ :.,1r and I-i: Ai intersect, means that ftn/i;: ArfiA\i a similar
relation holds for the other pairs ofcurves. Therefore, the intersection index and
the self-intersection index of the curves f, and f, are determined by the formulas

(l', fr) : nt'V(/ r, / z' I t' "', d,l

(/-,, 1-, ) : ntV(/ r, A r, / r,..., l,l
(fr' fr) : nt'V(/ z' I z' l t' "'' /,)

Subatituting these formulas into the Hodge inequality. we obtain the Alexandrov-
Fenchel inequality for the polyhedrr dr,1r,..., A^:

v t(/ t, I 2,..., 4 
^) 

> V (/ t, / t, d 3,..., I "1. 
V (/ 2, I z, / t,..., l,l

27.2. Hyperbolic Quedrrric Forms The Alexandrov-Fenchel inequality re-
scmblcs in form the Cauchy-Buniakovski incquality exccpt that the signs of these
inequalities are opposite. In this subsection we consider hyperbolic quadratic
forms, for which the reciprocals of the Cauchy-Buniakovski inequalities hold.

27.L1. A quadratic form is said to be hyperbolic, if there exist vectors on which
it assumes positive values but there exists no two-dimensional plane on which it
is positive defincd.

t83
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r27.LL Exrmple. The quadratic form xf + ... + xi - x?,t x,2*-, dc-
fined in real space oldimension n > I + rt with coordinates x', . .. , x,, is hyper-
bolic if and only if I : l.

27.23. Ptopsition. Srppose B k a symmetric bilinear form for which the
quadruticlom Q@l - B(a,al is hyperbollc. Thentor any Wsittoe Dector x (i.e.for
any oector x sctlistying B(x,xl > 0 and any uector y we hoae the reciprocal Cauchy-
Buniakouski inequalit y

82 (x, y) >- B (x, x) B ( y, yl.

Proof. Consider the polynomial rp of the second degree in the real variable r
delined by the relation Egl : QQx + t ). The leading coellicient B(x, x) is positive
while the discriminant / equals 4fB2(x,yl - B(x,x)B(y,yl). ll / < 0, then the
polynomial g has no real roots and the lorm Q is positive definite on the plane
generated by the vectors xand y(tor / * 0th€ vectors xand yareautomatically
independent). By hypothesis, no such plane can exist. Therefore zj ) O which
was to be proved.

Let us show that inequalities of type (l) are not only necessary but atso
suflicient for a form to be hyperbolic. suppose K is a certain cone gencrated by
the linear space L (this means that any element ze L can be represented in the
form z : x - y, where x and y are contained in K).

27.2.4. Proposition Suppose there exists an interior point x of the cone K
satisfying B(x,x) > O awl for any oector yeK we haue the inequality Br(r.yl>-
B(x, x) ' B(y, yl. Then the quadratic form Q@) : B(a, al is hyperbolic.

Prool consider the hyperplane M,8-orthogonal to the vector x (the inclusion
z e M is cquivalent to the relation B(x, z) :0). Let us show that the restriction
of the quadratic form Q to the hyperplane M is non-positive. Indeed, supposc
there is a vector u in M such that the form e is positive. Then the form p is
positive delinite on thc plane generated by the vectors x and u. Fof any vector
y (from this plane) non-collinear to the vector r, we have the Cauchy-Buniakovski
inequality Bt(x,yl < B(x,x)B(y,y). Such a vector y may be choseh in the cone
K, since x is an interior point of the cone. We obtain a contradiction with the
hypothesis'ofthe proposition, thus showing that the form e is non-positive on
thc hyperplane M. hny two-dimensional plane inlcrsects thc hyperplane M.
Thereftrre thcre exists no plane on which the form e woutd be positivc definite.
Proposition 27.2.4 is proved.

27.L5.Let us return to the Alexandrov-Ferrchel inequality. Convex bodies
do not constitute a linear space. It is impossible to subtract them. The formal
dillerences of convex bodies already constitute a linear space, while the set of
convex bodies are a cone in this space.

Thc mixcd volumc is dcfincd lor a cone olconvex bodics. By lincarity it can
be extended on the entire linear space.

Propositions 27.2.3 and 27.2.4 shows that the Alexandrov-Fenchel in-
equality is equivalent to the bilinear form defincd by the formuta B(a,bl:

(t)

j'
l1
,l
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V(a,h./r,...,21,).whcre A1,...'/oeKarefixedconvexbodies'beinghyperbolic'
Hyperbolic forms appear in the theory of algebraic surfaccs: the Hodge theotem

sraies that the intericction lorm ofcurves on an algebraic surfacc is hyperbolic'

ihi. fu",, together with the theorem on the number of roots, constitutes the basis

of the algcbraic proof of the Alexandrov-Fenchel inequality'

27.3. Remarks on the Theorem Concerning thc Number of Roots

273.1. Afew words on the disposition of the topics which follow. After some

historical remarks (in this subsection) and the introduction of a series of notions

in subsection 27.4, lhe subsections 27 .5-27 .9 will give the proof of the theorem

on the number of roots. The outline of this proof is the following' The system

Pr: "'- Pn:0 is viewed as the intersection of the curve Pr: "': P.-t = 0

with the hyperplane P. :0.
The theorern on the intersection of curves and hypersurfaces (see 27.5.5)

reduces (see 27.8) the problem of finding the number of their intersection points

to rhe problem of finding the degrees of the asymptotic lines of the curves and

to the determination of their number. ln 27.7 we state the curve theorem, which

enables us to lind the degrees of asymptotic lines of the curve and determine their

number. The necessary inlormation on the compactification of curves is given in

27.6. The proof of the curve theorem and the theorem on the number of roots is

carried out simultaneously (the sequence of required steps is described in 27.7 -31.

The theorem on thc number of roots in n-dimensional space reduces to the curve

theorcm in n-dimensional space. The theorem on lhe curve in n-dimensional

space reduces the theorem on the number of roots in (n - I )-dimensional space.

1i".. p".t of the asymptotic lines can be found directly (see 2?.9). In order to find

the other asymptotic lines, it is necessary to carry out an monomial tr4nsforma-

tion (see 27.i.4). ln subsection 27.10 we prove the neccssary statements on general

position properties.

t273.2. Historicat remarks. Ferdinand Minding (1806 1885)' Professor at

Derpt University, was the first to apply Newton polyhedra to the problem of

determining the number of solutions of a system of two equations in two

unknowns. Here we give an exposition of Minding's method'

Suppose ./(.r'.v):0. g(-t,y) - 0 is a system of two polynomial equations

in twJ;nknowns. Min4ing exclu4cs the unknown y from the systcm. ln order

to do this, he considers a multivalued function .y(r), determined by the cqua-

tion /(x,y) :0 and substitutes it into the second equation' The number of

branches-of the algebraic function y(x) is equal to the degree of the poly"

nomial / with respect to the variable y. Suppose this degree equals l< and

y, (-t). . . . , y.(-x) are ihc dillerent branches of the function y(x)' Multiplying all k

Lian"hc* jti. _1,,i,*1 of rhc multivalucd function g(x. y(.r)), we obtain thc function

p(x) = I I., 
",** 

g(t,.y,(t)), which is already a single-valued function' The zeros of

it 
" 

funition p correspond to the roots of the given system. The algebraic function

p is single-valucd and therefore rational. Moreover, if the curve /(x'y):0 has

no vertical asymptotcs, then thc function p(x) for hnite x never becomes infinite
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and ther€fore is a polynomial. ln ordcr to determine the number of roots of thc
syst€m it is necessary to find ihe numbcr of zeros of the polynomial p which
equals its degree. To determine thc degree of the polynomial p, Minding proposes
thc following method. Compute the leading term of thc expansion of the branches
y,(x) of the function y(x) into a series of fractional powers of x (into the so-called
Puiseux scries) as x + @. Then, having substituted the lcading terms of the
expansion of y;(x) into g(x, y) compute thc leading terms of the expansion of the
branches of g(x,*(x)) and determine their (fractional) degrees. The required
degrec of the polynomial p is equal to the sum of the degrees of the branches of
(tQ,y,(x)|. This sum is always an integer.

Newton polyhedra have long been uscd in order to find the leading terms of
the expansion of algcbraic functions into Puiseux series. Minding uses the
Newton polygon of the polynomial /(x,y) in order to lind the leading term of
thc expansion o[ the branchcs y1(x). He noticcs that if the coellicient of the
polynomials / and g are not related by any special rclation, then in the substitu-
tion into g(x,y) ol the branch y,(x) the leading terms do not cancel. Here the
degree of the branch g(x,yr(x)) depends only on the degree of the branch y,(x)
and on the Newton polygon of the polynomial g(x,y).ln this case Minding linds
the formula for determining the number of roots of the system in terms of the
Newton polygons of the polynomial / and g. The geometric meaning of this
formula was unknown and became clear only in connection with the appearance
of ihe theorem on the number of roots [BcrD].

Minding's work was published in l84l in Crelle's journal [Min]. The discus-
sion which followed showed that Minding clearly understood the necessity of
general position for his formulas to b€ valid. Magnus gave an example contra-
dicting the Minding formula, sec [Mag]. In his answer Minding showed that in
the Magnus example the non-degeneracy conditions did not hold.

Our method of proof of the theorem on the number of roots for n : 2 is a
variation of Minding's method.

t27.33. Minding's theorem attracted the attention of such mathematicians
as Liouville and Hermite, but then was forgotten. The next stcp was carried out
a hundred and thirty years later by A. G. Kushnirenko. ln 1975 he proved that
the number ofsolutions ofa non-degenerate system ofn equations in n unknowns
possessing identical Newtoo polyhedra is equal to the volume of this polyhedron
multiplied by n! [Kou l, 2]. A. G. Kushnirenko's proof uses the techniques of
commutative algebra and is rather complicated. ln the same year of 1975 D. N.
Bernstein published thc theorem on the number of roots [BerD]. His proof
is close to Minding's method. The outline of this proof is the following. It is
proposed to introduce the parametcr t into the system /, ,f, = 0 under
consideration and pass to the system f, : ,, f , [,-r : 0 (the roots zr(t)
of this system depend on the parameter t). When the parameter I changes from
zero to infinity all the roots zr(0 tend to disappear from the spact (C - 0)" but
their number in the process of motion does not change. Bernstein propos€s to
determine the numbcr of roots of z'(t) for very large t by expanding them into a
Puiseux series with respect to the small parameter u : t-t, First he finds the
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numhr of roots for which the Puiseux series are of the form zl: a$ + "',
z\ = az +''', ..., zt, = a.* "', i.e. for which the leading terms of thc components

aic resirccti"ely equal to 1,0, ..., 0. tt then turns out that the coellicients c2, -..,
o. satisfy u ,yri"- in a smaller numbcr of unknowns, whose number of roots is

tno*n 6y induction. The determination of the number of roots of zt(u) with a

different irymptotic with respect to u, zt, = a{tN' + "', " ', zt^ = snux' a " '

reduces to ihe previous case when Nr : l' &: "': N' by means of an ex-

ponential transformation (see 27.9.7).

*273.4.Our proof of the theorem on the number of roots resembles the proof

outlined above. To make this similarity even more obvious, let us note that the

roots of thc system f,: t' f, l,-r:O' when 
' 

changes' move along the

curve/rf,-r:Oandthattheproblemofdeterminingtheleadingterms
of thc Puiseux serics of thc roots z'(0 is equivalent to the problem of finding the

asymptotic lines of the curve fi : "' : fn-r :0' But our proof is much more

OeiaiLO. The theorem on the intersection of curves and hypersurfaces and the

curve theorem do not appear in [BerD] and are published here for the lirst time.

Moreover, we do not use Puiseux series. They are replaced by the compactifica-

tion of the algebraic curve. This is simpler, although the difference is not one in

principle: the Riemann surface is constituted in fact by all possible Puiseux series.

.27.35. At the present time there are many proofs of the theorem on the

number of roots. The toric compactification of the space (c - 0)" (see 27.12)

makes it possible to apply the arsenat of algebraic geometry to this problem.The

theorem on the number of roots is onc of the numerous consequences of the

computation of toric manifold cohomology tKh 21. But the proof given in

27.5 27.9 is one of the most elementary ones.

27.4. Monomirls, Monomirl curves, Lrurent Polynomials rnd Their Newton

Polyhedrr. ln this subsection we show that to the product of polynomials

corresponds the Minkowski sum of their Newton polyhedra.

27.4.1. Thc monomials and the l.aurcnt polynomials f(z)in n variablcs z :
(z r, . . . . z,l arealways defined and are holomorphic functions in the space (A - 0f
consisting ofall ordered sequences ofn non-zero complex numbers. In the sequel

many objects which will interest us will be contained in this space. The support

of the Laurent polynomial f(z\ : lc.z-, z^ : zf'' .. zf" is the set supp/ c Rn

consisting of thosc integer vecton me R' for which c^ * O. The Newton poly-

hedron of thc Laurent polynomial./(which we shall denote by zr(/)) is the convex

envelope of the supPort o[f'
+n.4.2. Exemples l) The Newton polygon of the equation of the curve

y2 * an+ dr.t + arx2 + 4.xf, :0 is thc triangle with vertices (0,2)' (0'0) and

(1.0) (we assume that as * 0 and a, * 0).' 
i) fn" Newton polygon of the polynomial f c.z' (where all the c* are

non-zero) in n variables of degree ft is a simplex homothetic to the standard one

and determined by the inequalities mr2O, '..,fr,2 0, Inl ( k'

3) The Newton polygon of a typical polynomial Lr.r^ in n variables, whose
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dcgrce with resp€ct to the i-th variable is ft,, is the cuboid defined by the
inequalities0 q rn1 ( /c,.

27.43 Thc curvc in spacc (C - 0)" parametized by a complex parametcr
r # 0 and given by the formulas z, : artN',..., z, : a,!x" where N : (Nr,.. ., N,)
is a vector with integer coordinates and o = (ar,....an) is a point from (C - 0f
is called a monomial curoe (or line) and is briefly written as z : atil. The vector
N is said to be the degree of this curve. The coellicient a is not uniquely
determined. We do not distinguish the lines z: atry and z: a(ct)x, ce(C - 0)'
which dilter only in the choice of parameter. If a vector of degree N is zero, then
the monomial curve consists of the point a only (which is uniquely determined).

lf wc rcstrict a Laurent polynomial to the polynomial line. we obtain a
Laurcnt polynomial in one complex variable t. For example, if we restrict the
monomial cz^ lo the line atx, we obtain the monomial cant(N'^). Let us try to
spccify thc leading term of the restriction of the Laurent polynomial / : fc^za
with Newton polyhedron ,4 to the polynomial line z : atN.

27.4.4. By defi nition, the supryrt face ol the polyhedron I in the direction N
is thc facc /n on which the lincar function (N, x) assumes its maximunr for xe l.
This maximum Ilr{rNl = ntlx",tr(N,x) is callcd thc height of thc polyhedron I
in the dircction N. The dcpendence of the height H7 on the vector N is called
lhe support function ofthe polyhedron /. The supporting face and the height of
a polyhedron are delined for any real (and not only for integer-valued) vectors
Ne R'.

By definition, the truncation of the Laurent polynomial f(z):l^.7c^z^
with respect to the vector N is the function /p(z) : Ln.,t,c^zn (we have omitted
the sum o[ monomials which are not contained in the supporting face ln).

27.4.5. Ex*mple. The truncation of the polynomial with respect to the vcctor
N: (1,...,l) is the homogeneous term of the highest order of this polynomial.
The truncation of the Laurent polynomial with respect to the vector N : 0
coincides with the original Laurent polynomial fo: I.

27.4.6.The restriction of the Laurent polynomial /( z) : lc.z^ to the mono-
mial curve atn is equal to f,,{alf Jnt plus terms of smaller &gree in l. Thus lhe
truncation of a polynomial with respect to the vector N determines the leading
term in its restriction to a family depending on the parameter a of lines of degree
N (for some exceptional values of the parameter a the coellicienr fn@l vanishes
and then the leading coellicient will be a term of smaller degree).

Suppose/and g are arbitrary Laurent polynomials and h: f .5.

27.4.7. Ptopsitiotr. When Laurent polynomials are multiplied,
al the trunkations (with respect to any integet oector N) are multiplied: hr:

fn'gni
bl the support functions ol the Newton polyhedra are ailileil Hto,r:

Il /tth + It 
^@:c) the Newkm yilyhcdru ure added /(h,l - /(j ) + nkl.
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Proof. Reslrict the polynom ials f, g,ft to the family of lines z : atx of fixed

dcgree N and parameter a. Choosing the tcrm ofhighest degree with respect to
t, we obtain the following relation for the product

hN(alfttr'iilt : fn(o)tfunnt ' gn(a)tvt"lxt

(When we claim that the right-hand side contains the leading term, we use the
fact that the product of two non-zero polynomials jy and gn is a non-zero
polynomial). This relation implies statement a) as well as the statement b) for
integer arguments of the support functions.

The support functions are positive homogeneous and continuous, therefore
statement b) can bc generalizcd to rational and then to arbitrary support func-
tions wilh vcctor variables.

Using the additivity of the support functions and statement b), we s€e that
the support functions of the polyhedra llhl and Z(fl + tr(gl coincide. Therefore
the polyhedra themselves coincide.

27.5. Intersoction of Curve rnd Hypersurfrces ln this subsection we compute
the number of intersection points of a curve and hyJrersurface under the assump-
tion that thcy have no "points at infinity" where they intcrsect. The answer
involves the supporting function of the Newton polyhedron of the hypersurface's
equation. 

se
275.1. Some delinitions Suppor+ f is a compact complex curve (a compact

analytic manifold of complex dimension one) and z 1r . . . , zn are meromorphic
functions on it. These functions determine a holomorphic mapping (defined
outside the poles and zeroes of the functions z,) of the curve (A - 0f. A dioisor
of thc vcctor-functi()n z : (z r, . .. , z") is by dcfinition the (linite) set of poinls on
the curvc /'in which at least onc of the functions z1 vanishes or becomes inlinite,
Suppose d is one of the points of the divisor and u a local parameter on the curve
lnear the point d, such that u(/) : 6. Expand the functions into a Laurent series
near ihe point d: zt: epNt * "' , a1 * O.

27.5.2. Definition. The asymptotic line of the image of the curue z(f) related to
the point d of the divisor is the monomial curve z(t) : a!-il where a = (a r,.. ., a,),
N = (Nr,....N") are the coeflicients and the powers of the first terms of the
Laurcnt series of the functions 21, ...,2t.

The choice of sign for the vector N is a matter of convenience. The monomial
curve z(t) for large t is close to the image z(u) of the curve /- for small u : t-t.
The choice of local parameter near the point d on the curve /- influences the
equation of the asymptotic line. However, lines corresponding to dilferent local
parameters on the curve l-differ only in their parametrization and we shall not
distinguish them.

Suppose ./: 0 is a hypersurface in (C - 0)' defined by the Laurent poly-
nomial / with Newton polyhedron /. The restriction of the polynomial / to the
monomial curvc z(t): ntil posscsscs an ordinary degrec equal to the height
ll;(N) of thc polyhcdron zl in the direction N. For ccrtain values of the parameter
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a the rate of growth of the restriction of the polynomial / to the tine z(r) as r { @
may fall. For these values of the parameter the monomial line arfl approaches
the hylrcrsurface f : O (the convergencc is extremely rapid).

2753. Definition An asymptotic line olthe hypersurfacef : O is a monomial
curvc z(r) - otN. N * 0 such that the degree of the restriction of the polynomial
/ to it is less than H /N\ ln other words. z(t) = a1n is an asymptotic line if and
only if N # O and 

"/'rv(z(4) - 0.
Notc that the choice of thc polynomial / detcrmining the hypersurface (thc

polynomial / is delined up to multiplication by a monomial) does not influence
the definition of an asymptotic line.

r27s.4 Remrrk. In the definition of an asymptotic line of a hypersurface we
can omit the assumption N * 0. Then the line z(t): ato : a will be asymptotic
rf f(a):0' Hence asymptotic lines with degree N:0 may be identiied with
points on the hypersurface. But asymptotic lines with degrce N * 0 may be
viewed as "points at infinity" of the hyperswlace f :O wtrictr do not fit in
(c - 0r. A simitar situation may be observed wittr the asymptotic lines of the
image of the curve. They may bc related not only to points of ihe divisor, but to
arbitrary points of the curve r' as well. Then the monomial curve is retated to a
regular point y e /- and has degree N : 0; it coincides identically with the point
z(y) of the image of the curve I- Non-trivial asymptotic lines are related only to
points of the divisor. They play the role of the images of the point of the divisors
which "do not fit" into (C - 0)'.

2755- Theorem (on the intersection of curves and hypersurfaces). suppose
none ofthe asymptotic lines ofthe image z(flofthe compact curue f are asymptotic
lines of the hypersurface f : o. Then the numher of points (multiplicity being taken
into considerationl where the hypersurface | : g intersects the image of che curue
z(f I in (C - 0l^ equalsll. o II ,1(N(d)1, where D is the diuisor of the oecior lunctionz: Nldl is the degree of the asymptotic line corresponding to the poinr d of the
dioisor; d is llrc Newton polyhedron olthe Laurent polynomialfand Ir1 is its support

lunction.

Proof. The intersection points of the curve and hypersurface in (A _ 0f
correspond uniquely to the zeroes of the compound function f(z) on the curve
/^ outside of its divisor D. The multiplicity of intersection points equals the order
of the corresponding zero of the function /(z) (recall that the order of a mero-
morphic function at any point is the minimal degree of the monomial in the
Laurent series expansion of the function at this point). on a compact curve, the
sum of ordcrs of zeros and potes of any meromorphic function ii equal to zero
[spr]. since the function /(z) has no poles on r - D,the number of ieros of the
function /(z) on /- - D (multiplicity taken into consideration) is equal to the sum
of the orders taken with the minus sign of the function/(z)at points of the divisor.
Minus the order of the function /(z) at the point d of the divisor equals (plus) the
degree of the leading term of the restriction of the polynomial/to ttr" 

"sy.pioti"line z(tl corresponding to the point d. By assumption of the theorem, ttrl asymp
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totic line z(r) of the curve /- is not an asymptotic line of the hypersurface / : 0.

Therelore ih. d"gr"" of the restriction of the polynomial / to the line z(l) equals

the hcight of thc Ncwton polyhedron of a polynomial / along the degree vector

of the linc z(r).

27.6. Ricmrnn Surfrces (Compactification of Algebraic Curves)'

27.6.1. Consider the set defined in C" by the compatible system

fi:'..: f,-t:o, P +o (2\

of n - | polynomial cquations and one polynomial inequality. We assume that

the dillerentials of the polynomials Ir, ..., f,-, are linearly independent at the

roots ofthe system (2). Dcnote by r/ the hypersurface determined by the equation
p = 0. According to th€ implicit function theorem, the compatible system (2)

defines in Co - n an analytic curve, i.e. a one-dimensional complex analytic

manifold. This manifotd is not compact, however it possesses a compactification.

The compactification of an algebraic curve is called a Riemann surfacc in complex

analysis and a normalization o[ the curve in algebra. We will now define the

compactilication and give a list of some of its propcrties without proof.

27.6.2. Detinition. The triple I K, z consisting of a compact curve /-, a finite

set K c f and a meromorphic vector-function z:(2t,..',2^l ol the curve l-
determines a c ompacfification of the ourve (2) if the map z: I - K - Cn isdefined

on ,- - K and establishes a bijective and bianalytic correspondence between

/- - K and the curve (2).

27.6.3.Prcperlies l) Any curve (2) possesses a compactification.
2) The compactilication is unique. This means that if the triples l, K, z and

f, R, Z glve a compactification of the curve (2), then there exists a bijective and

bianalytic corrcsp;ndcnce between thb curve /-and the curvc fsending the set

K into the sct R and lhc vcctor function z into thc vcctor-function i'
3) None of thc points addcd to the curve (2) undcr the compactification "lits"

in Cn - Z. This means that at every point tc e K either one of the components of

the vcctor function z becomes infinite, ot z(kle II.
Thus to every non-compact curve (2) we associate a unique compact curve

/- The latter can be conveniently imagined as the curve (2) to which we have

glued on certain points which "do not lit" into C' - n. The components of the

vcctor lunction z are conveniently represented as coordinate functions on the

curve (2). In the scquel, we will have this representation in mind. Allowing
oursctves a bit ofcarclessness in our expression, we shall talk about the asymptotic

lines of thc curve (2). having in mind the asymptotic lines of thc image z(fl ol
its compactification /'.

27.6.4.We will mostly have to deal with curves defined in (C - 0)" by the

system

fi--"' =.f,-r:0, (3)
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in which f are Laurcnt polynomials (it is assumed that the system is compatible
and the dilrerentials ofthe functionsJ are indepcndent at the zeros ofthe systcm).

The space (A - O)' is the space C' from which the hypersurface I/ with
equation 2 |' . . .' 2n: 0 has becn excluded. Although rhe functions .f, in (3) ari
not polynomials, the systcm (3) is equivalent to a polynomial systcm in (C _ 0)':
the Laurent polynomials, after multiplication by appropriate monomials, become
ordinary polynomials.

27-6s. l*mmt suppose I', K, z is a triple determining the compactilication
d the curae (3). Then the set K coincides with the dioisor of the ueitor iunction

Indeed, according to property 3, one ofthe components ofthe vector function
z vanishes or becomes infinite at the points of the set K.

27.5.6. |*lnmr.. If the curoe z(t) : at N, N * O, is an asymptotic line of the curue
(31, then the truncation of the system (31 according to the uector N is,,ainihilated,.
by this curue, i.e. frnQQ)l = ... = f._t.NegD = O.

Proof. The image z(f) of the compactification of the curve (2) satisfies the
system (3). Developing the zcro lunctions fr(z) into Laurent series with respect
to the small parameter l in a neighbourhood of the point d of the divisor and
setting those terms which are the leading terms with respect to the large parameter
t : u-t equal to zero,we obtain the required identity.

Lemma 27.6.6 imposes strong restrictions on the degree vector of the asymP
totic line. This is because for a vector in general position the truncationr;n 

-ot

the functions I are monomials (the maximum of the scalar products with vector
N in general position is obtained on the vertices of the Newton polyhedra of the
functionsfi)and the system of truncations frn = ... = Ia_r,r = d is Incompatible
in (c - 0)". Historically it is precisely restrictions of this'sort which led to thc
definition of the polyhedron (be more precise, the porygon) due to Newton.

27.7. stetements of the Theorems and rheir sequence of proof. In this sub.
section we state a series of theorems among which tire main role is played by rhe
theorem on the number of roots.

we begin with different variants of the definition of non-degenerate systems
of equations.

27.7.1. Delinition. The system of equations f, - ... : fi = O in (C _ 0f is
called non-degenerate if at every zero ol this system the differentials of the
functions Ir, ..., fi are independent.

27.7.L Definition. The system of equations fi : ...:1[. : 0 in (C _ 0)' is
called l-non-degenerateiffor any vector N with integer coordinates the truncated
system fip Irn = 0 is non-degenerate in (C - 0)'.

Note that any l-non-degenerate system is non-degenerate: for the zero vector
N : 0 the truncated system coincides with the original one.

27.7.3.Delinition. The system ofequations/, ,f, : 0 in (C _ 0f is said
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lo be slrongly r|'non-degenerate if any of its subsystems .f,' : -'=1=O is

,l-non-degcnerate(hereir,....i.isanyincreasingsequenceof indices t (ir <

"'< i, < ft).

27.7.4.Delinition. A systcm of n equations in n unknowns./rr - "'= f,:O
is called l-rutn-degenerate at infinity, if for any vector N * 0 with integer coor-

dinates the truncated system is incompatible.
From the formal point of view, thc /-non-degeneracy requires an inlinite

number of conditions: it is required that for any vector N the corresponding

truncated system be non-degenerate. In fact only for a finite number of vectofs

N do we oLtuin diff.r"nt truncated systems and the numhr of conditions of

l-non-degeneracy is actually finite. A similar remark applies to strong /-non'
degeneracy and to /-non-degeneracy at infinity.

27.75 Theorem. For almost all possible lamilies of coeficients of Laurent

polynomials Ir, ..., f, with fixeil Newton polyhedra, the system of equations

ft - "' : fi: O is stongly non-degenerate on (C - Ol'

It follows from Theorem 27.7.5 that all systems of equations with given

Newton polyhedra are /-non-degenerate and (if the numbcr of equations equals

the number of unknowns) are /-non-degenerate at infinity, since strong /-non-
degeneracy of systems automatically implies their ^/-non-degeneracy and their

/-non-degeneracy at infi nitY.

27.7.6. Theorem (on the number of roots). The numher of roots in (C - Ol' of
ostrongly l-non-de,generate systemof nequations innunknowns lr: "' :f, : O

fs equi io the mixed uolume of the Newton polyhedra of the Laurent polynomials

L, ..., I multiplied hy n'!,

27.?.7. Remark. The theorem on the number of roots is valid also for l-non'
degenerate systems. It remains valid even for /-nondegenerate systems at infinity

if only the roots of the system of equations are counted according to their multi-

plicity (Z-non-degeneracy guarantees that all the roots are simple roots, /-non-

i.g"nrru.y at infinity guarantecs that the roots of the system do not "leave"

(a-- 0)", ho*"u"t they may be multiple). Let us dwell on certain corollaries of

the theorem on the number of roots.

27.7.8. Corotlary. The numbcr of roots in (C - 0)' of a strongly /-non'
degenerate system of equations with the same Newton polyhedra is equal to the

volume of their Newton polyhedra multiplied by n!

It is precisely this corollary that Kushnirenko proved before the theorem on

the number of roots had been established (see 27.3).

27.79. Cotolllrry. The number of roots in the entire space C' of a strongly

/-non-degenerate system of polynomial cquations with fixed Newton polyhedra

is equal to thc mixed votume of thc Newton polyhedra multiplied by n! if we

assumc in addition that all the polynomials have non-zero constanl terms.

ln order to deduce corollary 27.7.9 oI the theorem on the number of roots it
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sufnces to check that under thc assumptions of corollary 27.7.9 the system of

cquation has no roots in thc coordinatc planc. we will not stop to make this

verilication. Note that in corollary 27.7.9 the condition on the existenoe of

non-zcro constant terrns cannot bc omitted (although it may bc weakened

somewhat). For cxamplc the cquation x" - 0 has a Newton polygon constiting

of one point n. ln full agreement with the theorem on thc number of roots, this

cquation has no roots in c - o although ofcourse in c it has a solution.

27.7.10. Corollary (the B6zout theorem). The number of roots in cn of a

gencral system ofpolynomial equations Pt - "': P,:0 ofdegrees k1' "''k'
respectively equals /<t ' '..'k,.-For 

thc pioof, it sugices to compute the mixed volume of a system of n

simpliccs homothetic to the standard onc.
consider thc curve dcfined in (c - 0)'by the strongly non-degenerate system

f, - "': f,-t:o (4)

with Newton polyhedra / 1, ..., ln-r.
Theorem 27.7.11 stated below makes it possible to determine the degrees of

all asymptotic lines of the curve (4), tind their number and write out systems of

equations whose solutions are the asymptotic lines.

It is convenienl to introduce the following notation: for any non-zero vector

N with integcr coordinatcs denotc by S(N) the number cqual to thc mixed

(r - I ldimensional volume of thc supporting faces of the polyhedra 11, " ', /,-t
in the direction of N multiplied by (n - l)!, i.e.

S(N) = V"-r(l ,n,...,/"-t.n)'(n - t)!

27.?.1l. Theorem (curve theorem). l. The system(4\is incompatible if and only

if lor atl non-zero oectors N with integer coordinates the number S(N) uonishes. 2.

If the system (4) is compatible, then the curoe that it iletetmines has no asymPtotic

lines with cancellable uectors degree N (i.e. degree oectors whose camponenls N1,

. . . , Nn haoe a common ditsisor ililferent from t | ). 3. The asymptotic lines ol the

<.uroe (41 wilh non-cancellable oettor rd tlegree N are utnnettir/ily comqonents oI
the set defined in (C - Ol by the system frn fa-r,n:O: their number is

equal to the number S(N) dittided hy the length of the ttector N.

+ 27 :1.12. Remerk. Theo rem 27 .7 . I I remains valid for / -nondegenerate system

(4) also.

'27.T.l3.Exemple.Ontheptaneconsiderthecurve 
y2 * ao + drx + arx2 +

43.r3 = 0. tts Newton polyhedron is the triangle with vertices (0'2)' (0'0)' (3'0)'

The number S(N) differs from zero only for threc non-cancellable vectors Nt =
(- 1,0), N, : (0, - l), N3 = (3,2). The corresponding truncated equalions are

fn, : r' f oo : O, lnr : ao + arx * a2x2 * a.x3 : 0, 
"4"r 

:. y-: * a.x3 : 0' The

firit of thesc truncations determines two horizontal asymptotic lines y : !- J - ao

corresponding to the intersection points of the curve with the y axis. The second

truncation fn,=0 determines threc vertical lines corresponding to the inter-
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section points of our curve with the x axis. Finally, the third truncation determines

a unique non-trivial asymptotic linc y2 + oxx! = 0 with parametric cquation

y = firtt, x : t2. This line corresponds to thc point on the divisor of the

v€cto; function (x, y) on the compactification of the curve, near which we have

the expansion

x: u-2 + "', y: J--^"-t * '..
'27.7.14. Remerk. When we know the asymptotic lines of the curve f(x'yl : A,

we can express y approximately in terms of x as x + co or x * 0. Thus, in the

previous eiample, solving the equation of the asymptotic line y2 + arxs : Q we

obtain y - 1[-[rtrz as.x { @. Theorem 27.7.t I thus makes it possible to find

the main teims of the expansion of y in fractional degrees of x as x - o and
y + 0 by using thc Newton polygon of thc equation I$, yl : 0. It is precisely for
the solution of this problem that Newton used the polygons of the equations.

27.7.15. Let us dcscribe the sequence of proofs of the theorems stated above.

Theorem 27 .7 .5 will be proved in subsection 27. 10. The theorem 27 .7.6 on the

number of roots and the curve theorem 27.7.11 will be proved by simultaneous

induction in the following order.
Step I-8. The theorem on the number of roots is proved in (C - 0)t.
Step n-A. Thc curve thcorem in (C - 0)'is deduced from the theorem on the

numbcr of roots in (C - 0)' t.

Step n-8. The theorem on the number of roots in (C - 0)' is deduced from

the curve theorem in (C - 0)".

Step I-A is absent because there are no curves in one{imensional spacc. Thc

steps n-A and n-B will be carried out in 27.8 and27.9. Here we carry out the step

I-8.
The number of non-zero roots of a Laur€nt polynomial in one variable

Lq<^<aanzn equals m - 4. The length of the Newton polyhedron of this
polynomial, i.e. of the segment [4,m] aho equals m - 4r. Step I-B has been

carried out.

27.E. Deduction of lhe Theorem on the Number of Roots from the Curve

Theorem.

27.8.1. Consider the strongly /-non-degenerate system ofequations

fi:...:.f^:o (5)

with Ncwton polyhedra / 1, ..., l^. The numhr of solutions of the system in
(C - 0f is equal to the number of intersection points in (A - 0f of the curve

fr=.,.=r,q=o (6)

with the hypersurface,f" = 0. The theorem on the intersection of curves and

hypersurfaces (see 27.5.5) r€duces the problem of computing this number to the

problem of linding the degrees of the asymptotic lines of the curve (6), which in

turn is solved by the curve theorem. Let us sce this in more detail.
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27.&2. wc rhell necd tho wcll-known inductivc formula (sec (6) in eubsection
25.2.31 lor computing the mixed volumcg

v(/t,...,t,r= 
*o,F=, 

s(plHt.b). (jl

Here, as before, s(p) is the mixed (n - lldimensional volume of the supporting
faces of the polyhedra zl ,, . . ., /,_, in the direcrion p multiplied by (n - I )!, while
H4@lis the height of the polyhedron /,in the direction p. Although rhe sum
is taken over an infinite number of points of the sphere llpll : l, there is actually
only a finite numbcr of non-zcro terms-thc terms corrcsponding to vectors p
orthogonal to thc (n - l)-dimensional faccs of the polyhcdron (the sums /, *... * /,-tl.Note that for a polyhedron with integcr coordinate vertices, the sum
in formula (7) must be taken only over vectors of thc form p = N/llNll, where N
is a non-zcro vector with integer coordinates (the half line which originates at
the point o and is orthogonal to the (n - l)-dimensional face of the polyhedron
d, * ' . . * /n_r with integer vertices contains integer points).

27.E3.Letus return to thc system (5). According to the theorem 27.5.5 on the
intersection ofcurves and hypersurfaces the number ofroots ofthis system equals

L Hd^w@ll,

where H7" is the support function of the Newton polyhedron /. of the function
.f,' while N(d) is the degree vector of the asymptotic line of the curve (6) corre-
sponding to the point d of the divisor g on the compactification of the curve (6).

Furthcr we will check that the curve (6) and the hylrcrsurfa @ f" : O have no
common asymptotic lincs and thcrcforc thcorem 27.7.11 is appticable.

According to the curve theorem (step n-A), for the non-cancellable vector
N * Q the number of points in the divisor to which asymptotic lines of degree
N correspond equals s(N)/llNll. Using the homogeneity of the support function
H7., we obtain

L s@)no,{p),
ilp1=r

where the sum in the right-hand side is taken ovcr the vector p of the form
p = N/llNll, while N is an uncancellable non-zero vector with integer co-
ordinates.

comparing formulas (7) and (8), we sec that the number of solutions of thc
system (5) equals nt.V(/ ,, . . . , /nl.

27.&4 In the argument just carried out, it was assumed that the system (6) is
compatible. If the system (6) is not compatiblg then of course the entire system
(5) is not either. On the other hand, if the system (6) is not compatible, then,
according to lhe curve theorem, all the numbers S(N) vanish and, using the
inductive formula lor mixed volume, we see that the numtrer nlV(l ,, .. . , zf 

") 
atso

vanishes.
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27.&5. Thus to conclude step n-B it rcmains to check the absence of common
asymptotic lincs of the curvc (6) and the hypersurfa@ f,:0. The relations

Iw@$D=...= l^-r.n@(D =0 hold on the asymptotic line z(tl:ctil (see

Irmma 27.6.61. If the line z(t) is an asymptotic one for the hypcrsurfa@ f.: O,

then among thc solutions of thc system of n equation in n unknowns /rr = ... -
Ln : O we can find the curve z(r). This contradicts the fact that this system is
non-degenerate, since a non-degenerate system of n equations in n unknowns
can only possess discrete roots. Step n-B has.been carried out.

27.9. Ttrle Curve Theorem.

27.9.1.|n order to begin stcp n-A, let us find the number of asymptotic lines
ofdegree(-r,0,...,0),wherelisanaturalnumber,foradegeneratecurve.Such
asymptotic lines correspond to intersection points of the curve with the plane
zr:0 in which the other coordinatc functions z2t...t z" do not vanish. The
number of intersection points can bc computcd by using the theorem on thc
numhr of roots in (n - lldimensional space. Let us bcgin carrying out this
outline.

27.9.LDenote by { the vector (- 1,0,...,0) and by G the hypersurface in C"
determined by the relation zr:0, z2*O,..., z"* 0. The hypersurface G is
isomorphic to the space (C\Of -t with coordinates 22, ...,2n.

The Laurent polynornial / cannot always be restricted to the hypersurface
G. To do this it is necessary that / contain no monomials containing z, in
negative powers. lf the polynomial / contains only monomials with positive
powers ofz,, then the restriction ol f to G equals zero.

Wc shall say that / is arrangled with respcct to 2,, if it contains no monomials
with negative powers of 2,, but contains monomials possessing of zero degree
with respect to 2,. Every Laurent polynomial may be arranged with respect to
z, by multiplying it by an appropriate power of the variable 2,. This does not
change the zero level surface of the polynomial in (A - 0f, while the Newton
polyhedron is moved parallel to itself.

Denote by 9 the restriction of the Laurent polynomial arranged with respect
to zr, to the hypersurface G, so lhat g(2r,...,2,1 : f(O,22,...,2,). The Newton
polyhedron of the polynomial g coincides with the support face /, of thc Newton
polyhedron of the polynomial / along thc vector (. The truncation d of the
function / along the vector ( does not depend on the variable z, and has the
same restriction to the hypersurface G, namely dl, ,=o : f 1,,=o : g.

27.9.Ll,emme.Suppose the Laurent polynomials fr,...,fi,k d nare arranged
withrespect lo the oariable z, and the system fi : ... : fi: 0 is l-non-degenerate
(strongly /-non-degeneratel in (C - 0) . Then the restrictions g, of the functions
f,to the hypersurface G constitute a tr-non-degenerate (strongly l-non-degeneratel
system gt 9t: O in (C - 0y-t (he space (C - 0f-t is realized as the
hypersurfo<'e G).

Proof.Firsl lct us prove that the system gr .4r:0 is non-degenerate

197
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in (C - 0f -' = G. Consider the auxiliary system rr L, in (C - 0)'. The
auxiliary systcm does not in fact diller from the original one: thc only differencc
ir that the auxiliary syrtcm ie conridcrcd in a rpaco of dimcncion lcgs by ono. but
thc functions,[q do not depend on the extra variable z, and thc restrictions of
these functions to th€ hyperplane zr : 0 coincide with the functions eis. Clearly
thc auriliary system is non-degencrate at thc same time as the original one. But
thc auxiliary system is noo-degenerate by assumption. In a similar way, onc
provcs thc nondcgcneracy ofall thc truncations ofthc systcm gr er: O:

in fact they do not dillcr from the spccially chosen truncated systems1l",

.[ = 0 in (A - 0f, which werc non-degenerate by hypothesis. Lrmma 27.9.2 is
proved.

Denotc by Zthe hypersurfaoe in C'detcrmined by thccquation 22....;2, : 0.
Consider the set ,4 defined in C' - I/ by the system

rt = ... = L_t : o. (g)

in which J is a Laurent polynomial arranged with respect to zr with Newton
polyhedron .d,.

27.9.3. lrmma. If the system(91 is <nmpatible and strongly l-non-degenerate,
then the set A is an analytic curue in C'- n. This curue intetsects the hyper-
surlace G transuersally, where G is determined in C, - II by the equation zt : O.

The number of iilersection Wints of the cunse A and the hypersurface G equals
s(o.

Proof. The spacc C' - I/ is the union of the space (A - 0f and thc hyper-
surface C. At thc points of the sct z{, contained in (C - O)", the differentials of
lhc functions Ir, ..., f,-1 are linearly indepcndent (by definition of /-non-
degencracy). ln a neighbourhood of these points, according to the theorem on
implicit functions, the set z{ is an analytic curve. Now consider the points of the
set z{ fl G. These points satisfy the system zr : O, fi : -.. : fn-r : O, z z # O, -..,
z, # 0. Substituting zr :0 into the other equations, we obtain the equivalent
systemfr g"-r :0, zr*O,...,2n*0. Accordingto kmma 21.9.2this
system is strongly /-nondegenerate. The number of roots of this system, accord-
ing to the theorem on the number of roots (obtained in step (n - llB of thc
proof) equals S(O. At the roots of the system, the restrictions of thc differentials
dIt,..., df"-t to thc plane Zr : 0 ar€ linearly independent. Indeed, dfi,,=s : dgb
while the independence of the dillerentials dg, at the roots of the system was
proved in Lemma 27 .9.2. Therefore, first of all, in a neighbourhood of points of
the set / O G, we can also apply the implicit function theorem, so that the set z{
is an analytic curve. Secondly, this curve intersects the hypersurface G transver-
sally. Lrmma 27.9.3 is proved.

27.9.4. Lcmms,. II S(11 + O, then any strungly l-non-degenerate syil?m ft :"' : f,-r : O is compatible in (C - 0)'.
lndeed, according to lhe fheorem on the number of roots, the set ,{ fl G is

non-empty in this case. However, near every point of the set / n G the system is
compatible in (C - 0)'according to the implicit function theorem.
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2i1.95. Lemmr . The curoe B determined in (C - 0l' by the compatible /-non'
ilegenerate system f, f"t = 0 has no asymptotic lines of degree l4where
l> I and ( - (- 1.0.....O). The asymptotic llncs ol degree ( are sualght llncs
parallel to the lirst coordinate axis determined hy the sy$em fi ( : ' ' ' : f^-t,q, : O.

Their number is equal to 5(6).

Proo!.Weshall assume that the Laurent polynomials/,,. '.,.f,-, arearrangcd
with rcspect to thc variable z, (in the converse cas€ they must be multiplied by

the appropriate powers of thc variable zr ). Consider the auxiliary non-compact
curve /4 determined by the system fr = "' : f"-t : O, zt * O, ..., 2n# 0. The

curve / contains the original curve ,{ and dilfers from it by the finite set I n G:

The vector function 2 = (21,...,2") has no poles on the non-compact curvc /
and the coordinatc functions z r, . . . , z^do not vanish on it. Therefore the divisor
of thc vector function z on the curve ,'l consists of those points of the set I fl G
where the function zr vanishes. According to lrmma 27 .9.3, the numbr of these

points is equal to 5(6). According to the same lemma, the curve / intersccts the

hypersurface G transversally, therefore at these points the function z1 has a lirst
ord6r zero. Thcrefore, to the points of the set ,{ O G correspond asymptotic lines

ofdegree ( = (- 1,0,...,0). Clearly thcse lines are straight lines into which thc
sct determined in (C - 0f by the system /,, .fo-r.<:0 falls apart. Lct us

show that the asymptotic line of degree l( for I > | cannot correspond to any

'point at infinity" d added to the curve,,l under compactification. Indeed, in the
converse case we would have the expansions zr : aru' * "',2z : az *
z. : a, -l ' ' '. in a neighbourhood of thc point d. The vector function z is defined
at the point d,z(dl: (0,or,...,a,), however z(dl(n. We have obtained a con-
tradiction with property 3l in 27.6.3.ln order to conclude the proof, it remains

to noticc that the curve z{ and the original curve B have the same asymptotic
lines. This follows from the uniqueness of compactification: the compactification
of the curve z4 is also the compactification of the original curve B.

27.9.6. Now we come to the conclusion of step n-A. To carry it through, let

us find the numhr of asymptotic lines of degree N : lq of the curve in (C - 0)'.

ln this subsection I denotes a natural numhr, while 4 # 0 is a non-cancellable

vector with integer coordinates. By using a special monomial coordinate trans-
formation, the general case may bc reduced to the case of the vector 4 : C :
(- l, O . . . ,0) considered in the previous subsection. Since such coordinate trans-
formations play an important role in the theory of Newton polyhedra, we shall

dwell on this in more detail.

2?.9.7. Consider two copies of the space (C - 0)': the space (C - 0)i with
coordinate functions z s, . . . , za and the space (C - 0)i with coordinate functions
wr'.." w'.

The map (A - 0)i - (C - 0)l defined by the formulas

zl : wTtt ..-.'l'u.e t'

z, : wl't'.. .' w"G"
(t0)
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whera {qrr} - 0 is a unimodular matrix (a matrix with integcr entries and
dctcrminant I ) is snid to bc a monomial tansfttrmatlon and is briefly denoted by
thc formula z: wQ.'I'he transformation (10) is invcrsible: thc invcrsc trans-
formation is of the form w - zQ ' .

The monomial transformation z: wo sends any monomial curve w: at'r

into the monomial curve z : 4Q1QN, the degree vector N undergoing a linear
transformation with matrix Q. The degrees of the monomials arc transformed
by the dual transformation: lhe monomial z' becomes the monomial ,o", where

Qr is the matrix dual to the matrix p. The Laurent polynomial f(zl:lc^z'
under monomial transformation z = wo becomes the Laurent polynomial

Lr-r&'-. The Newton polyhedron / is transformed then into the Newton
polyhedron Q'l. It is easy to check that under monomial transformations
nondegeneracy, /-nondegcneracy and strong l-non-dcgeneracy of systems of
Laurent equations is preserved.

27.9.& Lemm* Suppose the curve A has a unique asymptotic line z(tl: s2x

and the curue B is obtained from the curue A by the monomial transformation
z : wQ. Then the cunse B has a unique asymptotic line w(t) : sQ't 1Q 

tn,

The statement of Lemma 27.9.8 is intuitively clear: under the monomial
transfnrmation z : wQ the monomial curve z(tl: atu becomcs the monomial
curve w(t):6Q'1Q'f. For a formal proo[ it is useful to make the following
remark: if the triple (f,D,zl, where /- is a compact curve, z a vector function on
it and D its divisor, determines the compactification of the curve l, then the triple
(1, E, w), where w is a vector function on ,l- such that z = wQ and E is its divisor,
determines the compactification of the curve B and D : E.

T1.9.9. l*mmr,. For any two non-cancellable non-zero oectots with integer
coordinates there exisls a unimodular matrix sending one of these oectors into the
other. In pdrticulur, fir the gioen non-cancellahle uector q ond the oecbr e:
(- 1,0,...,0), there exists amatrix Q such that 4 : Qe.

We omit the proof of the arithmetical lemma27.9.9.
Now suppose z{ is the set determined in (C - 0)l by the strongly /-non-

degenerate system /, f^-r : 0with Newton polyhedra /t,..., /n-, and
4 is a fixed non-cancellable vector.

27.g.l0.Irmma. If the numher S(4) is not zero, then the set A is non-empty. A
non-empty sel A is an analytic curoe. This cunte has no asymptotic lines of degree
14 fir l> l. The number of asymptotic lines of the curue A o! degree 4 equals
S(ry)/lltlll. These asymptotic lines are the connectiuity components of the sets
determined in (C - O)" by the system

frr:"':I-r.n:0. (l l)

Prool, Consid er the monomial transformation z = wo where Q is a unimodular
matrix sending the vector( = (- 1,0,...,0) into the vector4, q = Qe. Under this
transformation, the set z{ is mappcd into the set I determined by the system

fr(*ol:...:fi-Jwa):0 with Newton polyhedra Zr=Q./r, ..., Z,_r:

t_l
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Qlttl.-t.Thc asymptotic lines of the curve ,4 of dcgree 14 correspond to the
asymprotic lincs of thc crrrvc ll of dcgrce l( nnd we can lpply the rcsults of Lemmo
27.9.5. To cornplctc thc proof of Lcmma 27.9.1O, it rcmains only to transform
the answe r: the number of asymptolic lines of curve z{ of degree rt, according to
the resutts oI 27.9, is equal to 3(O = (n - l)! V,-r(lrc,...,Z,-r.c). To transform
the answer, we shall require a simple lemma lrom linear algebra.

Suppose Q: Rn + Rn is a linear translormation of Euclidean space Ro preserv-
ing volume (i.e. detQ: l). Suppose Lc R'is some ft-dimensional subspace
and M is its image under the map Q.The dual transformation Q* scnds the
orthogonal complement Mr to the subspace M into the orthogonat complement
Ll to the subspace L and we have the following

27.9.11. [rmmr. The transformation Q: L- M increases the k-dimensional
wlume element u numher of times equal to the number of times Q. diminishes the
(n - kldimensional uolume element (in the tansfotmotion Q.: Mt - Lrl.

Applying Lemma 27.9.11 to our situation, choosing L to be the one-
dimensional subspace spanned by the vector (, we see that the operator Q sends

I into 7, i.e. increases length on L llryll times. It follows from Lemma 27.9.11 that
S(O : sltlyllryll, as required to transform our answer.

27.9.12. Now, in order to conclude step n-A, it remains to check the
compatibility condition of the strongly l-non-degcnerate system (9). We saw
above that if at least one of the numbers S(N) for N * 0 is not zero, then the
implicit function theorem, together with the theorem on the number of roots,
proves the compatibility of the system. It remains to check that we have the
following

27.9.13. lemma. For a compatihle system ol equations (lll, there is a uector
tt * 0 such that S(il * O.

Proof.lI all the oumbers S(4) are zero, then, according to Lemma 27.9.10, the
curve (ll) has no asymptotic lines at all. Tbis is impossible since the vector
function z : (z 1,..., znl on a compactification of the curve (l I ) has a non-zero
divisor (any meromorphic function on a compact curve other than a constant
always has poles). Lemma 27.9.13 is proved.

27.10. Genenl (Typicrl) Systems of Algebraic Equaiions In this subsection
we show that a general system of equations with fixed Newton polyhedra is
strongly ,f-non-dcgcnerate (Theorem 27.7.51 and point out certain sharpened
versions.

27.10.1. Suppose S is a finite set of points with integer coordinates in Ro
containing .s elements. The set of Laurent polynomials with support S may be
identilied with the s-dimensional spacc of coemcients in (A - 0f. To do this to
each Laurent polynomial/ :lncnz'we assign the set of its coellicients {c,}.
We shall say that the property is valid for almost all Laurent polynomials with
support S if it holds for polynomials corresponding to the points of the space of
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coefficients (C - 0F not cootained in any excluded subset of ?r;ro measurc. We
shall say that a certain property holds for almost all Laurent polynomials with
given Ncwton polyhedron /, if it holds for almost all Laurent polynomials with
support equal to the set of integer coordinatc points of thc polyhcdron l. ln a
similar way, we define what is mcant by a propcrty holding for almost all l,aurcnt
pof ynomialefi , . . ., fi with givcn Ncwton polyhedra /,, . . ., I 1 or, inmorc gcncral
terms, with given supports Sr, . . . , S..

nJ0.L Lemme. Suppose all the supports S,, . . . , $, contain the origin. Then
lor almost all Laurent polynomials ,fr,...,f, with these supports the system
ft = "' = Ir: O is non-degenerate.

Proof. Sinen the support S, contains the origin, the Laurent polynomial I
contains a non-zero constant tcrm cr rr 0. For any numbcr o1 * cr, the Laurcnt
polynomiall - a, has the same support d. Further for a lixed system of functions
fr,,.., f, for almost all finitc sequen@s of numbcrs o11 ,..; or thc systcm
fr: at,..., h: a. is non-degenerate. This statcment is ihe contint of Sard.s
lheorem (a simple proof of this thcorem may be found in the book tMil 3l).
lrmma 27.10.2 follows from this statement.

n.l03. Thcorem. For almost all Laurent polynomials fr, . . . , f, with supprt
St, ..., S. the systemf, ,f, : 0 is strongly l-non-degenerar" i, (C - bf.

Proo/. strongly. /-non-degeneracy consists in the non-degeneracy ofthe finite
number of systems of equations which are various truncations of various sub.
systems of the given system of equation. Each olthese systems in non-degencratc
almost everywhere. Indced, ifthe supports ofthe Laurenr polynomials Jfsuch a
system contain the origin, this follows lrom Lemma 27.lo.2.If thcy don't contain
the origin, then the Laurcnt polynomial system may be modified by appropriate
monomials so that their supports contain the origin. The multiplication of thc
Laurent polynomial by a monomial moves its support parallel to itsetf bur doca
not influence the disposition of the roots ofthe system ofequations in (c - 0r
and thcir non-degencracy. Theorem 27,1O,3 is proved.

ln the sequel we shall necd the more general

27.10.4. Theorem- Suppose gr:...:gr:O is a lixed l-non-degenerate
(strongly l-non-degenerate) system ofequations in (C - 0)" and S, , . . . ,Sri afixed
lamily of supports. Thenfor almost all Laurent polynomialsfr,...-, frwith suipotts
St,...,S.tlresystemf, :... : fi: gr : :0is/-non-deginerate(stringly
/-non-degenerate).

The proof of theorem 27 .10.4 is an almost word for word repetition of that
of rhcorem 27.10.3. It is only necessarily to change the statcment of Lcmma
27. 10.2 (and in its proof to apply Sard's theorem to the syst em f , : a 1,. . ., f1 : a,
on the manifold g, : : 0 in (C - 0)'I

rnl0s. Rcmark. Theorems 27.10.3 and 27.1o.4 may be strengthened: their
conclusion is valid not only outside a sct of zero mcasure in the space of
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coemcients but outside a proper algebraic subset of the coellicient spacl. To
prov€ this strengthening, one must replaoe the referenct to Sard's theorem by a

referencr to Bertini's thcorem (see [Hat, p. 179,274I.

27.11. Curves on Algebrrh Surfice. ln this subsection wc give an exacl
statcmcnt of thc llodge indcx theorem.

2T.ll.l.Delinition A compact complex manifold of complex dimension two
is called a non-siry1ular algehraic surface if it can be embedded into some complex
projective space.

.27.11.L Example. In n-dimensional projectivc space consider a system of
n - 2 homogeneous polynomial cquations. If the dillcrentials of thcsc cquations
are indcpendent at all thc roots ofthc system, then the set ofroots ofthe systcm
constitutes a non-singular algebraic surfacc.

n.lls.l)efinition. A non-singular e.llectioe crrrtre on an algcbraic surface is a
one-dimensional complex submanifold on it. An etfectioe curue is by definition a
singular one-dimensional submanifold, i.e. a closed subset on the surface which,
in the neighborhood of each point, except a linite number of (singular) points, is
a one-dimensional submanifold.

2l.ll.4 To any two ellective curves /-, and f, on the surface we can assign
the integer (lr,fz) called the intersection index of the curves I, and I-2. A
detailed definition of the intersection index may be found in the book [Mum].
lct us point out the following properties of the index.

27.115. Properties. l) Symmetry: (fr,Fr) : (I-z,lr).
2) Discreteness: if the curves /-r(a) and li(b) depcnd continuously on thc

parameters a, b then their intersection index is constant: (fr@\ f2(b)) : const.
3) The intersection index oftwo curves which intersect transversally is equal

to the number of intcrsection points of thesc curves.
In a majority of cases properties t)-3) are sullicient for the computation of

the intersection index.

27.11.6. Example. The self-intersection indcx of a curve of degree m on the
projective plane is equal to n2. lndeed, consider two copies of the samc curve,
given by a homogeneous polynomial equation of degree m. Let us change thc
coelficients of the first copy of the curve slightly. According to property 2), thc
intersection index of the first and second copy of the curve do not change.

Changing the coellicicnts, we can assumc that the two copies of thc curve intersect
lransversally. The number of their intersection points, according to the B6zout
theorem, is equal to nr.

27.11.7. Formal finite linear combinations with rational coemcients of effec-

tive curves on the surface F constitute linear space L(FI.
The intersection index of effective curves can be extended by linearity to

elements of the space L(fl. Then for a connected non-singular algebraic surfae
F we have the following theorem.

t
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27.llt Theorem (the Hodge index theorem [Mum]). The intersection index
determines a hyperbolic form on the space L(F).

27.11.9. Corollrry (the Hodge inequality). For any curve /-, with positive sclf-
intersection index and any other curve /-, we have the inequality

(fr, lr)2 > <rt, rr> <r2, r2>.

The Hodge inequality automatically follows from the Hodge index theorem
(sce propositio n 27.2.31.

27,ll.l0. Remrk. The space L(fl is infinite-dimensional. Thc intersection
form has vcry large kernel J(F) in the space L(F[ according to the Severi-Neron's
thcorem the kernel has finite codimension in L(F). The intersection form is
usually considered on the finite-dimensional space D(F) : L(ryJ@).The follow-
ing stat€ment of the Hodge index theorem is morc popular. The intersection
index determines a non-degenerate hyperbolic form in the finite-dimensional
space D(F).

27.ll.ll. Remrrk. Two completely dilferent proofs of the Hodge index
theorem are known. Onc proof uscs complex analysis and topology. It is bascd
on the existence of the Hodge decomposition in cohomology of algebraic
manifolds. This proof is generalized to non-algebraic complex analytic surfaces
possessing a Kahler metric. The other proof s algebraic. It is based on a purely
algebraic technique and can be generalized to algebraic surfaces defined over
algcbraically closed lields (and not only over the field of complex numbers). A
complex-analytic proof of the Hodge theorem may be found in the book [Wel],
the algebraic proof in the book [Mum].

2T.lLToric Compactificetion of Spoces In this subsection we give the neces-
sary information on toric compactification without proof. Detailed definitions
and proofs may be found in the article [Kh l].

2l.lLl.Projective space CP'is a compact manifold containing Cn. It possess€s

the following remarkable property: the closure in Cf" of an (n - ft)-dimensional
manifold defined in C" by the general system of polynomial equations /,
ft = O of degrees tnlt ;. .t m* is a non-singular compact (n - lcldimensional
submanifold in CP'. In this subsection we consider the toric compactification of
the space (A - 0f. The toric compactification is constructed on the basis of
polyhedra with integer vertices 2r,...,1.. It possesses a similar remarkable
property with respcct to (n - &|dimensional submanilolds in (C - 0f deter-
mined by l-non-degenerate systems of equations/, ,[ : 0 wittr Newton
polyhedra 1r,..., Ar.

27.1L2. Delinition. The finite-generated semigroup of integer polyhedrais the
set I of all polyhedra of the form / :ltk{ (where the ft, are non-negative
integers and {/,} is a finite family of basis polyhedra) supplied with the Minkow-
ski addition operation.

To any finite-generated semigroup.S we can relate the torical compactilica-



g27. Addendum 3. Algebra and Mixed Volumes ns

tion Ms of the space (C - 0)'; its construction is described in the book [Wel].?
It shall not need the actual construction of the compactilication Ms but only
some of the properties of Ms, which we give here without proof.

27.123. Properries. l) M5 is a non-singular n-dimensional compact complex
analytic manifold.

2) The manifold Ms contains (C - 0)'. The complement M s - (A * 0)" is the

union of a finite number of "hypersurfaces at infinity" Q, Mt * (C - 0f : U O,.

All the hypersurfaces Q are non-singular and interscct each other transversally.

3) The manifold M y may be imbedded into somc multidimensional projective

sPace.

27.1L4. Comprctilicrtion lheorem (see [Kh l]). Suppose the (n - k)-

ilimensional manifold X is defined in (C - 0)' by a l'non-degenerate system of
equations ft f, whose N ewton polyhedra are contained in the semigroup E.

Tlpn the closure * of the mandold X in the compactfuation M2 is a non-singular

nunifolrt transoersally intersecting all the"surfoces at inlinity" Oi.

We shall need the following more special

27.l2l.Propocition Suppose f, and f2are the closures in Ms of two curves

A, and Ardefined in (C - 0)' by a l-non-degeneratc system ofequations whose

N€wton polyhedra are contained in I. The curves /-t and I have an intersection
point at infinity (i.e. /-t O f2 + ArO,42) if and only if the curves /, and z{2 have

common asymptotic lines.
The statement can easily be derived from the construction of the manifold

M2 (see [Kh l]).
Let us state without proof one other general theorem concerning Newton

polyhedra.

nJL6. Thcorem (tKh 2l). A manifokl determined in (C - 0f by a /'non'
ilegenerate system olequationsfr ; " ' : fi: Outith Newton polyhedra /t,...,1,
is connected under the condition that the number k of equations is strictly less than

the number unknowns n and all the Newton polyhedra /,haae complete dimension,

i.e. dim /,: n.

27.13. Algebraic Proofofthc Alexendrov-Fenchel Inequality. Here we dcvelop
in more detail the algebraic proof of the Alexandrov-Fenchel inequality, whose

outline was given in subsection 27.1.4.

Further /r, ..., ln are fixed Newton polyhedra of complete dimension, I is

the semigroup generated by these polyhedra and Ms is the toric compactification
of the space (A - 0f related to the semigroup X.

27.13.1. [,et us construct a certain algebraic surface F and a family of curves

{4} on it. We begin by constructing the surface F. Fix the Laurent polynomials

?To bc more precise, to the scmigroup I wc can rclate many compactifications which arc "sulliciently
complete" for ^t. By Mr we undcrstend any one of thcm.
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Ir, . . . , f, with Newton polyhedra l!, . . .,lo so that the system

fc : "'t :0 (t2l
is strongly l-non-degenerate in (C - 0)'. (According to Theorem 27.10.3 almost
any family of Laurent polynomials with fixed polyhedra possess a strongly
l-nondegenerate system, of equations). Denote by F the closure of the set of
solutions of the system (l'2) in M2. According to the compactification theorern
27.12.4, F is a non-singular algebraic surface. According to the theorem 27.12.6
the surface F is connected.

Define the curves .li on the surface f. For any Laurent polynomial /
denotc by /i the closure on the surface F of the s€t of solutions of the system
f:ft:...:f,:o.

27.13.L Lcmme. Ilthe polyhedron / is containeil in the semigroup Z, thenfor
almost all Laurent polynomials I with Newton polyhedron / the set F1 is a
non-singular curue.

Proof . For almost all / with Newton polyhedron / the system / : !! : . . . :
"f, 

: 0 is strongly l-non-degencrate (sce the theorem 27.7.5). According to the
compactification theorem, if the system is /-non-degenerate, then the set Ii is a
non-singular curve.

27.133. Propooition. If the Newton polyhedra /, and /^ of the Laurent
polynomials g and h are contained in the semigroup E and the curoes f, and I-, on
the surface F are non-singular, then the intersection index ol the curues f" and f^
is equal to nl V(/r, lr,, /t, . . . , l,).

Proof. We shall say that the Laurent polynomials g and h with Newton
polyhedra l, and l, constitute a nice pair if the systerns of equations

g: -ft: "':r:0
h: ft:... : L:0

e : h: ft:... : f,: o

(13)

(14)

( l5)

are all strongly /-nondegenerate in (A - 0f. According to theorem 27.7.5,
almost all pairs of Laurent polynomials with fixed Newton polyhedra are nice.
For a nice pair g, h the curves delined in (C - 0)" by the systems (13) and (14)
have no common asymptotic lines (in the converse case the system (15) will be
degenerate). Therefore for any nice pair g, h the curves .e and Ii have no
interscction points at inlinity (see the proposition 27.12.5). Thus for a nice pair
g and h thc numbcr of interscction points of the curves { and f1 is equal to thc
number of roots of the system (15) in (C - 0)". According to th€ theorem on the
number of roots, this numbcr equals nl V(lr, /r, /3,...,1o). Since the system (15)
is non-degeneratg all the intersection points of the curves F, and lrare simple
(i.c. the curves .{, and .1-r intersect transversally). Hence the intersection index of
the curves f, and lrfot a nice pair g, h equals n ! V(/r, /s,lt,. .. , /,). If the curves
f, and /i are non-singular, then the Laurent polynomials g and h do not
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necessarly constitute a nice pair (for example, il g : h)' then, having slightly

changed the coellicients of Laurent polynomials g and h, we can assume that the

slightly changed pair has become nice. The proposition is proved €ntircly, sinc€

the intersection index of curves does not change in their deformation'

27.13.4. Theorem. For polyhedra'/r, -.., l^ of complete dimension whose

oertices haue integer coordindtes the Alexandrott-Fenchel inequality hokls.

prool. consider the surface f defined at the beginning ofthis subsection. This

surface is connected, hencc we can apply the Hodge index theorern to it. On the

Laurent polynomials with Newton polyhedra /, and d2.The curve 4, has a

positive self-intersection index on the surface F: according to our statement

(l-1,,11,): nl'V(/r,/2,/s,...,/,), while the mixed volume of a body of com-

ptiti rii'nrension is positive. (Obviously, the curve /i, also has a positive self-

intersection index). Hence we can apply the Hodgtinequality (ft,,lt)'2
(\,, 11) (11,, ly,). Substituting it into the inequality for the value of the inter-

seition inai&i and self-intersection indices of the curves fr, and /i,, we obtain

v 2 (/ t, / 2, / r,. . ., /,1 > v (/ t, I t, /3,. .., l.)V (/ 2, / 2, / r,. . ., l"l.

The theorem is Proved.

27.13.5. Corollrry. The Alexanilrou-Fenchel inequality hokls lor arbitrary
conoex bodies.

proof.lt follows from the theorem that the Alexandrov-Fenchel theorem

holds for polyhedra of complete dimension with vertices at rational points (by a

change of units we can always assume that the vertices are located at integer

pointi;. To complete the proof, it remains to refer to the continuity of mixed

volume.


