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§27. Addendum 3. Algebra and Mixed Volumes
(A. G. Khovanskii)

Here we discuss the recently discovered intimate relationship between the theory
of mixed volumes and algebra. This relationship enables one, in particular, to
give an algebraic proof of the Alexandrov-Fenchel inequality, supplementing the
ones known earlier.

27.1. Outline of the Algebraic Proof of the Alexandrov-Fenchel Inequality. We
first describe the outline of the proof; in subsections 27.11-27.13 the proof is
developed in detail.

27.1.1. To every monomial of the form cz{'...z in n complex variables
z,,..., 2, with complex cocfficient ¢ we relate the point with integer coordinates
m = (m,,...,m,)in the space R". It may be viewed as the power of the monomial.
By a Laurent polynomial we mean a finite sum of monomials in which the integers

" m; may be both positive and negative. By the Newton polyhedron of a Laurent

polynomial we mean the convex envelope in R" of all the points with integer
coordinates corresponding to all the monomials which appear in this polynomial
with non-zero coefficients.

In this subsection we will agree to consider only polynomials with non-zero
constant term. The Newton polyhedra of such polynomials contain the origin.
The relationship between algebra and the theory of mixed volumes is established
by the following theorem concerning the number of roots [ BerD].

27.1.2. Theorem (on the number of roots). The number of complex roots of the
general {typical) system of polynomial equations P, =0, ..., P, =0 with fixed
Newton polyhedrons 4, ..., 4, is equal to the mixed volume of the Newton
polyhedra multiplied by n!.

27.1.3. Remark. It is not necessary to assume that all the polynomials P, have
a non-zero constant term. The theorem will remain valid in the general case if,
instead of the number of roots, we compute the number of complex roots all of
whose coordinates are non-zero.

27.1.4. The key role in the sequel is played by the Hodge inequality, well in
algebraic geometry. Here is the statement of this inequality. Suppose 7 and I,
are two complex curves contained in a compact complex algebraic surface F.
Suppose the index of self-intersection® of one of these curves is positive. Then we
have the following Hodge inequality

T2 2 L LU D,

where (1}, I, is the intersection index® of the curves I'; and I3, while (I}, ;)
and (I3, I'; ) are the self-intersection indices of these curves. Recall that the index
of self-intersection of the curve is defined as the index of intersection of the curve

©See 27.11.4-27.11.7.
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with its second copy obtained by slightly deforming the original, making the
intersections transversal.

27.1.5. The Alexandrov-Fenchel inequality can be deduced from the Hodge

inequality and the theorem on the number of roots. Let us indicate how this is
"done. '

Consider a non-compact algebraic surface defined in C" by a general system
of n — 2 polynomial equations P, =0, ..., P, = 0 with Newton polyhedra 4,,
..., 4,. On the surface consider two curves A, and A, defined respectively by the
general polynomial equations P, = 0 and P, = 0 with Newton polyhedra 4, and
4,. The number of intersection points of the curves A, and 4, on our non-
compact surface is equal to the number of solutions of the system of equations
P, = P, = Py = --- = P, = 0. This number, according to the theorem on a num-
ber of roots, is equal to n!V(4,,..., 4,). Together with the curve A, consider a
slightly deformed copy of this curve A}: the curve A is defined by the equation
P, = 0 which contains the same terms as the equation P, = 0 but with slightly
changed coefficient {in particular, the polynomials P, and P; have the same
Newton polyhedron). According to the same theorem, the number of intersection
points of the curve A, with the curve A equals n'V(4,,4,,4,,...,4,). Similarly -
we can construct the curve A) for which the number of intersection points with
the curve A, equals n!V(4,,4,,45,...,4,).

The next step consists in the compactification of the non-compact surface
Py=P =--=P,=0.

There exists a special compactification of this surface for which the closures
I, I, I'y, I3 of the non-compact curves A4,, A}, 4,, A3 have no “points at
infinity™ as intersection points. The absence of “points at infinity™, where the
curves I, = A, and /7 = A/ intersect, means that ;N 1y = A, N A}; a similar
relation holds for the other pairs of curves. Therefore, the intersection index and
the self-intersection index of the curves 7 and I, are determined by the formulas

NI =nV(d,,4,,44,...,4,)
L) =nV(d,,4,,44,...,4,)
{3, 13) =nV(d,,4,4,4,,...,4,)
Substituting these formulas into the Hodge inequality, we obtain the Alexandrov-
Fenchel inequality for the polyhedra 4,, 4,, ..., 4,:
Vid4,,4,,...,4,) 2 V(4,,4,,4;,...,4)-V(d;,4,,45,...,4,)
27.2. Hyperbolic Quadratic Forms. The Alexandrov-Fenchel inequality re-
sembles in form the Cauchy-Buniakovski inequality except that the signs of these

inequalities are opposite. In this subsection we consider hyperbolic quadratic
. forms, for which the reciprocals of the Cauchy-Buniakovski inequalities hold.

27.2.1. A quadratic form is said to be hyperbolic, if there exist vectors on which
it assumes positive values but there exists no two-dimensional plane on which it
is positive defined. :
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*27.2.2. Example. The quadratic form x} + - 4+ x? — x%,, — -+ — XA, de-
fined in real space of dimension n > [ + m with coordinates x,, ..., x,, is hyper-
bolic if and only if I = 1.

27.2.3. Proposition. Suppose B is a symmetric bilinear form for which the
quadratic form Q(a) = B(a, a) is hyperbolic. Then for any positive vector x (i.e. for
any vector x satisfying B(x, x) > 0 and any vector y we have the reciprocal Cauchy-
Buniakovski inequality

B*(x,y) > B(x,x)B(y,y). (n

Proof. Consider the polynomial ¢ of the second degree in the real variable ¢
defined by the relation ¢(t) = Q(tx + y). The leading coefficient B(x, x) is positive
while the discriminant 4 equals 4[B%(x, y) — B(x,x)B(y, y)]. If 4 < 0, then the
polynomial ¢ has no real roots and the form Q is positive definite on the plane
generated by the vectors x and y (for 4 # 0 the vectors x and y are automatically
independent). By hypothesis, no such plane can exist. Therefore 4 > 0, which
was to be proved.

Let us show that inequalities of type (1) are not only necessary but also
sufficient for a form to be hyperbolic. Suppose K is a certain cone generated by
the linear space L (this means that any element z€ L can be represented in the
form z = x — y, where x and y are contained in K).

27.2.4. Proposition. Suppose there exists an interior point x of the cone K
satisfying B(x, x) > 0 and for any vector ye K we have the inequality B*(x, y) =
B(x, x) B(y, y). Then the quadratic form Q(a) = B(a, a) is hyperbolic.

Proof. Consider the hyperplane M, B-orthogonal to the vector x (the inclusion
ze M is equivalent to the relation B(x,z) = 0). Let us show that the restriction
of the quadratic form Q to the hyperplane M is non-positive. Indeed, suppose
there is a vector u in M such that the form Q is positive. Then the form Q is
positive definite on the plane generated by the vectors x and u. Fof any vector
y {from this plane) non-collinear to the vector x, we have the Cauchy-Buniakovski
inequality B2(x, y) < B(x, x)B(y, y). Such a vector y may be chosen in the cone
K, since x is an interior point of the cone. We obtain a contradiction with the
hypothesis of the proposition, thus showing that the form Q is non-positive on
the hyperplane M. Any two-dimensional plane intersects the hyperplane M.
Therefore there exists no plane on which the form Q would be positive definite.
Proposition 27.2.4 is proved.

27.2.5. Let us return to the Alexandrov-Fenchel inequality. Convex bodies
do not constitute a linear space. It is impossible to subtract them. The formal
differences of convex bodies already constitute a linear space, while the set of
convex bodies are a cone in this space.

The mixed volume is defined for a cone of convex bodies. By lincarity it can
be extended on the entire linear space.

Propositions 27.2.3 and 27.2.4 shows that the Alexandrov-Fenchel in-
equality is equivalent to the bilinear form defined by the formula B(a,b) =
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Via,b,As,....4,). where A,,..., 4,€ K are fixed convex bodies, being hyperbolic.
Hyperbolic forms appear in the theory of algebraic surfaces: the Hodge theorem
states that the interscction form of curves on an algebraic surface is hyperbolic.
This fact, together with the theorem on the number of roots, constitutes the basis
of the algebraic proof of the Alexandrov-Fenchel inequality.

27.3. Remarks on the Theorem Concerning the Number of Roots.

27.3.1. A few words on the disposition of the topics which follow. After some
historical remarks (in this subsection) and the introduction of a series of notions
in subsection 27.4, the subsections 27.5-27.9 will give the proof of the theorem
on the number of roots. The outline of this proof is the following. The system
P, =--- = P, =0 is viewed as the intersection of thecurve P, =--=P,., =0
with the hyperplane P, = 0.

The theorem on the intersection of curves and hypersurfaces (see 27.5.5)
reduces (see 27.8) the problem of finding the number of their intersection points
1o the problem of finding the degrees of the asymptotic lines of the curves and
to the determination of their number. In 27.7 we state the curve theorem, which
enables us to find the degrees of asymptotic lines of the curve and determine their
number. The necessary information on the compactification of curves is given in
27.6. The proof of the curve theorem and the theorem on the number of roots is
carried out simultaneously (the sequence of required steps is described in 27.7.3).
The theorem on the number of roots in n-dimensional space reduces to the curve
theorem in n-dimensional space. The theorem on the curve in n-dimensional
space reduces the theorem on the number of roots in (n — 1)-dimensional space.
Here part of the asymptotic lines can be found directly (sec 27.9). In order to find
the other asymptotic lines, it is necessary to carry out an monomial transforma-
tion (see 27.9.4). In subsection 27.10 we prove the necessary statements on general

position properties.

*27.3.2. Historical remarks. Ferdinand Minding (1806 1885), Professor at

Derpt University, was the first to apply Newton polyhedra to the problem of . = ..

determining the number of solutions of a system of two equations in two
unknowns. Here we give an exposition of Minding's method.

Suppose f(x,y) =0, g(x,y) =0 is a system of two polynomial equations
in two unknowns. Minding excludes the unknown y from the system. In order

to do this, he considers a multivalued function y(x), determined by the equa-

tion f(x,y) = 0 and substitutes it into the second equation. The number of
branches of the algebraic function y(x) is equal to the degree of the poly-
nomial f with respect to the variable y. Suppose this degree equals k and
y1(x). ..., y(x) are the different branches of the function y(x). Multiplying all k
branches g(x, y,(x)) of the multivalued function g(x, y(x)), we obtain the function
p(x) = [ | 1<i<a9(x, yi(x)), which is already a single-valued function. The zeros of
the function p correspond to the roots of the given system. The algebraic function
p is single-valued and therefore rational. Moreover, if the curve f(x,y) = 0 has
no vertical asymptotes, then the function p(x) for finite x never becomes infinite
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and therefore is a polynomial. In order to determine the number of roots of the
system it is necessary to find the number of zeros of the polynomial p which
equals its degree. To determine the degree of the polynomial p, Minding proposes
the following method. Compute the leading term of the expansion of the branches
y:(x) of the function y(x) into a series of fractional powers of x (into the so-called
Puiseux series) as x — co. Then, having substituted the leading terms of the
expansion of y,(x) into g(x, y) compute the leading terms of the expansion of the
branches of g(x, y(x)) and determine their (fractional) degrees. The required
degree of the polynomial p is equal to the sum of the degrees of the branches of
g(x, y{(x)). This sum is always an integer.

Newton polyhedra have long been used in order to find the leading terms of
the expansion of algebraic functions into Puiseux series. Minding uses the
Newton polygon of the polynomial f(x, y) in order to find the leading term of
the expansion of the. branches y,(x). He notices that if the coefficient of the
polynomials f and g are not related by any special relation, then in the substitu-
tion into g(x, y) of the branch y(x) the leading terms do not cancel. Here the
degree of the branch g(x, y,(x)) depends only on the degree of the branch y,(x)
and on the Newton polygon of the polynomial g(x, y). In this case Minding finds
the formula for determining the number of roots of the system in terms of the
Newton polygons of the polynomial f and g. The geometric meaning of this
formula was unknown and became clear only in connection with the appearance
of the theorem on the number of roots [BerD].

Minding’s work was published in 1841 in Crelle’s journal [Min]. The discus-
sion which followed showed that Minding clearly understood the necessity of
general position for his formulas to be valid. Magnus gave an example contra-
dicting the Minding formula, see [Mag]. In his answer Minding showed that in
the Magnus example the non-degeneracy conditions did not hold.

Our method of proof of the theorem on the number of roots forn =2 is a
variation of Minding’s method.

*27.3.3. Minding’s theorem attracted the attention of such mathematicians
as Liouville and Hermite, but then was forgotten. The next step was carried out
a hundred and thirty years later by A. G. Kushnirenko. In 1975 he proved that
the number of solutions of a non-degenerate system of n equations in n unknowns
possessing identical Newton polyhedra is equal to the volume of this polyhedron
multiplied by n! [Kou 1, 2]. A. G. Kushnirenko’s proof uses the techniques of
commutative algebra and is rather complicated. In the same year of 1975 D. N.
Bernstein published the theorem on the number of roots [BerD]. His proof
is close to Minding's method. The outline of this proof is the following. It is
proposed to introduce the parameter ¢ into the system f, = --- = f, = 0 under
consideration and pass to the system f, =, f; = --* = f,_, = 0 (the roots z'(t)
of this system depend on the parameter t). When the parameter ¢ changes from
zero to infinity all the roots z*(¢) tend to disappear from the space (C — 0)" but
their number in the process of motion does not change. Bernstein proposes to
determine the number of roots of z/(t) for very large t by expanding them into a
Puiseux series with respect to the small parameter u = ¢!, First he finds the
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number of roots for which the Puiseux series are of the form Zi=aqu+-,
2y =ay+,..., 24 = a, + -, ie. for which the leading terms of the components
are respectively equal to 1,0,..., 0. It then turns out that the coefficients a,, ...,
a, satisfy a system in a smaller number of unknowns, whose number of roots is
known by induction. The determination of the number of roots of z'(u) with a
different asymptotic with respect to u, z} =a,uM +---, ..., 2, = au’ 4
reduces to the previous case when N, = 1, N, = --- = N, by means of an ex-
ponential transformation (see 27.9.7).

*27.3.4. Our proof of the theorem on the number of roots resembles the proof
outlined above. To make this similarity even more obvious, let us note that the
roots of the system f, = t, f; = -~ = f,_, = 0, when t changes, move along the
curve f, = --- = f,_, = 0 and that the problem of determining the leading terms
of the Puiseux serics of the roots z'(1) is equivalent to the problem of finding the
asymptotic lines of the curve f; = --- = f,., = 0. But our proof is much more
detailed. The theorem on the intersection of curves and hypersurfaces and the
" curve theorem do not appear in [BerD] and are published here for the first time.
Moreover, we do not use Puiseux series. They are replaced by the compactifica-
tion of the algebraic curve. This is simpler, although the difference is not one in
principle: the Riemann surface is constituted in fact by all possible Puiseux series.

*27.3.5. At the present time there are many proofs of the theorem on the
number of roots. The toric compactification of the space (C — 0)" (see 27.12)
makes it possible to apply the arsenal of algebraic geometry to this problem. The
theorem on the number of roots is one of the numerous consequences of the
computation of toric manifold cohomology [Kh 2]. But the proof given in
27.5-27.9 is one of the most elementary ones.

27.4. Monomials, Monomial Curves, Laurent Polynomials and Their Newton
Polyhedra. In this subsection we show that to the product of polynomials
corresponds the Minkowski sum of their Newton polyhedra.

27.4.1. The monomials and the Laurcnt polynomials f(2) in n variables z =
(zy-...2,) are always defined and are holomorphic functions in the space (C — 0)"
consisting of all ordered sequences of n non-zero complex numbers. In the sequel
many objects which will interest us will be contained in this space. The support
of the Laurent polynomial f(z) = ¥ c,2™, z™ = z]'"'...z;" is the set suppf < R"
consisting of those integer vectors me R" for which c,, # 0. The Newton poly-
hedron of the Laurent polynomial f (which we shall denote by 4(f))is the convex
envelope of the support of f.

*27.4.2. Examples. 1) The Newton polygon of the equation of the curve
¥ + ag + a,x + a;x* + a,x* =0 is the triangle with vertices (0, 2), (0,0) and
(3.0) (we assume that ag # 0 and a, # 0). .

2) The Newton polygon of the polynomial Y cnz™ (where all the ¢, are
non-zero) in n variables of degree k is a simplex homothetic to the standard one
and determined by the inequalities m; >0, ...,m, >0,) m; < k.

3) The Newton polygon of a typical polynomial Y 2™ in n variables, whose
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degrec with respect to the i-th variable is k,, is the cuboid defined by the
inequalities 0 < m; < k,.

27.4.3. The curve in space (C — 0)" parametrized by a complex parameter
t # Oand given by theformulasz, = a,t™,... 2, = a,t" where N = (N,,...,N,)
is a vector with integer coordinates and a = (a,,...,4,) is a point from (C — 0)"
is called a monomial curve (or line) and is briefly written as z = at”. The vector
N is said to be the degree of this curve. The coeflicient a is not uniquely
determined. We do not distinguish the lines z = at” and z = a(ct)", ce(C - O)
which differ only in the choice of parameter. If a vector of degree N is zero, then
the monomial curve consists of the point a only (which is uniquely determined).

If we restrict a Laurent polynomial to the polynomial line, we obtain a
Laurent polynomial in one complex variable t. For example, if we restrict the
monomial cz™ to the line at¥, we obtain the monomial ca™<¥™. Let us try to
specify the leading term of the restriction of the Laurent polynomial f = Z C2™
with Newton polyhedron 4 to the polynomial line z = ar”.

27.4.4. By definition, the support face of the polyhedron 4 in the direction N
is the face 4 on which the lincar function (N, x) assumes its maximum for x € 4.
This maximum H,(N) = max, , (N, x) is called the height of the polyhedron 4
in the direction N. The dependence of the height H, on the vector N is called
the support function of the polyhedron 4. The supporting face and the height of
a polyhedron are defined for any real (and not only for integer-valued) vectors
NeR"

By definition, the truncation of the Laurent polynomial f(z) = Y meaCmz™
with respect to the vector N is the function fy(z) = Y., 4y Cm2™ (We have omitted
the sum of monomials which are not contained in the supporting face Ay).

27.4.5. Example. The truncation of the polynomial with respect to the vector
N =(l,..., 1) is the homogeneous term of the highest order of this polynomial.
The truncation of the Laurent polynomial with respect to the vector N = 0
coincides with the original Laurent polynomial f, = f.

27.4.6. The restriction of the Laurent polynomial f(z) = Y ¢,z™ to the mono-
mial curve at" is equal to fy(a)t"™ plus terms of smaller degree in t. Thus the
truncation of a polynomial with respect to the vector N determines the leading
term in its restriction to a family depending on the parameter a of lines of degree
N (for some exceptional values of the parameter a the coeflicient f,(a) vanishes
and then the leading coefficient will be a term of smaller degree).

Suppose f and g are arbitrary Laurent polynomials and h = f-g.

27.4.7. Proposition. When Laurent polynomials are multiplied,

a) the trunkations (with respect to any integer vector N) are multiplied: hy =
Suons

b} the support functions of the Newton polyhedra are added H Ay =
Hypy + Hyppy

¢) the Newton polyhedra are added A(h) = A(f) + A(g).
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Proof. Restrict the polynomials f, g, h to the family of lines z = at" of fixed
degree N and parameter a. Choosing the term of highest degree with respect to
t, we obtain the following relation for the product

H (N Hyg/(N) . H (N}
hy(a)e fula)t gnla)t

(When we claim that the right-hand side contains the leading term, we use the
fact that the product of two non-zero polynomials fy and gy is a non-zero
polynomial). This relation implies statement a) as well as the statement b) for
integer arguments of the support functions.

The support functions are positive homogeneous and continuous, therefore
statement b) can be generalized to rational and then to arbitrary support func-
tions with vector variables.

Using the additivity of the support functions and statement b), we see that
the support functions of the polyhedra 4(h) and 4(f) + 4(g) coincide. Therefore
the polyhedra themselves coincide.

27.5. Intersection of Curves and Hypersurfaces. In this subsection we compute
the number of intersection points of a curve and hypersurface under the assump-
tion that they have no “points at infinity” where they intersect. The answer
involves the supporting function of the Newton polyhedron of the hypersurface’s
equation. ‘

se ;

27.5.1. Some definitions. Support I is a compact complex curve (a compact
. analytic manifold of complex dimension one) and z,, ..., z, are meromorphic
functions on it. These functions determine a holomorphic mapping (defined
outside the poles and zeroes of the functions z,) of the curve (C — 0)". A divisor
of the vector-function z = (z,,...,z,) is by definition the (finite) set of points on
the curve /" in which at least one of the functions z, vanishes or becomes infinite.
Suppose d is one of the points of the divisor and u a focal parameter on the curve
I’ near the point d, such that u(d) = 0. Expand the functions into a Laurent series
near the point d: z; = qu™ + -+, a; # 0.

27.5.2. Definition. The asymptotic line of the image of the curve z(I") related to
the point d of the divisor is the monomial curve z(t) = at™" where a = (a,,...,q,),
N = (N,,...,N,) are the coefficients and the powers of the first terms of the
Laurent series of the functions z,, ..., z,.

The choice of sign for the vector N is a matter of convenience. The monomial
curve z(t) for large ¢ is close to the image z(u) of the curve /" for small u = ¢!,
The choice of local parameter near the point d on the curve I influences the
equation of the asymptotic line. However, lines corresponding to different local
parameters on the curve I” differ only in their parametrization and we shall not
distinguish them.

Suppose f =0 is a hypersurface in (C — 0)" defined by the Laurent poly-
nomial f/ with Newton polyhedron 4. The restriction of the polynomial f to the
monomial curve z(r) = at possesses an ordinary degrec cqual to the height
H 4(N) of the polyhedron 4 in the direction N. For certain values of the parameter
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a the rate of growth of the restriction of the polynomial Stothelinez(t)ast — o0
may fall. For these values of the parameter the monomial line at™ approaches
the hypersurface f = 0 (the convergence is extremely rapid).

27.5.3. Definition. An asymptotic line of the hypersurface { = 0 is a monomial
curve z(t) = at®, N 0 such that the degree of the restriction of the polynomial
S to it is less than H,(N). In other words, z(t) = at" is an asymptotic line if and
only if N # 0 and fy(z(t)) = 0.

Note that the choice of the polynomial f determining the hypersurface (the
polynomial f is defined up to multiplication by a monomial) does not influence
the definition of an asymptotic line.

*27.5.4. Remark. In the definition of an asymptotic line of a hypersurface we
can omit the assumption N # 0. Then the line z(t) = at® = a will be asymptotic
if f(a) = 0. Hence asymptotic lines with degree N = 0 may be identified with
points on the hypersurface. But asymptotic lines with degree N 3 0 may be
viewed as “points at infinity” of the hypersurface f = 0 which do not fit in
(C — 0)". A similar situation may be observed with the asymptotic lines of the
image of the curve. They may be related not only to points of the divisor, but to
arbitrary points of the curve I" as well. Then the monomial curve is related to a
regular point ye I” and has degree N = 0; it coincides identically with the point
z(y) of the image of the curve I'. Non-trivial asymptotic lines are related only to
points of the divisor. They play the role of the images of the point of the divisors
which “do not fit” into (C — 0)". ‘

27.5.5. Theorem (on the intersection of curves and hypersurfaces). Suppose
none of the asymptotic lines of the image z(I") of the compact curve I are as ymptotic
lines of the hypersurface f = 0. Then the number of points (multiplicity being taken
into consideration) where the hypersurface f = 0 intersects the image of the curve
z(I)in(C — Oy equals Y 4. p H ((N(d)), where D is the divisor of the vector function
z; N(d) is the degree of the asymptotic line corresponding to the point d of the
divisor; 4 is the Newton polyhedron of the Laurent polynomialfand H 4is its support
Sfunction.

Proof. The intersection points of the curve and hypersurface in (C-0y
correspond uniquely to the zeroes of the compound function J(z) on the curve
I outside of its divisor D. The multiplicity of intersection points equals the order
of the corresponding zero of the function f{(z) (recall that the order of a mero-
morphic function at any point is the minimal degree of the monomial in the
Laurent series expansion of the function at this point). On a compact curve, the
sum of orders of zeros and poles of any meromorphic function is equal to zero
[Spr]. Since the function f{(z) has no poles on I — D, the number of zeros of the
function f(z) on I” — D (multiplicity taken into consideration) is equal to the sum
of the orders taken with the minus sign of the function f(z) at points of the divisor.
Minus the order of the function f{(z) at the point d of the divisor equals (plus) the
degree of the leading term of the restriction of the polynomial f to the asymptotic
line z(¢) corresponding to the point d. By assumption of the theorem, the asymp-
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totic line z(f) of the curve I” is not an asymptotic line of the hypersurface f = 0.
Therefore the degree of the restriction of the polynomial f to the line z(f) equals
the height of the Newton polyhedron of a polynomial f along the degree vector
of the line z(1).

27.6. Riemann Surfaces (Compactification of Algebraic Curves).
27.6.1. Consider the set defined in C" by the compatible system
Hi==fouy =0, P#0 P)]

of n — 1 polynomial equations and one polynomial inequality. We assume that
the differentials of the polynomials fi, ..., f,—, are linearly independent at the
roots of the system (2). Denote by 17 the hypersurface determined by the equation
P = 0. According to the implicit function theorem, the compatible system (2)
defines in C" — 17 an analytic curve, ie. a one-dimensional complex analytic
manifold. This manifold is not compact, however it possesses a compactification.
The compactification of an algebraic curve is called a Riemann surface in complex
analysis and a normalization of the curve in algebra. We will now define the
compactification and give a list of some of its properties without proof.

27.6.2. Definition. The triple I', K, z consisting of a compact curve I, a finite
set K c I" and a meromorphic vector-function z = (z,,...,z,) of the curve I
determines a compactification of the curve (2)ifthemap z: I' — K — C"is defined
on I' — K and establishes a bijective and bianalytic correspondence between
I’ — K and the curve (2).

27.6.3. Properties. 1) Any curve (2) possesses a compactification.

2) The compactification is unique. This means that if the triples I, K, z and
I’ R, z give a compactification of the curve (2), then there exists a bijective and
bianalytic correspondence between the curve /" and the curve I sending the set
K into the sct K and the vector function z into the vector-function 2. :

3) None of the points added to the curve (2) under the compactification “fits”
in C" — I7. This means that at every point ke K either one of the components of
the vector function z becomes infinite, or z(k)e I1. -

Thus to every non-compact curve (2) we associate a unique compact curve
I'. The latter can be conveniently imagined as the curve (2) to which we have
glued on certain points which “do not fit” into C" — /1. The components of the .
vector function z are conveniently represented as coordinate functions on the
curve (2). In the sequel, we will have this representation in mind. Allowing
ourselves a bit of carelessness in our expression, we shall talk about the asymptotic
lines of the curve (2), having in mind the asymptotic lines of the image z(I") of
its compactification I,

27.6.4. We will mostly have to deal with curves defined in (C — 0)" by the
system

H="=fiu =0, (3)
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in which f; are Laurent polynomials (it is assumed that the system is compatible
and the differentials of the functions f, are independent at the zeros of the system).

The space (C — 0)" is the space C" from which the hypersurface /7 with
equation z,-...-z, = 0 has been excluded. Although the functions fiin (3) are
not polynomials, the system (3) is equivalent to a polynomial system in (C — 0)*:
the Laurent polynomials, after multiplication by appropriate monomials, become
ordinary polynomials.

27.6.5. Lemma. Suppose I', K, z is a triple determining the compactification
of the curve (3). Then the set K coincides with the divisor of the vector function
z.

Indeed, according to property 3, one of the components of the vector function
z vanishes or becomes infinite at the points of the set K.

27.6.6. Lemma. If the curve z(t) = at™, N # 0, isan asymptotic line of the curve
(3), then the truncation of the system (3) according to the vector N is “annihilated”
by this curve, ie. fip(z(t)) = -+ = f,_, w(z(t)) = 0.

Proof. The image z(I") of the compactification of the curve (2) satisfies the
system (3). Developing the zero functions f;(z) into Laurent series with respect
to the small parameter u in a neighbourhood of the point d of the divisor and

- setting those terms which are the leading terms with respect to the large parameter

t = u"! equal to zero, we obtain the required identity.

Lemma 27.6.6 imposes strong restrictions on the degree vector of the asymp-
totic line. This is because for a vector in general position the truncations Jin of
the functions f; are monomials (the maximum of the scalar products with vector
N in general position is obtained on the vertices of the Newton polyhedra of the
functions f;) and the system of truncations f,y = -+ = Ju-1.n = Ois incompatible
in (C — 0)". Historically it is precisely restrictions of this sort which led to the
definition of the polyhedron (be more precise, the polygon) due to Newton.

27.7. Statements of the Theorems and Their Sequence of Proof. In this sub-
section we state a series of theorems among which the main role is played by the
theorem on the number of roots.

We begin with different variants of the definition of non-degenerate systems
of equations.

27.7.1. Definition. The system of equations f, = --- =f=0in(C—-0)is
called non-degenerate il at every zero of this system the differentials of the
functions f;, ..., f; are independent.

27.7.2. Definition. The system of equations f; = -+ = L=0in(C—-0)is
called 4-non-degenerate if for any vector N with integer coordinates the truncated
system fiy = -+ = fuy = 0 is non-degenerate in (C — O)".

Note that any 4-non-degenerate system is non-degenerate: for the zero vector
N = 0 the truncated system coincides with the original one.

27.7.3. Definition. The system of equations f; = -+ = f; = 0in(C — 0)" is said
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_to beé strongly A-non-degenerate if any of its subsystems f;, == fi=0is
A-non-degenerate (here i, ..., i, is any increasing sequence of indices 1 < iy <
c- <, < h).

27.7.4. Definition. A system of n equations in n unknowns f; = - = f, =0
is called d-non-degenerate at infinity, if for any vector N # 0 with integer coor-
dinates the truncated system is incompatible.

From the formal point of view, the 4-non-degeneracy requires an infinite
number of conditions: it is required that for any vector N the corresponding
truncated system be non-degenerate. In fact only for a finite number of vectors
N do we obtain different truncated systems and the number of conditions of
A-non-degeneracy is actually finite. A similar remark applies to strong 4-non-
degeneracy and to 4-non-degeneracy at infinity.

27.7.5. Theorem. For almost all possible families of coefficients of Laurent
polynomials f,, ..., fi with fixed Newton polyhedra, the system of equations
f, =+ = f, = 0is strongly non-degenerate on (C — oy.

It follows from Theorem 27.7.5 that all systems of equations with given -
Newton polyhedra are 4-non-degenerate and (if the number of equations equals
the number of unknowns) are 4-non-degenerate at infinity, since strong 4-non-
degeneracy of systems automatically implies their 4-non-degeneracy and their
A-non-degeneracy at infinity.

27.7.6. Theorem (on the number of roots). The number of roots in (C —0yof
a strongly A-non-degenerate system of n equations in n unknowns fi==f=0
is equal to the mixed volume of the Newton polyhedra of the Laurent polynomials
fis---» f multiplied by n!

27.7.7. Remark. The theorem on the number of roots is valid also for 4-non-
degenerate systems. It remains valid even for 4-non-degenerate systems at infinity
if only the roots of the system of equations are counted according to their multi-
plicity (4-non-degeneracy guarantees that all the roots are simple roots, 4-non-
degeneracy at infinity guarantees that the roots of the system do not “leave”
(C — 0)", however they may be multiple). Let us dwell on certain corollaries of
the theorem on the number of roots.

~ 21.7.8. Corollary. The number of roots in (C — 0) of a strongly 4-non-
degenerate system of equations with the same Newton polyhedra is equal to the
volume of their Newton polyhedra multiplied by n! ’

It is precisely this corollary that Kushnirenko proved before the theorem on
the number of roots had been established (see 27.3).

27.7.9. Corollary. The number of roots in the entire space C" of a strongly
A-non-degenerate system of polynomial equations with fixed Newton polyhedra
is equal to the mixed volume of the Newton polyhedra multiplied by n! if we
assume in addition that all the polynomials have non-zero constant terms.

In order to deduce corollary 27.7.9 of the theorem on the number of roots it
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suffices to check that under the assumptions of corollary 27.7.9 the system of
equation has no roots in the coordinate plane. We will not stop to make this
verification. Note that in corollary 27.7.9 the condition on the existence of
non-zero constant terms cannot be omitted (although it may be weakened
somewhat). For example the equation x" = 0 has a Newton polygon constiting
of one point n. In full agreement with the theorem on the number of roots, this
equation has no roots in C — 0, although of course in C it has a solution.

27.7.10. Corollary (the Bézout theorem). The number of roots in C" of a
general system of polynomial equations P =+~ = P, = 0 of degrees k, ..., k,
respectively equals k, -..." k,.

For the proof, it suffices to compute the mixed volume of a system of n
simplices homothetic to the standard one.

Consider the curve defined in (C — 0)" by the strongly non-degenerate system

f1="'=f;--1=0 @)

with Newton polyhedra 4,,..., 4,_,.

Theorem 27.7.11 stated below makes it possible to determine the degrees of
all asymptotic lines of the curve (4), find their number and write out systems of
equations whose solutions are the asymptotic lines.

It is convenient to introduce the following notation: for any non-zero vector
N with integer coordinates denotc by S(N) the number equal to the mixed
(n — 1)-dimensional volume of the supporting faces of the polyhedra 4,,..., 4,
in the direction of N multiplied by (n — 1)}, i.e.

S(N) = Vn—l(dlmn-adn-l.n)‘(" -1

27.7.11. Theorem (curve theorem). 1. The system (4) is incompatible if and only
if for all non-zero vectors N with integer coordinates the number S(N) vanishes. 2.
If the system (4) is compatible, then the curve that it determines has no asymptotic
lines with cancellable vectors degree N (i.e. degree vectors whose components N,
..., N, have a common divisor different from +1). 3. The asymptotic lines of the
curve (4) with non-cancellable vector of degree N are connectivity components of
the set defined in (C — O)" by the system [y =+~ = f, v = 0; their number is
equal to the number S(N) divided by the length of the vector N.

*27.7.12. Remark. Theorem 27.7.11 remains valid for 4-non-degenerate system
(4) also. -

*27.7.13. Example. On the plane consider the curve y? + ao + @, x + a,x* +
a,x> = 0. Its Newton polyhedron is the triangle with vertices (0, 2), (0,0), (3, 0). -
The number S(N) differs from zero only for three non-cancellable vectors Ny =
(—1,0), N, = (0, — 1), N; = (3,2). Thé corresponding truncated equations are
T, =1 +a0=0, fy,=ao+ a,x +ax* +ayx* =0, fy, = y? +a,x> =0, The
first of these truncations determines two horizontal asymptoticlines y = + ./ —aq
corresponding to the intersection points of the curve with the y axis. The second
truncation fy, = 0 determines three vertical lines corresponding to the inter-
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section points of our curve with the x axis. Finally, the third truncation determines
a unique non-trivial asymptotic line y? + ayx? = 0 with parametric equation
y=./—ast? x = t2. This line corresponds to the point on the divisor of the
vector function (x, y) on the compactification of the curve, near which we have
the expansion
x=u4  y=S—aud 4

*27.7.14. Remark. When we know the asymptotic lines of the curve f(x,y) = 0,
we can express y approximately in terms of x as x — oo or x — 0. Thus, in the
previous example, solving the equation of the asymptotic line y? 4+ a3x® =0, we
obtain y ~ ./ —a; x*? as x — 0. Theorem 27.7.11 thus makes it possible to find
the main terms of the expansion of y in fractional degrees of x as x — oo and
x — 0 by using the Newton polygon of the equation f(x, y) = 0. It is precisely for
the solution of this problem that Newton used the polygons of the equations.

27.7.15. Let us describe the sequence of proofs of the theorems stated above.
Theorem 27.7.5 will be proved in subsection 27.10. The theorem 27.7.6 on the
aumber of roots and the curve theorem 27.7.11 will be proved by simultaneous
induction in the following order.

Step I-B. The theorem on the number of roots is proved in (C — 0)'.

Step n-A. The curve theorem in (C — 0)" is deduced from the theorem on the
number of roots in (C — 0)" .

Step n-B. The theorem on the number of roots in (C — 0)" is deduced from
the curve theorem in (C — 0)".

Step I-A is absent because there are no curves in one-dimensional space. The
steps n-A and n-B will be carried out in 27.8 and 27.9. Here we carry out the step
I-B. '

The number of non-zero roots of a Laurent polynomial in one variable
Z,!g,,sﬁa,,,z"' equals m — m. The length of the Newton polyhedron of this
polynomial, i.e. of the segment {m,m] also equals # — m. Step I-B has been
carried out.

21.8. Deduction of the Theorem on the Number of Roots from the Curve
Theorem. .

27.8.1. Consider the strongly 4-non-degenerate system of equations
SHi==f=0 &)

with Newton polyhedra 4,, ..., 4,. The number of solutions of the system in
(C — 0)" is equal to the number of intersection points in (C — 0)" of the curve

'fl=”'=j;|-l=0 ©)

with the hypersurface f, = 0. The theorem on the intersection of curves and
hypersurfaces (see 27.5.5) reduces the problem of computing this number to the
problem of finding the degrees of the asymptotic lines of the curve (6), which in
turn is solved by the curve theorem. Let us see this in more detail.
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27.8.2. We shall need the well-known inductive formula (see (6) in subsection
25.2.3) for computing the mixed volumes

1
V(d,,....4,) = nl, %l S(p)H 4 (p). Y
[

Here, as before, S(p) is the mixed (n — 1)-dimensional volume of the supporting
faces of the polyhedra 4,, ..., 4,_, in the direction p multiplied by (m — 1)!, while
H,,(p) is the height of the polyhedron 4, in the direction p. Although the sum
is taken over an infinite number of points of the sphere ||p|| = 1, there is actually
only a finite number of non-zero terms—the terms corresponding to vectors P
orthogonal to the (n — 1)-dimensional faces of the polyhedron (the sums 4 +
-** + 4,.,). Note that for a polyhedron with integer coordinate vertices, the sum
in formula (7) must be taken only over vectors of the form p = N/||N|, where N
is a non-zero vector with integer coordinates (the half line which originates at
the point 0 and is orthogonal to the (n — 1)-dimensional face of the polyhedron
4, + - + 4, , with integer vertices contains integer points).

27.8.3. Let us return to the system (5). According to the theorem 27.5.5 on the
intersection of curves and hypersurfaces the number of roots of this system equals

Y Hy (N@)),
deD

where H,_is the support function of the Newton polyhedron 4, of the function
J»» while N(d) is the degree vector of the asymptotic line of the curve (6) corre-
sponding to the point d of the divisor 2 on the compactification of the curve (6).
Further we will check that the curve (6) and the hypersurface f, = 0 have no
common asymptotic lincs and therefore theorem 27.7.11 is applicable.
According to the curve theorem (step n-A), for the non-cancellable vector
N # 0, the number of points in the divisor to which asymptotic lines of degree
N correspond equals S(N)/||N||. Using the homogeneity of the support function
H, , we obtain
Y Hy(N@)= Y S(p)H,(p). ®)
deD feli=t
where the sum in the right-hand side is taken over the vector p of the form
p = N/|IN|l, while N is an uncancellable non-zero vector with integer co-
ordinates.
Comparing formulas (7) and (8), we see that the number of solutions of the
system (5) equals n!V(4,,...,4,).

27.8.4. In the argument just carried out, it was assumed that the system (6) is
compatible. If the system (6) is not compatible, then of course the entire system
(5) is not either. On the other hand, if the system (6) is not compatible, then,
according to the curve theorem, all the numbers S(N) vanish and, using the
inductive formula for mixed volume, we see that the number n! Vid,,...,4,)also
vanishes.
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27.8.5. Thus to conclude step n-B it remains to check the absence of common
asymptotic lines of the curve (6) and the hypersurface f, = 0. The relations
Sinz@®) =+ = f,_, y(z()) = 0 hold on the asymptotic line z(t) = at® (see
Lemma 27.6.6). If the line z(r) is an asymptotic one for the hypersurface f, = 0,
then among the solutions of the system of n equation in n unknowns f;y = -+- =
f,v =0 we can find the curve z(t). This contradicts the fact that this system is
non-degenerate, since a non-degenerate system of n equations in n unknowns
can only possess discrete roots. Step n-B has been carried out.

27.9. The Curve Theorem.

27.9.1. In order to begin step n-A, let us find the number of asymptotic lines
of degree (—1,0,...,0), where ! is a natural number, for a degenerate curve. Such
asymptotic lines correspond to intersection points of the curve with the plane
z, = 0 in which the other coordinate functions z,, ..., z, do not vanish. The
-number of intersection points can be computed by using the theorem on the
number of roots in (n — 1)-dimensional space. Let us begin carrying out this
outline.

27.9.2. Denote by ¢ the vector (—1,0,...,0) and by G the hypersurface in C*
determined by the relation z, =0, z; #0, ..., z, # 0. The hypersurface G is
isomorphic to the space (C\0)"~* with coordinates z,, ..., z,.

The Laurent polynomial f cannot always be restricted to the hypersurface
G. To do this it is necessary that f contain no monomials containing z, in
negative powers. If the polynomial f contains only monomials with positive
powers of z,, then the restriction of f to G equals zero.

We shall say that [ is arranged with respect to z,, if it contains ne monomials
with negative powers of z,, but contains monomials possessing of zero degree
with respect to z,. Every Laurent polynomial may be arranged with respect to
z, by multiplying it by an appropriate power of the variable z,. This does not
change the zero level surface of the polynomial in (C — 0)", while the Newton
polyhedron is moved parallel to itself.

Denote by g the restriction of the Laurent polynomial arranged with respect
to z,, to the hypersurface G, so that g(z,,...,2,) = f(0,z,,...,z,). The Newton
polyhedron of the polynomial g coincides with the support face 4, of the Newton
polyhedron of the polynomial f along the vector ¢. The truncation f; of the
function f along the vector ¢ does not depend on the variable z, and has the
same restriction to the hypersurface G, namely fyl, <o = f1,,-0 = 9.

27.9.2. Lemma. Suppose the Laurent polynomials f,, ..., f;, k < nare arranged
withrespect to the variable z; and the system f, = -+ = f, = Qis A-non-degenerate
(strongly A-non-degenerate) in (C — 0)". Then the restrictions g; of the functions
fito the hypersurface G constitute a A-non-degenerate (strongly A-non-degenerate)
system g, =+ =g, =0 in (C — 0)""! (the space (C — 0)"! is realized as the
hypersurface G).

Proof. First let us prove that the system g, = - = g, = 0 is non-degenerate
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in (C - 0y = G. Consider the auxiliary system f,; = - = f;, in (C — 0)". The
auxiliary system does not in fact differ from the original one: the only difference
is that the auxiliary system is considered in a space of dimension less by one, but
the functions f;; do not depend on the extra variable z, and the restrictions of
these functions to the hyperplane z, = 0 coincide with the functions g,,. Clearly
the auxiliary system is non-degenerate at the same time as the origina! one. But
the auxiliary system is non-degenerate by assumption. In a similar way, one
proves the non-degeneracy of all the truncations of the system g, = «+- = gk =0
in fact they do not differ from the specially chosen truncated systems f, = -+ =
Ji=0in (C —~ 0)", which were non-degenerate by hypothesis. Lemma 27 9 2 is
proved.

Denote by I7 the hypersurface in C* determined by the equation z,-... 2, = 0.
Consider the set A defined in C" - J7 by the system :

fi=r=foi =0 ©)

in which f; is a Laurent polynomlal arranged with respect to z; with Newton
polyhedron 4,. .

27.9.3. Lemma. If the system (9) is compatible and strongly A-non-degenerate,
then the set A is an analytic curve in C" — I1. This curve intersects the hyper-
surface G transversally, where G is determined in C" — IT by the equation z, = 0.
The number of intersection points of the curve A and the hypersurface G equals
S(¢).

Proof. The space C" — 17 is the union of the space (C — 0)" and the hyper-
surface G. At the points of the set A, contained in (C — 0)", the differentials of
the functions f, ..., f,-, are linearly independent (by definition of 4-non-
degeneracy). In a neighbourhood of these points, according to the thecorem on
implicit functions, the set A4 is an analytic curve. Now consider the points of the

set AN G. These points satisfy the systemz, =0, f; =---=f,_, = 0,2, #0,...,
z, # 0. Substituting z, = 0 into the other equations, we obtain the equivalent
systemg, =--=g, , =0,2,#0,...,z, # 0. According to Lemma 27.9.2 this

system is strongly 4-non-degenerate. The number of roots of this system, accord-
ing to the theorem on the number of roots (obtained in step (n — 1)-B of the
proof) equals S(). At the roots of the system, the restrictions of the differentials
dfy,...,df,_, to the plane z; = 0 are linearly independent. Indeed, dfil;,=0 = dg,
while the independence of the differentials dg, at the roots of the system was
proved in Lemma 27.9.2. Therefore, first of all, in a neighbourhood of points of
the set 4N G, we can also apply the implicit function theorem, so that the set A
is an analytic curve. Secondly, this curve intersects the hypersurface G transver-
sally. Lemma 27.9.3 is proved. :

27.9.4. Lemma. If S(£) # O, then any strongly A-non-degenerate vyslem fi =
- = fu—1 = O is compatible in (C — 0)".
Indeed, according to the theorem on the number of roots the set ANG is
non-empty in this case. However, near every point of the set AN G the system is
compatible in (C — 0)" according to the implicit function theorem.
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27.9.5. Lemma. The curve B determined in (C — 0)" by the compatible A-non-

degenerate system f, = -+ = f,_, = 0 has no asymptotic lines of degree l,, where
I>1 and & = (—1,0,...,0). The asymptotic lines of degree & are straight lines
parallel to the first coordinate axis determined by the system f,, = -+ = f,_; , = 0.

Their number is equal to S(§).

Proof. We shall assume that the Laurent polynomials f,,..., f,., are arranged
with respect to the variable z, (in the converse case they must be multiplied by
the appropriate powers of the variable z,). Consider the auxiliary non-compact
curve A determined by the system f, =---=f,_, =0,2,#0,..., 2, # 0. The
curve A contains the original curve A and differs from it by the finite set AN G.
The vector function z = (z,,...,2,) has no poles on the non-compact curve 4
and the coordinate functions z,, ..., z, do not vanish on it. Therefore the divisor
of the vector function z on the curve A consists of those points of the set ANG
where the function z, vanishes. According to Lemma 27.9.3, the number of these
points is equal to S(¢). According to the same lemma, the curve A intersects the
hypersurface G transversally, therefore at these points the function z, has a first
order zero. Therefore, to the points of the set AN G correspond asymptotic lines
of degree & = (—1,0,...,0). Clearly these lines are straight lines into which the
set determined in (C — 0)" by the system f,, = --- = f,_, . = O falls apart. Let us
show that the asymptotic line of degree I for | > 1 cannot correspond to any
“point at infinity” d added to the curve A under compactification. Indeed, in the
converse case we would have the expansions z, = a,u' + ---,z; =a, +-*-,...,
z, = a, + *-*, in a neighbourhood of the point d. The vector function z is defined
at the point d, z(d) = (0, a,,...,a,), however z(d)¢ I1. We have obtained a con-
tradiction with property 3) in 27.6.3. In order to conclude the proof, it remains
to notice that the curve 4 and the original curve B have the same asymptotic
lines. This follows from the uniqueness of compactification: the compactification
of the curve A is also the compactification of the original curve B.

27.9.6. Now we come to the conclusion of step n-A. To carry it through, let
us find the number of asymptotic lines of degree N = Iy of the curve in (C — 0)".

In this subsection ! denotes a natural number, while 7 # 0 is a non-cancellable .

vector with integer coordinates. By using a special monomial coordinate trans-
formation, the general case may be reduced to the case of the vector n = { =
(—1,0,...,0) considered in the previous subsection. Since such coordinate trans-
formations play an important role in the theory of Newton polyhedra, we shall
dwell on this in more detail.

27.9.7. Consider two copies of the space (C — 0)": the space (C — 0); with
coordinate functions z, ..., z, and the space (C — 0)}, with coordinate functions
Wiseons Wy

The map (C — 0);, - (C — 0); defined by the formulas

z, = whl.n_.w:ln
1 1 1 (10)

z, = wi- L owi,
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where {q,} = Q is a unimodular matrix (a matrix with integer entries and
determinant 1) is said to be a monomial transformation and is briefly denoted by
the formula z = w? The transformation (10) is inversible: the inverse trans-
formation is of the form w = 22 *,

The monomial transformation z = w? sends any monomial curve w = ar¥
into the monomial curve z = a22", the degree vector N undergoing a linear
transformation with matrix Q. The degrees of the monomials are transformed
by the dual transformation: the monomial z™ becomes the monomial w2'™ where
Q* is the matrix dual to the matrix Q. The Laurent polynomial f(z) = } c,z"
under monomial transformation z = w¢ becomes the Laurent polynomial
Y c.w?™ The Newton polyhedron 4 is transformed then into the Newton
polyhedron Q*4. It is easy to check that under monomial transformations
non-degeneracy, 4-non-degeneracy and strong 4-non-degeneracy of systems of
Laurent equations is preserved.

27.9.8. Lemma. Suppose the curve A has a unique asymptotic line z(t) = at®
and the curve B is obtained from the curve A by the monomial transformation
z = w@. Then the curve B has a unique asymptotic line w(t) = a® 't2 '~

The statement of Lemma 27.9.8 is intuitively clear: under the monomial
transformation z = w? the monomial curve z(t) = at” becomes the monomial
curve w(t) = a? 't2 ‘M, For a formal proof, it is useful to make the following
remark: if the triple (I', D, z), where I is a compact curve, z a vector function on
itand D its divisor, determines the compactification of the curve A, then the triple
(I, E, w), where w is a vector function on I" such that z = w2 and E is its divisor,
determines the compactification of the curve Band D = E.

271.9.9. Lemma. For any two non-cancellable non-zero vectors with integer
coordinates there exists a unimodular matrix sending one of these vectors into the
other. In particular, for the given non-cancellable vector n and the vector ¢ =
(—1,0,...,0), there exists a matrix Q such that n = Q&.

We omit the proof of the arithmetical lemma 27.9.9.

Now suppose A is the set determined in (C — 0)? by the strongly 4-non-
degenerate system f;, = .- = f,_, = 0 with Newton polyhedra 4,, ..., 4,_, and
n is a fixed non-cancellable vector.

27.9.10. Lemma. If the number S(n) is not zero, then the set A is non-empty. A
non-empty set A is an analytic curve. This curve has no asymptotic lines of degree
In for I > 1. The number of asymptotic lines of the curve A of degree n equals
S(m)/linll. These asymptotic lines are the connectivity components of the sets
determined in (C — 0)" by the system

flq=“'=j;l—l.n=0‘ (11

Proof. Consider the monomial transformation z = w® where Q is a unimodular
matrix sending the vector £ = (—1,0,...,0) into the vector n, 7 = Q¢. Under this
transformation, the set 4 is mapped into the set B determined by the system
fiw?) == f,_,(w?) =0 with Newton polyhedra 4, = 0*4,, ..., 4,_, =
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0*4,.,. The asymptotic lines of the curve 4 of degree In correspond to the
asymptotic lines of the curve B of degree I and we can apply the results of Lemma
219.5. To complcte the proof of Lemma 27.9.10, it remains only to transform
the answer: the number of asymptotic lines of curve A of degree 1, according to
the results of 27.9, is equal to §(¢&) = (n — 1)'V,_,(d,,...,d,-, ;). To transform
the answer, we shall require a simple lemma from linear algebra.

Suppose Q: R” — R" is a linear transformation of Euclidean space R" preserv-
ing volume (i.e. detQ =1). Suppose L c R" is some k-dimensional subspace
and M is its image under the map Q. The dual transformation Q* sends the .
orthogonal complement M+ to the subspace M into the orthogonal complement
L to the subspace L and we have the following -

279.11. Lemma. The transformation Q: L - M increases the k-dimensional
volume element a number of times equal to the number of times Q* diminishes the
(n — k)-dimensional volume element (in the transformation Q*: M* — L*').

Applying Lemma 279.11 to our situation, choosing L to be the one-
dimensional subspace spanned by the vector £, we see that the operator Q sends
¢into n, i.e. increases length on L (5]l times. It follows from Lemma 27.9.11 that
3(¢) = S(n)/linll, as required to transform our answer.

27.9.12. Now, in order to conclude step n-A, it remains to check the
compatibility condition of the strongly 4-non-degenerate system (9). We saw
above that if at least one of the numbers S(N) for N # 0 is not zero, then the
implicit function theorem, together with the theorem on the number of roots,
proves the compatibility of the system. It remains to check that we have the
following

27.9.13. Lemma. For a compatible system of equations (11), there is a vector
n # 0 such that S(n) # 0.

Proof. I{ all the numbers S(y) are zero, then, according to Lemma 27.9.10, the
curve (11) has no asymptotic lines at all. This is impossible since the vector
function z = (z,,...,2,) on a compactification of the curve (11) has a non-zero
divisor (any meromorphic function on a compact curve other than a constant
always has poles). Lemma 27.9.13 is proved.

27.10. General (Typical) Systems of Algebraic Equations. In this subsection
we show that a general system of equations with fixed Newton polyhedra is
strongly A-non-degenerate (Theorem 27.7.5) and point out certain sharpened
versions.

27.10.1. Suppose S is a finite set of points with integer coordinates in R"
containing s elements. The set of Laurent polynomials with support S may be
_identified with the s-dimensional space of coefficients in (C — 0)°. To do this to
each Laurent polynomial f = Y’ ¢,.z™ we assign the set of its coefficients {cm}-
We shall say that the property is valid for almost all Laurent polynomials with
support § if it holds for polynomials corresponding to the points of the space of



202 Chapter 4. Mixed Volumes

coeflicients (C — 0)’ not contained in any excluded subset of zero measure. We
shall say that a certain property holds for almost all Laurent polynomials with
given Newton polyhedron 4, if it holds for almost all Laurent polynomials with
support equal to the set of integer coordinate points of the polyhedron 4. In a
similar way, we define what is meant by a property holding for almost all Laurent
polynomials f,, ..., f, with given Newton polyhedra 4,,..., 4, or, in more general
terms, with given supports S,, ..., §,.

27.10.2. Lemma. Suppose all the supporis S,, ..., S, contain the origin. Then
Jor almost all Laurent polynomials f,, ..., f, with these supports the system
Jy =+ = f; = 0is non-degenerate. -

Proaof. Since the support S, contains the origin, the Laurent polynomial f
contains a non-zero constant term c, # 0. For any number a; # ¢, the Laurent
polynomial f; — a, has the same support S,. Further for a fixed system of functions
Js+ .-+ Ji for almost all finite sequences of numbers a,, ..., a; the system
Ji = ay, ..., fy = a, is non-degenerate. This statement is the content of Sard's
theorem (a simple proof of this theorem may be found in the book [Mil 3]).
Lemma 27.10.2 follows from this statement.

27.10.3. Theorem. For almost all Laurent polynomials Jis <-4 Ji with support
Si-.., Sy the system f = -+ = f, = O is strongly A-non-degenerate in (C — oy.

Proof. Strongly. 4-non-degeneracy consists in the non-degeneracy of the finite
number of systems of equations which are various truncations of various sub-
systems of the given system of equation. Each of these systems in non-degencrate
almost everywhere. Indeed, if the supports of the Laurent polynomials of such a
system contain the origin, this follows from Lemma 27.10.2. If they don’t contain
the origin, then the Laurent polynomial system may be modified by appropriate
monomials so that their supports contain the origin. The multiplication of the
Laurent polynomial by a monomial moves its support parallel to itself but does
not influence the disposition of the roots of the system of equations in (C — O
and their non-degeneracy. Theorem 27.10.3 is proved.

In the sequel we shall need the more general

27.10.4. Theorem. Suppose g, =---=g,=0 is a Jixed A-non-degenerate
(strongly A-non-degenerate) system of equations in (C — 0)" and 84 Syisafixed
Jamily of supports. Then for almost all Laurent pol ynomials f,, ..., f, with supports
Sis....Sythesystemf, = = f, =g, =--- = g = Ois A-non-degenerate (strongly
4-non-degenerate).

The proof of theorem 27.10.4 is an almost word for word repetition of that
of Theorem 27.10.3. It is only necessarily to change the statement of Lemma
27.10.2 (and in its proof to apply Sard’s theorem to the system fi=ay,.. . fi=a
on the manifold g, =--- = g, = 0 in (C ~ 0)").

*27.10.5. Remark. Theorems 27.10.3 and 27.10.4 may be strengthened: their
conclusion is valid not only outside a set of zero measure in the space of
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coeflicients but outside a proper algebraic subset of the coefficient space. To
prove this strengthening, one must replace the reference to Sard’s theorem by a
reference to Bertini’s theorem (see [Hat, p. 179, 274]).

27.11. Curves on Algebraic Surfaces. In this subsection we give an exact
statement of the Hodge index theorem.

27.11.1. Definition. A compact complex manifold of complex dimension two
is called a non-singular algebraic surface if it can be embedded into some complex
projective space.

*27.11.2. Example. In n-dimensional projective space consider a system of
n — 2 homogeneous polynomial equations. If the differentials of these equations
are independent at all the roots of the system, then the set of roots of the system
constitutes a non-singular algebraic surface.

. 27.11.3. Definition. A non-singular effective curve on an algcebraic surface is a
one-dimensional complex submanifold on it. An effective curve is by definitiona
singular one-dimensional submanifold, i.e. a closed subset on the surface which,_
in the neighborhood of each point, except a finite number of (singular) pomts, is
a one-dimensional submanifold.

27.11.4. To any two effective curves I', and I, on the surface we can assign
the integer (I, I,) called the intersection index of the curves I'y and I,. A
detailed definition of the intersection index may be found in the book {Mum].
Let us point out the following properties of the index.

27.11.5. Properties. 1) Symmetry: (I'y, I3) = (I, I'}).

2) Discreteness: if the curves I'y(a) and I',(b) depend continuously on the
parameters a, b then their intersection index is constant: (I (a), I';(b)) = const.

3) The intersection index of two curves which intersect transversally is equal
to the number of intersection points of these curves.

In a majority of cases properties 1)-3) are sufficient for the computation of
the intersection index.

27.11.6. Example. The self-intersection index of a curve of degree m on the
projective plane is equal to m2. Indeed, consider two copies of the same curve,
given by a homogeneous polynomial equation of degree m. Let us change the
coefficients of the first copy of the curve slightly. According to property 2), the
intersection index of the first and second copy of the curve do not change.
Changing the coefficients, we can assume that the two copies of the curve intersect
transversally. The number of their intersection points, according to the Bézout
theorem, is equal to m%.

27.11.7. Formal finite linear combinations with rational coefficients of effec-
tive curves on the surface F constitute linear space L(F).

The intersection index of effective curves can be extended by linearity to
elements of the space L(F). Then for a connected non-singular algebraic surface
'F we have the following theorem.
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27.11.8. Theorem (the Hodge index theorem [Mum]). The mtersecuon index
determines a hyperbolic form on the space L(F).

27.11.9. Corollary (the Hodge inequality). For any curve I'; with positive self-
intersection index and any other curve I, we have the inequality

N, Y2 2 A0 ), ).

The Hodge inequality automatically follows from the Hodge index theorem
(see proposition 27.2.3).

27.11.10. Remark. The space L(F) is infinite-dimensional. The intersection
form has very large kernel J(F) in the space L(F); according to the Severi-Neron’s
theorem the kernel has finite codimension in L(F). The intersection form is
usually considered on the finite-dimensional space D(F) = L(F)/J(F). The foliow-
ing statement of the Hodge index theorem is more popular. The intersection
index determines a non-degenerate hyperbolic form in the finite-dimensional
space D(F).

27.11.11. Remark. Two completely different proofs of thé Hodge index

theorem are known. One proof uses complex analysis and topology. It is based
on the existence of the Hodge decomposition in cohomology of algebraic
manifolds. This proof is generalized to non-algebraic complex analytic surfaces
possessing a Kahler metric. The other proof s algebraic. It is based on a purely
algebraic technique and can be generalized to algebraic surfaces defined over
algebraically closed fields (and not only over the field of complex numbers). A
complex-analytic proof of the Hodge theorem may be found in the book [Wel],
the algebraic proof in the book {Mum].

27.12. Toric Compactification of Spaces. In this subsection we give the neces-
sary information on toric compactification without proof. Detailed deﬁmtxons
and proofs may be found in the article [Kh 1].

27.12.1. Projective space CP” is a compact manifold containing C™. It possesses
the following remarkable property: the closure in CP" of an (n — k)-dimensional
manifold defined in C" by the general system of polynomial equations f, = - =
£ =0 of degrees m,, ..., m, is a non-singular compact (n — k)-dimensional
submanifold in CP". In this subsection we consider the toric compactification of
the space (C — 0)". The toric compactification is constructed on the basis of
polyhedra with integer vertices 4,, ..., 4;. It possesses a similar remarkable
property with respect to (n — k)-dimensional submanifolds in (C — 0)* deter-
mined by 4-non-degenerate systems of equations f; = -+ = f, = 0 with Newton
polyhedra 4,, ..., 4,.

27.12.2. Definition. The finite-generated semigroup of integer polyhedra is the
set Z' of all polyhedra of the form 4 = ¥ ;k; 4, (where the k; are non-negative
integers and {4,} is a finite family of basis polyhedra) supplied with the Mmkow-
ski addition operation.

To any finite-generated semigroup X we can relate the torical compactifica-
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tion My of the space (C — 0)"; its construction is described in the book [Wel].”
It shall not need the actual construction of the compactification My but only
some of the properties of My, which we give here without proof.

27.12.3. Properties. 1) My is a non-singular n-dimensional compact complex
analytic manifold. '

2) The manifold M contains (C — 0)". The complement My — (C — 0)"is the
union of a finite number of “hypersurfaces at infinity” 0,, My — (C — 0" = O..
All the hypersurfaces O, are non-singular and intersect each other transversally.

3) The manifold M, may be imbedded into some multidimensional projective
space.

27.12.4. Compactification theorem (see [Kh 1]). Suppose the (n — k)-
dimensional manifold X is defined in (C — 0)" by a A-non-degenerate system of
equationsf, = --- = f, whose Newton polyhedra are contained in the semigroup X.
Then the closure X of the manifold X in the compactification My is a non-singular
manifold transversaily intersecting all the “surfaces at infinity” 0.

We shall need the following more special

27.12.5. Proposition. Suppose ', and 7, are the closures in M of two curves
A, and A, defined in (C — 0)" by a 4-non-degenerate system of equations whose
Newton polyhedra are contained in 2. The curves J; and I', have an intersection
point at infinity (i.e. I'; N I, # A, 1 A,) if and only if the curves 4, and A, have
common asymptotic lines.

The statement can easily be derived from the construction of the manifold
My (see [Kh 1]).

Let us state without proof one other general theorem concerning Newton
polyhedra.

27.12.6. Theorem ([Kh 2]). A manifoild determined in (C — 0)" by a A-non-
degenerate system of equations f, = - -- = f, = O with Newton polyhedra 4,, ..., 4,
is connected under the condition that the number k of equations is strictly less than
the number unknowns n and all the Newton polyhedra A; have complete dimension,
ie.dimd4; =n.

" 27.13. Algebraic Proof of the Alexandrov-Fenchel Inequality. Here we develop
in more detail the algebraic proof of the Alexandrov-Fenchel inequality, whose
outline was given in subsection 27.1.4.

Further 4,, ..., 4, are fixed Newton polyhedra of complete dimension, Z is
the semigroup generated by these polyhedra and M is the toric compactification
of the space (C — 0)" related to the semigroup Z.

27.13.1. Let us construct a certain algebraic surface F and a family of curves
{I}} on it. We begin by constructing the surface F. Fix the Laurent polynomials

7To be more precise, to the semigroup Z we can relate many compactifications which are “sufficiently
complete” for £. By M, we understand any one of them.
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Jss ..., Jo with Newton polyhedra 4,, ..., 4, so that the system
fi=rfi=0 (12)

is strongly 4-non-degenerate in (C — 0)". (According to Theorem 27.10.3 almost
any family of Laurent polynomials with fixed polyhedra possess a strongly
4-non-degenerate system of equations). Denote by F the closure of the set of
solutions of the system (12) in M. . According to the compactification theorem
27.12.4, F is a non-singular algebraic surface. According to the theorem 27.12.6
the surface F is connected.
Define the curves 7, on the surface F. For any Laurent polynomial f
denote by I, the closure on the surface F of the set of solutions of the system

f=fy=r=f=

27.13.2. Lemma. If the polyhedron 4 is contained in the semigroup Z, then for
almost all Laurent polynomials [ with Newton polyhedron A the set I isa
non-singular curve.

Proof. For almost all f with Newton polyhedron 4 the system f = fy = -+ =
Ja = 0is strongly 4-non-degenerate (see the theorem 27.7.5). According to the
compactification theorem, if the system is 4-non-degenerate, then the set Iy is a
non-singular curve.

27.13.3. Proposition. If the Newton polyhedra 4, and 4, of the Laurent
polynomials g and h are contained in the semigroup X and the curves I'y and I on
the surface F are non-smgular, then the intersection index of the curves I', and I,
isequal to n!V(4,,4,,4,,...,4,).

Proof. We shall say that the Laurent polynomials g and h with Newton
polyhedra 4, and 4, constitute a nice pair if the systems of equations

g=fi="=f=0 (13)
h=fi=-=f=0 (14)
g=h=f3=:"'=f;.=0 (15)

are all strongly A4-non-degenerate in (C — 0)". According to theorem 27.7.5,
almost all pairs of Laurent polynomials with fixed Newton polyhedra are nice.
For a nice pair g, h the curves defined in (C — 0)" by the systems (13) and (14)
have no common asymptotic lines (in the converse case the system (15) will be
degenerate). Therefore for any nice pair g, h the curves I, and I, have no
intersection points at infinity (see the proposition 27.12.5). Thus for a nice pair
g and h the number of intersection points of the curves I, and I, is equal to the
number of roots of the system (15) in (C — 0)". According to the theorem on the
numbser of roots, this number equals n! V(4,, 4,, 45, .., 4,). Since the system (15)
is non-degenerate, all the intersection points of the curvcs I, and I are simple
(i.e. the curves I, and I}, intersect transversally). Hence the mtersectlon index of
the curves I, and T, for a nice pair g, hequals n! V(4,, 4,, 4,,.. ., 4,). If the curves
I, and I, are non-singular, then the Laurent polynomials g and h do not
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necessarly constitute a nice pair (for example, if g = h), then, having slightly
changed the coefficients of Laurent polynomials g and h, we can assume that the
slightly changed pair has become nice. The proposition is proved entirely, since
the intersection index of curves does not change in their deformation.

27.13.4. Theorem. For polyhedra 4,, ..., 4, of complete dimension whose
vertices have integer coordinates the Alexandrov-Fenchel inequality holds.

Proof. Consider the surface F defined at the beginning of this subsection. This
surface is connected, hence we can apply the Hodge index theorem to it. On the
surface F consider a pair of non-singular curves I’y and I, where f; and f; are
Laurent polynomials with Newton polyhedra 4, and 4,. The curve I, has a
positive self-intersection index on the surface F: according to our statement
(I, T7,> = ntV(d,,4;, 45,..., 4,), while the mixed volume of a body of com-
plete dimension is positive. (Obviously, the curve I, also has a positive self-
intersection index). Hence we can apply the Hodge inequality <I7},,I},>* >
I Iy res Substituting it into the inequality for the value of the inter-
section indices and self-intersection indices of the curves Iy, and 7, we obtain

VA, 4y, As,..., 4) = V(41,41 45, ..., 4)V (83,85, 45,..., 4).
The theorem is proved.

27.13.5. Corollary. The Alexandrov-Fenchel inequality holds for arbitrary
convex bodies.

Proof. 1t follows from the theorem that the Alexandrov-Fenchel theorem
holds for polyhedra of complete dimension with vertices at rational points (by a
change of units we can always assume that the vertices are located at integer
points). To complete the proof, it remains to refer to the continuity of mixed
volume.




