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A bounded polyhedron is called simple, if it is the intersection of half-spaces in gen- 
eral position. In this paper we estimate the number and the proportion of k-dimensional 
faces of a simple n-dimensional polyhedron, which can intersect a hyperplane not passing 
through a vertex of it. Here is an example of a result: a generic hyperplane cannot inter- 
sect more than P/3 + 2 edges of a simple three-dimensional polyhedron with P edges. This 
estimate is sharp, i.e., there exist polyhedra (with arbitrarily large number of edges) and 
their sections, for which the bound is achieved. 

One has 

THEOREM I. In Lobachevskii space of dimension >995 there do not exist discrete groups 
generated by reflections with fundamental polyhedron of finite volume. 

For groups with compact fundamental polyhedron the analogous result was found by Nikulin 
(arithmetic case [I, 2]) and Vinberg (general case [3, 4]). It is based on Nikulin's estimate 
of the average number of Z-dimensional faces on a k-dimensional face of a multidimensional 
simple polyhedron. After the work of Prokhorov done in 1984 (~f. [5] and Sec. 6) to prove 
Theorem I, only an analog of Nikulin's estimate for polyhedra whose simplicity fails only at 
vertices was lacking. Such an analog is found in Sec. 5 from the theorems on hyperplane sec- 
tions of polyhedra (all the results of the paper arose from attempts to get it). Thus, Theo- 
rem I is proved (cf. Sec. 6) as a result of the combined conditions of Prokhorov and the au- 
thor. 

Nikulin's estimate is based on the properties of simple polyhedra, proved with the help 
of toroidal manifolds (cf. Sec. I). The connection of toroidal geometry and the geometry of 
polyhedra, modeled on the polyhedral calculations of the cohomology of toroidal manifolds, 
lies at the foundation of the present paper. Each theorem on the combinatorics of hyperplane 
section of polyhedra given has a precise analog in the geometry of toroidal manifolds. 

On the other hand, for all assertions about the geometry of polyhedra which occur (ex- 
cept for the assertion about the growth up to the middle coefficient of the H-polynomial) one 
can find elementary proofs in the paper. It is not necessary to be familiar with toroidal 
geometry to understand them. 

I thank V. V. Nikulin, whose interest Rromoted the writing of this paper, and also V. I. 
Arnol'd, A. A. Beilenson, A. N. Varchenko, ~. B. Vinberg, and M. N. Prokhorov for helpful dis- 
cussions. 

I. Polyhedra and Toroidal Manifolds 

Here we give familiar facts about the geometry of simple manifolds and smooth toroidal 
manifolds in the form we need. 

i.i. By slightly perturbing the highest dimensional faces of any convex polyhedron, it can 
be turned into a simple one. Through each vertex of a simple n-dimensional polyhedron in R n 
pass exactly n highest dimensional faces and exactly n edges. 

By the F-polynomial of a simple n-dimensional polyhedron is meant the generating poly- 
nomial of the sequence of numbers of its faces of different dimensions, i.e., F(t) = EFk tk, 
where F k is the number of k-dimensional faces of the polyhedron. By the H-polynomial of a 
simple polyhedron is meant the polynomial H(t) = F(t -- I). The coefficients of the F- and 
H-polynomials can be expressed in terms of one another, namely F k = EC~H m and H k = ~(--I) m-k x 
C~Fm. 
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By the P-polynomial of a simple n-dimensional polyhedron is meant the polynomial of de- 
gree [n/2], which is generating for the sequence of numbers P0 = H0, Pi = Hi -- Hi-l, i = 
I,..., [n/2]. 

Assertion I. For an n-dimensional simple polyhedron: 

I) the H-polynomial is recurrent, i.e., Hi = Hn-i; 

2) the coefficients of the H-polynomial increase up to the middle (i.e., the coefficients 
of the P-polynomial are nonnegative), while H0 = Hn = P0 = I. 

COROLLARY I. I) From the P-polynomial one can reconstruct the F- and H-polynomials; 2) 
the coefficients of the H-polynomial are positive. 

Prgperties I) and 2) together with the inequality Pi+l ~ Qi(Pi) for I ~ i < [n/2], in 
which QI is a special function of a natural number argument, are necessary and sufficient 
conditions on H-polynomials of simple polyhedra (i.e., are a criterion for the existence of 
a simple polyhedron with given numbers of faces of all dimensions). This criterion was for- 
mulated by McMullen [6] and proved by Billera and Lee [7] and Stanley [8]. Property I) has 
an elementary proof [9] and is called the Dehn--Sommerville theorem. The proof of property 2) 
noted in point 1.3 was discussed (in different terms) in 1977 at V. I. Arnol'd's seminar. 

|.2. An-n-dimensional algebra manifold (over C) on which the group (C \ 0) n acts, is 
-c~a~d~O~id~l, if it has an open dense orbit isomorphic with the group. 

By the F-polynomial of a projective toroidal manifold is meant the generating polynomial 
of the sequence of numbers of its orbits of different dimensions, i.e., F(t) = Fktk , where F k 
is the number of k-dimensional orbits (over C). By th~ H-polynomial is meant the polynomial 
H(t) = F(t -- I). By the P-polynomial of an n-dimensional manifold is meant the generating 
polynomial of the sequence of numbers P0 = H0, Pi = Hi -- Hi-l, i = I, .... [n/2]. 

Assertion 2 (cf.[10, 11]). I) The closure of a k-dimensional orbit of a smooth n- 
dimensional toroidal manifold is a smooth manifold, where each O-dimensional orbit lies in 
the closure of exactly n orbits of dimension (n -- I). 2) A smooth toroida] manifold has only 
even Betti numbers b2i, and the polynomial Eb2i ti coincides with the H-polynomial of the mani- 
fold. 3) On a toroidal manifold there do not exist holomorphic forms of nonzero degree. 4) 
The coefficient. P i coincides with the dimension of the primitive cohomology of the manifold 
of dimension 2io 

Property 4) follows from property 2). Property 3) is easily proved directly. It follows 
from it that the numbers h p'° are equal to zero for p > 0 for smooth toroidal manifolds and 
also that the first Betti number bl = h ~,° + h °'I = O. The calculations in point 2.2 give, 
in particular, a derivation of property 2) from properties I) and 3). The results of the 
present paper were guessed thanks to these calculations. 

1.3. Let us assume in addition that there is fixed a K~hler metric on a toroidal mani- 
fold, which is invariant with respect to the action of the real torus T~C(C~0) ~ . To each 
vector E of the Lie algebra ~T~ corresponds a Hamiltonian vector field in the symplectic 
structure connected with the Kghler metric, with, since b~ = 0, globally defined Hamiltonian 
h E . The Hamiltonians h~ depend linearly on the vector ~, so to each point x of the manifold 
corresponds a linear form M x on ~i ~ defined by Mx(~) = hE(x ) . This correspondence defines 
the moment map (defined up to a constant summand) of the toroidal manifold into the dual spa~e 
of the algebra ~i~ ~. 

Assertion 3 [12, 13]. I) The critical points of the Hamiltonian h~ form a (disconnected) 
submanifold, while the restriction of the Hessian of the function h E to each transversal to 
the tangent subspace to the submanifold is a nondegenerate quadratic form (i.e., h~ is a Bott 
function) with even index. 2) The image of the manifold under the moment map is a convex 
polyhedron, the moment map establishes a one-to-one correspondence between the set of orbits 
of the manifold and the set of faces of the polyhedron, while a k-dimensional orbit (over C) 
is mapped with constant rank onto an open k-dimensional face (over R) of the polyhedron. 

COROLLARY 2. The image of a nonsingular toroidal manifold under the moment map is a 
simple polyhedron. 

For the proof one must compare point ~) of Assertion 2 and point 2) of Assertion 3. 

We prove Assertion I) for a polyhedron which is the image under the moment map of a 
smooth toroidal manifold. The F-, H-, and P-polynomials of such a polyhedron coincide with 
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the F-, H-, and P-polynomials of the toroidal manifold. The symmetry of the H-polynomial of 
a toroidal manifold follows from Poincar~ duality, the increase of the coefficients to the 
middle follows from the Levshits theorem, and the equality H0 = H n = I from the connectedness 
of the manifold. This proof extends to polyhedra which are images under the moment maps of 
quasis~ooth (cf. [14]) toroidal manifolds (for such manifolds Assertions I and 2) remain 
valid. It is straightforward to show that any simple polyhedron can be turned by an arbi- 
trarily small deformation into the image of a quasismooth manifold. Hence the arguments given 
are sufficient to prove Assertion I. 

2. Linear Function on a Simple Polyhedron 

We call a linear function on a convex polyhedron generic, if it is not constant on any 
edge of the polyhedron. Any linear function can be turned by a slight change into a generic 
one. 

2.1. We say that the vertex b of a simple n-dimensional polyhedron has index i(b) with 
respect to some generic linear function L, if the function L is decreasing on exactly i edges 
issuing from this vertex [and consequently, on the remaining (n -- i) edges issuing from this 
vertex it is increasing]. We denote by h(i) the number of vertices of the polyhedron having 
index i. One has 

THEOREM 2. The number h(i) coincides with the i-th coefficient Hi of the H-polynomial 
of the polyhedron. In other words, the number h(i) are connected with the numbers F k of k- 
dimensional faces of the polyhedron by the relations Fk = EC~h(i) for k = 0,...,n. 

Proof. We consider the map which associates with each k-dimensional face of the poly- 
hedron the vertex at which the linear function L achieves the maximum on this face. Under 
this map each vertex of index i is hit by exactly C~ k-dimensional faces. In fact, at the 
maximum point on a k-dimensional face, the function decreases on k edges issuing from this 
vertex. Conversely, to a collection of k edges issuing from one vertex, on each of which 
the function decreases, corresponds a k-dimensional face for which this vertex is maximum -- 
in a simple polyhedron, each collection of k edges issuing from one vertex spans a k-dimen- 
sional face. Summing over~ all vertices the number of preimages of the mapping produced, we 
get the formula F k = EC~h(i). 

COROLLARY I. The numbers h(i) are independent of the choice of generic linear function. 

COROLLARY 2. The numbers H i and Hn_ i are equal. 

Proof. A vertex of index i for the function L has index n -- i for the function --L. Hence 
the number h(i), calculated for the function L, coincides with the number h(n -- i), calculated 
for the function --L. 

We have found a new proof of the theorem of Dehn--Sommerville on the equality of Hi and 
Hn- i. It models the proof of Poincar~ duality on a smooth manifold by considering Morse func- 
tions f and --f. 

COROLLARY 3. For a simple n-dimensional polyhedron the numbers H i for i = 0,...,n are 
strictly positive. 

In fact, for an arbitrary vertex of the polyhedron there exists a generic linear function 
having any index from 0 to n at this vertex. 

COROLLARY 4. The number Hi for any face does not exceed the number Hi for the polyhedron. 

In fact, let L be a function which achieves a minimum on a given face, and ~ be a generic 
function close to L. Then for any vertex of this face the index of the function i on the 
polyhedron coincides with its index for the restriction of ~ to this face. 

We note that the upper bound conjecture [8] is easily derived from Corollary 4. 

2.2. We consider the moment map M of a KNhlerian toroidal manifold into ~T ~ and a 
linear function L on ~ which is generic relative to polyhedron-image. 

LEM~ ~. The function L ° M is a Morse function on the toroidal manifold. The critical 
points of the function L'M are 0-dimensional orbits of the manifold. The index of a critical 
point of the function L o M is equal to twice the index of the corresponding vertex of the 
polyhedron-image with respect to the function L. 

Proof. The linear function L on ~,*T '~ corresponds to some vector ~ of the algebra ~T '~, 
and the function L o M is the Hamiltonian h~. The Bott function h~ has no critical points on 
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orbits of positive ~imension (since the function L is not constant on faces of positive di- 
mension, and the map of an orbit of a face has constant rank). The critical points of the 
function h~ can only be zero-dimensional orbits, and hence it is a Morse function. Lgt the 
index of the function L on the polyhedron at the vertex b, corresponding to a critical point, 
be equal to i. In the polyhedron there exist i-dimensional and (n -- i)-dimensional faces on 
which the function L achieves a maximum and minimum, respectively, at the vertex b. The pre- 
images of these faces are nonsingular 2i-dimensional and 2(n -- i)-dimensional submanifolds 
(over R), on which the function L o M achieves a maximum and minimum, respectively, at the 
critical point. The existence of such submanifolds proves the last assertion of the lemma. 

COROLLARY 6. The H-polynomial of a toroidal manifold is equal to 2b2i ti, where b2i is 
its 2i-dimensional Betti number. 

In fact, the Hamiltonian L o M has critical points of even indices. According to Morse 
theory the Betti number b2i is equal to the number of critical points of index 2i, which, 
according to the lemma, is equal to h(i). By Theorem 2, h(i) = H i . 

Thus we have found a new proof of property 3 of Assertion ~ in point ].2. (In fact we 
have proved more: we have actually prodvc@d a basis for the homology groups consisting of 
algebraic cycles. The equation b~i = h~, ~ and the explicit description of the intersection 
ring follow from this (cf. [ii])). 

3. Linear-Fractional Programming 

Here we formulate and solve the special problems of linear-fractional programming needed 
in Sec. 4. Linear-fractional programming is the maximization on a convex polyhedron of the 
ratio of~two linear functions LI/L2 (it is assumed that the denominator L2 does not vanish on 
the polyhedron). Linear-fractional programming differs slightly from linear programming: by 
a projective transformation carrying the hyperplane L2 = 0 to infinity one can turn a linear- 
fractional function into a linear one. Under such a transformation a convex polyhedron goes 
into another convex polyhedron, and the problem of linear-fractional programmong goes into 
a problem of linear programming. ~he max~m~ of a l~ne~r-f~c~o~ f~nc~o~ ~s ~h~N~ o~ 
so~ fa~ of ~e polyhedron. (In the case of general position this face is zero-dimensional 
and is one of the vertices of the polyhedron.) 

The following is obvious. 

Assertion ~. Let BI and B2 be positive and AI/B~ > A2/B2. Then for nonnegative numbers 
~1, a2, not both equal to zero, one has A ~ / B ~ ( u ~ A ~  ~ a~A~)/(a~B~ ~ u ~ B ~ ) ~ A ~ . B ~ .  Here the 
first (second) inequality becomes an equality if and only if u2 = 0 (~ = 0). 

Let B be a finite set of points with a fixed integer-valued function i:B ÷ Z, assuming 
values from 0 to n, We consider the space R IBI, whose coordinate functions are in one-to-one 
correspondence with the points of the set B. We denote the coordinate function corresponding 
to the point b by x b. For nonnegative integers ~ and k, we define a function ~,k on R IBI by 

I / I £ '  ' o,. ,  = [ ( l  - c,,_,(,> + ( l  - 
b~B 

The f u n c t i o n  ~ 5 . k  i s  d e f i n e d  i f  t h e r e  e x i s t s  a t  l e a s t  one p o i n t  b~_ B , f o r  which  k 4 m i n x  
( i ( b ) ,  n -- i ( b ) ) .  We s h a l l  assume t h i s  c o n d i t i o n  h o l d s .  

P r o b l e m  1. F i n d  t h e  maximum of  t h e  f u n c t i o n  ~ , k  on t h e  s t a n d a r d  cube  0 ~ x b ~ 1 of  t h e  
s p a c e  R! BI 

We d e n o t e  by q t h e  number [ n / 2 ]  and by A t h e  f a c e  of  t h e  s t a n d a r d  cube  d e f i n e d  by t h e  
c o n d i t i o n s :  xb(A) = 1, i f  i ( b )  < q,  and xb(A) = 0,  i f  i ( b )  > q. 

THEOREM 3. F o r  0 ~ 5 < k < q t h e  maximum of  t h e  f u n c t i o n  ¢ ~ , k  on t h e  s t a n d a r d  cube  of  
t h e  s p a c e  R IB[ i s  a c h i e v e d  on t h e  f a c e  A. 

The p r o o f  o f  t h e  t h e o r e m  u s e s  t h e  f o l l o w i n g  two p r o p e r t i e s  o f  t h e  b i n o m i a l  c o e f f i c i e n t s .  

Assertion 2. I) Let I < k. Then the ratio ¢(m) ~' ~ = Cm/Cm, defined for m ~ k, is strictly 

monotone decreasing for increasing m. 2) Let A > Q ~ B. Then the ratio T (h) =(C~ C~)/C~, 
defined for 0 < h < Q, is strictly monotone increasing for increasing h. 

Proof of the Assertion. i) ~(m) = k!(m -- ~)(m-- ~ -- |) ... (m-- k + |)~!. As m increases 
the denominator increases. 2) ~(h) = A!/~!(A--h)...(~--~ ~ i)--B! (Q--h)...(B--h ~-~ i)/Q! , 
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the products (A -- h) ... (Q - h + 1) and (Q - h) ... (B -- h + I) contain numbers of factors 
which are independent of h, which decrease as h increases. 

We proceed to the proof of the theorem which we give in three steps. I. The value of 
l ~¢ the function ~,k on the face A is greater than or equal to Cq/Cr~. In fact, according to 

t~t/C ~" ~ /~ z ,~ point 1 of Assertion 2, the ratios t~, ~:, C~+~/C~a, • • •., C~/Cq decrease. It remains to use As- 
sertion ~.2 several times. The value of the function ~,k on the face A is greater than at 
any neighboring vertex (i.e., than at any vertex joined by an edge to the face A). In fact, 
with the exception of one coordinate, all coordinates of neighboring vertices satisfy the 
same restrictions as the coordinates of the points of the face A. Let this exceptional co- 
ordinate correspond to the point b ~B. The value i(b) of the functions at this point b we 
denote by i. Two cases are possible: i < q and i > q. In the first of these cases, upon 
passage to a neighboring vertex one adds to the numerator of the function ~'k the number 
C ~ • --~ and to the denominator, the number C~_ i --C~. We show that the ratio of these n-i . ~i' 
numbers is less than ¢~,k(A). According to Assertion I this is sufficient to prove point 2 

l k in the case considered By point 1 we have ~ ~ (A)~ Cq/C~ Further, t ~ ~ co/(c,,< c~) < • , • ( C . _ ~  - -  - -  

C$/C~ . In fact, the inequality considered is equivalent with the relation (C$- i -  C~)/C~ < 
(C ~_~- ~IC ~, q. The validity of this relation follows from point 2) of Assertion 2 for A = 
n- i, Q = q, B = i (i < [n/2], n -- ~ > [n/2], q = In/2]) and values of h equal to L and k. 
The second case (i > q) can be analyzed analogously to the first. 3) We verified that the 
values of the function $~,k at vertices which neighbor the face A are smaller than on the face 
A. According to the theory of linear (and hence also linear-fractional) progra~ing, this is 
possible only if the function achieves its maximum on the face A. The theorem is proved. 

For what follows we are interested in the case of Problem I in which B is the set of 
vertices of a simple n-dimensional polyhedron A, and the function i is the index of some 
generic linear function on the polyhedron. We express the maximum in Problem ~ in terms of 
the H- and P-polynomials of the polyhedron. For i = 0 .... ,n, we set i* = min (i, n -- i) and 
we denote by Mj (k, n) the sum 

~ C ~ ~+~ . ~  ~, = C[(~,+~)/~] + C~(~),,~] ~c  ~+~ ~ ~ ~ 

j ~ n - ~  

in particular, 3~0 (k, n) ~+~ ' ~ ' + ~  = o[(n+~),~] -~ u[(n+2),~]. For nonnegative k ~ [n/2] we define the number 
Gk(A) by the formula 

V~, (5) ~, ~ ' C ~ = C~H~ -~ ~, ._~g~. 
/~<[n/~] ~'>[ n/O.] 

I a  t e r m s  o f  t h e  P - p o l y n o m i a l  t h i s  f o r m u l a  a s s u m e s  t h e  f o r m  

~ (~) = ~ P~M~ (~, '0 .  

Assertion 3. In the case of Problem I described, the maximum is equal to GZ(A)/Gk(A). 

The proof follows quickly from Theorem 3. 

Problem 2. Find the maximum of the function 

Y, P~M~(Z, n)/ Y, P~M~(k, n) 
0~j~q 0~j~q 

u n d e r  t h e  c o n d i t i o n s  Po > O, Pl ~ O , . . . , P q  ~ O. 

THEOREM 4.  F o r  0 ~ l < k ~ q t h e  maximum of  t h e  f u n c t i o n  of  P r o b l e m  2 i s  e q u a l  t o  M 0 ( t ,  
n ) / M 0 ( k ,  n )  and  i s  a c h i e v e d  f o r  P~+I = . . .  = Pq = 0 .  

Proof. I) The ratios" Mj(~, n)/Mj(k, n) decrease monotonicallv~ ~ as j increases from k to 
q. I.~--~ac~, according to point I) of Assertion 2, the ratios C /C_ decreases monotonically as , . . m ,~ 
j increases from k to q. Now for the proof ~t suffices to use Assertion ~ several times. 2) 
The ratios ~j(~, n)/Mj(k, n) decrease monotonically as j increases from 0 to k. In fact, for 
increasing j the numerators decrease and the denominators remain unchanged. 3) To complete 
the proof of the theorem it suffices to use Assertion I several times. 

For integers k and j such that 0 < k ~ q, 0 ~ j < q, q = [n/2], we set N~(k, n ) = -  ~., 

C ~ ~+~ ~*~ = C ~  • ~ - ~ .  ~--C~+~_~--C~ , and in particular, No(k,n) ~+~. 
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Problem 3. Find the maximum of the function 

~, P;,¥;(k, ,~)/ ~ P~M;(k, ,,) 
o<~i~<ci o~.~<~ 

u n d e r  the  c o n d i t i o n s  P0 > 0, P1 >~ 0 , . . . , P q  ~> 0. 

THEOREM 5. For 0 < k ~< q the maximum of the function of problem 3 is equal to N0(k, n)/ 
M0(k, n) and is achieved for P1 =... = Pq = 0. 

Proof. I) The ratio Nj(k, n)/Mj(k, n) increases monotonically as j decreases from q to 
k. In fact, upon passing from j ÷ I to j one adds ,_,_~Cnk-j + C k. to the numerator, and 2C k to the 
denominator. The ratio of these is equal to (I + C~_~/C~)/~, which grows as J decreases. 

Each of them is bigger than Nq(k, n)/Mq(k, n). Point I) follows from this. 2) The ratio 
~ ~ 

N.j(k, n)/Mj(k, n) increases monotonically as j decreases from k to 0- only the numerator 
• ncreases. 3) To complete the proof of the theorem it suffices to use Assertion I several 
times. 

4. Hyperplane Sections of Simple Polyhedra 

The goal of Sec. 4 is to get a lower bound for the number and proportion of k-dimensional 
faces of a simple polyhedron which are not intersected by a hyperplane section of the poly- 
hedron which does not pass through its vertices. 

4.1. By slightly moving a hyperplane which does not pass through a vertex one can get 
it to be a level surface L = c of a generic linear function L on the polyhedron. We denote 
by O(c) and ~(c) the set of vertices of the polyhedron at which the value of the function is, 
respectively, less than and greater than c. The union of these sets coincides with the set 
of vertices and the polyhedron since by hypothesis the hyperplane does not pass through ver- 
tices. 

THEOREM 6. The number Fk(c) of k-dimensional faces in a simple n-dimensional polyhedron 
which do not intersect the hyperplane L = e, is determined by 

F~ (c) ~, ~ ~ C~(~) + ~ (*) ~ -  Cn_ i (b )  . 
b~:O(c) b ~ ( e )  

P r o o f .  The s e t  of  k - d i m e n s i o n a l  f a c e s  which  do no t  i n t e r s e c t  the  h y p e r p l a n e  L = c ,  
s p l i t s  i n t o  two s u b s e t s :  t he  s u b s e t  o f  f a c e s  on which the  f u n c t i o n  L i s  s t r i c t l y  l e s s  t han  c 
and the  s u b s e t  o f  f a c e s  on which i t  i s  s t r i c t l y  g r e a t e r  t h a n  c.  The number o f  f a c e s  in  the  
f i r s t  s e t  i s  equa l  to  the  f i r s t  summand~ For  the  p r o o f  i t  i s  n e c e s s a r y  to  a s s o c i a t e  w i t h  
each  f a c e  f rom the  f i r s t  s e t  a v e r t e x  a t  which  the  r e s t r i c t i o n  of  the  f u n c t i o n  L to  t h i s  f a c e  
a c h i e v e s  a maximum, and to  c a l c u l a t e  how many f a c e s  c o r r e s p o n d  to  one v e r t e x .  (An a n a l o g o u s  
c a l c u l a t i o n  i s  made in  the  p r o o f  o f  Theorem 2 . )  A s s o c i a t i n g  to  a f a c e  f rom the  second  s e t  a 
minimum p o i n t ,  we see t h a t  t he  number o f  f a c e s  in  t he  second  s e t  i s  e q u a l  to  the  second  sum- 
mand. The t heo rem  is  p r o v e d .  We say t h a t  a h y p e r p l a n e  which  does n o t  pas s  t h r o u g h  v e r t i c e s  
o f  a s imple  n - d i m e n s i o n a l  p o l y h e d r o n  d i s s e c t s  i t  s u c c e s s f u l l y  i f  i t  i n t e r s e c t s  a l l  f a c e s  o f  
d i m e n s i o n  g r e a t e r  t han  [ n / 2 ] .  

COROLLARY 1. The g e n e r i c  h y p e r p l a n e  L = c s u c c e s s f u l l y  d i s s e c t s  a s imp le  n - d i m e n s i o n a l  
p o l y h e d r o n ,  i f  and o n l y  i f  a l l  v e r t i c e s  o f  index  l e s s  t han  n /2  l i e  in  t he  s e t  O(c) and a l l  
v e r t i c e s  o f  i ndex  g r e a t e r  t h a n  n /2  l i e  in  the  s e t  n ( c ) .  

The p r o o f  i s  found  by a p p l i c a t i o n  o f  Theorem 6 f o r  k = [ n / 2 ]  + 1. 

COROLLARY 2. A g e n e r i c  h y p e r p l a n e  does  n o t  i n t e r s e c t  c e r t a i n  [ n / 2 ] - d i m e n s i o n a l  f a c e s  
o f  a s imp le  n - d i m e n s i o n a l  p o l y h e d r o n .  

P r o o f .  A v e r t e x  o f  index  [ n / 2 ]  makes a n o n z e r o  c o n t r i b u t i o n  to  the  number F [ n / 2 ] ( c )  i n -  
d e p e n d e n t l y  o f  which  of  the  two s e t s  O(c) and K(c) i t  l i e s  in .  

R e m a r k .  The a s s e r t i o n  o f  C o r o l l a r y  2 i s  a l s o  v a l i d  f o r  n o n s i m p l e  p o l y h e d r a .  Moreover ,  
f o r  any h y p e r p l a n e  i n t e r s e c t i n g  a convex  n - d i m e n s i o n a l  p o l y h e d r o n ,  t h e r e  e x i s t  two f a c e s  l y i n g  
on d i f f e r e n t  s i d e s  o f  t he  h y p e r p l a n e ,  t he  t o t a l  d i m e n s i o n  of  which i s  > ( n  -- 1) .  

THEOREM 7. Le t  the  h y p e r p l a n e  L = c no t  pas s  t h r o u g h  v e r t i c e s  o f  the  s imp le  n - d i m e n -  
s i o n a l  p o l y h e d r o n  A. Then f o r  0 ~ l < k ~ [ n / 2 ]  one has  Fk (c )  > Gk(A) and F l ( c ) / F k ( c )  < Gl x 
(A)/Gk(A) [ c f .  Sec.  3 f o r  the  d e f i n i t i o n  o f  the  number G(A) ] .  For  a s u c c e s s f u l  s e c t i o n  o f  
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the polyhedron all these estimates are sharp. Conversely, if one of these estimates is sharp 
(for some k or for some pair ~, k from the range indicated), then the section is successful. 

We say that simple polyhedra are F-equivalent, if they have the same number of faces of 
each dimension. 

COROLLARY 3. For a successful section of a simple polyhedron the numbers Fk(c) and 
F~(c)/Fk(C) for 0 ~ ~ < k ~ n/2 in the class of generic sections of F-equivalent simple poly- 
hedra achieve, respectively, the minimum and maximum. 

Proof of Theorem 7. Theorem 6 calculates the numbers Fk(c) in terms of the sets O(c) 
and ~(c). We split the set of vertices of the polyhedron into the union of two disjoint sets 
© and ~ and for each partition and nonnegative number k ~ [n/2] by the formula analogous to 
(*), in which instead of the sets O(c) and ~(c) one has the sets ~ and ~, respectively. It 
is clear that the number Fk(O) is minimal for precisely those partitions for which all ver- 
tices of index less than n/2 lie in the set ~, and all vertices of index greater than n/2 lie 
in the set X. Precisely for these partitions the number F~(O)/Fk($ ) is maximal -- this follows 
from Theorem 3. To complete the proof it remains to use Corollary I. 

4.2. Examples. I) For a convex n-gon in the plane H0 = H2 = I, Hi = n -- 2. Lines not 
passing through vertices of an n-gon do not intersect at least n -- 2 of its sides. The esti- 
mate is reached only for a successful section, i.e., only for a section which intersects the 
polyhedron. 2) For a simple three-dimensional polyhedron, having B vertices and P edges, 

H0 = H3 = ~, HI = H2 = n -- I, where n = P/3 = B/2 (in particular, one has the identity 2P = 
3B). For n = ~ the polyhedron is a simplex, for n ~ 2 it is F-equivalent with a prism with 
an n-gon as its base. According to Theorem 7, a plane not passing through the vertices of a 
simple three-dimensional polyhedron intersects no more than P/3 + 2 of its edges. By tilting 
the middle section of a prism one can arrange that it intersect the upper and lower bases and 
all lateral faces would be intersected as before. Here we get a successful section for which 
the estimates given are reached. 3) For an n-dimensional simplex H0 = ... = H n = ~, P0 = ~, 
PI = ... = P[n/2] = 0. A section of a simplex by a hyperplane on one side of which there are 
exactly [(n + I)/2] vertices is successful. For this section Fk(c) = M~(k, n). (For fixed 
k and n ÷ ~ this number is asymptotically equal to 2knk+~/(k + I) .) For any other section 
and 0 ~ ~ < k ~ [n/2] the number Fk(c) will be larger, and the number F~(c)/F k will be sma!ler~ 
than for the successful section. 4) We consider in R n the standard cube defined by the in- 
equalities 0 ~ xl ~ I,...,0 ~ Xn ~ I. The hyperplane xl + ... + x n = c, where c for odd n is 
equal to n/2, and for even n is equal to (n + I)/2, dissects the cube successfully. We cal- 
culate how many k-dimensional faces of the cube intersect the given section° A face of the 
cube of dimension k is given by fixing the value 0 or ~ for n -- k of the coordinates (the 
other coordinates on this face run through all values from 0 to I). In order that the sec- 
tion intersect the face it is necessary that there be m ones among the fixed coordinates, 
where [n/2] ~ m > [n/2] -- k. From this we have that the number Qk,n of intersected k-dimen- 

k m sional faces is equal to CnECn_k, where the summation is over numbers m, satisfying the in- 
equalities written. 

According to Theorem 7 a hyperplane section cannot intersect more than ~K,n k-dimensional 
faces of a simple polyhedron, F-equivalent with the n-dimensional cube. What proportion of 
the k-dimensional faces for k ~ c.n~--in a polyhedron F-equivalent with an n-dimensional cube 
can be intersected by a hyperplane? Answer: as n ÷ ~ the greatest amount of this proportion 

i ,kn-k tends to (2a) -~ exp(--z~/2)~ (asymptotically the numbers Qk,n/Cn2 for large n are deter- 
--¢ 

mined by a normal distribution). 

4.3. THEOREM 8. Let the hyperplane L = c not pass through the vertices of a simple 
n-dimensional polyhedron and the numbers 7, k satisfy the inequalities 0 ~ 7 < k ~ [n/2]. 
Then the proportion of the k-dimensional faces which-do not intersect the hyperplane [ioe., 
the number Fk(c)/Fk] , is not less than M0(k, n)/N0(k, n), and the ratio of the number of 
nonintersecting 7-dimensional faces to the number of nonintersecting k-dimensional faces is 
not greater than M0(7, n)/N (k, n). Both estimates are sharp and are achieved for a success- 
ful section of a simplex, while the first of the estimates is achieved only for this case. 

COROLLARY 4. A generic section of a simple n-dimensional polyhedron does not intersect 
at least the [2-k -- ~k(n)]-th part of its k-dimensional faces (for fixed k and large n), where 
~k(n) is independent of the choice of the polyhedron and its section and tends to zero as n 
tends to infinity. 
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To prove Corollary 4 it suffices to calculate the asymptotic behavior of the estimate of 
the number Fk(c)/Fk as n ÷ ~. 

Remark. For nonsimple multidimensional polyhedra the proportion of nonintersecting k- 
dimensional faces can be arbitrarily small. 

Proof of Theorem 8. From Theorem 7 it follows that Fk/Fk(c) ~< ~PjNj(k, n)/~PjMj(k, n) 
and Fi(c)/Fk(c) ~< EPjMj(~, n)/EPjMj(k, n), in which the summation is over j from 0 to In/2]. 
According to Theorems 4 and 5 the ratios written achieve a maximum when PI = ... = P[n/2] = 0, 
while the first of them achieves the maximum only in this case. Theorem 8 is proved, since 
PI =... = P[n/2] = 0 only for a simplex. 

Remark. From the F-polynomial of a simple n-dimensional polyhedron one can estimate 
the number of k-dimensional faces for its generic section by a plane of codimension ~. We 
consider a simple (n- ~)-dimensional polyhedron, for which the number of k-dimensional faces 
for k ~> (n -- 1)/2 is equal to Fk+ !. (The numbers of faces of lower dimensions of such a poly- 
hedron can be found by the Dehn--Sommerville theorem.) fhe n~er ~ ~ces of ~y dim~sio~ 
for a secsion does not exceed the n~ber of fac~s of ~he same dimension for ~he pol~hedron 
considered. The following conjecture on the upper bound [8] give a special case of this as- 
sertion: among all simple m-dimensional polyhedra having N faces of highest dimension, the 
polyhedron dual to the cyclic one has the largest number of faces of any dimension. In fact, 
a polyhedron having N faces of highest dimension is a section of an (N -- 1)-dimensional sim- 
plex. But the number of k-dimensional faces of the polyhedron dual to a cyclic one, for k ~> 
m/2, as is known, is exactly equal to the number of (k + N -- I --m)-dimensional faces of the 
simplex. To prove the assertion given it is necessary to reformulate Theorem 6. Let H <c be 
the polynomial Ef~c(t- I) k, where f~e is the number of k-dimensional faces lying in the half- 
space L < c. Then the polynomial H <c is equal to ~hi(c)ti , where hi(c) is the number of ver- 
tices of index i lying in the half-space L < c. One defines and calculates the polynomial 
H >c analogously. Theorem 6 is included in these calculations as well as the equation H = 
H <c + H >c + HC(t -- I), where H c is the H-polynomial of the section L = c. The polynomials 
H <c and H >c have nonnegative coefficients, from which we have the inequality: all the coeffi- 
cients of the Laurent series at the point ~o of the function H(t -- ~)-i _ H c are nonnegative. 
We denote by H[~]H the H-polynomial of a section of codimension i. Continuing by induction 
we set that all the coefficients of the Laurent series at the point = of the function H(t -- 
~)-$- H[~] are nonnegative. This relation is equivalent with the assertion formulated. 

4.4. Each result of Sec. 4 has an analog in the category of toroidal manifolds. Here 
is a "dictionary" for translating to the toroidal category: a simple polyhedron is a smooth 
(or quasismooth) K~hler toroidal manifold; an open k-dimensional face (over R) of a polyhedron 
is a k-dimensional orbit (over C) of the manifold; a face of a polyhedron which belongs to 
another face of it is an orbit on the manifold which belongs to the closure of another orbit; 
the F-, H-, and P-polynomials of a polyhedron are the F-, H-, and P-polynomials of the mani- 
fold; a linear function on a polyhedron is the Hamiltonian of a vector field on the toroidal 
manifold corresponding to the action of a one-parameter subgroup of the real torous T n ~ 
(C\ 0)n; a generic linear function is a Hamiltonian which is a Morse function; a section not 
passing through vertices is a nonsingular level surface of the Hamiltonian. As an example, 
we translate Corollary 4 into the toroidal category. 

COROLLARY 4' On a smooth n-dimensional Kghler toroidal manifold a nonsingular level 
surface of a Hamiltonian corresponding to the action of any one-parameter subgroup of Tn,. 
does not intersect at least the (2 -k ~ sk(n))-th part of the k-dimensional orbits, where ek(n) 
is independent of the choice of the manifold and one-parameter subgroup and tends to zero as 
n -~ ¢oo 

To prove Corollary 4' it suffices to use Corollary 4 and the moment map. The other as- 
sertions translate into the toroidal category analogously. 

5. Mean Complexity of Faces of a Polyhedron 

In this section we generalize an estimate of V. V. Nikulin. 

5.1. The number of pairs consisting of an 1-dimensional face and a k-dimensional face 
containing it, of the polyhedron 4, will be denoted by Fl,k(A). This number can be inter- 
preted as the total number of 1-dimensional faces of k-dimensional faces of the polyhedron. 
By the average number of i-dimensional faces on a k-dimensional face of the polyhedron A we 
mean the ratio of this number to the number Fk(~) of k-dimensional faces of the polyhedron. 
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How large can this ratio be for n-dimensional polyhedra? We show how to reduce the question 
to a problem of a smaller number of dimensions. Let L = c be a hyperplane, not parallel to 
any edge of a convex n-dimensional polyhedron A. With each vertex b of the polyhedron A we 
associate a pair consisting of an (n- 1)-dimensional polyhedron A(b) and its hyperplane sec- 
tion L(b). This pair is defined up to a projective transformation. Here is its definition. 
Near the vertex b the polyhedron A is a convex n-dimensional cone. The pair A(b), L(b) is 
the projectivization of the pair consisting of this cone and its hyperplane section passing 
through the vertex of the cone, parallel to the hyperplane L = c. 

We denote by Fl,k(A(b), L(b)) the number of pairs consisting of an l-dimensional face, 
not intersecting the hyperplane L(b), and any k-dimensional face of the polyhedron &(b) con- 
taining it, by Fk(A(b) , L(b)) the number of k-dimensional faces of the polyhedron A(b), not 
intersecting the hyperplane L(b). 

THEOREM 9 (on reduction). I) For k ~< (n + I)/2 the average number of vertices on a k- 
dimensional face of the polyhedron A does not exceed the number max 2F~_I (A (b))//?~_1 (A (b), /5 (b)). 
2) For 0 < I < k ~< (n + I)/2 the average number of ~-dimensional faces on a k-dimensional 
face of the polyhedron A does not exceed the number max/~i-i.~-~ (A (b), L (b))//~_~ (A (b), L (b)). in 
I) and 2) the maximum is taken over the set of all vertices b of the polyhedron A. 

Proof. We represent both the numerator and denominator of the fraction FI,k(A)/Fk(A) 
as a sum of nonnegative numbers over the set of vertices B of the polyhedron A. For this, 
to each pair I~ ~ i~ (to each face F k) we assign two vertices, at which the function L, re- 
stricted to the face F l (restricted to the face F k), achieves its maximum and minimum. For 
k > 0 these vertices coincide only for pairs consisting of a vertex (l = 0) and a k-dimen- 
sional face containing it. Summing over vertices the number of objects assigned to it, we 
g e t :  2F~.~ (A) ---- Z F~_,,~._, (A (b), L (b)) f o r  l > 0, F0,~. (A) = Y.F~_, (A (b)), 2F~(A)=~.F~_~(,A(b), L(b)). 
For  k ~< (n + 1 ) /2  t h e  numbers  F k - z ( A ( b ) ,  L ( b ) )  a r e  p o s i t i v e  [ c f .  C o r o l l a r y  2 and t h e  Remark 
in  Sec.  4; we s h a l l  o n l y  u s e  Theorem 9 in  t h e  c a s e  o f  s i m p l e  p o l y h e d r a  A ( b ) ] .  To c o m p l e t e  
t h e  p r o o f  i t  r e m a i n s  to  u s e  A s s e r t i o n  1 o f  Sec .  3.  

N i k u l i n ' s  Lemma [ 2 ] .  The a v e r a g e  number o f  l - d i m e n s i o n a l  f a c e s  on a k - d i m e n s i o n a l  f a c e  
o f  a s i m p l e  n - d i m e n s i o n a l  p o l y h e d r o n  f o r  0 ~< l < k ~< (n + 1 ) /2  does  n o t  e x c e e d  t h e  number 

n - ~ "  l l k ~" , C~_~ (C~o.~ ÷ C[(~+~)~)/(C[~.,~ ~ C~(,,,,~_~.}. 

Tn face ,  f o r  a s imp le  po l yhed ron  a l l  the po l yhed ra  h(b)  are ( n -  1 ) - d i m e n s i o n a l  s im-  
p l i c e s .  Hence Theorem 9 reduces N i k u l i n ~ s  1emma to an easy prob lem about  a s imp lex  ( c f .  the 
example f rom p o i n t  4 . 2 ) .  

A convex n-dimensional polyhedron is called simple of ~7~ ~d~e~, if each of its edges 
is contained in exactly n- I faces of highest dimension. 

THEOREM 10. The estimate of Nikulin's lemma is valid for polyhedra which are simple at 
the edges. 

Proof. For each vertex b the polyhedron A(b) is simple, as follows from the simplicity 
at the edges of the original polyhedron A. According to the reduction theorem it suffices 
for the simple polyhedra A(b) to estimate the ratio of the number of (l- 1)-dimensional 
faces, disjoint from the hyperplane L(b), to the number of (k- 1)-dimensional faces, dis- 
joint from this hyperplane [each (l- 1)-dimensional face lies in exactly Cnn-~(k- ~)-dimen- 
sional faces] and the ratio of the number of all (k- |)-dimensional faces to the number of 
(k- 1)-dimensional faces, disjoint from the hyperplane L(b). These estimates are given by 
Theorem k. Theorem 10 is proved. 

5.2. The following assertion follows from Nikulin's lemma and Theorem 10. 

Assertion. 1) For 0 ~< I < k ~< (n + I)/2 the average number of l-dimensional orbits lying 
in the closure of a k-dimensional orbit of a quasismooth projective n-dimensional toroidal 
manifold does not exceed the number ~-~ ~ C l w~ ,~ ~-~ (C[n!~] [(,+z)!~])~[n/~] -~- 6[(~+~).,--])- 2) The estimate of I) 

remains valid if the quasismoothness of the manifold fails at isolated points. 

6. Application to Lobachevskiian Geometry 

We prove Theorem I, formulated at the beginning of the paper. We consider a fundamental 
polyhedron of a group generated by reflections in a Lobachevskii space. It is known that if 
such a polyhedron has finite volume, then it is simple at the edges and Glmos~ sirr~e,i.e., 
near each vertex is a cone over a product of simplices (the simplicity can fail only at in- 
finitely distant vertices of the polyhedron). We say that Nikulin's estimate is valid for a 
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polyhedron to dimension m, if the estimate of Nikulin's lemma holds for any ~, k such that 
0 ~ I < k ~ m. Using an idea of V. V. Nikulin and ~. B. Vinberg, M. N. Prokhorov proved the 
following theorem about a year ago [5]. 

Prokhorov's Theorem. In a Lobachevskii space of dimension >995 there do not exist dis- 
crete groups generated by reflections with fundamental polyhedron of finite volume, for which 
Nikulin's estimate is valid to dimension 4. 

M. N. Prokhorov was also able to prove that any almost simple polyhedron (for n ~ 5) 
satisfies Nikulin's estimate to dimension 3, but his method of proof does not carry to higher 
dimensions. Nikulin's lemma and Theorem 10 are equally applicable in Euclidean geometry and 
Lobachevskiian geometry. This fact follows from the existence of Klein's model of Lobachev- 
skiian geometry. Combining Prokhorov's theorem with Theorem 10, we get the proof of Theorem I. 

Remark. Theorem 10 has an elementary proof for almost simple polyhedra, since for a 
product of simplices it is obvious that the coefficients of the H-polynomial increases to the 
middle (for general simple polyhedra an elementary proof of this face is still unknown). 

LITERATURE CITED 

I. V. V. Nikulin, "Arithmetic groups generated by reflections in Lobachevskii spaces," Izv. 
Akad. Nauk SSSR, Ser. Mat., 44, 634-669 (1980). 

2. V. V. Nikulin, "Classification of arithmetic groups generated by reflections in Loba- 
~hevskii spaces," Izv. Akad. Nauk SSSR, Ser. Mat., 45, 113-142 (1981). 

3. E. B. Vinberg, "Nonexistence of crystallographic groups of reflections in Lobachevskii 
~paces of large dimension," Funkts. Anal. Prilozhen., 15, No. 2, 67-68 (1981). 

4. E. B. Vinberg, "Nonexistence of crystallographic groups of reflections in Lobachevskii 
spaces of large dimension," Tr. MMO, 4--7, 68-102 (1984). 

5. M. N. Prokhoro v, "Nonexistence of discrete groups of reflections with noncompact funda- 
mental polyhedron of finite volume in Lobachevskii spaces of large dimension," Izv. Akad. 
Nauk SSSR, Set. Mat., 5--0, No. 2, 320-332 (1986). 

6. P. McMullen, "The number of faces of simplicial polytopes," Israel J. Math., ~, 559-570 
(1971). 

7. L. J. Billera and C. W. Lee, "Sufficiency of McMullen's conditions for f-vectors of 
simplicial convex polytopes," Bull. Am. Math. Soc. (New Series), 2, 181-185 (1980). 

8. R. Stanley, "The number of faces of a simplicial convex polytope, ~ Adv. Math., 35, 236- 
238 (1980). 

9. D. M. Y. Sommerville, "The relations connecting the angle-sums and volume~of a polytope 
in space of n dimensions," Proco R. Soc. London, Ser. A, 11__5, 103-119 (1927~. 

10. G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, "Toroidal embedding. I," Lect. 
Notes Math., 339 (1972). 

11. V' I. Danilov,'"Geometry of toroidal manifolds,"!Usp. Mat. Nauk, 33, No. 2 (1978). 
12. M. F. Atiyah, "Convexity and Commuting Hamiltonians," Bull. London Math. Soc., 14, 1-15 

(1982). 
13. V. Guillemin and S. Sternberg, "Convexity properties of the moment mapping," Invent. 

Math., 6-7, 491-513 (1982). 
14. J H, M, Steenbrink, "Mixed Hodge structure on the vanishing cohomology," Math. Institut 

Amsterdam (1976). 

50 


