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ASYMPTOTICS OF INTEGRALS
OVER VANISHING CYCLES
AND THE NEWTON POLYHEDRON
UDC 515.164.15+517.554

A. N. VARCHENKO AND A. G. KHOVANSKI

In this note we discuss the relation be‘ween the vanishing rate of integrals of a holo-
morphic differential form over cycles which vanish at a critical point of the germ of a
holomorphic function and the Newton order of the form; that is, the order computed
from the Newton polyhedron of the germ. The vanishing rates of integrals of various
forms define (see [1] and [2]) the spectrum of the germ—one of the most useful charac-
teristics of the germ (see [2]-[4]). Saito recently proved [5] a conjecture of Steenbrink
4] on computing the spectrum of a germ from its Newton polyhedron. Saito’s proof
is highly technical (it uses the language of D-modules, of homological algebra, and of
spectral sequences). This note results from reflecting on Saito’s theorem. We present
a different proof which is an elementary consequence of some known results and which,
in our opinion, is completely transparent. This is our first joint work. We gratefully
dedicate it to V. I. Arnol'd.

1. The filtrations. Let f: C*,0 — C,0 be the germ of a holomorphic function at
an isolated critical point, and let ()P be the space of germs at 0 € C" of holomorphic
differential p-forms.

The Hodge filtration in (17 is the filt>=tion by the asymptotics of the corresponding
integrals. Namely, define the Hodge order a(w) of each form w € (1" to be the largest
number with the property that the expcnents a in the expansion of the integral

(1) [s(:)w/df = Zc},k,at“(lnt)"

over any continuous family &(t) of cycles which vanish at the critical point of the germ
f all satisfy & > a(w). The Hodge order function defines a decreasing filtration in (™:
the subspace with index a consists of the forms whose Hodge order is no smaller than a
(see [2]).

The Newton filtration. We shall assume that the Newton polyhedron of the Taylor
series of the germ in the chosen system of coordinates z1,. .., is convenient, that is,
it intersects every coordinate axis. The (decreasing) Newton filtration in (1" is then con-
structed using the Newton polyhedron. Namely, the polyhedron is used in the standard
way to define a decreasing filtration on power series in Zi,...,Zn; the subspace with
index o consists of series all of whose monomials have Newton degree at least a. The
filtration on power series defines a filtration on differential forms by setting the Newton
order of the form h(zy,...,2n)dz1 A -+ A dz, to be equal to the Newton order of the
series h(Z1, . ..,Tn)T1 T2 - Ty (that is, the Newton order of the form dz; /z, is assumed
to be zero).

The spaces 1y and 1;. The quotient spaces 0y = 0" /df A"~ and O =Qr/df A
402 will play an important role in what follows. (The integral (1) is equal to zero if w
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is representable in the form df A dn, where n € Q"=2; in particular, the representatives
of any element of {}; have the same Hodge order. The motivation for the introduction
of the space () is more complicated (see [6] and [2]). We mention only that this space
is finite-dimensional, and its dimension is equal to the Milnor number of the germ f.)

Hodge and Newton filtrations are defined in the quotient spaces (2 and {1;; they are
projections of the corresponding filtrations in ()"

The spectrum of a decreasing filtration. Every decreasing filtration has a spectrum,
that is, a collection of numbers considered with multiplicity, the multiplicity of a number
a being equal to the dimension of the quotient space with index a modulo the union of
the subspaces with indices greater than o (if there is no subspace with index a, then o
does not belong to the spectrum). We let h(a), g(a) and h(a),g(a) be the multiplicity
of the number o for the Hodge and Newton filtrations in (2 and {1y, respectively.

2. Formulation of the results. Suppose that a germ f is nondegenerate for its
Newton polyhedron (see [2], 8] and [9]) and that the Newton polyhedron is convenient
(that is, intersects each of the coordinate axes). Then the following assertions hold.

THEOREM 1 [4]. The spectrum of the Newton filtration in Qs is determined from
the Newton polyhedron by the formulas in [4].

New formulas for this spectrum are set forth in Lemma 5. They follow easily from
some formulas due to Steenbrink.

THEOREM 2. Shifting the indices of the Newton filtration in QU by —1 gives the
Hodge filtration. The spectra of these filtrations are related by h(a) = g(a + 1).

THEOREM 3 ([5],[4]). The set obtained by subtracting 1 from all the numbers of the
spectrum defined in Theorem 1 coincides with the spectrum of the mized Hodge-Steenbrink
structure.

See [2] for the definition of the spectrum of the mixed Hodge structure of a germ.

PROOF. Theorem 3 is a corollary of the theorem on the coincidence of spectrum of
the mixed Hodge-Steenbrink structure with the spectrum of the Hodge filtration in (1,
([2], Russian §14.3.11 (English §14.3.E)) together with Theorems 1 and 2.

REMARK. Steenbrink proved Theorem 1 and stated Theorem 3 as a conjecture (see
[4]). His formulas are based on Kushnirenko’s theory of Newton filtrations [9]. Theorem
3 was proved by Saito [5]. Saito’s proof implicitly contains our Theorem 3 (which is cited
below).

Results pertaining to the space (15 will be cited in section §6.

3. Proof of Theorem 2.

LEMMA 1 (see [2], Russian §13.1.5x (English §13.1.G); [7], §4.5). The Newton order
of any form w € O™ minus 1 1s no greater than its Hodge order.

The lemma is proved by a simple local estimate of the integral lifted to the toroidal
resolution of the singularity of the germ f (see [2], §8, and [8] for information on toroidal
resolutions).

COROLLARY. The filtration obtained by shifting the indices of the Newton filtration
in {1y by —1 contains the Hodge filtration.

LEMMA 2 (on entropy [7]). Iftwo decreasing filtrations in a finite-dimensional vector
space are such that one filtration is vmbedded in the other and the sum of the numbers
in the spectrum of one is equal to the sum of the numbers in the spectrum of the other,
then the filtrations coincide.

Lemma 2 is a simple assertion of linear algebra.
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LEMMA 3. The sum of the numbers of the spectrum of the Newton filtration in (s
is equal to the sum of the numbers of the spectrum of the Hodge filtration in {1y plus the
dimension of the space Qs (that is, plus the Milnor number u of the germ f).

In fact, the sum of the numbers of the Hodge filtration in () is equal to u(n/2 —1) by
the determinant theorem of [2], §12.1 (and this is one of the central points in the proof
of Theorem 2). The sum of the multiplicities of the numbers of the spectrum is equal to
the dimension of (y. Thus, to prove Lemma 3, it suffices to establish the following.

LEMMA 4. Considered as a subset of points (with multiplicities) on the number line,
the spectrum of the Newton filtration in Qy is symmetric about n/2.

Lemma 4 is a corollary of explicit formulas for the Newton spectrum (see Theorem 1
and Lemma 5) and the geometry of integral polyhedra. Lemma 4 will be proved in §5.
Theorem 2 is proved.

4. Formulas for the Newton spectrum in (1 allow us to compute the spectrum
from functions 77 and B (defined below) of the variable . These functions depend on
the Newton polyhedron and the nonempty subset I C {1,...,n}. To the subset I, we
associate the coordinate plane in the space of exponents of monomials in n variables on
which the coordinates with indices not contained in I are equal to zero. We label all
monomials on this coordinate plane whose Newton degree is equal to . We define T («)
to be the number of such monomials and B(a) to be the number of these monomials
which do not lie on smaller coordinate planes. Define the functions p[T] and p[B] of the
variable ¢ by the formulas:

p[T](8) = Y _(=1)» @ =) Y~ T ()™ + (1)

I a=0
p[Bl(t) = Y (=) M@ -1 " BT (a)t* + (-1)*,
I >0

where |I| is the number of elements in the set I. Let p[g] be a generating function of the
Newton spectrum in Q¢: p[g](t) = > g(a)t®

LEMMA 5. 1) plgl(t) = p[T](¢). 2) plgl(t) = p[BI(t).

PROOF. Steenbrink [4] found another formula for the Newton spectrum. The first
equality of the lemma follows from Steenbrink’s formula upon using the inclusion-
exclusion principle. The second equality follows from the first using the inclusion-
exclusion principle and the binomial theorem.

5. Symmetry of the Newton spectrum in (2y. Two formulas for the Newton
spectrum are cited in Lemma 5. We shall prove below that the spectrum determined by
the first formula is symmetric, relative to the point n/2, to the spectrum determined by
the second. In terms of generating functions, the symmetry of the spectrum is contained
in the equality t"p[g](t ) = plg](t). The latter is equivalent to the equality [Tl 1) =
p|B](t) established below.

The geometry of integral polyhedra. The functions BT and T' behave rather wildly
on the unit interval. But if the argument changes only by integers, these functions vary
polynomially. More precisely, the following assertions are true.

LEMMA 6. For every o > 0 there exists a polynomial T! and for every o > 0 there
ezists a polynomial Bl such thai

TI(m) =T (a+m) and B! (m) = Bl (a:+m)
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for every nonnegative integer m.

LEMMA 7. If1> a >0, the polynomials T! and B{_,, are related by the expression
ol ={-1)HA~1B]  (u~1).

Lemmas 6 and 7 follow easily from the results of [10]. Lemma 7 is a manifestation of
the duality between the interior integral points and the integral points on the polyhedron
(compare [11] and [12]).

Generating functions of polynomials. To establish the symmetry of the Newton spec-
trum in (37, we use the following lemma about generating functions on polynomials. It
can be verified by a direct summation.

LEMMA 8. If P s a polynomial in one variable, then the series > ms0 P(m)t™™ and
Y oms0 —P(—=m)t™, which converge for |t| > 1 or |t| < 1 respectively, determine the same
rational function.

LEMMA 9. The series ), ~o T (@)t~ and (—1)1 Y .o BY(a)t™ determine the same
function. 7

PROOF. We have

Y et *= 3 ¢y Tla+tmp™

a>0 1>az0 m=0
By Lemmas 6, 8 and 7,

Y THa+m)t™ =" ~Ti(-m)tm

m=0 m>0
= (==X~ BEO )= (=1)l STpl . m)em
m=>0 m=0
Furthermore,
(_l)lil ZBI(Q)tu — ("”i” Z tl_n z Bf-—(r(m)tm
a>0 1>a>0 m=0

The equality t"p[T)(t~!) = p[B](t) follows immediately from Lemma 9. This estab-
lishes the symmetry of the Newton spectrum about the point n/2. Lemma 4 is proved.

6. Formulation of the assertions about the space (1;.

THEOREM 4. The generating function plh|(t) = Y. h(a)t® of the spectrum of the
Hodge filtration in Qf is given by the formulas

L. plR](t) = (1 — &)1~ p[T](),

2. plh(t) = (L —t)~'t~'p[B|(2),
where the functions p[T'| and p|B] are as in Lemma 5.

We note that when o > n — 2 the number h(a) is equal to the multiplicity of the
number exp(27ia) in the spectrum of the monodromy operator of f; in particular, h(a) =
h(a+1).

THEOREM 5. In Qy, the filtration obtained by shifting the indices of the Newton
filtration by —1 coincides with the Hodge filtration.

Theorem 5 means the following: if the Newton order of a form w € (1" is equal to o
and if this order cannot be increased by adding to w forms of the type df A dn, where
n € 0"=2, then the Hodge order of w is equal to a — 1.

We formulate a corollary of Theorems 4 and 5. Let H, denote the quotient space of
holomorphic forms of Newton order at least o+ 1 with respect to the following equivalence
relation: two forms are equivalent if their integrals over any continuous family é(t) of
vanishing cycles differ by o(t®*¢), where ¢ is a suitable sufficiently small positive number.
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COROLLARY. The dimension of the space Hy, 13 equal to the multiplicity of the number
a in the Hodge spectrum of (1 and can be computed using the formulas in Theorem 4.
In particular, of o > n — 2, then dim H, = dim Hy 1.

7. Proof of Theorem 4. The integration operator d~!. The operator 91,
which associates the class [df An],dn = w, to the class [w] € {Iy, is well-defined on Q.
By the formula for differentiating integrals, we have

i fio" =,
1% . d
dt Js) 1 5(¢) w/d

for any family 6(t) of vanishing cycles. Thus, ~! increases the Hodge order by 1.
According to a theorem of Brieskorn [6], we have (1d~*{1; = 0. The space {1 coincides
with the coimage of the operator ! From the enumerated properties of 9! and
simple considerations from linear algebra, it follows that the Hodge spectra in 0y and
() are related by the expression k(@) = ) ;5 h(a — k). For generating functions, this
means that Y h(a)t® = (1 —t)~1 3 h(a)t* Theorem 4 now follows from Theorems 1
and 2.

8. Proof of Theorem 5.
LEMMA 10. The operator ! increases the Newton order by at least 1.

In fact, if w = hdz, then gdz is a representative of the class 8~ !|w], where g =
Il Joh(s, zay. o 20 ) ds.

Linear algebra. Let L: V — V be an operator on an (infinite-dimensional) linear space
with a trivial kernel and a finite-dimensional coimage. Let di,d2: V' — R be functions
with the following properties: d:(z +y) > min(d;i(z),di(y)); di(z + y) = di(z) when
di(z) < di(y); and d;(ax) = di(z) when z,y € V and @ is a nonzero number. The
function d; determines a decreasing filtration {V¢ = {v € V|d;(v) > a}}. Assume that:
1) the spaces V; have finite codimension in V, 2) the projections of the filtrations {V,! }
and {V2} to V/L(V) coincide, 3) dy > d2, and 4) djo L =dy + ¢ and da 0 L > d3 + ¢,
where 6 is some (fixed) number.

LEMMA 11. Under the above hypotheses, d; = ds.

Lemma 11 is an assertion belonging to linear algebra, and we omit its proof. Theorem
5 follows from Lemma 11 and Theorem 2 upon letting V, L, d1, d2 and 6 be 07,71, the
Hodge order, the Newton order minus 1, and the number 1, respectively.
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