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The number of integer points lying within a polyhedron, the volume of a polyhe-
dron — these and other geometric quantities are encountered in answering various
questions of the theory of singularities, in algebra and analysis. In this section we
present examples of this kind.

3.1 The Newton Polyhedra. The Newton polyhedron of a polynomial which
depends on several variables is the convex hull of the powers of the monomials
appearing in the polynomial with nonzero coefficients. The Newton polyhedron
generalizes the notion of degree and plays an analogous role. It is well known that
the number of complex roots of a system of n equations of identical degree m in
n unknowns is the same for nearly all values of the coefficients, and is equal to
mn (Bézout’s theorem). Similarly, the number of complex roots of a system of n
equations in n unknowns with the same Newton polyhedron is the same for nearly
all values of the coefficients and is equal to the volume of the Newton polyhedron,
multiplied by n! (Kushnirenko’s theorem, see 3.1.1).

The level line of a polynomial in two complex variables is a Riemann surface. For
nearly all polynomials of fixed degree n, the topology of this surface (the number of
handles g) is expressed in terms of its degree, and does not depend on the values of
the coefficients of the polynomial: g = (nl)(n2)/2. In the more general case, where
instead of polynomials of fixed degree we consider polynomials with fixed Newton
polyhedra, all the discrete characteristics of the manifold of zeros of the polynomial
(or several polynomials) are expressed in terms of the geometry of the Newton
polyhedra. Among these discrete characteristics are the number of solutions of a
system of n equations in n unknowns, the Euler characteristic, the arithmetic and
geometric genus of complete intersections, and the Hodge number of a mixed Hodge
structure on the cohomologies of complete intersections.

The Newton polyhedron is defined not only for polynomials but also for germs
of analytic functions. For germs of analytic functions in general position, with
given Newton polyhedra, one can calculate the multiplicity of the zero solution of a
system of analytic equations, the Milnor number and ξ function of the monodromy
operator, the asymptotics of oscillatory integrals (see section 2), the Hodge number
of the mixed Hodge structure in vanishing cohomologies, and in the two-dimensional
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and multidimensional quasihomogeneous cases, one can calculate the modality of
the germ of the function.

In the answers one meets quantities characterizing both the sizes of the polyhedra
(volume, number of integer points lying inside the polyhedron) as well as their
combinatorics (the number of faces of various dimensions, numerical characteristics
of their contacts).

In terms of the Newton polyhedron one can construct explicitly the compactifi-
cation of complete intersections, and the resolution of singularities by means of a
suitable toric manifold.

Thus, the Newton polyhedra connect algebraic geometry and the theory of sin-
gularities to the geometry of convex polyhedra. This connection is useful in both
directions. On the one hand, explicit answers are given to problems of algebra and
the theory of singularities in terms of the geometry of polyhedra. We note in this
connection that even the volume of the convex hull of a system of points is a very
complicated function of their coordinates. Therefore, the formulation of answers in
numerical terms is so opaque that without knowing their geometric interpretation
no progress is possible. On the other hand, algebraic theorems of general character
(the Hodge theorem on the index of an algebraic surface, the Riemann–Roch theo-
rem) give significant information about the geometry of polyhedra. In this way one
obtains, for example, a simple proof of the Aleksandrov–Fenchel inequalities in the
geometry of convex bodies.

The Newton polyhedra are also met in the theory of numbers (Ref. 17) in real
analysis (Ref. 29), in the geometry of exponential sums (Refs. 32, 60), in the
theory of differential equations (Refs. 18, 19, 36). In this paragraph we present
formulations of some theorems about Newton polyhedra. More details can be found
in Refs. 4, 7, 15, 12–13, 15–29, 32–34, 41, 58, 60–61.

3.1.1 The Number of Roofs of a System of Equations with a Given Newton Poly-
hedron. According to Bézout’s theorem, the number of nonzero roots of the equa-
tion f(z) = 0 is equal to the difference between the highest and the lowest powers
of the monomials appearing in the polynomial f . This difference is the volume
of the Newton polyhedron (in the present case, the length of a segment). In the
following two paragraphs we present the generalizations of this theorem to the case
of arbitrary Newton polyhedra.

Let us start with definitions. A monomial in n complex variables is a product
of the coordinates to integer (possibly negative) powers. Each monomial is asso-
ciated with its degree, an integer vector, lying in n-dimensional real space, whose
components are equal to the powers with which the coordinate functions enter in
the monomial. A Laurent polynomial is a linear combination of monomials. The
support of the Laurent polynomial is the set of powers of monomials entering in the
Laurent polynomial with nonzero coefficients. (The Laurent polynomial is an ordi-
nary polynomial if its support lies in the positive octant.) The Newton polyhedron
of the Laurent polynomial is the convex hull of its support. It is much more conve-
nient to consider the Laurent polynomials not in Cn but in the (C\0)n-dimensional
complex space, from which all the coordinate planes have been eliminated. With
each face Γ of the Newton polyhedron of the Laurent polynomial f we associate
a new Laurent polynomial, which is called the restriction of the polynomial to the
face, denoted by fΓ and defined as follows: only those monomials appear in fΓ that
have powers lying in the face Γ, with the same coefficients that they have in f .
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Now let us consider a system of n Laurent equations f1 = · · · = fn = 0 in (C\0)n
with a common Newton polyhedron. The restricted system, fΓ

1 = · · · = fΓ
n = 0

corresponding to each face Γ of the polyhedron. The restricted system actually
depends on a smaller number of variables, and in the case of general position is
incompatible in (C \ 0)n. We say that a system of n equations in n unknowns with
a common Newton polyhedron is regular if all the restrictions of this system are
incompatible in (C\0)n. The following theorem of Kushnirenko holds: The number
of solutions in (C \ 0)n, counted with their multiplicities, of a regular system of n
equations in n unknowns with a common Newton polyhedron is equal to the volume
of the Newton polyhedron multiplied by n!.

Example: The Newton polyhedron of the polynomial of degree m in n unknowns
is the simplex 0 ≤ x1, . . . , 0 ≤ xn,

∑
xi ≤ m (we assume that the polynomial

contains all monomials of degree ≤ m). The volume of such a simplex is mn/n!.
The number of roots of the total system of n equations of degree m in n unknowns,
according to Kushnirenko’s theorem, is equal to mn. This answer agrees with
Bezout’s theorem. If the polynomial does not contain all monomials of degree less
than or equal to m, then the Newton polyhedron can be smaller than the simplex,
so the number of solutions, calculated from Kushnirenko’s theorem, can be smaller
than the number mn calculated from Bezout’s theorem. Because of the absence
of the monomials, certain infinitely distant points may be roots of the system of
equations. Bezout’s theorem, which calculates the number of roots of the system
in projective space, takes into account these parasitic roots, while Kushnirenko’s
theorem does not.

Remark: The proof of Kushnirenko’s theorem is found in Ref 41. Another proof
can be extracted from the recent theorem of Atiyah on symplectic actions of tori
(Ref. 62). We associate with each n-dimensional, integer-valued, convex polyhe-
dron a symplectic ”Veronese manifold” and a set of n commuting Hamiltonians on
it, for each of which the motion is periodic with a period independent of the trajec-
tory. The ”moment mapping” corresponding to these Hamiltonians, according to
Atiyah’s theorem, maps the Veronese manifold on some convex polyhedron. It is not
difficult to calculate that this polyhedron coincides with the original polyhedron.
The calculation of the number of roots of a typical system of equations with a given
Newton polyhedron reduces to determining the volume of the Veronese manifold,
which is easily done with the help of Atiyah’s theorem: This volume is proportional
to the volume of the polyhedron. The Veronese manifold is constructed from the
convex integer polyhedron as follows. Consider the projective “space of monomials”
CPN−1, the number of whose homogeneous coordinates is equal to the number N
of integer points lying inside and on the faces of ∆. By a ∆-Veronese manifold we
mean the image of the mapping (C \ 0)n → CPN−1, which associates the point
z of (C \ 0)n with the point of projective space whose homogeneous coordinates
coincide with the values at the point z of monomials whose degrees lie within ∆
and on its faces. Since the ∆-Veronese manifold is algebraic, the numbers of points
of its intersection with the planes of complementary dimension are the same for
almost all planes. According to the Buffon-Crofton formula this number is propor-
tional to the volume of the manifold. But a plane of codimension n in the space of
monomials CPN−1 corresponds to a system of n equations with the Newton poly-
hedron ∆. The number of points of intersection of a plane with the ∆-Veronese
manifold is equal to the number of solutions of the system. Therefore, the number
of solutions of the system is proportional to the volume of the Veronese manifold.
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Atiyah’s theorem is used to calculate this volume. A real n-dimensional torus acts
in the space (C\0)n: each of the n coordinates can be multiplied by a number with
absolute value equal to one. This action of the torus on (C \ 0)n could be carried
over to the ∆-Veronese manifold and is symplectic there. Thus, Atiyah’s theorem is
applicable; it follows from this theorem that the volume of the ∆-Veronese manifold
is proportional to the volume of the original Newton polyhedron ∆.

3.1.2 How Does One Find the Number of Solutions of a System of n Equations
in n Unknowns with Different Newton Polyhedra?. Here is the answer to this ques-
tion for a system in general position with fixed Newton polyhedra: the number of
solutions not lying on the coordinate planes is equal to the mixed volume of the
Newton polyhedra, multiplied by n! Below we shall give the definition of mixed
volume and describe explicitly the conditions for degeneracy.

The Minkowski sum of two subsets of a linear space is the set of sums of all
pairs of vectors, in which one vector of the pair lies in one subset and the second
vector in the other. The product of a subset and a number can be determined in a
similar manner. The Minkowski sum of convex bodies (convex polyhedra, convex
polyhedra with vertices at integer points) is a convex body (convex polyhedron,
convex polyhedron with vertices at integer points). The following theorem holds:

Minkowski theorem. The volume of a body which is a linear combination with
positive coefficients of fixed convex bodies lying in Rn is a homogeneous polynomial
of degree n in the coefficients of the linear combination.

Definition. The mixed volume V (∆1, . . . ,∆n) of the convex bodies ∆1, . . . ,∆n in
Rn is the coefficient in the polynomial V (λ1∆1+ . . . , λn∆n) of λ1×· · ·×λn divided
by n! (here V (∆) is the volume of the body ∆).

The mixed volume of n identical bodies is equal to the volume of any one of
them. The mixed volume of n bodies is expressed in terms of the usual volumes of
their sums in the same way as the product of n numbers is expressed in terms of
the n-th powers of their sums. For example, for n = 2,

ab =
1

2
[(a+ b)2 − a2 − b2]

V (∆1,∆2) =
1

2
[V (∆1 +∆2)− V (∆1)− V (∆2)].

Similarly, for n = 3,

V (∆1,∆2,∆3) =
1

3!

V (∆1 +∆2 +∆3)−
∑
i<j

V (∆i +∆j) +
∑

V (∆i)

 .

Example: Suppose that ∆1 is the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b and ∆2 is
the rectangle 0 ≤ x ≤ c, 0 ≤ y ≤ d. The Minkowski sum ∆1 +∆2 is the rectangle
0 ≤ x ≤ a + c, 0 ≤ y ≤ b + d. The mixed volume V (∆1,∆2) is equal to ad + bc.

The number ad+ bc is the permanent of the matrix

[
a c
b d

]
(the definition of the

permanent differs from that of the determinant only in that all the terms in the
permanent have a plus sign). In the multidimensional case the mixed volume of
n parallelepipeds with sides parallel to the coordinate axes is also equal to the
permanent of the corresponding matrix.

Let us consider a system of n Laurent equations f1 = · · · = fn = 0 with Newton
polyhedra ∆1, . . . ,∆n. Below we define the regularity condition for such systems.
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Bernshtein’s theorem. The number of solutions in (C \ 0)n (which take account
of the multiplicity) of a regular system of n equations in n unknowns, is equal to
the mixed volume of the Newton polyhedra of the equations of the system, multiplied
by n!.

Example: The number of roots of a general system of polynomial equations, in
which the i-th variable enters in the j-th equation with a power no higher than aij
is equal to the permanent of the matrix (aij), multiplied by n!.

Kushnirenko’s theorem coincides with Bernshtein’s theorem for equations with
identical Newton polyhedra. We now proceed to the definition of a regular system
of equations. We first define the truncations of a system associated with a function
ξ. We take an arbitrary linear function ξ on the space Rn in which the Newton
polyhedra lie. We denote by fξ the restriction of the Laurent polynomial f to that
face of its Newton polyhedron on which the linear function ξ takes its maximum

value. We associate the restricted system fξ
1 = · · · = fξ

n = 0 with the system of
equations f1 = · · · = fn = 0 and the linear function ξ. For a nonzero function ξ
the restricted system actually depends on a smaller number of variables. Therefore,
in the case of general position such a system is inconsistent in (C \ 0)n. A given
system of equations has only a finite number of restricted systems (if the polyhedra
of all the equations coincide, then the truncations correspond to the faces of the
common polyhedron). A system of n equations in n unknowns is said to be regular
if its restrictions for all nonzero functions ξ are inconsistent in (C \ 0)n. It is just
such a system to which Bernshtein’s theorem is applicable.

We note that if for each nonzero linear function ξ, the maximum in one of the
polyhedra is attained at a vertex then the regularity conditions are automatically
satisfied. [In this case the truncated system contains an equation which is contained
in a monomial set equal to zero; this equation has no solutions in (C \ 0)n.] For
example, in the case of n = 2, the regularity conditions are satisfied automatically,
if the two Newton polyhedra on the real plane have no parallel sides.

3.1.3. Newton Polyhedron of the Germ of an Analytic Function. In this para-
graph we discuss the calculation of the multiplicity of a root of a system of equations,
the Milnor number, and the modality of a function in two variables, in terms of
Newton polyhedra.

We begin with definitions. To each power series in n variables we associate
its support, the set of powers of monomials appearing in the series with nonzero
coefficients. To each point of the support we associate an octant with vertex at
that point, and consisting of all points for which each coordinate is not smaller
than the corresponding coordinate of the vertex. The Newton polyhedron of the
series is the convex hull of the union of all octants with vertices on the support of
the series. The Newton diagram of the series is the union of compact faces of the
Newton polyhedron. A Newton polyhedron of the series is said to be suitable if it
intersects all the coordinate axes.

By the volume V (∆) of a suitable polyhedron we mean the volume of the (non-
convex) region between the origin and the faces of the polyhedron in the positive
octant Rn

+. Minkowski’s theorem holds for the volumes of suitable polyhedra: the
volume of a linear combination, with positive coefficients, of suitable polyhedra
(just like the usual volume of polyhedra) is a polynomial in the coefficients of the
linear combination. Therefore, we can define a mixed volume for suitable polyhe-
dra, which is a verbatim repetition of the usual definition of mixed volume (see
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par. 3.1.2). For example, in the plane the mixed volume V (∆1,∆2) of two suitable
polyhedra ∆1,∆2 is defined by the formula

2V (∆1,∆2) = V (∆1 +∆2)− V∆1)− V (∆2)

The following local variant of Bernshtein’s theorem (see par. 3.1.2) holds.

Theorem. The multiplicity of the origin as of a regular solution of a system of
n analytic equations of n unknowns with suitable Newton polyhedra is equal to the
mixed volume of the suitable Newton polyhedra, multiplied by n!

Example: The multiplicity of the origin as of a regular solution of the system
xa
1 + xb

2 = xc
1 + xd

2 = 0 with positive powers a, b, c, d, with ad ̸= bc, is equal to
min(ad, bc).

We give a precise definition of regularity of the origin. The linear function
ξ is said to be negative if all its values in the positive octant are negative (i.e.,
ξ =

∑
ak, xk, ak < 0). The restriction fξ of the analytic function f to negative

functions ξ is its truncation to that face of the Newton polyhedron at which the
function ξ attains its maximum. A null solution of a system of n analytic equations
f1 = · · · = fn = 0 with suitable Newton polyhedra at the origin is said to be regular

if the restricted of the system, fξ
1 = · · · = fξ

n = 0, is inconsistent in (C \ 0)n for all
negative functions ξ.

We now give the formula for the Milnor number µ, of the germ of an analytic
function. First, we shall give several definitions and notations. We say that the germ
of an analytic function f with suitable Newton polyhedron ∆ is ∆-nondegenerate

if, for any compact face Γ of the Newton polyhedron, the system z1(
∂fΓ

∂z1
) = · · · =

zn(
∂fΓ

∂zn
) = 0 is inconsistent in (C \ 0)n (here fΓ is the truncation of f to the

face Γ). We give some geometric notations: for a suitable Newton polyhedron
∆ ⊂ Rn, we denote by ∆I its intersection with the coordinate plane RI in Rn,
by d(I) the dimension of this coordinate plane and by V (∆I) the d(I)-dimensional
volume of the (nonconvex) region in the positive octant RI

+ between the origin and

the boundary of ∆I .

Theorem. For a ∆-nondegenerate function f with a suitable Newton polyhedron
∆, the Milnor number is∑

d(I)!(−1)n−d(I)V (∆I) + (−1)n

where the summation is taken over all intersections ∆I of the suitable Newton
polyhedron with the coordinate planes.

Example: For almost all functions of two variables with a given suitable Newton
polyhedron, µ = 2Sab + 1, where S is the area under the polyhedron, a and b are
coordinates of the points of the polyhedron on the axes (see the figure).

The modality m(f) of a function f is the dimension of the space of orbits of the
group of diffeomorphisms in the space of convergent power series which has no free
and no linear terms in the neighborhood of the orbit of the point f .

Theorem (Kushnirenko). The modality of a ∆-nondegenerate function of two vari-
ables with suitable Newton polyhedron is equal to the number of integer points lying
on the Newton diagram and below it, for which each coordinate is not less than two.
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Calculation of the Milnor number: µ = 2S − a − b + 1 = 24 −
5− 7 + 1 = 13

3.1.4 Complete Intersections. Consider in (C \ 0)n a system of k Laurent equa-
tions f1 = · · · = fk = 0 with Newton polyhedra ∆1, . . . ,∆k. For Laurent polyno-
mials in general position with given Newton polyhedra, the discrrete invariants of
the set f solutions are identical and are expressed in terms of the polyhedra. Below
we give an explicit description of the conditions for nondegeneracy and describe the
Euler characteristic and the omotopy of the complete intersection.

Definition. A system f1 = · · · = fk = 0 is said to be nondegenerate for its Newton
polyhedra if for any linear function ξ the following (ξ) condition is satisfied: for

any solution z of the truncated system fξ
1 = · · · = fξ

k = 0, lying in (C \ 0)n the

differentials dfξ
i are linearly independent in the tangent space at the point z.

Each of the (ξ) conditions is satisfied for almost all Laurent polynomials with
fixed polyhedra (this is the Sard–Bertini theorem).

Although formally the nondegeneracy conditions are described for any linear
function ξ, actually the different conditions are finite in number (there exist only
a finite number of different truncated systems). Therefore the nondegeneracy con-
ditions are satisfied almost everywhere. Among the nondegeneracy conditions
there is the (0) condition (for null function ξ), according to which the system
f1 = · · · = fk = 0 determines a nonsingular (n − k)-dimensional manifold in
(C \ 0)n. We note that for k = n class of regular systems is broader than class of
nondegenerate systems: for regular systems the (0) condition does not have to be
satisfied (regular systems can have multiple roots).

Theorem. The Euler characteristic of the nondegenerate complete intersection
f1 = · · · = fk = 0 in (C \ 0)n, (k ≤ n), with the Newton polyhedra ∆1, . . . ,∆k

is equal to (−1)n−kn!
∑

V (∆1, . . . ,∆k,∆i1 , . . .∆in−k
), where the sum is taken over

all sets 1 = i1 ≤ · · · ≤ in−k ≤ k.

We note one special case of this theorem.

Corollary. The Euler characteristic of a hypersurface in (C\0)n defined by nonde-
generate equation with fixed Newton polyhedron is equal to the volume of the Newton
polyhedron multiplied by (−1)n−1n!.

Anover consequence of this theorem iz Bernshtein’s theorem (see par. 3.1.2):
for k = n, the nondegenerate complete intersections consist of points, and the
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Euler characteristic is equel to the number of points (strictly speaking, Bernshtein’s
theorem is slightly stronge than tis corollary, since it is applicable to a degenerate
regular system).

Theorem (on homotopy type). Suppose that the Newton polyhedra ∆i have a total
dimension dim∆i = n and the complete intersection fi = · · · = fk = 0 in Cn is
nondegenerate. Then for k < n the complete intersection is connected and has
homotopy type of a bouquet of (n− k)-dimenrional spheres.??????????

Corollary. The cohomology groups of a nondegenerate complete intersection with
Newton polyhedra of complete dimension are different from zero only in dimensions
nk and 0, where for n > k the zero-measure cohomology group is one-dimensional.

3.1.5 Genus of Complete Intersections. The formulas given below for the genus of
complete intersections are generalizations of the following formulas for Abelian and
elliptic integrals. Let us consider a Riemann surface y2 = P3(x) (the complex phase
curve of motion of a point in a field with a cubic potential). This Riemann surface,
which is diffeomorphic to the torus, exhibits a single, everywhere holomorphic,
differential form dx/y (the differential of the time of motion along the phase curve).
In the case of a potential of degree n, the curve y2 = Pn(x) is diffeomorphic to the
sphere with g handles, where g is connected with n either by the formula n = 2g+1,
or the formula n = 2g+2 (depending on the parity of n). The basis of holomorphic
forms in this case is given by g forms of the type xmdx/y, 0 ≤ m < g. The number
g is the genus of the curve. The Newton polyhedron of the curve y2 == Pn(x) is
a triangle with vertices (0, 0), (0, 2), and (n, 0). There are exactly g points with
integer coordinates strictly inside this triangle. In terms of these points, one can
give a basis for the space of holomorphic forms: the point (1, a), which lies inside the
triangle, corresponds to the form xa−1dx/y. We give below the generalization of this
procedure for constructing a basis of holomorphic forms for the multi-dimensional
case.

The nondegenerate complete intersections f1 = · · · = fk = 0, where the fi, are
Laurent polynomials, are smooth algebraic affine manifolds. In the cohomologies of
such manifolds there is an additional structure, namely, the mixed Hodge structure.
The discrete invariants of such a structure are calculated in terms of the Newton
polyhedra. We consider only the calculation of the arithmetic and geometric genus
which are invariants of this kind.

We first recall some definitons and general statements. Suppose that Y is a
nonsingular (possibly noncompact) algebraic manifold. The set of holomorphic
p-forms on Y , which extend holomorphically to any nonsingular algebraic com-
pactification, is automatically closed, and it realizes the zero class of homology of
the manifold Y only if it is equal to zero. Forms of this kind form a subspace in the
p-dimensional cohomologies of the manifold Y . We denote the dimension of this
subspace by hp,0(Y ). The arithmetic genus of the manifold Y is the alternating
sum

∑
(−1)php,0(Y ) of the numbers hp,0(Y ). The geometric genus of the manifold

Y is the number hn,0(Y ), where n is the complex dimension of the manifold Y .
Now we turn to the Newton polyhedron. We shall use the characteristic B(∆)

of integer polyhedra. Here is its definition. Suppose that ∆ is a q-dimensional
polyhedron with vertices at integer points, lying in Rn and Rq is a q-dimensional
subspace, containing ∆. The number B(∆) is defined as the number of integer
points lying strictly within he polyhedron ∆ (in the geometry of the subspace Rq),
multiplied by (−1)q.
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Theorem. The arithmetic genus of the nondegenerate complete intersection f1 =
· · · = fk = 0 in (C \ 0)n, (k ≤ n), with the Newton polyhedra ∆1, . . . ,∆k is

1−
∑

B(∆i) +
∑
j>i

B(∆i +∆j)− · · ·+ (−1)kB(∆1 + · · ·+∆k).

Corollary. The geometric genus of the nondegenerate complete intersection (for
k < n) with the polyhedra of full dimensionality is

(−1)n−k

−
∑

B(∆i) +
∑
j>i

B(∆i +∆j)− · · ·+ (−1)kB(∆1 + · · ·+∆k)

 .

Proof of the corollary. According to the theorem on the homotopic type of the
complete intersection (see par. 3.1.4), h0,0 = 1 and hp,0 = 0 for 0 < p < nk. The
corollary now follows from the calculation of the arithmetic genus.

We now give a complete discription of the holomorphic forms of highest dimen-
sion which could be extended holomorphically to the compactification, for the case
of a nondegenerate hypersurface f = 0 in (C \ 0)n with the Newton polyhedron
∆ of complete dimension. For each integer point, lying strictly within the Newton
polyhedron ∆, we denote by ωa the n-form on the hypersurface f = 0, defined by
the formula

ωa = za1
1 × · · · × zan

n

dz1
z1

∧ · · · ∧ dzn
zn

/df ; a = a1, . . . , an.

Theorem. The forms ωa lie in the space of forms extendable holomorphically on
the compactification of the manifold f = 0; they are linearly independent and gen-
erate that space. In particular, the geometric genus of the hypersurface is equal to
|B(∆)|.

Example: Consider a curve in the plane determined by the equation y2 = Pn(x).
The interior monomials for the Newton polyhedron of this curve have the form yxa,
where 1 ≤ a < n/2. The forms ωa corresponding to the monomials coincide [on the
curve y2 = Pn(x)] with the forms xa−1dx/2y. Thus, for the curve y2 = Pn(x) we
get the usual description of all Abelian differentials.

3.1.6 Total Intersections in Cn. It is customary to consider systems of equations
not in (C\0)n, but in the usual complex space Cn. Calculations with Newton poly-
hedra also are carried out in this situation. The answers here are more messy. As
an example we consider the calculation of the Euler characteristic of a hypersurface
in Cn. Suppose that f is a polynomial in n complex variables with a nonzero free
term and Newton polyhedron ∆. We introduce the following notation: ∆I is the
intersection of the Newton polyhedron ∆ with the coordinate plane RI in Rn, d(I)
is the dimension of this plane, and V (∆I) is the d(I)-dimensional volume of the
polyhedron ∆I .

Theorem. Let f be a nondegenerate polynomial with the Newton polyhedron ∆
which has a nonzero free term. Then f = 0 is a nonsingular hypersurface in Cn,
intersecting transversally all the coordinate planes in Cn. The Euler characteristic
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of this hypersurface is equal to
∑

(−1)d(I)−1d(I)!V (∆I), where the summation runs
over all intersections of the Newton polyhedron ∆I with the (nonzero) coordinate
planes.

This theorem follows from the calculation of the Euler characteristic in (C \ 0)n
(see par. 3.1.4) and from the additivity of the Euler characteristic. We also note
that the formula given for a hypersurface is analogous to the formula for the Milnor
number (see par. 3.1.3).

3.2 Index of a Vector Field. The investigation of the topology of real algebraic
curves, surfaces, etc., is a necessary stage in the study of singularities in analysis
(the Taylor expansion approximates all objects by algebraic ones, and the topology
of these objects has a decisive influence over the topology of the analytic objects).

Unfortunately, very little is known about the topology of real algebraic manifolds
(even curves) of high degree. Algebraic curves of degree 3 and 4 were studied by
Newton and Descartes, but what a plane algebraic curve of degree 8 might look like
is not known even today (a curve of sixth degree can’t have more than 11 ovals,
and in that case only one of them contains other ovals inside it, namely, 1, 5 or 9
others — this was discovered in 1970).

The theory of singularities enables one to give some restrictions on the topology
of real algebraic manifolds. For example, from the expression for the Poincare index
of a singular point of the vector field in terms of the local algebra of the singular
point there follows the inequality of Petrovskii–Oleinik for the Euler characteristic
of algebraic manifolds of fixed degree.

3.2.1 The Index of a Homogeneous Singular Point. What values can the index
of an isolated singular point of a vector field in Rn, whose components are homoge-
neous polynomials of degree m1, . . . ,mn, have? Theorem 1 formulated below gives
a complete answer to this question.

We introduce the following notations, m = m1 . . . ,mn is a set of natural num-
bers; ∆(m) is a parallelepiped in Rn, defined by the inequalities 0 ≤ y1 ≤ m1 −
1, . . . , 0 ≤ yn ≤ mn1; µ1 = m1 . . .mn is the number of integer points in the
parallelepiped ∆(m); Π(m) is the number of integer points in the central section
y1 + · · ·+ yn = 1

2 (m1 + · · ·+mnn) of the parallelepiped ∆(m).

Theorem 1 (Refs. 33 and 34). The index ind of an isolated singular point 0
of a vector field in Rn, whose components are homogeneous polynomials of degree
m1, . . . ,mn, satisfies the inequality |ind| ≤ Π(m) and the congruence ind ≡ µ
mod 2. There are no other restrictions on the index.

The proof of the estimate of the index in Theorem 1 is obtained from the signa-
ture formula for the index (see par. 3.2.5).

We note that the algebraic formula for the number Π(m) is no means simple.
Just the simple geometric interpretation of this number enables one to present
examples of vector fields with all indices not forbidden by Theorem 1 (Ref. 33).

3.2.2 Petrovskii–Oleinik Inequalities. Consider a real nonsingular projective hy-
persurface A of degree m+1, given by a homogeneous polynomial f in n variables.

The Petrovskii–Oleinik inequalities consist of the following:

|χ(A)1| ≤ Nn(m) if n is even;

|χ(B+)− χ(B−) ≤ Nn(m) if n and m are odd.
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Here χ is the Euler characteristic, B+ and B− are parts of RPn−1 given by
the conditions f ≥ 0, f ≤ 0, respectively, while the number Nn(m) is the number
of integer points in the central section of the cube with side m [i.e., Nn(m) =
Π(m, . . . ,m︸ ︷︷ ︸

n times

)].

It is not difficult to show that both for even and odd n the left sides of the
Petrovskii–Oleinik inequalities are equal in modulus to the index of the gradient
of the homogeneous polynomial f giving the hypersurface. Thus, the Petrovskii–
Oleinik inequalities represent a special case of the inequality |ind| ≤ Π(m) of The-
orem 1: this inequality must be applied to the index of the gradient vector field of
the homogeneous polynomial of degree m+ 1.

The Petrovskii–Oleinik inequalities were discovered in 1949 (Ref. 35). The
relationship between these inequalities and the estimate of the index of a vector
field was established in 1978 (Ref. 34).

3.2.3 Index of a Polynomial Field. What values can the total index of singular
points of a vector field in the region Rn have, if the region is defined by a polynomial
inequality P0 < 0, and if we know the degrees of the components of the field and
the degree of the polynomial P0? In this paragraph we formulate a complete answer
to this question.

We denote by ind the sum of the indices of all the singular points of the field
V in Rn, and by ind+ and ind− the sums of the indices of all the points of V in
the regions P0 > 0 and P0 < 0. We shall say that the pair V, P0 has a degree
not exceeding (equal to) m,m0, where m = m1, . . . ,mn, if the degree of the i-th
component of the field does not exceed (is equal to) mi, and the degree of the
inequality P0 < 0 does not exceed (is equal to) m0. We shall say that the pair
V, P0 is nondegenerate if, first, the real hypersurface P0 = 0 does not pass through
singular points of the field V and if, secondly, the real singular points of the field V
have finite multiplicity and lie “in a finite part of the space Rn” (the last condition
means that the system x0 = P 1 = · · · = Pn = 0 has only the zero solution. Here
the P i are homogeneous polynomials of degree mi in n + 1 variables, equal to Pi

when x0 ≡ 1.)
We supplement the geometric definitions of par. 3.2.1: Π(m,m0) is the number

of integer points of the parallelepiped ∆(m) satisfying the inequalities

1

2
(m1 + · · ·+mn − n−m0) ≤ y1 + · · ·+ yn ≤ 1

2
(m1 + · · ·+mn − n+m0)

O(m,m0) is the number of integer points of the parallelepiped satisfying the
inqualities

1

2
(m1 + · · ·+mn − n−m0) ≤ y1 + · · ·+ yn ≤ 1

2
(m1 + · · ·+mn − n)

We note that O(m,m0) =
1
2 (Π(m,m0) + Π(m)) and that Π(m) ≡ Π(m,m0) ≡

µ(mod2).

Theorem 2 (Ref. 33). For the nondegenerate pair V, P0 with degrees m,m0 the
numbers a = ind, b = ind+ind− and c = ind+ satisfy the inequalities |a| ≤ Π(m),
|b| ≤ Π(m,m0), |c| ≤ O(m,m0) and the congruences a ≡ b ≡ c ≡ µ mod 2. Con-
versely, for any number a (number b, number c) satisfying these restrictions, there
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exists a nondegenerate pair V, P0 of degrees m,m0 for which ind = a (ind+ind− = b,
ind+ = c).

We note that Theorem 1 is a special case of Theorem 2 (the case where the field
V has homogeneous components and a single singular point at the origin).

We can also evaluate the index for vector fields V with “infinitely remote singular
points”. The number ind+ is defined if the region P0 > 0 contains only isolated
singular points of the field V . The number ind is defined if all the singular points
of the field V are isolated.

Theorem 3 (Ref. 33). Suppose that for the pair V, P0 of degrees not exceeding
m,m0, the number ind+ is defined. Then if m0 + · · · + mn ≡ n( mod 2) then
the modulus of the number ind+ does not exceed O(m,m0). In this case no other
restrictions exist on the number ind+. If m0 + · · · + mn ̸≡ n( mod 2) and m0 is
odd, then the modulus of the number ind+ does not exceed O(m,m0 + 1). In this
case there exists a pair V, P0 with the extremal ind+ = ±O(m,m0 + 1).

Corollary. Suppose that V is a vector field of degree not exceeding m = m1, . . . ,mn

with isolated singular points. Then, for m1 + · · · +mn ≡ n( mod 2) the estimate
|ind| ≤ Π(m) holds, while for m1 + · · · + mn ̸≡ n( mod 2) we have the estimate
|ind| ≤ O(m, 1). Both are exact.

3.2.4 Inverse Jacobian Theorem. To study a multiple singular point one uses
a small deformation to dissociate it into nonmultiple singular points. The key
information about such a dissociation is provided by the theorem on the inverse
Jacobian, which is also of intrinsic interest. The inverse Jacobian theorem is applied,
for example, in the proof of the signature formula for the index (see par. 3.2.5). We
give a formulation of this theorem and derive the classic Euler–Jacobi classification
formula from it.

Suppose that a system of n holomorphic equations in n complex unknowns de-
pends on parameters, where for general values of the parameters it has only nonmul-
tiple roots, while for exceptional values of the parameters (which form, in general,
a hypersurface in parameter space) certain roots merge and become multiple. At a
multiple root the Jacobian of the system is equal to zero, so when the nonmultiple
roots of the system coalesce, the Jacobian of the system tends to zero at the coalesc-
ing roots. The reciprocal of the Jacobian is defined only at nonmultiple roots, and
for coalescing roots tends to infinity. It turns out, however, that when one sums the
reciprocals of the Jacobian over all the roots of the system, all the infinities cancel
out, and the sum remains finite. We give an exact formulation of this theorem.
Suppose that U ⊆ Cn is a domain in Cn, f : U → Cn is a holomorphic mapping,

J = det(
∂f

∂x
) is the Jacobian of this mapping, V is a region in the image space that

does not intersect the image of the boundary of the region U , and h : U → C is a
holomorphic weight function.

Theorem (about the inverted Jacobian). The function

(1) φ(a) =
∑

f(x)=a

h(x)J−1(x)

defined on regular values a ∈ V of the mapping f , is extendable holomorphically
to the whole region V [the summation in (1) is taken over all roots of the system
f(x) = a lying in the region U ].
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One of the corollaries of the inverted Jacobian theorem is the Euler–Jacobi for-
mula. We recall this formula and give its derivation from the theorem.

Suppose that for the system

(2) P1 = · · · = Pn = 0

of n polynomial equations of degrees m1, . . . ,mn in n complex unknowns, all the
roots are nonmultiple and “lie in the finite part” of the complex space. Suppose
that h is an arbitrary polynomial in n variables, whose degree is less than the degree
of the Jacobian J of the system (i.e., less than m1 + · · · + mn − n). In this case
the Euler–Jacobi formula

(3) ρ =
∑

P (x)=0

h(x)J−1(x)

holds [where the summation goes over all roots of the system (2)].
The proof is obtained by applying Theorem 1 to a special mapping of the (n+ l)-

dimensional space into itself with a special weight function. The first n components
of this mapping are homogeneous polynomials in the n+1 variables, which coincide
with the polynomials of the system (2) on the hyperplane xn+1 = 1, the last
component is the coordinate function xn+1. The weight function is a homogeneous
polynomial coinciding with the polynomial h on the hyperplane xn+1 = 1.

The inverse image of the point (0, ε) of this mapping consists of points (εx, ε),
where x is a root of the system (2). A calculation shows that

φ(0, ε) = ρεp−(
∑

mi−n)

where φ is the function defined by formula (1) for the mapping and for the weight
function constructed above, ρ is a number defined by formula (3), and p is the
degree of the weight function. As ε tends to zero, the function φ must remain
bounded. If the degree of the weight polynomial is less than the degree of the
Jacobian, then this is possible only if ρ = 0. Thus the formula of Euler–Jacobi is
proved. We note that this formula is used in estimating the index of a polynomial
vector field (see par. 3.2.3) and in the Petrovskii–Oleinik proof of their inequalities
(Ref. 35).

3.2.5 General Theorems about the Index. In this paragraph we give a formulation
of the signature formula for the index and prove the estimate of the index of a
singular point of a field with homogeneous components from Theorem 1 of par. 3.2.1.

Suppose that f : (Rn, 0) → (Rn, 0) is a mapping with finite multiplicity and Q
is the local algebra of this mapping. We denote by J the image of the Jacobian of
the mapping f in the local algebra Q.

Assertion 1. The image of the Jacobian J in the local algebra is not equal to zero.

Suppose that l is an arbitrary linear real-valued function on the local algebra Q.
We define a bilinear form Bl on the local algebra by the formula Bl(a, b) = l(a · b).

Theorem 1 [signature formula for the index (Refs. 54 and 55)]. For any linear
function l that is positive on the image of the Jacobian J , the signature of the
bilinear form Bl is equal to the index of the singular point 0 of the mapping f .
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Corollary. If in the µ-dimensional local algebra Q of the mapping f there exists
an m-dimensional linear subspace L, the product of any two of whose elements is
zero, then the modulus of the index of the point 0 does not exceed µ− 2m.

Proof of the Corollary. The space L is a zero space for the bilinear form Bl. The
modulus of the signature of the quadratic form on a µ-dimensional space having a
zero m-dimensional subspace does not exceed µ− 2m.

Let us now prove the estimate of the index of a singular point with homogeneous
components m1, . . . ,mn given in par. 3.2.1.

As the generators of the local algebra of this singular point we may take mono-
mials whose degrees in the i-th variable are strictly less than mi for any i ≤ n.
Such monomials are in one-to-one correspondence with the integer points of the
parallelepiped ∆(m) (see par. 3.2.1). Consider the R-linear subspace L, which is
spanned by the monomials whose degrees are greater than half their possible max-
imum [d > 1

2 (
∑

m1 − n)]. The product of any two monomials of this subspace is
equal to zero in the local algebra.

Consequently, |ind| ≤ µ− 2 dimR L.
The right side of this inequality is equal to the number of base monomials of

average degree, i.e., is equal to Π(m) (see par. 3.2.1).
The estimate of Theorem 1 is proven. In conclusion, we give two general esti-

mates of the index.

Theorem 2. The index of a singular point of multiplicity µ in an n-dimensional
space does not exceed µ1−1/n.

This theorem is derived from the signature formula using the Teissier inequalities
(Ref. 59).

Theorem 3 (Ref. 34). The modulus of a singular point of a gradient vector field

in an even number of variables does not exceed the number h
n/2,n/2
1 .

The number h
n/2,n/2
1 in the theorem is one of the Hodge–Steenbrink numbers

(Ref. 34), which characterizes the complex geometry of the germ of the hypersurface
f = 0. For the gradient of a homogeneous function f the estimate of the theorem
coincides with the estimate of Theorem 1 (see par. 3.2.1).

3.3 Few-Term Equations. The topology of objects given by algebraic equations
(real algebraic curves, surfaces, singularities, etc.) becomes complicated rapidly
as the degree of the equation increases. It has become clear recently that the
complexity of the topology depends on the number of monomials they contain,
rather than on the degree of the equations: the theorems formulated below estimate
the complexity of the topology of geometric objects in terms of how cumbersome
their equations are.

3.3.1. Real Few-Term Equations. The following theorem of Descartes is well-
known. The number of positive roots of a polynomial in one real variable does
not exceed the number of changes of sign in the sequence of its coefficients (zero.
coefficients are dropped from the sequence).

Corollary (Descartes’ estimate). The number of positive roots of a polynomial is
less than the number of terms in it.
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A. G. Kushnirenko suggested that polynomials with a small number of terms be
called fewnomials. Descartes’ estimate shows that irrespective of the power of a
few-term polynomial (which may be arbitrarily large), it has few positive roots.

Theorem 1 (Ref. 37). The number of nondegnerate real roots of a system of n
fewnomial equations in n unknowns, containing no more than k monomials (in-
dependent of the degree of the fewnomials) is estimated from above by a certain
function φ1 of n and k.

Theorem 2 (Ref. 37). The sum of the Betti numbers of the (n−m)-dimensional
real manifold, determined by a nondegenerate system of m fewnomial equations,
containing no more than k monomials, is estimated from above by some function
φ2 of n and k.

We give the familar estimate for the function φ1 : φ1(n, k) < (n+1)k2[k(k+1)/2]+n.
This estimate is still far from exact. According to an unproved (but irrefutable)
conjecture of A. G. Kushnirenko, an exact estimate of the number of solutions in
the positive octant is

Π1≥i≥n(ki − 1)

where k, is the number of monomials appearing in the i-th equation.

3.3.2 Complex Few-Term Polynomials. The complex roots of the simplest two-
term equation xN−1 = 0, with increasingN , are uniformly distributed in argument.
The theorem formulated below shows that the roots of any nondegenerate system
ot fewnomial cquaiions are also uniformly distributed in argument.

Let us consider a regular system of equations f1 = · · · = fn = 0 in (C \ 0)n, with
fixed Newton polyhedra ∆1, . . . ,∆n (see par. 3.1.2). In writing these equations
we encounter only k monomials (i.e., the union of the supports of these equations
contains only k points). We denote by N(f,G) the number of solutions of this
system, whose arguments lie in a given domain G of the torus T = {φ1, . . . , φn}
mod 2Π. For the number Π(∆∗, ∂G) defined below, which depends only on the
geometry of the Newton polyhedra and on the domain G, the following theorem is
valid.

Theorem (Ref. 60). There exists a function φ of n and k such that for every
regular system of n equations with k monomials the relation∣∣∣∣N(f,G)− n!

(2π)n
V (G)V (∆1, . . . ,∆n)

∣∣∣∣ ≤ φ(n, k)Π(∆∗, ∂G)

is valid. Here V (G) is the volume of the region G ⊂ Tn, and V (∆1, . . . ,∆n)) is
the mixed volume of the Newton polyhedra of the system.

We give the definition of the number Π(∆∗, ∂G). Suppose that ∆∗ is the domain
in Rn defined by the inequalities {φ ∈ ∆∗||mφ| < π/2 for all integer-valued vectors
m, lying in the union of the supports of the Laurent polynomials f1, . . . , fn}. The
number Π(∆∗, ∂G) is defined as the minimum number of domains, which are equal
to within a parallel displacement of the region ∆∗, necessary to cover the boundary
∂G of the region G ⊂ Tn.

Let us consider some special cases of the theorem: (1) the domain G coincides
with the torus Tn. In this case V (G) = (2π)n, Π(∆∗, ∂G) = 0, and the theo-
rem coincides exactly with Bernshtein’s theorem (see par. 3.1.2); (2) the domain G
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contracts to a point 0 ∈ Tn. In this case, V (G) → 0, Π(∆∗, ∂G) = 1, and the theo-
rem coincides exactly with Theorem 1 (par. 3.3.1); (3) we simultaneously increase
the polyhedra ∆i (without overlapping them), without increasing the number of
monomials k and without changing the domain G. In this case the mixed volume
V (∆1, . . . ,∆n) is of the order of the n-th power of the size of the polyhedra ∆i,
while the number Π(∆∗, ∂G) is of the order of the (n− l)-power of the size. In this
case the theorem shows that the roots are distributed uniformly in argument.

3.3.3 Generalizations. The idea of few-term polynomials consists in the fact
that the intersections of real level lines of “sufficiently simple” functions should
be “sufficiently simple.” At present, this notion has a basis not only for few-term
polynomials, but also for real Liouville functions (Refs. 38 and 61), and for the even
wider class of real, transcendent Pfaffian functions (Refs. 37 and 60). The class of
Pfaffian functions is sufficiently wide: for example, if f(x, y) is a Pfaffian function,
then a solution of the differential equation y′ = f(x, y) is a Pfaffian function also.
The construction of these functions is based on the fact that the solutions of the
first-order equations do not oscillate (in contrast to the solutions of second-order
equations such as y′′ = −y).

The theorem on complex fewnomials has also been generalized (Ref. 60): This
generalization allows one to use the theorem in estimating the number of zeros of
the linear combinations of exponentials eax, where a is a real vector.
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