ANALOGUES OF THE ALEKSANDROV-FENCHEL INEQUALITIES FOR HYPERBOLIC FORMS

UDC 512.89

A. G. KHOVANSKII

A number of relations that connect mixed volumes of various systems of convex bodies are known. They are all formal consequences of the Aleksandrov-Fenchel inequalities [1], [2]. A. D. Aleksandrov discovered that these relations connect mixed determinants of symmetric matrices [1d)]. In this note we prove that these relations are also valid for mixed values of any hyperbolic forms. In addition, we derive a number of inequalities that have no analogue in the theory of mixed volumes.

As this note was being prepared for the press I found out that Garding's article [3] contains the most interesting of the inequalities given below [inequality 3 of Theorem 2 for k = m]. Since [3] does not contain parallels with the theory of mixed volumes or the remaining inequalities, I decided nevertheless to publish this note.

1. The mixed value of a form and differentiation. Let P be a form (a homogeneous polynomial in the coordinates of a vector) of degree m on a real linear space. A polarization of P is a symmetric multilinear form (depending on m vectors) that coincides with P on the diagonal. The value of the polarization on the vectors x_1, \ldots, x_m is denoted by $P(x_1, \ldots, x_m)$ and called the mixed value of P on these vectors (in our notation $P(x, \ldots, x) = P(x)$).

The derivative of P along the constant vector field that is equal to x_1 everywhere is denoted by P'_{x_1} (the mixed value of this form of degree m-1 on the vectors x_2, \ldots, x_m is denoted by $P'_{x_1}(x_2, \ldots, x_m)$). It is easy to verify that the form $P^{(m)}_{x_1, \ldots, x_m}/m!$ of degree 0 is identically equal to the number $P(x_1, \ldots, x_m)$. This relation implies the series of equalities

$$P(x_1,\ldots,x_m) = \frac{P'_{x_1}(x_2,\ldots,x_m)}{m} = \frac{P'_{x_1,x_2}(x_3,\ldots,x_m)}{m(m-1)} = \cdots = \frac{P'_{x_1,\ldots,x_m}}{m!}.$$

Hyperbolic forms. A form P of degree m on a real space L is said to be hyperbolic in the direction a (or a-hyperbolic) if for any $x \in L$ the polynomial $\varphi(\lambda) = P(x + \lambda a)$ in one variable λ has exactly m roots (taking account of multiplicity). A vector b is said to be positive (nonnegative) if for $\lambda \ge 0$ ($\lambda > 0$) the polynomial $P(b + \lambda x)$ does not vanish. Positive vectors form a cone C_a . The cone C_a coincides with the component of connectedness of the point a of the complement L to the hypersurface Γ defined by P = 0.

We denote by $O_k(P)$ the subset of points of Γ at which all the partial derivatives of P of order less than k vanish.

ASSERTION 1 [3], 1) A form P that is hyperbolic in the direction a is b-hyperbolic for all $b \in C_a$.

2) The cone Ca is convex.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 15A45, 52A40; Secondary 15A15, 15A69.

- 3) At any point $x \in \Gamma$ and for any $b \in C_a$ the line $x + \lambda b$ does not lie in the tangent cone to Γ at x.
- 4) P(x + y) = P(y) for any $y \in L$ if and only if $x \in O_m(P)$, where m is the degree of P. In particular, the set $O_m(P)$ is a linear space, called the **kernel** of P.

It is sufficient to verify Assertion 1 for forms in three-dimensional space L. The proof of Garding uses a complex domain. A much simpler proof can be obtained by considering Γ as a real projective curve. It is then easy to derive Assertion 1 from Bézout's theorem. Theorem 1 given below is a direct consequence of Assertion 1 and Rolle's lemma [with the exception of 2) it is contained in [3]].

THEOREM 1. For any positive vector $b \in C_a$ the derivative P'_b of an a-hyperbolic form P is a b-hyperbolic form. In addition:

- 1) The cone Ca of P is contained in the cone Cb of Pb.
- 2) For k > 1 the set $O_k P$ coincides with $O_{k-1} P_b'$; the set $O_1 P$ does not intersect the hypersurface $P_b' = 0$.
 - 3) If the degree of P is greater than 2, then the kernels of P and P'_b coincide.
 - 4) The signs of P and P' in Ca and Ch coincide.

Inequalities.

THEOREM 2. Let P be an a-hyperbolic form on L of degree m with kernel K, positive in C_a , let x_1, \ldots, x_m , $p \in C_a$ be positive vectors, $q \in \overline{C}_a$ a nonnegative vector, and $r \in L$ any vector. Then:

- 1) $P(q, x_2, ..., x_m) \ge 0$; equality is attained if and only if $q \in K$.
- 2) The "Aleksandrov-Fenchel" inequality is valid:

$$p^{2}(p, r, x_{3},...,x_{m}) \ge P(p, p, x_{3},...,x_{m}) \cdot P(r, r, x_{3},...,x_{m});$$

equality is equivalent to the collinearity of p and r modulo K.

3) For any k with $1 \le k \le m$

$$P^{k}(x_{1},...,x_{k},x_{k+1},...,x_{m}) \geqslant \prod_{1 \leq i \leq k} P(x_{i},...,x_{i},x_{k+1},...,x_{m});$$

equality is equivalent to the collinearity of all the vectors x_1, \ldots, x_k modulo K.

4) The "Brunn-Minkowski theorem" is true: the function $p^{1/m}$ is convex in the cone C_a . At a point $x \in C_a$ it is strictly convex in all directions not collinear with x modulo K.

REMARK. The formal differences of convex bodies in R^m form a linear space with respect to Minkowski addition. The volume extends to the space of differences of bodies as a homogeneous form of degree m. The mixed value of this form on m bodies is called their *mixed* volume. The inequalities of Theorem 2 are satisfied for mixed volumes of convex bodies (see [1b]) [for nonsmooth bodies it is not known when the inequalities 2) and 3) become equalities]. We observe that *volume form is not hyperbolic* (for example, the cubic polynomial that is equal to the volume of the body $B_1 + \lambda B_2$ in R^3 for $\lambda > 0$, where B_1 is a unit disk and B_2 is a unit ball, has only one real root).

PROOF OF THEOREM 2. 1) By 4) of Theorem 1 the linear function $Q = P_{x_2,...,x_m}^{(m-1)}$ is positive on the cone C_a , and so $Q \ge 0$ on $\overline{C_a}$. By 2) of Theorem 1 the equality $0 = P_{x_2,...,x_m}^{(m-1)}(y)$ implies the chain of equalities $0 = P_{x_3,...,x_m}^{(m-2)}(y) = \cdots = P(y)$, which are satisfied only for points y of the kernel $O_m(P)$ of P.

2) The quadratic form $Q = P_{x_1, \dots, x_m}^{(m-2)}$ is a-hyperbolic (by 2) of Theorem 1], and is therefore p-hyperbolic. Hence the discriminant of the quadrant polynomial $\varphi(\lambda) = Q(r + \lambda p)$ is nonnegtive, which is what 2) says. Equality is attained only if the line $r + \lambda p$ intersects the set $O_2(Q)$, which by 3) of Theorem 1 coincides with the kernel of Q.

The inequality 2) is analogous to the Aleksandrov-Fenchel inequality in the theory of mixed volumes. Parts 3) and 4) of Theorem 2 are formal consequences of this inequality

(see [1b)]).

EXAMPLES. 1) The determinant on the space of symmetric matrices of order m is a homogeneous form of degree m. This form is hyperbolic in the direction of the matrix E (a selfadjoint operator has a real spectrum). The cone C_E for this form consists of positive-definite matrices, the set O_k consists of matrices of rank $\leq m - k$, and the kernel consists of one point 0. Theorem 2 for this form was published by Aleksandrov [1d] (see also [4]). It is used in the proof of the uniqueness of the convex body with given curvature function ([1d]), [5]), and in the derivation of inequalities in the theory of mixed volumes [1d]).

2) The product of the coordinate functions in R^m is a hyperbolic form of degree m. The mixed value of this form on a set of m vectors coincides with the permanent of the matrix whose columns are the vectors of the set. The discovery of an "Aleksandrov-Fenchel inequality" for this form has been reduced to the solution of an old problem of van der Waerden ([6], [7]). The convexity of the function $(x_1 \cdot \cdots \cdot x_m)^{1/m}$ is a key step in the proof of the Brunn-Minkowski theorem in the theory of convex bodies [8].

More general inequalities. The Hurwitz matrix of the polynomials $\varphi = \varphi_0 t^k + \cdots + \varphi_k$ and $\psi = \psi_0 t^{k-1} + \cdots + \psi_{k-1}$ is the matrix A_{ij} of order 2k in which $A_{2p,j} = \varphi_{j-p}$ for $0 \le j-p \le k$, $A_{2p-1,j} = \psi_{j-p-1}$ for $0 \le j-p-1 \le k-1$, and all the other elements are zero. The principal minors of this matrix of even order are called the *Hurwitz determinants* of φ and ψ . The next assertion is well known.

ASSERTION [9]. A polynomial φ of degree k with positive leading coefficient has k distinct real roots if and only if all the Hurwitz determinants of φ and its derivative φ' are positive. The Hurwitz determinant of degree 2k vanishes for a polynomial φ with multiple roots (it differs from the discriminant only by a factor φ_0^2).

THEOREM 3. In the notation of Theorem 2 for any k with $2 \le k \le m$, all the Hurwitz determinants of the polynomial φ of degree k defined by the formula

$$\varphi(\lambda) = P(\underbrace{r + \lambda p, \dots, r + \lambda p}_{k \text{ times}}, x_{k+1}, \dots, x_m)$$

are nonnegative. They are strictly positive if the straight line $r + \lambda p$ does not intersect the set $O_{m-k+2}(P)$.

Theorem 3 gives a series of inequalities connecting the mixed values of a hyperbolic form, since

$$\varphi(\lambda) = \sum C_k^l p(\underbrace{p, \dots, p}_{l \text{ times}}, \underbrace{r, \dots, r}_{k-l \text{ times}}, x_{k+1}, \dots, x_m) \lambda^l.$$

For k=2 the inequality of Theorem 3 is equivalent to the "Aleksandrov-Fenchel inequality" of Theorem 2. For k=m the inequalities of Theorem 3 are equivalent to the p-hyperbolicity of P if it is also known that the set $O_2(p)$ has codimension no less than 2

(for nonsingular forms the set $O_2(p)$ consists of the point 0). Generally speaking, the inequalities of Theorem 3 are not satisfied for mixed volumes of convex bodies.

All-Union Scientific Research Institute

for the Study of Systems

Moscow

Received 26/JULY/83

BIBLIOGRAPHY

- 1. A. D. Aleksandrov, a) Mat. Sb. 2 (44) (1937), 947-972; b) Mat. Sb. 2 (44) (1937), 1205-1238; c) Mat. Sb. 3 (45) (1938), 27-46; d) Mat. Sb. 3 (45) (1938), 227-252. (Russian; German summaries)
 - 2. Herbert Busemann, Convex surfaces, Interscience, 1958.
 - 3. Lars Gårding, J. Math. Mech. 8 (1959), 957-965.
 - 4. Rolf Schneider, J. Math. Mech. 15 (1966), 285-290.
 - 5. Shiing-Shen Chern, J. Math. Mech. 8 (1959), 947-955.
 - 6. G. P. Egorychev, Sibirsk. Mat. Zh. 22 (1981), no. 6, 65-71; English transl. in Siberian Math. J. 22 (1981).
 - 7. D. I. Falikman, Mat. Zametki 29 (1981), 931-938; English transl. in Math. Notes 29 (1981).
 - 8. Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, "Nauka", Leningrad, 1980. (Russian)
 - 9. M. M. Postnikov, Stable polynomials, "Nauka", Moscow, 1981. (Russian)

Translated by E. PRIMROSE