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ANALOGUES OF THE ALEKSANDROV-FENCHEL

INEQUALITIES FOR HYPERBOLIC FORMS
UDC 512.89

A. G, KHOVANSKII

A number of relations that connect mixed volumes of various systems of convex bodies
are known. They are all formal consequences of the Aleksandrov-Fenchel inequalities [1),
[2]. A. D. Aleksandrov discovered that these relations connect mixed determinants of
symmetric matrices [1d)]. In this note we prove that these relations are also valid for
mixed values of any hyperbolic forms. In addition. we derive a number of inequalities that
have no analogue in the theory of mixed volumes. -

As this note was being prepared for the press 1 found out that Gérding's article [3}
contains the most interesting of the inequalities given below [inequality 3 of Theorem 2
for £ = m]. Since 3] does not contain parallels with the theory of mixed volumes or the
remaining inequalities, [ decided nevertheless to publish this note.

1. The mixed value of a form and differentiation. Let P be a form {a homogeneous
polynomial in the coordinates of a vector) of degree m on a real linear space. A
polarization of P is a symmetric multilinear form (depending on m vectors) that coincides
with P on the diagonal. The value of the polarization on the vectors x,,...,x,, is denoted
by P(xy,...,x,) and called the mixed value of P on these vectors (in our notation
Plx,...,x)= P{x)).

The derivative of P along the constant vector field that is equal 10 x, everywhere is
denoted by P, (the mixed value of this form of degree m — 1 on the vectors XX, 08
denoted by Pl (x5,....x,)). It is easy to verify that the form ™ /m! of degree 0 is
identically equal to the number P(x,,...,x,,). This relation implies the series of equalities
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Hyperbolic forms. A form P of degree m on a real space L is said to be hyperbolic in the
direction a (or a-hyperbolic) if for any x € L the polynomial ¢ (A} = P(x + Aa) in one
variable A has exactly m roots (taking account of multiplicity). A vector b is said to be
positive (nonnegative) if for A > 0 (A > 0) the polynomial P(b + Ax) does not vanish.
Positive vectors form a cone C,. The cone C, coincides with the component of connected-
ness of the point a of the complement L to the hypersurface I’ defined by P = (.

We denote by O,( P) the subset of points of T at which all the partial derivatives of P of
order less than & vanish.

ASSERTION 1 [3L 1) A form P thar is hyperbolic in the direction a is b-hyperbolic for ail
B 6
2) The cone C, is convex.
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3) At any point x € T and for any b € C, the line x + Ab does not lie in the tangent cone
to I at x.

4) Plx + v)y= Piy)forany y € L if and only if x € O,_(P), where m is the degree of P.
In particular. the set O, ( P) is a linear space, called the kernel of P. =

It 1s sufficient to verify Assertion 1 for forms in three-dimensional space L. The proof
of Garding uses a complex domain. A much simpler proof can be obtained by considering
T" as a real projective curve. It is then easy to derive Assertion 1 from Bézout’s theorem.
Theorem 1 given below is a direct consequence of Assertion 1 and Rolle’s lemma [with the
exception of 2) it is contained in [3]].

THEOREM 1. For any positive vector b € C, the derivative P, of an a-hyperbolic form P is a
b-hyperbolic form. In addition:

1) The cone C, of P is contained in the cone C,, of P;.

2) For k > 1 the set O, P coincides with O,_,Py; the set O,P does not intersect the
hypersurfare P, = 0.

3) If the degree of P is greater than 2, then the kernels of P and P coincide.

4) The signs of P and P} in C_ and C, coincide.

Inequalities.

THEOREM 2. Let P be an a-hyperbolic form on L of degree m with kernel K, positive in C,,
let xy,....%,, p € C, be positive vectors, g € C_a a nonnegative vector, and r € L any vector.
Then:

1) P(q, xq,...,x,) 2 0; equality is antained if and only if g € K.

2) The * Aleksandrov-Fenchel " inequality is valid:

PP r Xy x) 2 P(po Py X xy) - PUrr xa0e0x0);

equality is equivalent to the collinearity of p and r modulo K.
3) Forany kwithl sk <m

il E TR TN N I_I (6. STNE. . PR W),

igigk
equality Is equivalent to the collinearity of all the vectors x,,....x; modulo K.

4) The * Brunn-Minkowski theorem™ is true: the function p'/™ is convex in the cone C,. At
a point x € C, i1 is strictly convex in all directions not collinear with x modulo K.

Remark. The formal differences of convex bodies in R™ form a linear space with
respect to Minkowski addition. The volume extends to the space of differences of bodies
as a homogeneous form of degree m. The mixed value of this form on m bedies is called
their mixed volume. The inequailties of Theorem 2 are satisfied for mixed volumes of
convex bodies (see [1b}]) [for nonsmooth bodies it is not known when the inequalities 2)
and 3) become equalities]. We observe that volume form is not hyperbolic (for example, the
cubic polynomial that is equal to the volume of the body B, + A B, in R” for A > 0, where
B, is a unit disk and B, is a unit ball, has only one real root).

ProOF OF THEOREM 2. 1) By 4) of Theorem 1 the linear function Q = P!"~1 s
positive on the cone C,. and so @ >0 on C,. By 2) of Theorem 1 the equality
0 = P Y () implies the chain of equalities 0 = P{™ % (y) = --- = P(y). which are
satisfied only for points v of the kernel O, ( P) of P.
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2) The quadrauc form Q = P;™" i 15 a-hyperbolic {by 2} of Theorem 1. and 5
therefore p-hyperbolic. Hence the discrimunant of the quadrant polynomial ¢(A) =
Q(r + Ap) is nonnegtive, which is what 2) says. Equality is attained only if the line
r + Ap intersects the set O3(Q), which by 3) of Theorem 1 coincides with the kernel of Q.

The inequality 2) is analogous to the Aleksandrov-Fenchel inequality in the theory of
mixed volumes. Parts 3) and 4) of Theorem 2 are formal consequences of this inequality
(see [1b))).

ExampLes. 1) The determinant on the space of symmetric matrices of order m is a
homogeneous form of degree m. This form is hyperbolic in the direction of the matrix E (a
selfadjoint operator has a real spectrum). The cone Cy for this form consists of positive-
definite matrices, the set O, consists of matrices of rank < m — k, and the kernel consists
of one point 0. Theorem 2 for this form was published by Aleksandrov [1d)] (see also [4]).
It is used in the proof of the uniqueness of the convex body with given curvature funcuion
({1d)], [5]), and in the derivation of inequalities in the theory of mixed volumes {1d}].

2) The product of the coordinate functions in R” is a hyperbolic form of degree m. The
mixed value of this form on a set of m vectors coincides with the permanent of the matrix
whose columns are the vectors of the set. The discovery of an “Aleksandrov-Fenchel
inequality” for this form has been reduced to the solution of an old problem of van der
Waerden ([6], [7]). The convexity of the function (x, * - -- x, /™ is a key step in the
proof of the Brunn-Minkowski theorem in the theory of convex bodies [8].

More general inequalities. The Hurwitz matrix of the polynomials ¢ = otk + s+ g,
and ¢ = Yot* "1 + +-- + ,_, is the matrix 4, of order 2k in which 4,, , = ¢,_, for
0<j—psk Ay, =¥, for0<j-p-1sx k — 1, and all the other elements
are zero. The principal minors of this matrix of even order are called the Hurwitz
determinants of ¢ and y. The next assertion is well known.

ASSERTION [9). A polynomial ¢ of degree k with positive leading coefficient has k distinct
real roots if and only if all the Hurwitz determinants of v and its derivative ¢' are positive.
The Hurwitz determinant of degree 2k vanishes for a polynomial @ with multiple roots (it
differs from the discriminant only by a factor ¢3).

THEOREM 3. In the notation of Theorem 2 for any k with 2 < k < m, all the Hurwit:
determinants of the polynomial ¢ of degree k defined by the formula
w(A) = P(r +Ap,....r+ kp,xkﬂ...,,xm]
e s R S
k times

are nonnegative. They are strictly positive if the straight line r + A p does not intersect the set
Om —k+ 2( P )

Theorem 3 gives a series of inequalities connecting the mixed values of a hyperbolic
form, since

¢(?\)=2Cip(,0.-.-,p, P i i
i e
ltimes & — fuomes

For k = 2 the ineguality of Theorem 3 is equivalent to the * Aleksandrov-Fenchel
inequality” of Theorem 2. For k = m the inequalities of Theorem 3 are equivalent to the
p-hyperbolicity-of P if it is also known that the set Oo( p) has codimension no less than 2
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(for nonsingular forms the set O,(p) consists of the point 0). Generally speaking, the
inequalities of Theorem 3 are not satisfied for mixed volumes of convex bodies.
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