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A, G. HOVANSKIi

Bizout's theorem [1] evaluates the number of complex roots of a system of fl poly-

nomial equations in ', unkno\rns in terms of the degrees of the polynomials. In this paper

a fairly extensive class of systens of real trarscendental equations is considered. As a ru1e,

the number of complex roots of such systems is infinite. We estimate the number of real

roots of such systems in terms of their complexity (vide infra for tho delinilion of this term).

As a corollary we get a new estimate of the number of real roots of a polynomial system.

These results were thc subject of a talk at a meeting of the Moscow Mathematical Society

on October 9, 1979.

We say that tlic anaiytic functions /r, . .. , fp ctn Rn form a Pfaffion chain (P-chain) of
length k if all partial derivatives of any {. in the chain are expressible as polynomials of the

first / functions of the chain and the coordinate functions in Rf. In other words. for all

1 ( I ( n and all 1 (l (,t there exist polynomials P, such that

@l1lax)Q) = Pi1(x,u1,u2,.. 'u1),

wherex:xr,..., r, and \=fi!) for 1(/(/ A P-system in Rn is any system 0r -
"' = O^ :0 of equations in whioh the 0o are polynonials of coordinate functions in R'
and functions of a P-chain. The complexity of a P-systern is the following coilection of
numbers: z, the length ,t of the P-chain, and the degrees of the polynomials Qo and P,,.

THEOREM l. The number of nondegenerate roots of s P-system consisting of n equa-

tions in Rn is rtnite and bounded from above by an explicitly given function of the com-
plexitl of the P-system.

The proof is based on Theorem 2, given below.

We say that the upper number of transformations (\.i.t.) of a smooth mapping of
manifolds of the same dimension does not exceed N if every point of the image manifold

has at most -ly' nondegenerate preimages.

Suppose that f is a compact curve and g is a vector field on I that does not vanish

anywhere. Furthermore, suppose that g is a function on I with nondegenerate ,"ros and 7'

is a furction on I which coincides with the derivative I = gi at the zeros ofg (i.e. ifg(a) - g

,1',.n 6 r 6'itat - /"(ol). Tl'" lollowing variant of Rolle'" lernma irolds:

PRoposrrloN l. Suppose the u.n.t. of j does not exceed N. Then I has at most N
zeros.

PRooF. Let a and b be zeros ofg which are neigirbon in the sense of oientation
determined by the field l. Then the numbers gl(a) and gi(D) have different signs. Let € be
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the least value taken by I f I at the zeros of g Then I takes a.11 the values between - € and €

on the interval (a, b). The proposition readily follows.

Let G: R'+ I --+ R be a smooth function with a nondegenerate zero level surface M",
let F: R'+ I -+ Rn be a proper smooth napping, and let F: M" -+ Rn be its restriction to
Mn. Further, let i be any smooth function on R"+ 1 which coincides on M' with the Ja-

cobian -r of the mapping (fl G): R'+ I --'+ Rn x R. Under these conditions we have

THEOREM 2. Let the u.n.t. of the mapping (F, i ), q' o t -+ Rn x R ot exceed N.

Then the u.n.t. of F: Mn -'- > R" 13 (ly'cs well

PRooF. Let ld denote the preimage of a regular value a of F. The smooth curve lo
is compact since F is proper. Let g denote the vector field in R"+ 1 definerl as follows: for
every function rD which is smooth on R"+r its derivative tD! along the field g coincides with
the Jacobian of the mapping (F, O): Rn+l --+ Rn x R. The curve fo is tangential for the

field { (since fU = O),;rO { cannot have zero vlaues on fo. ht g, /, and /'' denote the re-

strictions of G, J, andi to lo. Then 8i = /l hence S! = | at zeros ofg. L€t a € Rn be a

regular value for the mapping F as well. Then the derivative g; is not zero at the zeros of&
Applying Proposition I we see t.hat the number of preimages of a under F does not exceed

tr{ It follows from the implicit function theorem that the subset consisting of the poinls

having not less than ,ly' * I nondegenerate preimages is open in R" + 1 . To complete the
proof one must use Sard's theorem.

In Theorem 2 one can omit the requirement that -F: Rn+ 1 ---) Rn be a proper mappilg.
Suppose that, for every regular va.lue a ofF, the curve F 1(a) has at most 4 noncompact
components. Then we have

THLoREM 2' . Suppose the u.n.t. of the mapping (F, i 1' n"* t '--> N x R does not
exceed N. Then the u. .t. of F: M" - -+ Rn is qt most N + q.

The proof repeals that of Theorem 2 almost verbatim.

Consider the proof of Theorem 1. We can always suppose that among the equations

of the P-system there is an equation Q - 0 such that the corresponding polynomial deter-

mines a proper mapping B: R' x Rk * R. Indeed, if there is no such equation, then one

can add a new unknown xo and a new equation r(0 +>x? +>u? -R2 = 0 to the system.

The complexity of the new system is expressible in terms of the complexity of the old sys-

tem; it does not depend on R. The number of nondegenerate roots of the new system is

twice the number of those of the old system which lie in the domain 2x? + 2u? < R2.
Now we carry out an induction on the length of the P-chain. For P-systems with a

P-chain of length 0 Theorem I follows from Bdzout's theorem. Togcther with a P-systcm

Q, = : Q, - 0 in Rn with a P-chain of length ,t, consider an equivalent system of equa-

tions F, : "' = t,n- G:0 in R"+r with coordinates @r,...,xn, u): (x, u), where {
is the function whose value at (a u) is equal to the value of B,(x, ur, . .., uy) at the point

1x, u, - f1@),..,,uu , - f*-r(x),ux =r), and G(x, u) = fp(x) u. It follows from the

definition of a P-chain that all partial deivatives of the functions F, and G are polynomiaily
expressible via the coordinate functions iv, u and the functions /, from the P-chain. The func-
tion /e(x) coincides with u on the surface G : 0. Therefore on this surface the Jacobian of
the mapping (d G): R" + r --+ Rn x R is polynomially expressible in terms of :rr, ..., xn, u

and/r,..., f, and the degree ofthe polynomial i which determines this mapping can be
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explicitly estimated in terms of the complexity of the odginal P-system. Theorem 2 lets us es-

timate the number of nondegenerate roots of the o ginal P-system in terms of the u.n.t. of
the mapping (4 j ): n'+ 1 + R1 x R, i.e. in terms of the maximum number of nonclegen-

erate roots of the systems F = a, i = D with arbitrary right parts. Even though these P-

systems have more unknowns, their P-chain 4, ...,16_, has a smaller length, and their com-
plexity can be explicitly estimated in terrns of the comploxity of the original P-system. The-

orem 1 is proved.

Now we outline a longer proof of Theorem I which produces a somewhat better bound
for the number of roo1s. In our induction proof we can use Theorem 2' instead of Theo-

rem 2 without adding the compactifying equation to our system. The number of noncom,
pact components of the curve F r (q) a R'+ I is estimated from the following statement:

If the number of tronsversal intersections of the curye vrith any hypersurface is at most q,

then the curue lus at most q noncompact components.

Consider applications of Theorem l. Exponents of ,& different linear functions in Rn

form a P-chain. Applying Theorem I to P-systems with such a P-chain, we see that the num-

ber of nondegenerate roots of a systcm of quasipolynomials is finite and can be expressed

explicitly in terms of the degrees of the quasipolynomials, the dimension n and the number

ft of exponents.

THEOREM 3 (on polynomials with few terms). The number of nondegenerste roots

of a polynomial system Pr : = P^ - 0 lying in the positive octant R: does not exceed

(n + 2)k 2k(k+ r) 12 , where k is the numbet of tlifferent monomiols which occur with a

nonzero coefficient in a polynomial P,.

PRooF. The change of variables x, = exp(y,) transforms the original system into a

system of quasipolynomials with ft exponents. Our bound is produced by the induction al-

gorithm dcscibed in the proof of Theorem 1

Apparently the bound given by Theorem 3 is considerably overstated. According to a

conjecture of Kuinirenko [2] it can be lowered to Ilf(fo; 1), where k, is the number of
monomials occurring in P,. For n = I this follows from Descartes' rule. Our results origi-

nated from unsuccessful attempts to prove Kulnirenko's conjecture for r,r ) l.
Two sinilar theorems may be deduced from Theorem 1:

THEoREM 4. Let q. set X e Rn be defined by a P-system of m equqtions. Then the

following assertions are ttue.

(1) The number of connected components of X is finite.
(2) If the slstem k nondegenerote then the sum of the Betti numbers of the (n m)-

dimensional mtnifuld X is finite.
Moreoyer, the number of connected components and the wm of the Betti numbers

are bouruled from above by certain explicit functions of complexity of the P-VStem.

THEoREM 5. Let an algebraic set X e R! be deJined by a system of m polynomial

equations. Let k be the number of clifferent monomisls occurring with a nonzero coeffi-

cient in a polynomial from the system. Then the number of connected components of X
and (in the nondegenerate case) the sum of the Betti numben of the smooth (n m)4imen-

sional manifold X are boundecl from sbove by certain explicitly given functians of n and k.
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The class of P-systems can be extended. Define the ck$s of P-functions as the minimal

class of functions containilg all polynomials in any number of unknowns and closed under

superpositions and solutions of Pfaffian equations (i.e., if an analytic function /(x) satisfies

the equation d/: ZF,(x, f)d.xp where all the F, are P-functions, then / is a P-function).

For systems of equations /r : " ' : f^: 0 with P-functions 4 one can define the concept

of complexity. Theorems 1 and 4 can be extended to such systems.
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