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ON A CLASS OF SYSTEMS OF TRANSCENDENTAL EQUATIONS
UDC 513.62+517.936
A. G. HOVANSKII

Bézout’s theorem [1] evaluates the number of complex roots of a system of # poly-
nomial equations in 7 unknowns in terms of the degrees of the polynomials. In this paper
a fairly extensive class of systems of real transcendental equations is considered. As a rule,
the number of complex roots of such systems is infinite. We estimate the number of real
roots of such systems in terms of their complexity (vide infra for the definition of this term).
As a corollary we get a new estimate of the number of real roots of a polynomial system.
These results were the subject of a talk at a meeting of the Moscow Mathematical Society
on October 9, 1979.

We say that the analytic functions f}, ..., /. on R" form a Pfaffian chain (P-chain) of
length k if all partial derivatives of any f; in the chain are expressible as polynomials of the
first ; functions of the chain and the coordinate functions in R”. In other words, for all
l<i<nandall | <j<Fk there exist polynomials PU such that

(0fj10x)(x) = Pyj(x, uy, ug, . - ., 4p),

where x = x,, ..., x, and u; = fy(x) for 1 <I<j A Psystem in R" is any system Q| =

-+ =0, = 0 of equations in which the @, are polynomials of coordinate functions in R"
and functions of a P-chain. The complexity of a P-system is the following collection of
numbers: n, the length & of the P-chain, and the degrees of the polynomials Q, and P

THEOREM 1. The number of nondegenerate roots of a P-system consisting of n equa-
tions in R" is finite and bounded from above by an explicitly given function of the com-
plexity of the P-system.

The proof is based on Theorem 2, given below.

We say that the upper number of transformations (un.t.) of a smooth mapping of
manifolds of the same dimension does not exceed N if every point of the image manifold
has at most NV nondegenerate preimages.

Suppose that I' is a compact curve and £ is a vector field on I' that does not vanish
anywhere. Furthermore, suppose that g is a function on I' with nondegenerate zeros and ]f
is a function on Fﬁwhich coincides with the derivative j = gé at the zeros of g (ie. if gla) =0
then 0 #+ gé(a) =j(@)). The following variant of Rolle’s lemma holds:

ProproSITION 1. Suppose the u.n.t. of j does not exceed N. Then g has at most N

Zeros.

Proor. Leta and b be zeros of g which are neighbors in the sense of orientation
determined by the field £. Then the numbers gé(a) and gé(b) have different signs. Let € be
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the least value taken by |]"\I at the zeros of g Then ]?takes all the values between —¢ and €
on the interval (¢, #). The proposition readily follows.

Let G: R"*! — R be a smooth function with a nondegenerate zero level surface M",
let 2 R**1 — R" be a proper smooth mapping, and let F: M" — R be its restriction to
M". Further, let J be any smooth function on R®*! which coincides on M" with the Ja-
cobian J of the mapping (F, G): R®"! — R" x R. Under these conditions we have

THEOREM 2. Let the u.n.t. of the mapping (F, J ): R"*1 — R™ x R not exceed N.
Then the u.n.t. of F: M" — R" is < N as well

ProofF. Let I') denote the preimage of a regular value @ of /. The smooth curve T,
is compact since F is proper. Let £ denote the vector field in R"T! defined as follows: for
every function & which is smooth on R"*! its derivative ¢'E' along the field £ coincides with
the Jacobian of the mapping (F, ®): R**! — R x R. The curve I', is tangential for the
field £ (since F;E = O),Aand ¢ cannot have zero vlaues on I:a. Let g, j, and f denote the re-
strictions of G, J, andJ to I',. Then gé = j: hence gé =j atzerosof g Leta ER" be a
regular value for the mapping £ as well. Then the derivative gé is not zero at the zeros of &
Applying Proposition 1 we see that the number of preimages of ¢ under F does not exceed
N. It follows from the implicit function theorem that the subset consisting of the points
having not less than N + 1 nondegenerate preimages is open in R"*!. To complete the
proof one must use Sard’s theorem.

In Theorem 2 one can omit the requirement that F: R**1 — R" be a proper mapping.
Suppose that, for every regular value @ of F, the curve F'(z) has at most ¢ noncompact
components. Then we have

THEOREM 2'. Suppose the w.n.t. of the mapping (F, J ): R*T! — R” x R does not
exceed N. Then the u.n.t. ofﬁz M"™ — R" is ar most N + q.

The proof repeats that of Theorem 2 almost verbatim.

Consider the proof of Theorem 1. We can always suppose that among the equations
of the P-system there is an equation ¢ = 0 such that the corresponding polynomial deter-
mines a proper mapping Q: R” x R¥ — R. Indeed, if there is no such equation, then one
can add a new unknown x, and a new equation x, + Exf +: Euf —R? =0 to the system.
The complexity of the new system is expressible in terms of the complexity of the old sys-
tem; it does not depend on R. The number of nondegenerate roots of the new system is
twice the number of those of the old system which lie in the domain Zx? + Zu? < R%.

Now we carry out an induction on the length of the P-chain. For P-systems with a
P-chain of length O Theorem 1 follows from Bézout’s theorem. Together with a P-system
0, = =0, =0in R" with a P-chain of length %, consider an equivalent system of equa-
tions | =--- = F,=G=0in R*T1 with coordinates (x4, ..., x,,v) = (x, v), where Fj
is the function whose value at (x, v) is equal to the value of Q(x, u, ..., u;) at the point
(e, uy =10, ..., v,y = [ %), 4, =v), and G(x, v) = f(x) —v. It follows from the
definition of a P-chain that all partial derivatives of the functions Ff and G are polynomially
expressible via the coordinate functions x, v and the functions f; from the P-chain. The func-
tion f (x) coincides with v on the surface G = 0. Therefore on this surface the Jacobian of
the mapping (F, G): R*T! — R” x R is polynomially expressible in terms of X e e iy 2
and [, ..., f,,, and the degree of the polynomial 7 which determines this mapping can be
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explicitly estimated in terms of the complexity of the original P-system. Theorem 2 lets us es-
timate the number of nondegenerate roots of the original P-system in terms of the u.n.t. of
the mapping (F, 7 ): R"T1 — R” x R, ie. in terms of the maximum number of nondegen-
erate roots of the systems F = g, J = b with arbitrary right parts. Even though these P-
systems have more unknowns, their P-chain f, ..., f._; has a smaller length, and their com-
plexity can be explicitly estimated in terms of the complexity of the original P-system. The-
orem 1 is proved.

Now we outline a longer proof of Theorem 1 which produces a somewhat better bound
for the number of roots. In our induction proof we can use Theorem 2’ instead of Theo-
rem 2 without adding the compactifying equation to our system. The number of noncom-
pact components of the curve £ 71 (a) C R"*! is estimated from the following statement:

If the number of transversal intersections of the curve with any hypersurface is at most g,
then the curve has at most ¢ noncompact components.

Consider applications of Theorem 1. Exponents of k different linear functions in R”
form a P-chain. Applying Theorem 1 to P-systems with such a P-chain, we see that the num-
ber of nondegenerate roots of a system of quasipolynomials is finite and can be expressed
explicitly in terms of the degrees of the quasipolynomials, the dimension # and the number
k of exponents.

THEOREM 3 (on polynomials with few terms). The number of nondegenerate roots
of a polynomial system P; = --- =P, = 0 lying in the positive octant RY does not exceed
(n + 2)k - 2N D2 unere k is the number of different monomials which occur with a
nonzero coefficient in a polynomial P]

Proor. The change of variables x;, = exp(y,) transforms the original system into a
system of quasipolynomials with & exponents. QOur bound is produced by the induction al-
gorithm described in the proof of Theorem 1.

Apparently the bound given by Theorem 3 is considerably overstated. According to a
conjecture of Kugnirenko [2] it can be lowered to II(k; — 1), where k; is the number of
monomials occurring in PJ,-. For n = 1 this follows from Descartes’ rule. Our results origi-
nated from unsuccessful attempts to prove KuSnirenko’s conjecture for n > 1.

Two similar theorems may be deduced from Theorem 1:

THEOREM 4. Let a set X & R"” be defined by a P-system of m equations. Then the
following assertions are true:

(1) The number of connected components of X is finite.

(2) If the system is nondegenerate then the sum of the Betti numbers of the (n — m)-
dimensional manifold X is finite.

Moreover, the number of connected components and the sum of the Betti numbers
are bounded from above by certain explicit functions of complexity of the P-system.

THEOREM 5. Let an algebraic set X C R" be defined by a system of m polynomial
equations. Let k be the number of different monomials occurring with a nonzero coeffi-
cient in a polynomial from the system. Then the number of connected components of X
and (in the nondegenerate case) the sum of the Berti numbers of the smooth (n — m)-dimen-
sional manifold X are bounded from above by certain explicitly given functions of n and k.
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The class of P-systems can be extended. Define the class of P-functions as the minimal
class of functions containing all polynomials in any number of unknowns and closed under
superpositions and solutions of Plaffian equations (i.e., if an analytic function f(x) satisfies
the equation df' = ZF(x, [)dx;, where all the F, are P-functions, then [ is a P-function).

For systems of equations f; = -+ = f,, = 0 with P-functions ff one can define the concept
of complexity. Theorems 1 and 4 can be extended to such systems.
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