-ﬁ

doka. Akan. Hayk CCCP Soviet May,
Tom 250 (1980), N2 5 Vol. 2] (1980)-50;“_
» o, I

STRAIGHTENING OF PARALLEL CURVES
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To each plane curve I' we adjoin the two-parameter family of curves [, obtaineq by
parallel-translating I" by all possible vectors q@ € R?. For which curves I" does there exist
(local) diffeomorphism y of the plane which maps all curves [, into straight lines? Thjg Ques.
tion is answered in this paper. Moreover, all straightening diffeomorphisms are described,
This gives a solution to a well.known problem of theoretical nomography (cf. [1], p. 132),
In nomographic terminology, this problem consists in describing all transformations of nomo.
graphs made of aligned points into nomograms with oriented guide-grid, carrying a curvilingg,
scale.

Let us formulate our results.

THEOREM 1. A family of curves Fq can be straightened locally if and only if the curye
' is affinely equivalent to one of the Jfollowing five curves:

1y e* +e¥ =1;

2) e*cosy = 1;
Sl yse g
4) p=u’;
5)y=0.

THEOREM 2. A local diffeomorphism straightens some Jamily of curves I“q, not consist-
ing of straight lines, if and only if it can be transformed into one of the following four forms
by means of a linear transformation of the domain space (x, y) and a projection transforme-
tion of the domain space (u, v):

Nu=e* v=¢";

2)u =e*cosy, v=e"siny;

u=e*, v=ype*;

Hu=x*+y v=x

Let us begin by proving Theorem 2. We shall classify the local diffeomorphisms ¢ Rf
= Rg which straighten some family of curves ['q- Take the mapping in R? defined by
parallel transport by some vector . In the plane R% there is a corresponding mapping 7,

defined by m,(p) = oo™ 1(p) + r].

LEMMA 1. If the curve T is not a straight line segment, then the mapping m,: R§ =%
R must be projective.

In fact, it is clear from the definitions that the mapping 7, sends the two-parameter
family of lines qu into itself (more precisely, 7, maps a line gol’q onto the line l,of‘qﬂ)- We
say that a family of lines L is representative in a region U if for each point p € U there is @
line /(p) € L and an angle a(p) > 0, depending continuously on p, such that the family L
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contains all lines through p making an angle not exceeding a( p) with the line /(p). We need
the following fact.

LeMMA 2. Let m be a homeomorphism of a connected region U, into a region U,. If
7 maps the lines of a family L which is representative for U, into lines of the region U, then
1 is 4 projective transformation.

We sketch the proof of Lernma 2. It is well known that a homeomorphism which
ends all lines into lines is a projective transformation. The proof of this fact is based on con-
structing an everywhere flat Mobius net (cf. [2], p. 134). The proof of Lemma 2 is based
on the same arguments. In the neighborhood of each point p € U, we can construct a flat
Mabius net, all of whose lines lie in the family L. This construction shows that the mapping
n is locally projective. The connectedness of the region U, now implies that 7 is projective.

Lemma 1 follows from Lemma 2. Indeed, it is easy to see that if the curve I is not a
straight line, then the family of lines ¢, is representative.

Let us continue the proof of Theorem 2. The transformations " R§ — R% corre-
sponding to translations ofRi form a commutative local group of transformations of the
plane R%. This group is locally transitive, i.e. it has a two-dimensional orbit. Lemma 1 re-
duces the original task to the problem of describing all commutative two-dimensional groups
of projective transformations of the plane.

To a local group of projective transformations of a plane there corresponds a local
group of linear transformations of three-space with determinant one. If we add the scalar ma-

trices AE to the algebra of this group, we arrive at the problem of classifying the three-dimen-
sional commutative Lie aglebras which act on R?3.

LEMMA 3. Each three-dimensional commutative subalgebra of the Lie algebra of all

linear transformations of R® can be put into one of the following six forms by a suitable
change of basis:

a 0 0 a 0 0O a 0 0
1) (0 b O); 2) (0 b —c): 3) (0 b 0);
0 0c¢ 0 ¢ b 0 ¢ b
a 00 a 0 0» a 0 0
4) (b a 0); 5) (o a OJ; 6) (b a 0).
c b a e b oa c 0 a

In each of these forms, the parameters a, b and ¢ denote arbitrary real numbers.

The full proof of this lemma is based on some straightforward computations and is not
gven here. The proof uses one general argument. We say that an n x »n matrix is a Sylvester
Matrix if each eigenvalue has exactly one Jordan block. It is easy to show that all matrices
Ommuting with a Sylvester matrix commute with each other and form an n-dimensional
“Mmutative algebra. Algebras 1)—4) have the following types of Sylvester matrices:

) three distinct real eigenvalues; 2) one real and two conjugate complex eigenvalues; 3) a
*Ne-dimensional Jordan cell—and they consist of all matrices commuting with these, re-
ectively, Algebras not having any Sylvester matrices are analyzed separately. We note that
“Mmutatiye algebras of transformations of higher<dimensional space have continuous moduli
“0d resist tractable classification.
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LEMMA 4. A two-parameter commutative group of projective transformations of th,
plane can be transformed into one of the following six groups G by means of a linear coordi.
nate change in the parameter plane (x, y) and a projective coordinate change in the plane
(u, v). A mapping n(x, y) of the group G maps a point (u, v) into one of the following
points, respectively:

1) (e¥u, e’v);

2) e*(ucosy — vsiny, usiny —vcosy);

3) e*(u, yu +u);

4) (ut+txv+y+x22, v+x);

) (u+x, V),

6) (u+xv+y,v).

To prove Lemma 4 it suffices to combine the algebras given in Lemma 3 into groups of
linear transformations and to consider the comesponding groups of projective transformatiops,

Let us now conclude the proof of Theorem 2. Let ¢: R? — RZ be a diffeomorphisy
that straightens some family I', not consisting of lines. To each point r € R% there corre-
sponds a projective transformation m, of the plane R3 such that ¢(r) = 7r o ¢(0). These
groups of transformations =, are described in Lemma 4. Hence, in order to define the map-
ping v it is only necessary to fix the point ¢(0) in a two-dimensional orbit of one of the
groups 1)—6). For groups of form 1)—4), the mapping ¢ does not depend on the choice of
the two-dimensional orbit or of the fixed point ¢(0), neglecting projective transformations of
the image space. Accordingly, the mappings ¢ are the diffeomorphisms 1)—4) of Theorem 2,
A group of type 6) generally does not have a two-parameter orbit. For groups of type 3) the
mapping v is a translation. A translation sends lines into lines. The proof of Theorem 2 is
complete.

Theorem 1 follows from Theorem 2: nonlinear curves I with straightenable families
l"q are preimages of straight lines under the mappings 1)—4) described in Theorem 2.

REMARK. In the hypotheses of Theorems 1 and 2 the smoothness requirements on the
curve I' and the mapping ¢ were made only for convenience of presentation. Theorems 1 and
2 are true also for continuous curves I' and homeomorphisms y; the fact is that continuous
homomorphisms of Lie groups are automatically smooth mappings (cf. for example [3],
Chapter V, §3, Theorem 3.2).

I am grateful to G. S. Hovanskii for arousing my interest in nomography.
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