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In this note we describe diffeomorphisms of regions in the plane which take all lines into lines and 

circles. Diffeomorphisms of this type are useful in nomography (cf. [i, 2]). I am grateful to G. S. Khovanskii 

for interesting me in nomography. 

A set of curves in the plane is called rectifiable near the point a if there exists a neighborhood U of a 

and a diffeomorphism of U taking the curves in the set (more precisely, the portions of the curves contained 

in the region U) into lines (more precisely, into portions of lines lying in the image of the region U). A bundle 

of curves with center at the point a is any set of curves passing through a. A bundle is called simple if curves 

in the bundle having identical tangents at the point a coincide identically in some neighborhood U of a. If a 

bundle of curves with center at the point a is rectifiable near a then the bundle is simple. We are interested in 

the behavior of the curves in a rectifiable bundle near the center. We identify curves which coincide identically 

in some neighborhood of a. The curves I~ of a bundle will be regarded as the graphs of functions y~ -- y~ (x). 

The parameter c~ for the curves I~ in a simple bundle can be taken to be the tangent of the angle of inclination 

of the tangent to the curve I~ at the point a. 
? 

THEOREM I. Assume that a simple bundle of lines ykCx) subject to the conditions Yk(0) = 0, Yk(0) = k, is 

locally rectifiable near the point (0, 0) by means of a class C m+1 diffeomorphism. Then for every i, 1 < i ~ m~ 

there exists a polynomial Pi of degree -<2i - 1 such that y(~) (0) = Pi(k). 

For the proof we will need an easily verified lemma, which is a sharpening of the implicit function theo- 

rem. Consider an equation F(x, y(x)) = 0 in which F(x, y) is a C m+l function. Let F(0, 0) = 0 and (~)F/~y)(0, 0) 

0. By the implicit function theorem, the equation F(x, y(x)) = 0 can be solved locally for the function y(x), and 

y(x) is also of smoothness class C m. Let F(x, y)= ~ ap,qxPy q + ... and y(x) = ~ ~ix .~ + ... be partial sums 

for the T a y l o r  s e r i e s  for  the func t ions  F and y. 

LEMIVLA 1. The coefficient of ~i is equal to some polynomial of degree 2i - 1 in the coefficients ap,q 
(where p + El -< i) divided by ~e02i-i,l �9 

We continue with the proof of Theorem I. Consider a diffeomorphism zr rectifying a bundle of curves 

yk(x). Let A be an arbitrary nonsingular linear mapping of the plane. The diffeomorphism A o ,v also rectifies 

the bundle Yk(X). By a suitable choice of A we can arrange that the rectifying diffeomorphism has the identity 

differential at the point (0, 0). The rectifying diffeomorphism is now given by the formulas u : f0;, y), v : 

g(x, y), where f = x + 0(Ixl + ly]), g : y + 0(Ixl + lyl). In the (u, v) plane the bundle of curves Yk(X) is given 

by the equations v = ku. Consequently the functions Yk(X) are given by the equations Fk(X , y) : 0, where Fk : 

g(x, y) - kf(x, y). The coefficients ap,q in the Taylor series of the function F k depend linearly on k and the 

coefficient a0, I : i. Theorem 1 now follows from Lemma i. 

Remark i. Assume that for every point b ~ u in the region U there exists exactly one line passing through 

b which belongs to a simple bundle of lines with center a, and assume that this line depends smoothly on the 

point b. It is easily seen that every bundle with this property can be rectified by a diffeomorphism of the region 

U with is smooth everywhere except at a. The proof of Theorem 1 is based on the smoothness of the rectifying 
transformation at the point a. 

Remark 2.. According to Theorem 1, in a rectifiable bundle Yk(X) : kx + . . . + Pm(k)x m + o . . the func- 

tions Pi(k) are polynomials of degree -<2i - I. Calculations show that the coefficients of these polynomials sat- 

2 ( 2 i -  3)~ _{-1 is fy  c e r t a i n  r e l a t i o n s ,  e .g . ,  the coe f f i c i en t  bi,2i_ 1 of Pi(k) m u l t i p l y i n g  the power  k 2i-1 is equal  to ~ f ~  , 

w h e r e  a = b2,3 is the coef f i c ien t  of k 3 in  the p o l y n o m i a l  Pz(k). F o r  l a r ge  m there  ex i s t  many  other  r e l a t i o n s  
a m o n g  the coe f f i c i en t s .  Howeve r ,  for  m = 29 3 this is not  s o -  for  m = 2 , 3  the bundle  Yk{X) -- l~  + . . . + 

P m ( k ) x m  + . . . can  be b rough t  by m e a n s  of a s m o o t h  change of c o o r d i n a t e s  into the f o r m  Yk(X) -- kx + O(x m) 
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if and only if the functions Pi(k) are polynomials of degree -<2i - i (here 1 _< i -< m) with highest coefficients 

satisfying the relation written out above (for m = 3 there is the single relation b 3,5 = 2a2 while for m = 2 there 
is no relation). 

COROLLARY i. The centers of curvature corresponding to the point (0, 0) of a rectifiable bundle y = 

yk(x) lie on a cubic x 2 + y2 = q~(x, y), where ~(x, y) is some homogeneous polynomial of degree 3. 

Indeed, by Theorem 1 if Yk(X) is a rectifiable bundle of lines satisfying the conditions Yk(0) = 0, y~(0) = k, 
then there exists a polynomial P2 (k) of degree 3 such that " Yk (0) = P2(k) The center of curvature of the curve 
Yk(X) corresponding to the point (0, 0) lies on the line 

xe+ g2 ~ 2yaP2(_ x/g) ~ ag(x, g). 

We stop to discuss a corollary of Theorem 1 which is of a general character. The equation F(x, y, a,b)=0 

defines (when the usual solvability conditions are satisfied) a two-parameter family of lines y - y(x, a, b) in the 

(x, y) plane and a two-parameter family of lines b - b(a, x, y) in the (a, b) plane. 

COROLLARY 2. If the family of lines y = y(x, ~, b) is locally rectifiable, then: i) the family y = y(x, a, b) 

satisfies the equation y" = L(x, y, y') in which L(x, y, y') is a cubic polynomial in y'; 2) the family b = b(x, a, b) 

satisfies the equation b" - M(a, b, b'), where M(a, b, b') is a cubic polynomial in b'. 

Indeed by Theorem i, in a rectifiable bundle the second derivative is a cubic polynomial in the first 

derivative [the coefficients of this polynomial depend on the center (x, y) of the bundle]. Condition 1 follows 

from this. Furthermore, the rectifiability of the family y = y(x, a, b) is easily seen to imply the rectifiability 

of the family b = b(a, x, y). The proof of condition 2) therefore also reduces to Theorem i. 

Remark 3. The assertion of Corollary 2 is not new. Another proof can be found in [3, pp. 46-56] (cf. also 

[4]). It is also stated in [3] that conditions i) and 2) are sufficient for rectifiability of a family. 

THEOREM 2. A simple bundle of circles containing at least eight circles is locally rectifiable if and only 

if all the circles in the bundle pass through a single point (distinct from the center of the bundle). 

Proof. The equation for a simple bundle of circles with center at (0, 0) has the form y = kx + A(x 2 + y2), 

where A = A (k) is some function of the parameter k. We show that reetifiability of the bundle is equivalent to 

linearity of the function A(k). Upon solving the equations for the circles in the bundle up to terms of third order 

of smallness, we obtain Yk(X) = kx + ~2 ( k)x2 + '$3 ( k)x3 + .... where 'TJz (k) ~ A (k)(i + k 2) and 7J3 (k) = A 2 (k)k(l + k2). 

These equalities imply that 2J~k- ~3(i + k2). By Theorem 2 the functions ~2(k) and '$3(k) are polynomials of 
third and fifth degree in k. The equality 2'$~k = ~3(I + k 2) is satisfied for all values of k corresponding to circles 

in the bundle, i.e., by at least eight values of k. Polynomials of degree seven which coincide at eight points 

coincide identically. The equality 2~bZk - ~3(i + k 2) implies that the polynomial '$z(k) is divisible by I + k 2. Since 
(k) = A(k)(l + k2), A(k) is a linear function. Thus the equation for a rectifiable bundle of circles necessarily 

has the form S i + kS 2 = 0, where S I = 0 and S 2 = 0 are the equations for certain nontangent circles passing 

through (0, 0). We denote by b the second point of intersection of the circles S 1 = 0 and S 2 = 0. All the circles 

in the bundle S I + kS 2 = 0 pass through the point b. In order to rectify such a bundle of circles it suffices to 

take the point b to infinity via a conformal transformation. Theorem 2 is proved. 

Remark 4. Theorem 2 remains valid for a simple bundle containing at least seven circles. Indeed, by 

Remark 2 the highest coefficients of the polynomials 2'$~k and '$3(1 + k 3) of degree seven coincide. Therefore, 

equality of these polynomials at seven points implies that they are identically equal. 

Remark 5. The problem of the rectifiability of a simple bundle yk(x) = ~i(k)x + . . . + ~J/(k)x / + .... 
,St(k) = k containing mlines,k = {kj}, 1 _< j _< m, admits an algebraic solution: in order for the bundle to be 

rectifiable, it is necessary and sufficient that certain algebraic relations among the numbers '$i(kj), 1 _< i -< 
m- 3, i __ j <- m, be satisfied. Thus, in order for a simple bundle consisting of six lines to be rectifiable, it 

is necessary and sufficient that the following conditions hold: i) there exists a polynomial Pz (k) of degree 3 

such that P2 (kj) = '$3 (kj); 2) there exists a polynomial P3(kj)of degree 5 such that P3 (kj) = '$3(kj); 3) the highest 

coefficients a and b of P2 and P3 satisfy b = 2a 2. In order for a simple bundle of five lines to be rectifiable, it 

is necessary and sufficient that condition i) hold. A simple bundle containing four lines is always rectifiable. 

We turn to two-parameter families of circles. We first give some definitions. The space 0 of equations 
of circles is the space of nonzero polynomials S of the form S = a(x z + y2) + bx + cy + d defined up to a factor. 
The space 0 is the projective space RP 3. A projective subspace L of 0 of dimension k (k = i, 2) is called a k- 

dimensional linear system of circles. It is known from the geometry of circles (see, e.g., [5]) that up to a 
conformal transformation of the (x, y) plane there exist only three distinct two-dimensional linear systems 
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of circles - the linear system of all circles orthogonal, respectively, to a fixed circle of positive, zero, and 

negative radius (these three systems are closely related to the three geometries of Lobachevskii, Euclid, and 

Riemann). Three planes L can be defined in the space 0 of polynomials S = a(x 2 + y2) + bx + e y ~- d which cor- 

respond to the three eonformally inequivalent linear systems, e.g., by the equations a = d, a = 0, and a = -d. 

A two-dimensional family of circles N is any- set of circles the equations of which lie in some t~vo-dimensional 

linear system L(N) but not in any one-dimensional linear system. A characteristic map of a two-dimensional 

family N is a map @ : R 2 -- RP 2 defined by the formula ~(x, y) = S~ (x, y) : S 2 (x, y) : S 3 (x, y), where $I, 82, $3 are 
any three independent polynomials in the plane L(N). A characteristic map ~ depends on the choice of the poly- 

nomials S~L(N) and is therefore defined up to a projective transformation. The singular points (x, y) of a 

characteristic map ~ will be called the singular points of the two-dimensional family of circles. The singular 

points of the three linear systems of circles indicated above consist, respectively, of the points on the circle 

x 2 + y2 = I, the point (0, 0), and the empty set. We give one more definition. A family of lines in a region U 

is said to be representative if a curve in the family emanates from every point p ~ U in every direction con- 

tained within some cone Kp (it is assumed that the cone Kp depends continuously on the point p and has a non- 
zero apex angle). 

THEOREM 3. i) A representative family of circles in a neighborhood of the point p is rectifiable if and 

only if it is two-dimensional and p is a nonsingular point. 2) Every rectifying transformal;ion of a t~vo-dirnen- 

sional representative family of circles coincides with a characteristic map of the family. 

Proof. Assume that the representative family of circles is rectifiable. Let S i = 0 be the equation for 

some circle in the family passing through the point p with a tangent lying inside Kp. Let a and b be two points 

on the circle Si = 0 lying close to p but on different sides. The circles in the family passing through the points 

a and b form rectifiable bundles. Hence by Theorem 2 their equations have the form S I + ozS 2 = 0 and S I - 
~S 3 = 0. 

For & and p of small absolute value, the circles  S t + o~S 2 = 0 and S t + ~S 3 = 0 are contained inside the 
cones K a and K b and therefore belong to our family of circles.  Through each point Pl close to p there pass 
circles  in the family of the form S1 + aS 2 = 0 and S I + flS 3 = 0. By Theorem 2 all c i rc les  in the family passing 
through the point p~ have the form A(S I + c~S 2) + B(S~ + flS 3) = 0. Thus, the equations for all the c i rc les  in our 
rectifiable family lie in a plane L ~ 0, containing the equations S t = 0, S 2 = 0, and S 3 = 0. Furthermore,  it  is 
easily seen ~hat near a singular point of the two-dimensional family there does not exist any representative 
rectifiable subfamily (this is verified separately for the three linear systems of circles) .  Near a nonsingular 
point of the family, the family is rectified by the character is t ic  transformation qo(x, y) = S I (x, y) :S 2 (x, y) :S 3 (x, 
y). It remains for us to show that up to projective transformations there exist no other rectifying maps. This 
follows immediately from Lemrna 2, which follows (cf. [6]). 

LEMI~tA 2. A local diffeomorphism of the plane which takes a representative family of lines into lines 
is projective. 

The theorem is proved. 

Let us say that a local diffeomorphism ~ :R 2 ~ R  2 rounds lines if the inverse image of every line under qo 
is either a line or a circle.  

THEOREM 4. Up to a projective transformation of the plane of the image and a conformal transformation 
of the plane of the inverse image, there exist exactly three local diffeomorphisms which round lines. They are 
given by: 

I) ~0(x, y) = x :y : i + (x 2 + y2), 

2) qo(X, y)  = x : y  : 1 ,  

3) q)(x,y) = x : y : l -  (x 2 +y2). 

Proof. The inverse images of lines under a rounding diffeomorphism form a representative rectifiable 
family of circles.  By Theorem 3, every representative family is two-dimensional. The diffeomorphisms 1)-3) 
are characteris t ic  maps of the three conformally distinct two-dimensional linear systems of circles.  

I. 
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