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Real rational functions f(x) possess the following finiteness property: every equation f(x) = a has only
finitely many solutions. We show that an analogous property is possessed by all real Liouville functions.

Let U be a finite or infinite interval on the real line Rl. We introduce an auxiliary definition. We say that
f is a ®U-function if: 1) f is defined and analytic in the region U . O(f) where O(f) is a finite set; 2) f
has a finite number of discrete zeros in U \ O(f). On each interval of analyticity, a function either has dis-
crete zeros or else is identically zero. Therefore, the set of zeros of every &U-function consists of finitely
many points and a finite number of intervals. The restriction of a ® U-function to an interval J C U is a &J~
function. Let the interval U be a union of finitely many intervals J; and a finite number of points, If the re-
striction of a function f to every Jj is a &Jj-function, then f is a ®U-function. A product of & U-functions is
a @ U-function. If a ®U-function f has no zero intervals, then f~! is defined and is a & U~function. By an in~
tegral and exponential integral of a function f, we mean any solutions of the equations y' = f and y' = fy
analytic at the points of analyticity of f. For every &U-function an integral and exponential integral exist but
are not uniquely defined — on every interval of analyticity of f, arbitrary constants can be added to the inte-
gral, and the exponential integral can be multiplied by arbitrary constant. An integral and exponential integral
of a #U-function are ®U-functions. Indeed, by Rolle's theorem the number of discrete zeros of an integral of
f on each interval where f is analytic is at most one greater than the number of discrete zeros of f on the
same interval. An exponential integral has no discrete zeros on intervals where f is analytic. Sums of #U-
functions and the derivative of a & U-function may fail to be &U~functions.

Definition. A differential ring A consisting of functions in a domain U with the usual differentiation is
said to have the finiteness property or be a ®U-ring if A consists only of & U-functions.

Rings of polynomials and rational functions give examples of ®R!-rings. The restrictions of functions
in a ®U-ring A to a smaller interval J C U form a #J-ring. We denote this ring by A(J). Lety be a function.
The extension Aly] of the differential ring A by the element y is the smallest differential ring containing A
and y. The ring Aly] consists of polynomials with coefficients in A in the function y and all its derivatives.

THEOREM. lLet the ring A have the finiteness property. In the following cases the extension Aly] also
has the finiteness property: D y is invertible over A, i.e.,y = f‘i, where f € A; II) y is an integral over A,
i.e., y' = f, where f € A; IM) y is an exponential integral over A, i.e., y' = fy, where f € A,

Proof. I) Lety = f~1, where f € A. The ring Alyl is formed by elements of type py™ where p€ A. The
function py® is a product of ® U-functions and hence is a @ U-function. II) Lety' = f where f€A. The ring
Aly] consists of all polynomials P in y with coefficients in A. Assume by induction that every polynomial of
degree <k in every integral of y over every &V-ring B is a $V-function. Consider a polynomial P = fiy™ +... +
fo of degree k where the f; € B. Let Jy, ..., J] be the intervals on which fi is analytic and identically equal to
zero, and let I, ..., Iy, be the remaining intervals on which fy is analytic. The restriction of the function P
to the interval Jj is a polynomial of degree <k of an integral over the &Jj-ring B(Jj). By induction, the restric~
tion of P is a ®J;-function. We now restrict P to the interval Ij and consider it as a polynomial over the ring
B(I)[ f32]. By what has been proved, this ring is a Ij-ring. The element Z = P St satisfies the equation
Z =yK + ap_yK1 + ... + a over this ring, where aj = fifgl. Weput L =2'. Then L = by K1 + ... + by,
where b; = a} + (i+1)ajyf. By the induction assumption (applied to the ring B(I;)[ fl?]) the polynomial L of
degree <k is a ®Ij~function. Since it is an integral of the ®I;-function L, Z is a &Ij-function. Next, P is a
®I;-function since it is the product of the @Ij~functions Z and f).. Thus the restriction of the function P to all
the intervals I, ..., I; and Jy, ..., Jm has the finiteness property. Therefore, P has the finiteness property on
the interval U. The proof by induction is complete. III) Now let y' = fy where f€A, This case is analogous
to the preceding one. Induction on the degree k shows that every polynomial P = fiy™ + ... + f is a ®U-func-
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tion. In order to show this, we consider the functions Z and L = Z' (in the appropriate rings), where Z =
Pfit = axy® + ... + 1, aj = fif5'. The function L is equal to y(lokyk‘1 + .. + Dby}, where by = al +iajf. The
polynomial Ly~! has degree < k and y is a $U-function since it is an exponential integral of f. This makes
it possible to carry out the inductive step. The theorem is proved.

A ring B D A is called a Liouville extension of A if there exists a chain of rings A = Ay C ... CAp =B
in which each ring Aj4 is obtained from Aj by adjoining an inverse element over Aj, an integral over Aj, or
an exponential integral over Aj. A function f is called a real Liouville function if it lies in some Liouville
extension of the ring of real constants. Examples of Liouville functions are the rational functions, eX, In|x!,
I x1%, arctan x. The class of real Liouville functions is closed under superposition of arithmetic operations,
integration, and exponentiation.

COROLLARY. A Liouville function can be characterized by its complexity, i.e., by the number of arith-
metic, integration, and exponentiation operations required to obtain it from the constants. It follows from our
arguments that the number of discrete zeros of a Liouville function is estimated from above in terms of some
function of its complexity. In other words, a Liouville function defined by a simple formula has few zeros. It
would be of interest to obtain more precise estimates of this type.

Remark 2. The function cos x is a Liouville function over the field of complex constants C: 2 cos x =
elX 1+ =X je., cos x lies in an extension of the ring C by the element elX gatisfying the equation y' =iy, We
note that complex Liouville functions also have special geometric properties (cf. [1]): the set of singularities
of such functions in the complex plane is at most countable and the monodromy group is solvable.

Remark 3. The fact that cos x is not Liouville over the reals can evidently also be explained from the
viewpoint of differential Galois theory [2]. The Galois group of the equation y" + y = 0 over the field Ris a
circle. This circle has a normal tower of subgroups with quotient groups isomorphic either to the additive or
the multiplicative group of the field R. In order to completely justify this explanation, it is necessary to modify
the differential Galois theory somewhat — the theory is usually constructed for differential fields with an al-
gebraically closed field of constants.
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AUTOMORPHISM OF VON NEUMANN ALGEBRAS AND
APPROXIMATIVELY FINITE TYPE III; FACTORS
WITH AN ALMOST-PERIODIC WEIGHT

V. Ya. Golodets UDC 513.881

1. In this note we state some properties of automorphisms of factors which are then used to describe
approximately finite (a.f.) factors M of type III; which possess a I'-almost-periodic weight ¢, where T is a
countable subgroup of Rf_ (cf. Proposition 1.1 in [1]}). In fact, a sketch is given of the proof of the following
theorem,

THEOREM 1.1. If M is an a.f, type III; factor admitting a faithful normal (f.n.) semifinite I'-almost-
periodic weight, then M ~ R, where R,, is an Araki—Woods factor of type III; (cf. [2]).

By Lemma 4.9 in [1], every such algebra M can be represented as a crossed product M =R(N, I') of a
type II, algebra N with an f.n. semifinite trace 7 by a group T of automorphisms of N with generators 6; (1 <
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