all tend to zero. The dimension n of the space of x coordinates must be at least three. These solutions are
unique in the class of functions u, t) for which

T
rai max z, 8], | 2 % dzd
u‘;x,:te[o,ﬂ'u( )| igé;““’ + |u, ) dxdt

are finite for every T > 0.

' p may be taken equal to « in the statement of this theorem. The solutions corresponding to this value
are solutions of Cauchy's problem for (1.8), and Ku = E™.

LITERATURE CITED

1. O. A. Ladyzhenskaya, V. A, Solonnikov, and N. N, Ural'tseva, Linear and Quasilinear Equations of

Parabolic Type, Amer, Math, Soc. (1968).
2. O. A. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow, Gordan and Breach (1969).

PRINCIPLE OF DIFFERENTIAL OPTIMIZATION APPLIED
TO A SINGLE-PRODUCT DYNAMICAL MODEL OF AN
ECONOMIC STRUCTURE

L. V. Kantorovich, V. I. Zhiyanov, UDC 51:330.115
and A. G. Khovanskii

In this paper we discuss a general formulation of the principle of differential optimization. We consider
an economic model in which the dynamics is subject to this principle. The system of equations of the model is
a system of differential equations with lag in which the lag is not specified, but is ifself determined by a dif-
ferential equation. The equations are sufficient for the further development of the economic system to be de-
termined by its present state. We consider some particular cases that are interesting from the economic point
of view. In one of them the system of equations separates and lends itself to a complete solution. In other
cases we can find characteristic exponential solutions.

Some words on the economic content: our model is a single-product dynamical one with stocks that are
differentiated with respect to the moment of their creation. Scientific and technological progress and the growth
of equipment stocks lead to a continuous increase in the productivity of labor on newly created stocks. The
least effective stocks are withdrawn from production {and not used later), and the freed labor resources are
directed to newly created stocks. In the model this process is subjected to the criterion of differential optimi-
zation, according to which the policy of withdrawal of virtually outdated stocks is optimal if it ensures at each
moment a maximal rate of growth of the national income,

Principle of Differential Optimization. We consider a set A of vector-valued functions v of the variable
t, ¥ = {v®, v(®, ..., 'yn(t)}. A vector-valued function y(t) in the set A is called a trajectory, and each
trajectory describes one of the possible ways in which the system can develop, We assume that all the trajec-
tories y(t) are smooth functions with a finite number of points of discontinuity. At a point t; of discontinuity of
the trajectory y(t) we consider the two vectors

v (t) = lim y(5) and ¥~ (t) = lim ().
-ty B tty

The component v,(t) of the trajectory ¥(t) plays a special role. It is assumed that v,(t) is a continuous function,
and v,(t) = t. The interval [y,(t), t] will be called the "influence interval" of the trajectory y(t) at the moment of
- time t.

Suppose that a goal function Fy(t) is defined on the trajectories and depends on the trajectory y and the
time t. We assume the following conditions for F:

Translated from Sibirskii Matematicheskii Zhurnal, Vol. 19, No. 5, pp. 1053-1064, September-October,
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a) if the trajectory 37 coincides with the trajectory y on its influence interval [y,(t}, t] at the moment of
time t, then Fy(t) = Fy(t). The condition a) means that the functional F does not depend on the future develop-
ment of the system, and is completely determined by its past;

b} for any trajectory y the function of the time Fy(t) has a right derivative F.'f(t).

Definition 1. The trajectory v is said to be differentially optimal at the point t; with respect to the func-
tional F if for any other trajectory ¥ such that y(t) =y () for Y(ty) =t = t; we have the condition:

EF () = FF ().

Definition 2. The trajectory y(t) is said to be differentially optimal on the interval [a, b] with respect to
the functional F if it is differentially optimal at each point of this interval [a, b]. We say that the differentially
optimal trajectories satisfy the criterion of differential optimality.

Figuratively speaking, a differentially optimal trajectory always moves in the direction of greatest in-
crease of the functional F, We now give an illustrative geometric example.

Example. As the trajectories y{t) we consider trajectories with influence inferval of zero length (y,(t) =
t} that determine continuous piecewise-smooth motion of the point x(t} in the n-dimensional space R®, vt} =
{t, ), x(t) = x(t), X8, . . ., Xp(t), with speed not exceeding 1, i.e.,

12 ®Ol=Vz2@) +a2@) + ... Fai (<L

Let the goal functional Fy(t) be the value of a smooth function G(x) at the point x(t). In this example a trajectory
Y(t) = {t, x(t)} is differentially optimal if the point x(t} "rises along the gradient" of the function G with speed 1,
i.e,, if

s grad G(8)
T = erad e Ol

Indeed, we have F"y(t) = (d/dt)Gx (1) = {(grad G, x"). For the trajectory x(t) we have {ix'(® |l = 1, therefore,
the scalar product {grad G, x") is greatest if the vector x'(t) is collinear to the vector grad G and equal to 1
in length.

Besides the differentially optimal trajectories of motion of a system, we can also consider the trajec-
tories on which the goal functional attains a maximum at the endpoints of time intervals of a fixed length a
(@ is the length of the planning period). Thus, we say that a trajectory y(t) is optimal with planning period of
length a (and origin at t;) if for any natural number n and any trajectory ¥(t) such that ¥(t) = y(t) for t=t=
t, + (n— 1)a we have the inequality F(y(t), t;, na) = F(y(t), tys na). It is natural to expect that as the length «
of the period converges to zero an optimal trajectory with planning period a will converge to a differentially
optimal one. For example, within the framework of the geometric example, we need to place only slight re-
strictions on the goal function G in order that this statement be true. Conditions for differential optimality
frequently turn out to be significantly simpler and more natural than the conditions for optimality with a plan-
ning period of finite length,

Description of the Model. In an economic system that turns out a single product (a single-sector model)
two main production factors stand out: the production stocks (realized capital), differentiated with respect to
the moments of their creation and measured in product units, and the labor resources, measured in the num-
ber of labor units,

Let T(t) be the labor resources at the moment of time t (a given function). We assume that at any moment
of time t the effectiveness of production is characterized by a production function U, y, 7) that expresses the
quantity of pure product created by the labor y (in a unit of time) with the use of production stocks {created at
the moment 7) of volume x product units (7 = t). It is assumed that the function U increases monotonically with
the argument 1, which expresses the increased effectiveness of newer stocks under the effects of technological
progress. This taking into account of technological progress in models has acquired the name "realized tech-
nological progress® [1-4]. It is assumed that the function U is positive-homogeneous and convex in the first
two arguments. The first assumption reflects the absence of an effect from the scale of production, and the
second the fact that the function U is based on optimal production methods.

The capital investments used for increasing stocks and replacing outgoing stocks are determined by the
intensity of their input w(t), i.e., it is assumed that the volume of stocks introduced into production in the time
interval {t, t + dt] is equal to n(t)dt. Various assumptions are made about the function %(t) in various modifica-
tions (variants) of the model: the function »(t) either is assumed to be an exogeneous variable of the model,
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i.e., a priori given, or it is assumed that it constitutes a constant part of the pure product produced at the
moment t (more generally, it can be assumed that the function % (t} is determined by the previous development
of the economic structure),

The quantity of labor resources working on the newly released stocks is determined by the intensity of
their introduction ¢(t), i.e., it is assumed that the labor resources introduced in the time interval [t, t + dt]
make up @{t)dt units. The function ¢(t) in the model is to be determined (an endogeneous variable of the model).

In the model it is assumed that the technological progress and the growth of equipment stocks lead to a
continuous increase in the productivity of the labor on the newly created stocks. As a result the less effective
stocks are continuously withdrawn from production (and not used later), while the freed labor resources are
directed to the newly created stocks. Under the assumption of a monotonically growing labor productivity the
oldest stocks (those having the earliest period of creation among the stocks taking part in the production pro-
cess at the moment t) are withdrawn from production first, therefore, the policy of withdrawing stocks in the
model is characterized by a function m(t) that expresses the moment of creation of stocks withdrawn from
production at the moment of time t (m(t) < t). The function m(f) must be found.

The quantity of pure product produced from the stocks taking part in the production at the moment of time
t (in a unit of time), i.e., the national income, is calculated in the model according to the following formula

?

Py= | Um@), o), ) dv. @
m(t)

We write out the balance equations for the variables of the model.

¢

Balance Equation for Labor Resources: j. ¢ (v)dt = T(t). Assuming full employment, the number of
: m(t) '

labor units | ¢ (r)dv working with the stocks available at the moment t is equal to the size of the able-bodied
m(¥f)

pobulation T(t). This relation can be written in the differential form
o (t)=T"(t)+o(m(t))m'(t), @)

in which this equation also has a simple economic meaning: the labor resources connected with the stocks
newly created in the interval [t, t + dt] are made up of the natural growth of labor resources dT(t) and the labor
units taken from the stocks that are withdrawn in the interval [m(t), m(t + dt)], i.e., ¢[m(t)]dm(t) units.

Stocks Balance Equation. This equation arises in the variant of the model in which »(t) is equal to the
constant part of the national income »(t) = yP(t) (0 <y < 1 is the constant norm of accumulation). Using the
formula (1), we get

- t
xt)=v [ Ux(x), o), tldr. ®)
. m(t)

In addition to the balance equations, the model variables are subject to the differential optimization equa-
tion. This equation expresses the optimization criterion used in the model, according to which a policy of with-
drawing virtually outdated stocks is optimal if it ensures a maximal rate of growth of the national income.

This criterion consists in maximization of a certain functional (the national income) on an infinitely small
(infinitesimal) interval. In the previous section we considered the mathematical problem of finding the dif-
ferentially optimal trajectories of the development of the system (the principle of differential optimization),
and now, using the concepts introduced in this section, we give a derivation of the equation of differential op-
timization for the economic model under discussion.

In our economic model the trajectories are the pairs of functions y(t) = {m(t), qo(t)} subject to Eq. (2) (for
the variant of the model in which the function »(t) is an exogeneous variable), and the triples of functions y(t) =
{m@), ot), n(t)} subject to Egs. (2), (3) (for the variant of the model in which the function %(t) is equal to a con~
stant part of the national income). These trajectories give a balanced (with respect to labor resources and
stocks) development of the economic structure. The influence interval for these trajectories of development of
the economic system is the time interval [m(t), t], and the stocks created in this period take part in the produc-
tion at the moment t, The function ¢(f) is assumed to be a discontinuous piecewise-smooth function, and the
functions m(t) and 1(t) are assumed to be continuous piecewise-gmooth functions. On the trajectories we con-
sider the functional Py(t) calculated by the formula (1): the formula for computing the national income in the
model at the moment of time t.
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We consider the equation resulting from the principle of differential optimization with the functional
Py(t). We first analyze the mode! in which the function () is given exogeneously. We calculate the first
derivative P'g @) for the trajectory v(t) = {m(t), ¢(t)} at an arbitrary point ty:

P;’+ (t0) =Ulx(ty), (o), tod —Ulx {m(to)), @ (m(ty)), m (t)] m’ (£y)-

If trajectories coincide up to the moment t;, then for them the quantities n{m(ty)), ¢{mity), and m(ty) are the
same. For the functions n(f) and ¢(t) this follows from the fact that mit) < t;, and for the function m(t) from
its continuity. The labor resource balance [Eq. (2)] connects ¢*(t)) and m'"(t)). Using this connection, P (ty)
can be regarded as a uniqueness function of the argument m'":

Pt (1) =Uln (B, T’ (to) + @ (MbNm® + (ty), 1] — U % (m(2o)), @(m(2y)), m (L)l m’ (8,). “)
We see from Eq. (4) that the function P}' is convex in m'*, Therefore, the maximum of P.f is attained at a
point at which the derivative vanishes. From this, we get the following equation:

d(P) v, vt (), )
dm'* o

¢ (m (1)) — Ul (md), ¢(m(@), m(t)=0.

Thus, the equation of differential optimization has the form:

BU [k (1), ¢ (1), 1] _ Ul (m (), @ (m (), m ()] 5)
7 o lm (7] ‘

In what follows we are interested only in continuous solutions. For such solutions ¢*(t) = ¢(t), and we
can omit the symbol for passage to the limit from the right. For a production function of Cobb—Douglas type
Unlt), o), t) = fH)n? (t)<p5(t), a + 8 = 1 [here the exogeneously given function f(t) simulates the technological
progress realized in the stocks of the period t] the equation of differential optimization has the following form:

Bf ()%= (8) o~ (t) = (m () ) »*(m(2) ) p=*(m (?)).

In the variant of the model with endogeneously given function n (n(t) = yP(t)) the principle of differential
optimization also leads to Eq. (5). Indeed, in this case the quantity P3y+ is given on the trajectory vyit) = {n@®),
o(t), m()} by the formula:

Pr=U[x+(t), ¢t (t), t1—Ulx(m (), ¢ (m(t), m(t)m'+ ().

The function n depends continuously on the time, as is clear from Eq. (3). Consequently, the pumber wt(ty) =
%ty is the same for all trajectories that coincide for t < t; and cannot change, We arrive at the same extremal
problem and at the previous equation of differential optimization.

We turn to the economic meaning of the equation of differential optimization. The left-hand side of Eq.
(5) is the limiting productivity of labor at the moment of time m(t), or, in other words, the norm of effectivity
with respect to one of the production factors: the labor resources. The right-hand side of Eq. (5) is the pro-
ductivity of labor on the stocks created at the moment of time t. For the differentially optimal development
of the economical structure these quantities must be equal, in view of the following qualitative considerations.
We consider the influence on the production of output when a small number of labor units (we denote it by AT)
is transferred from stocks created at the moment m(t) (taken out of production at the moment of time t} to
stocks created at the moment of time t. On the stocks of time t there will be produced an additional

‘7_({[_“%:_.___@‘?“)’” AT product units, and on the stocks created at the moment m(t) the production is decreased by

Ul (m (t)(;'[z(('t';](t))' m Ol A7 product units. If the losses exceed the additional production, i.e., (—a—q[—”(;;m‘w} AT <

Uln(m(t), g (m ().
@im ()

mOlpT » then the transfer of labor resources to the more modern stocks is economically un-

justifiable. But if the transfer of a small number of labor resources to more modern stocks enables us to in~
wﬂ AT{U[K (m (1)) @ (m (1)), m (t)]AT

crease the total production of output at the moment of time t, i.e., % o Tm @1

then this policy of closing the virtually outdated stocks is not differentially optimal. Consequently, the differ-
entially optimal development of the economic structure requires the equality of the limiting productivity of
Iabor onthe newly created stocks and on the stocks that are virtually outdated (least economical) at this mo-
ment. The appropriate equation is Eq. (5), derived mathematically from the principle of differential optimiza-
tion,
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The System of Equations of the Model. Suppose that at the moment of time t; we know all the parameters
of the model. The problem is to calculate their subsequent behavior. We first dwell on the more complicated
variant of the model, in which the strength of the input of capital investments makes up 2 constant part of the
national income. '

At the moment of time t; the stocks created in the course of the time interval m(ty)) = t = {; take part
in the production. Therefore, information on the initial state of the economic structure implies the presence
of the following data:

a) the numbers t; and m(fy) [moreover, m(ty) < ty];
b) the functions n(t) and ¢(t) defined on the interval m(ty)) = t = t;.
Moreover, for the initial data we must have the compatibility condition:

U [% (m (t)), @ (m (o)), m ()] 3UL% (o). @ (o), ful,

o o (m () o9 ()

which means that the equation of differential optimization holds at the initial moment of time t;.

In differential form the equation of the model has the form:

(1) —p(m(8)) =T"(2), )
® (1)) =1[U(x(2), o(t), )]—=U[n(m(2)), @(m(t)), m(t)]m'(t), (i)
Un(m @), @m@), m) _ aUx (), ¢(), ). (i)

9 (m (2)) ¢ (2)

We consider the more general system

m/ (i) =0:[x(t), m(t), ¢, ¢(t), x(m(t)), e(m(2))], ©)
® (1) =@s[x(2), m(t), t, 9(2), x(m(?)), @(m(}))], ()
q)(t)=q)3[”.(t)7 m(t)v tv x(m(t))’ q)(m(t))li {8)

where &, ®,, ®; are known functions. To reduce the original system to this form it is necessary to solve
Eq. (i) optimally in m'(t) and substitute the resulting expression for m'(t) in the right-hand side of Eq. (ii}.
Then we must solve Eq. (iii) with respect to ¢(t). We consider the solution of the system of equations (6)-(8)
with the following initial data:

1) the numbers t, and m(ty) are given [with m(ty) < ty);
2) the functions »(t) and ¢(t) are given on the interval m(t) =t = t,.
Moreover, we assume the compatibility condition

3) o(ty) = B5(n(ty), m(ty), ty, n(m(ty)), @(m(ty))].

The system of equations (6)-(8) with the initial data 1)¥3) can be solved as follows: we substitute the expression
for ¢(t) from Eq. (8) into the right-hand sides of Eqs. (6), (7). We get equations of the form

' (8) =Ga[x(t), m(t), £, %(m(®)), o(m()], ©)
W (@) =Ga[x(t), m(1), &, n(m(t)), @(m(t))]. (10)

If the values of the function m(t) are contained in the interval [m(ty), t,], i.e., if m(ty) = m(t) < ty, then the
functions w(m(t)) and o(m(t)) are known from the initial data. Therefore, under these assumptions the system
(9)-(10) is a system of ordinary differential equations for determining m(t) and w(t) [with the initial data m(ty)
and %(t;)]. We assume that for the solution of the system (9)-(10) the function m(t) is monotonically increasing
(such an assumption was made for the simulation). The right-hand sides of the system (9), (10) are determined
as long as m(t) is less than t;,. This system can be solved on a digital computer (by approximation methods)
up to the critical moment t; for which m(t,) = t,. After this, we know the functions m(t) and %(t) on the interval
'ty = t = t;. Equation (8) now makes it possible to determine the function ¢(t) on this interval. Thus, the func-
tions ®(t) and ¢(t) are now known on the interval t, =t = t;. Substituting them in the right-hand sides of the
system (9), (10), we get a new system of differential equations for m(t), »(t) on the interval t; = m(t) = t,. It
is determined up to the critical moment t, for which m(t,) = t;. Repeating this construction, we calculate suc-
cessively the unknown functions on the interval [t,, t3], where m(t;) = t;, and on the interval [t;, t;], where
m(ty) = t;, ete.
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The variant of the model for which the function %(t) is given exogeneously leads to an analogous but
simpler system of equations. The initial data here are:

a) the numbers t; and m(ty) [with m(t)) < ty];
b) the function ¢(t) defined on the interval [m(ty), ty].
The compatibility condition 3) must also be satisfied for the initial data.

These considerations aré sufficient for the solution of the system of equations on a digital computer.
We remark that in this way it is also possible to solve the analogous system of equations for vector-valued

functions w(t), o{t), i.e., a system in which —)Z(t) = ny(t), . . ., %g(t) is a k~dimensional vector-valued function,
o(t) = o), . . ., pp) is an n-dimensional vector-valued function, and Egs. (7), (8) are also vector equations:

# (5 =Da(n(t), m(2), ...),
9(t) =Bs(x (1), m(1), ...).

More generally, we can consider a system in which m(t) my(t), . . ., mN(t) is also a vector-valued function.
The right-hand sides of the equations here can be regarded as depending on the values %(t) qa(t) at the points
t, my(t), . . ., my(th.

An investigation of such systems is fairly difficult. We mention that the theory of equations with de-
flected argument treats similar systems, but in it the deflection functions my(t), . . ., mN(t) are assumed to
be given (and not determined from equations, as in our system). The method of solution considered here is
analogous to the method of steps in the theory of equations with deflected argument. Apparently, systems with
unknown deflection have not been considered before.

Variant of Exogeneous Capital Investments and Constant Labor Resources. In this section we obtain an
explicit solution of the system of equations of the model under the following assumptions:

1) the production function U(n, ¢, t) is a Cobb—Douglas function, i.e., U(®, ¢, t) = f(t)%aqu, a+B=1;
2) the labor resources do not change with time, T(t) = const = Ty;
3) the function ®(t) is given on the ray [t;, ) (it is assumed to be positive and continuous).

It will be convenient for us to use the function I (t) equal to the productivity of the labor on the stocks
Um®), 9), t)
P ()
tions this formula takes the form I(t) = f(t)n® ()¢~ % (t). We rewrite the system of equations (2), (5) for the

variant of the model under discussion in this section:

created at the moment t. For [I(t) we obviously have the formula II(#) = . Under the above assump-

Pty =0q(m(t))m’(¢), ' (11)
f(m(8))n*(m(2)) = (m(2)) ==Bf (¢) %> ()~ (2). (12)

In our notation Eq. (12) can be written in the form
I(m()) =BI(?). (13)

The initial data in our variant of the model are: the initial interval [mf(t), t;] (the "influence interval™)
and the function ¢(t) on this initial interval,

Assertion, Suppose that the initial data are such that the function I (t) is continuous and monotonically
increasing on the initial interval [m(ty), t;]. For the initial data suppose that the compatibility condition
I{m (ty)) =pIL(ty) holds. Forsuchinitial data there exists a unique solution of the system of equations (11), (12).
This solution is defined on the ray [t;, ©). For this solution the function II(t) is monotonically increasing and
the function ¢(t) is positive. The function m(t) is monotonically increasing and for any t remains less than t
[m(t) < t]. The function m(t) can be found from the equation

m(¢) 1
{ Fru(dr =7 ff"‘ (D= (v)dr.
m(t,) to

Proof. We assume that the functions ¢(t), m(t) satisfy the system (11), (12), and the initial conditions.
Raising both sides of Eq. (12) to the power 1/a, we get

1 (m8)) (1)) ¢~ (m (1)) =prefre(t)n(t) e~ (t).
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Multiplying this equation by Eq. (11), we get
fUe(m(e))x(m(t))m’ (&) =BY=f\/=(t) x(t). (14)

Equation (14) is a differential equation with separable variables for the determination of m(t). Integrating this
equation, we get

m(t) t

§ 1V @) n(x)de = pire [ 1= (1) (x) dr. 15)
m(t,) ’ o

It is not difficult to see that Eq. (15) has a monotonically increasing solution m(t) defined on the ray [t;, ).

From the positivity of the function /o (r)v.(r) and from the inequality 0 < 8 < 1 we get automatically the in-

equality m(t) < t.

Let m(t) be the solution of Eq. (15). To determine the functions ¢(t) and II({t} Eqgs. (11) and (13) remain.
We show that these equations make it possible to uniquely determine the funetions ¢(t) and II(f). Indeed, we
consider the time interval [t;, T] (T is an arbitrary number larger than t;). As shown above, the function t —
m(t) is positive, therefore, on the interval [tj, T] it exceeds some positive constant €. The critical points
ti» tyy .. ., tky . . . are determined recursively from the equations m(t) = t;, . . ., m(tp) = 4, . . . . Since
the function t —m(t) > ¢, the critical points t;, t,, . . . do not accumulate on the interval [t;, T], and hence,
for some N we have the inequality ty, > T. We denote by Iy the interval tx.; =t = i and by I, the initial
interval m(ty) = t =< t;. It is clear that if t = Ik, then m(f) & Ix, and if t & I;, then m(t) & I,. Therefore,
Egs. (11) and (12) make it possible to determine the functions ¢(t) and il (t) recursively, first on the interval
1,, then on I,, and so on. By assumption, on the initial interval I, the function ¢(t} is positive and the function
H(t) is monotonically increasing, the recursively determined functions ¢(t) and Il (t) obviously have the same
properties. The assertion is proved.

In the variant just analyzed the natural assumptions of the simulation { monotone growth of the productiv-
ity of the labor on the stocks of the period t, the inequality ¢(t) > 0, the monotone growth of the function m(t),
and the ineguality m(f) < t] are automatically satisfied for the solution if they are satisfied on the initial inter-
val. Furthermore, the stability of the function m(t) under a change in the initial data is obvious. In particular,
the function m(t) in the variant being considered does not generally depend on the distribution of the labor re-
sources with respect to the stocks of various moments of creation on the initial interval [on the function ¢(t)
for m(ty) =t = t)]. For a rapidly growing function /o () n(t) the function m(t) rapidly assumes a behavior that
does not depend on the length of the initial period. Indeed, the equation for m(t) can (for large t) be written in
the form

1o m(t

[ e mu@art | e @umar = pue | e .

m(ip) |3 o

The initial data m(ty), which gives the length of the "influence interval" [m(ty), t)], affects only the first term

g
§ fi'e (t) % (v) dv, which for large t is small in comparison with the remaining terms.
m(s)

We mention that the stability of function m(t) with respect to a change in the initial data was first dis-
covered in numerical experiments (the approximate solution of the system of equations of the model on a digi-
tal computer for various variants). These experiments indicate the high stability of the function m(t) also in
other variants of the model [in the case of exponential growth of the labor resources and in the case of an endo-
geneous character for the function »(t)).

We dwell now on the asymptotic behavior of the solutions of the model as t — =, As already mentioned,
the asymptotic behavior of the function m(t) depends first of all on the behavior of the function £t/ YD n) as
t — o, It can be shown that if the function £/ 2t)n(t) has power growth, then the function m(t) is approximately
linear: m(t) ~ at + b, a < 1. More interesting is the case when the function fl/ Aty n(t) is of exponential form,
i.e., the case £t/ Qyn(t) = Cept. We dwell on it in detail. In this case Eq. (12) takes the form

m(t) t
{ Cervdr=pue(Cerdr
m(ty) i
ar
LT pmite) ﬁt/a (ept . e(’!n), ) {16)
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from which
m(l) = —15 Inp+ 1 lnv[e‘” 4 ﬁ—ﬂaeom(!o) _ ept,].

We set A =—(1/pa)InfB (the number A is positive, since Inf < 0) and B= 8~ 1/agpmity) _ e, Then me) =

(L/p) 1n[ept + B] — A. The function m(t) will have an especially simple form if B = B'i/ O‘epm(to - Pl is equal
to zero, In this case m(f) = t — A. For the function ¢(t) we get the equation ¢(t) = ¢{t — A), which shows in a
simple way that the function ¢(t) extends from the initial interval I; as a periodic function. We show that the
system has an analogous behavior as t — = also for B # 0. We rewrite the formula for m(t) in the form m(t) =
t—A -+ (1/p)In[1+ Be'ptj. With growing t the term Be~ P becomes small, and the function m(t) rapidly goes
to a stationary mode

1
m)y~t—A, A=—~—p;—lnﬂ.

We now consider the behavior of the function ¢(t). For large t the equation ¢(f) = o(m(f))m'(t} coincides more
and more precisely with the equation ¢(t) = ¢(t — A), therefore, it is natural to expect that the function @(t)
passes to a periodic mode of behavior (with period A) in the course of time.

We perform a calculation proving this assertion and enabling us to compute the limiting periodic function
in terms of the initially given ¢(t) for m(t) =t =t), The function m(f) maps the interval Ik into Ix_,, in par-
ticular, I, into I,. The inverse function t(m) realizes the inverse mapping, and its k-th iterate
AUCE Ef (,m)) - N=tw(m) reglizes inparticular, the mapping of the initial interval I; into the k-th interval

times

Iy that is of interest to us.

From Eq. (16), regarding t as a function of m, we get ePt(m) = qePM 4 b where q = B/ apd p=
q(epto - epm(tﬂ)) Substituting the function t(m) instead of m in this equation, we get

Playm) . Prtm) ge P p=q%"™ + gp + p.

Carrying out this substitution k times, we get
! - S L A—tigh N
P = hf™ L (P L ) p =g (ep" = P

From this, we have an explicit formula for the k-th iterate of the function t(m)

t) (m) = kA + %m[ om 4 1 1{; p].

For large k we get tu)(m)~ k4 + 1Eln [e”"' + 1‘1 q] Next, mvertmg the equations ¢(t) = ¢(m(t))m'(t) and BH () =

H(m(t)) and iterating k times, we arrive at the equations

{CP {tw (m)) « by (m) = @ (m),
B ¢y (m)) = TT (m).

These formulas, together with the explicit and asymptotic formula for t(@) (m), make it possible to obtain ex-
plicit and asymptotic formulas for ¢{t()(m)) and [ (t)(m)). From the asymptotic formula it is not hard to see
that for large t the function ¢(t) really does pass to a periodic mode of behavior that can be explicitly deter-
mined.

Exponential Solutions. In the previous section the labor resources were assumed to be constant. The
assumptlon that the labor resources grow exponentially is more realistic. Let T() = Toept and £/ Gyn() =

Pt here Ty, P» G, and p are given constants). In this variant the model equations do not lend themselves
to the same complete investigation, but the characteristic exponential solutions can be found also here. Namely:
it is not hard to show that the following functions satisfy the system of equations of the model: ¢(t) = cpoep and
m{t) =t~ A, where

=Pl __ and 1
Do 1 .—4B A= 2

We now return to the variant of the model in which the capxtal investments constitute a constant part of

the national income, i.e., in which % (t)=1y j‘ U (t), ©(1), 1) dr. We assume that U(n, ¢, 1) is an arbitrary

Cobb—Douglas function U(n (), o(t), t) = e‘stna t)@B(t) and that T(t) = Toept. There are characteristic exponen-
tial solutions also in this variant. There exists a (unique) set of parameters ¢, I, "y, 4, and A such that the
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functions ¢(t) = qooelt, nt) = noe“t, and m(t) = t — A satisfy the system of model equations, In this set = p and
for the form of the function m(t) = t — A follows from the exponential form of the functions ¢ (t) and »(t). We write
out the resulting exponential solution:

mt)=t—4, 4=—BRE

T
P (t) = @™, Qo= r’ﬁm;
1— §l+pﬁ/6]1/5

# (L) = noePto/B, xy = pi/Bg, [_};‘_’F’g‘/‘p—

For this solution the quantity A indicates the period of virtual deterioration of the stocks, which does not de-
pend on the moment of creation of the stocks and is inversely proportional to the coefficient 6 (the coefficient
characterizing the rate of scientific and technological progress).

This exponential solution enables us fo get analytic expressions (in the framework of the modification of
the economic model considered here) for the most important macroeconomic characteristics: the national in-
come and the norm of effectivity of capital investments. The formulas that are obtained for calculating these
economic characteristics make it possible to estimate the influence of technological progress and other param-
eters of the model on these economic characteristics.

LITERATURE CITED

1. L. V. Kantorovich and L. I. Gor'kov, "The functional equations of a single-product model," Dokl. Akad.

Nauk SSSR, 129, No. 4, 732 (1959).
2. L. V. Kantorovich and V. 1. Zhiyanov, "A single-product dynamical model of an economy that takes
into account the structure of the stocks with technological progress," Dokl. Akad. Nauk SSSR, 211, No.

6, 1280 (1973).
3. R. Solow, "Investment and technical progress,” in: Mathematical Methods in the Social Sciences, K. J.

Arrow et al. (editors), Stanford (1960), p. 89.
4, L. Johansen, "Substitution versus fixed production coefficients in the theory of economic growth; a syn-

thesis," Econometrica, 27, 157 (1959).

ESTIMATES OF GREEN'S FUNCTIONS AND SCHAUDER
ESTIMATES FOR SOLUTIONS OF ELLIPTIC BOUNDARY
PROBLEMS IN A DIHEDRAL ANGLE

V. G. Maz'ya and B. A, Plamenevskii UDC 517.948

In recent years a number of papers have appeared which are devoted to studying elliptic boundary prob-
lems in domains with edges on the boundary ([1-11], etc.). In these papers, conditions were studied for bound-
ary problems to be Noetherian in weighted Sobolev spaces generated by norms in L, and in Lp, 1 < p < =; the
behavior of solutions near an edge was also studied.

In this article, we consider a boundary problem for a homogeneous elliptic operator of order 2m with
constant coefficients in an n-dimensional dihedral angle. We obtain here precise estimates for Green's func-
tions and Poisson kernels, which are then applied to prove coercive estimates for solutions in weighted Holder
classes. Applications of these results to elliptic problems in bounded domains with edges will be given in

another article. :

.1. Boundary Problem in a Dihedral Angle

1. Function Spaces. Let (r1, w) be polar coordinates in the Euclidean plane {y}, y=( ¥ @ €10, 27
and K bethe sector {y: 2.l wl| < a } with edges yE = {y:2w = %0, 1yl >0}, Welet © denote the dihedral angle
K X RP™2 n = 3, withfaces I'* = y* x R?™ and edge M = {x =(y,2): y = 0,z = R"%},

Translated from Sibirskii Matematicheskii Zhurnal, Vol. 19, No. 5, pp. 1065-1082, September-October,
1978. Original article submitted November 28, 1977,
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