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NEWTON POLYHEDRA AND THE GENUS OF
COMPLETE INTERSECTIONS

A. G. Khovanskii UDC 513.015.7

This paper is a direct continuation of [1] and adopts its constructions and notation. Here we continue the
study of an algebraic variety X defined in (C\ 0)2 by a nondegenerate system of polynomial equations f; = ... =
fix = 0 with Newton polyhedra 4y, . .., Ak.

The space (C \0)? is compactified by means of an imbedding into a compact nonsingular toral variety
M2, €\ 0)® C MP, Using the polyhedra A, a compactification M? is chosen in [1] which is such that the clo-
sure X of the variety X C M" is a compact nonsingular variety transverse to all the orbits of the variety M".
Such a compactification will be said to be sufficiently complete for the polyhedra A.

The variety X isa complete intersection in M2, In [1], results are cited of a calculation of the cohomo-
logy groups of M2 with coefficients in certain TR-invariant sheaves with the aid of an algorithm in [2]. These
results make it possible for us to calculate the arithmetic genus x&X) of X and (if the polyhedra A have a com-
plete intersection) describe all the holomorphic differential forms on X.

The calculation of the Chern classes of M carried out in [3] allows us to calculate the Euler character-
istic E(X) of X.

The variety X is closely related to the initial variety X. Consider, e.g., the holomorphic differential
forms on X which extend holomorphically to some compactification on X. The set of such forms does not de-
pend on the choice of the compactification. It therefore suffices to describe the holomorphic forms on the com-
pactification X. Analogously, x()?) = yX).

In Sec. 3 the Euler characteristic E(X) is calculated. For this purpose the variety X is decomposed by
the orbits of MR into parts X;, E(X) = ZE(Xj). One of these parts is the variety X, while the other parts are
varieties of the same type as X but of lower dimension. :
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In Sec. 4 we consider the variety X defined in CP by a general system of polynomial equations fi=...=
fi = 0 with Newton polyhedra 4, ..., & Conditions on the polyhedra A are given under which a generic
variety X is nonsingular and transverse to the coordinate planes. The previous calculations are applied to the
varieties X.

1, The Genus of Complete Intersections

1, Let M be a compact analytic projective variety. The number hP 0(M) is defined to be the dimension of
the space of holomorphic differential forms on M of degree p. By the geometric genus p (M) of the variety M
we mean the number h®°(M) for n = dim M. By the arithmetic genus y(M) we mean the number y(M) = Z(1)P x
hP%(M). The numbers hP(M) are birational invariants. Therefore, we can define the numbers hP%(Y), p(Y),
and y(Y) for singular and noncompact algebraic varieties Y: it is only necessary to put hP?(y) = WP*(M), where
M is a compact analytic projective variety birationally equivalent to Y. For noncompact analytic varieties Y,
the number hP%(y) is the dimension of the space of holomorphic forms of degree p on Y which extend to the
compactification of Y.

The equality hP-°(M) = dimHP (M, {0}) is valid, where {0} is the trivial fibration on M (cf. [4]).

Now let Mk be a complete intersection, i.e., Mg=D; {} ... Dk, where Dy, ..., Dk are nonsingular
transversally intersecting divisors on M. The genus y(Mg) and the numbers hP*(My) can be calculated without
dropping to the variety My provided the cohomology groups HM, {-n;D; —. .. — niDi}), nj = 0,1 of M are
known. We recall how this is done.

2. Extract Sequences. As above, let Dy, . .., Dk be transversely intersecting nonsingular divisors on
M, andlet Mj=M, My =Dy,...,Mg=D; ... D be a sequence of subvarieties. Assume that the divisor
D consists of hypersurfaces transversely intersecting each other and the divisors Dj. Consider the exact se-
quence of sheaves

0 Q@ (Mig, {— Dy — DY) 5 Q (M, {— D}) 2> Q (M}, {— D}) 0. @)

Here Q (Mg.1,{— Dk — D}) is the sheaf of germs of regular functions on Mg—y which vanish on the intersection
with the divisor Dy + D, & (Mg_;,{—D}) the sheaf of germs of regular functions on M. vanishing on the inter-
section with the divisor D, & (Mg, {—D}), the trivial extension on Mk of the sheaf of germs of regular functions
on Mk vanishing on the intersection with D, i, the imbedding, and j, the homomorphism given by restricting
functions to the subvariety M. The associated exact cohomology sequence has the form

0 HO (Mg, {— Dy — DY) = H® (Miey, {— DY) — HO (M, {— DY)~ . .. @) -

Here we have used the isomorphism between the cohomology groups of the sheaf © (M, {—D}) and its trivial
extension & (Mg, {—D}).

As in [1], we denote by y(M, {D}) the Euler characteristic of the sheaf of sections of the one~dimensional
fibration over M corresponding to the divisor D.

Assertion. The equality % (M, {— D)) = 2(M{— D}) — 2% (M., {D—Dy) +_§x (M,{—D—D;—D;)—...+
PSS 3 1<} .
(=12, {~D—Dy~—...—D}) is valid. In particular, taking D to be the trivial divisor D = 0, we obtain

a formula for y(Myg).

Proof. The Euler characteristic of a sheaf is equal to the sum of the Euler characteristics of 2 subsheaf
and the corresponding quotient sheaf. Therefore, by the exact sequence (2) we have

% (M, {— DY) = % (Myyq, {— DY) — % My, {— D — D¢}).

The assertion is now proved by induction on k.

The calculation of the numbers hP*®My requires a more careful study of the sequence (2).
The following sequence [related to sequence (1) by Serre duality] will also be of use to us
0> Q (Mg, (D } @ Kier) — Q(Mis, {D + Dy} @ Kiey) > O (M (D) @ Ki) — 0. @

Here Q (Mg, {D + Dg} ® Ki.4) is the sheaf of germs of meromorphic forms of highest degree on Mk~ having a
first-order pole on the intersection with the divisor D + Dk, & (Mg, {D} ® Kk-1), the same sheaf for the divisor
D, and Q(Mk, {D} ® Ky), the trivial extension on My of the sheaf of germs of meromorphxc forms of highest
degree having a pole on the intersection with D. Here i is the imbedding and j the Poincare residue. The cor-
responding exact cohomology sequence looks like:
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0— H*(My_y, (D} D Kx))— H(My—y, {D + Dy} ® Kie-1)— H* (M, (D} K;)—. .. @2

3. We recall some of the notation and results of [1]. Notation: T (4), the number of integral points lying
in A; B*(4), the number of integral points interior to A (in the topology of the smallest linear space containing
A); B(A), the number (—1)d1mAB+(A). Let X be a variety defined in (C\ 0)® by 2 nondegenerate system of
equations f; = ... = fi = 0 with Newton polyhedra Ay, ..., Ak. Let M be a projective toral compactification
of (C\ 0)2 which is sufficiently complete for the polyhedra A. By the theorem on resolution of singularities
(ef. [L, Sec. 2]) the closure X of the variety X C M is nonsingular and transverse to the orbits of M. Let Dj
be the divisors corresponding to the functions f; with respect to this compactification (cf. [1, Sec. 3]). The
cohomology groups

HM,{— nDy— ... —nmD})=H M, {~mA;—... — mAi}), ni >0,

are calculated in {1, Sec. 4]. In particular, yM, {—n4 —. .. —ngAx}) = By 4y +. . . + ngAg). Substituting
these values into the formula for the genus of an intersection, we obtain the following theorem,

THEOREM 1. The arithmetic genus x(X) of the variety X defined in (C\ 0)? by a nondegenerate system
of equations f; = ... = fx = 0 with Newton polyhedra Ay, ..., Ak can be calculated by the formula

(X)) =1—B()+ i%B(Ai-g-Aj)—...+(_1)k19’(A.L+...+Ak).

For k = n, the variety X consists of isolated points and x(X) is equal to the number of them, i.e., to the
number of solutions of the generic system of equations f; =. .. =fg =0 in (C\ 0)&

The formula for the genus is somewhat cumbersome, and 2 little formalism is helpful here.

4, Formalism. Let A be 2 commutative semigroup with zero and let F be a real-valued function on A,
We are interested in the subgroup Ay of convex integral polyhedra on R2 with the operation of addition, and
in the functions T (A), B(4), and V(A), where V (4) is the volume of A. Fix an element hy = A. The function
InF x) = F{& + hy) — Fx) is called the first difference of F ) with respect toh;. The function th,th x) =
th,hiF(x) =F@®&+hy + hy) ~F(x +hy) — F +hy) + Fx) is called the second difference of F (x) with respect
to hy, hy. Continuing in this way, we obtain the definition of the k-th difference Lh, . hF &) of the function
F {x) with respect to hy, by, ..., hk. In this notation the formula for the genus takes a simple form.

THEOREM 1!, X)) = (—l)kLAh, ..,0gB(+). Here (-) denotes the zero-dimensional polyhedron.

We remark that it is convenient to write down the formula for the arithmetic genus of the complete inter-
section Dy 1 ... [ Dk in this notation for the general case also. Here one must take the semigroup A to be
the group of divisors on the variety M and the function F to be the Euler characteristic F(D) = (M, {—D}). Then

X@iN ... N D=Ly | pex®, {0).

A function F is called a polynomial (homogeneous polynomial) of degree m if for every fixedxy, ...,
Xk = A and nonnegative integers ny, . . ., nk the function F(myXy + . . . ngXp) is a polynomial (homogeneous
polynomial) of degree m in ny, . . ., ng. The functions T (4), B(4) are polynomials of degree n (cf. [1]), and
V(4) is a homogeneous polynomial of degree n {cf. [5]). For a polynomial of degree m, F{px) = mem(x) to.ot
Fofx). It is not hard to see that the coefficients F;x) are homogeneous polynomials of degree i. We call them
the homogeneous components of F. The homogeneous components of leading degree n of the polynomials T(4)
and (—1)MB(A) coincide with V(A): for polyhedra of larger dimension, the number of integral points belonging
to the polyhedron and the number which lie inside the polyhedron coincide in the first approximation with the
volume of the polyhedron.

For a polynomial of degree n, the k-th difference is a polynomial of degree n —k. For a homogeneous

polynomial F of degree n, the number (1 /n!)th, ..,hpF(0) is called the mixed value of F athy,. .., hpand
ig denoted by Fy, . . ., hp). It is easy to see that Fh, ..., h) = Fh). For the volume function V, the number
V(Ay,. .., Ap) is called the mixed volume of the polyhedra Ay, ..., Ap (cf. [5]). Fora polynomial of de-

gree n, the number Lh, ... h,F depends only on the homogeneous component of degree n. Therefore,
i s (= B()=Lsy 2, T () =0V By, ).

We come to the next theorem.

THEOREM. The intersection index of the n divisors Dy, . . ., Dy corresponding to the Newton polyhedra
Ay, ..., An ona sufficiently complete toral variety MR, or the number of solutions in (C N.0)1 of a nonde-
generate system of equations f; =. .. = fy = 0 with polyhedra Ay, ..., Ap, is equal to

(— 1)Ly, A”B(') = La,. ., _\"7‘(.) =n'V (A, ..., A
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Remark., The form of the answer n! V(Ay, ..., Ap) in this theorem was known to Bernshiein [6], and the
equality to Ly, ..., AT (+) was known to Kushnirenko [7]. In the form (-l)kLAh . ’AkB( ), the answer makes

sense even for k =< n — it is the arithmetic genus of a complete intersection.*

5. Starting from the formula n! V(A,, .. .., Anp) for the number of solutions of a system of n equations,
Bernshtein found conditions on k of the polyhedra Ay, ..., Ak under which the variety X is empty.

Definition. Polyhedra Ay, ..., Ak lying in R® are said to be dependent if there exists an /-dimensional
plane, 0 <! = n, which contains the affine translates of / + 1 of the polyhedra Aj.

Assertion (D. N. Bernshtein). A nondegenerate system of equations f; =. .. = fg = 0 with polyhedra
Ay, ..., Ak is inconsistent in (C \ 0)% if and only if the polyhedra Aj are dependent,

The following geometric fact is used in the proof of this assertion: the mixed volume of the polyhedra
is zero if and only if the polyhedra are dependent.

0
2. The Numbers hP’’ for Complete Intersections

1. In order to calculate the numbers hp'o(Mk) it is necessary to study the exact sequence (2) in Sec. 1
more carefully. Let Ay,..., Ak, A be Newton polyhedra, M a projective compactification of (C \ 0)2 which
is sufficiently complete with respect to these polyhedra, and let D, . . ., Dk be divisors in general position
corresponding to Ay, ..., Ak. Let the divisor D correspond to A and consist of hypersurfaces which inter-
sect each other and the divisors Dj transversely.

LEMMA 1, If dim A = n then the sheaf Q@ (Mg, {—D}) is acyclic in all dimensions except the leading di-
mension n —k for any k = n.

Proof. For k = 0 this assertion is contained in [1, Sec. 4]. We carry out the proof by induction on k.
Since dim A = n, we have dim (Ak + A) = n. The polyhedron Ak + A corresponds to the d1v1sor Dk + D. By
induction hypothes1s we may assume that fori < n—k

H' (Myy, {— Dy — DY) = H' (Mios, {— DY) = H¥ (s, {— Dy — DY) = O,

The required result is now obtained from the exact sequence (2): Hi M, {—D}) = HiMy4,{~D}) = 0 for i <
n— k.

LEMMA 2. If dim A, = = dim Ak = n and dim A=/, the sheaf @ (Mg, {—D}) is acyclic in all dlmen-
sions except the [-th and the leadmg highest dimension n —k forany k =n. Ifl < n—Kk, then dim B’ Mg,
{-Dh = BH(4).

Proof. For k = 0 this assertion is contained in [1, Sec. 4]. We carry out the proof by induction on k.
Since dim Ak = n, we have dim (Ag + 4) = n. Hence by Lemma 1, HiMy_y, {— Dk — D)) = Hit (M 4, {-Dg —-
D}=0fori<n—k Fori< n—k, weget from the exact sequence @) that Hi(My, {-~D}) ~ Hi My, {~D}.
This allows us to carry out the inductive step.

Let the variety X be defined in € \0)? by a nondegenerate system of equations f; = . . . = fig = 0 with
polyhedra Ay, ..., Ak, and let dim A; = n. Let X be the closure of X in a sufficiently complete projective
toral compactification.

THEOREM. The variety X is connected, i.e., h%°X) = 1, and it has no holomorphic forms of inter-
mediate dimension, i.e., hp’o(X) =0forl < p < n—k. The geometric genus p(X) = h?~ 0(X) can be calculated
by the formula

P(X)=B (B + ... + Ak)—ZB+ it oo b B A o+ (— ISB (8.

Proof. Substitute into Lemma 2 the trivial divisor D corresponding to the polyhedron (-) consisting of a
single point. We get h®X)=1and hP*®)=0for 0 <p < n—k. Taking into account the formula for the arith-
metic genus X(X) and the preceding equalities, we obtain that the geometric genus p(X) has the required form,

2. Explicit Form of Forms of Highest Degree. The explicit form of forms of highest degree on X is
obtained from the exact sequence (2') in Sec. 1 and the explicit description of the group H'M, {-D}® K) in
[1, Sec. 4]. First consider the case of a hypersurface. Let X be a hypersurface in (C\ 0)? defined by a non-
degenerate equation f = 0 with Newton polyhedron Aand dimA=n, n > 1. Let X be the closure of X in a

*It turns out that the answer in the form La, ., AT (-) is also meaningful for k < n; it is one of the genera
of a (noncompact) complete intersection.
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sufficiently complete projective compactification M,
Assertion. The geometric genus po—() is equal to BT (4). Moreover every holomorphic form w on X

is the Poincaré residue 2 P dz‘ /\ /\__ of a form — P dz‘ SASE /\ —2, where P is a Laurent polynomial and
AP) < A

Proof. Consider a piece of the exact sequence (2'):

0 — H (M, K) - H* (M, {D} ® K) > H°(M,, K- H (M, K)—>...

By the theorem in [1, Sec 4], H'M, K) = g (M, K) =0 for n > 1, Therefore all the holomorphic forms on
X = My are the Poincareé residues of forms in H'M, {D} ®K). We can now refer to the theorem in [1, Sec. 4].

Remark. The formula pX) = p(X) = B*(A) for the geometric genus of a hypersurface X was discovered

" by Hodge [8]. However, the arguments of Hodge do not suffice for the proof (he lacked an important technical
device, the theorem on resolution of singularities [1]). We observe that the formula for p(X) can be obtained
without cohomological calculation by manipulating the polyhedra.

Example.* Let X be a smooth compactification of the curve X defined in (C\ 0y by a nondegenerate
equation P (x, y) = 0 with Newton polyhedron A, Assume that the polynomial P is not divisible by x andy, and
that A has dimension two. Then X is a sphere with handles, the number of handles being equal to the number

_of interior points of A, All the regular differentials on X .can be written down explicitly. If the integral point
zk.yl dz . dy

k, 1) lies inside the Newton polyhedron A, then the form = \—I;L is a regular differential on X. These

differentials are independent and their linear combinations span the set of all regular differentials on the curve
X. The equation pX) = B¥(4) in the case of a general polynomial P(x, y) of degree n gives p(X) m—1L)n—2)/
2, and in the hyperelliptic casey Pnix) gives p(X) n—1)/2 for n odd andp(X) n—2)/2 for n even. The
cases are well known, We remark that the number of integral points on the boundary of A also has a simple
geometric meaning: the curve X is obtained from the compact curve X by blowing down as many points as there
are integral points lying on the boundary of the Newton polyhedron.

An explicit form for the forms of highest degree can also be obtained for complete intersections. We
formulate the answer for k = 2 (assuming that n > 2). Let the variety X be given in (C \ 0)? by a nondegenerate
system of equations f; = f, = 0 with polyhedra A; and A,, with dim Ay = dim A; = n. Then forms of the type

P dzy
dfy Ndfy =1
equal to B¥(A, + A,). However, these forms are dependent: if the polynomial P is divisible by f;, i.e., P =
Qify, AlQy) < Ay, or if it is divisible by §;, i.e., P = Qf,, A(Qy) < A, then the corresponding forms are equal
to zero. The "mumber™ of such zer&forms is equal to B¥(A;) + BT(A,). These relations are independent, and
there are no others. Altogether, p(X) = B*(Ay + Ay) —B+(4)—B+(4,), which agrees with the general formula
for the geometric genus. \

%ﬁl are regular on the compactification X of X, provided A(P) < Ay + A,. Their "number" is

For k > 2, one writes out the forms explicitly, then the relations among them, then the relations among
the relations, etc.

3. The Euler Characteristic

Assume N transversely intersecting hypersurfaces Vi, ..., VN are given on an analytic variety Y. A
stratification of Y is associated with these hypersurfaces: the stratum Y, of greatest dimension in this stratifi-
cation isY \_|J V;., the strata Yj of the next dimension are given by Vi UV;, ete. Each stratum of this

=]

stratification is the intersection of several surfaces V; from which all smaller intersections of the Vi have
been thrownout, Y= U Y1, YIN Yy =¢ forI = L,

LEMMA (on the Additivity of the Euler Characteristic). E(Y) = ZE(Yj).

We give a detailed proof for the case of a single hypersurface V (N = 1), In this case we are dealing with
the stratification Y = V |J Y\ V and are interested in the equality E(Y) = E(V) + E(Y\\V). Let V, denote a
tubular neighborhood of V, Vu its closure, and 8Vy its boundary. The variety Y has the form of a sum of the
closed subsets Vu and Y\Vu which intersect along 8V;. Therefore, E(Y) = E(Vy) + E(Y \ Vy) — E(8Vy). Further,

*This example apparently forms the content of an inaccessible paper of H. F. Baker, "Examples of application
of Newton's polygon applied to the theory of singular points of algebraic functions," Trans. Cambridge Phil.
Soc., 15, 403-450 (1893).
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E(Vy) = E(V) and E(Y\ Vy) = E(Y\ V). We now observe that the variety 8V is fibered over V with fiber ' so
that E(®Vy) = E(V)- E!) = 0. The general case (N > 1) reduces to the one considered by induction on the num-
ber of hypersurfaces.

THEOREM 1, Let Dy, ..., D be analytic hypersurfaces of a toral variety M which are transverse to
one another and to all the orbits of MR, Then

ED,N-..NDeNTY=1ID:i0 + Do)

The right-hand side of the equality must be understood as follows: in the Taylor series at the point 0 of

the analytic function F(xy, . . ., k) = Oxj@ + xi)~! take the homogen%ous component Fp of degree n. The num-
ber F(Dy, ..., Dk is defined as follows. For a monomial xf11 ... xkk of degreen, ny +...+ng=1n, itis
equal to the intersection index of the divisorsD,. . .,Dy, .« «y Dy - -, Dy . For a homogeneous function Fp of
2o k2 ®
n, times ™. times
degree n, F(Dy, .. ., D) is defined by extending linearly, and for a function F, the number F(Dy, ..., Dk) =
Fo®@, . - ., Dy).

The proof rests on a theorem of Ehlers (cf. [3]).

THEOREM (Ehlers). The Chern class cm(Mn) = Hzm(Mn) of a smooth toral variety MP is Poincaré dual
to the sum T of all orbits T-™ of dimension n —m in MB, (The orbit T2 is not a closed variety, but
nevertheless the dual cohomology class is well defined, since T2™ is a smooth compact variety and the bound-
ary TR\ T2™ has smaller dimension.)

If the Chern classes of M® are known, the Chern classes of a complete intersection can be calculated
[4]. We give the answer for the Euler class:
E (D1 ﬂ e ﬂ Dk) = HDz (1 + Di)_l +mz>ocm [HD’ (1 + Di)-I]n-m.

The right-hand side of this formula must be understood as follows: take the homogeneous component Fn.m of
degree n — m in the analytic function F and replacexy, . . ., Xk in Fy.m by the varieties Dy, . . ., Dg. Here

the product of the variables must be interpreted as intersection of varieties (brought if necessary into general
position). The number cp[MDj1 + Di)"i]n_m is the value of the Chern class ¢y on the cycle [IIDj(1 + Di)"]n_m.

In the case of a toral variety MR, we obtain upon applying Ehlers' theorem
ED.N...NDy=IIDit+ Dy + 3 ITC" [IID: ¢t + D], 1)

where the inner sum is carried out over all (n — m)-dimensional orbits TS ™. Let Df* denote the intersection
of the divisor Dj with the orbit T2™. The divisors Df*, . . ., Df in the toral variety TO-M_ the closure of the
orbit TR™™ are transverse to one another and to the orbits of the variety TO™™, 1t is clear that

7 ([ID; A + D)~tpm = I D} (4 + D)

We stratify the variety Dy () - - . [| Dk by the intersections with the orbits Tg—m of all dimensions, m = 0,
1

Dlm...ﬂD,,:(Dlﬂ...nkaT")Umgome...kanT:‘m.
From the additivity of the Euler characteristic, we obtain
E(D.N...NDy=EMD:N ...anT")+m2>0§1z(1)1 N...0DeNTT™.-
By induction, we may assume that form > 0
E®, N ...0D N7 =IDs + DYt = 13" (11D (1 + D)oo
Finally,
EMD (- -NDY=E@:N... N D NT)+3 [ Di(t + D)oo )

Comparing Eqs. (1) and (2), we get that E(Dy (1 .- (1 Dg(1T®) = 0D;( + 1}1)"’. Theorem 1 is proved,

1t is not crucial in Theorem 1 that M™ be a toral variety. Let M™ be a compact analytic variety and
01, ...,0ON, transversely intersecting divisors. Assume that the tangent bundle TM® has the same Chern
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classes as the fibration {0;} +. .. + {ON}. By Ehlers' theorem, this is the case if M2 is a toral variety and
the 0y, ..., ON are the closures of (n —1)-dimensional orbits of MB, Let Dy, ..., Dk be smooth divisors
which are transverse to one another and to the divisors 04, ..., 0N. Let X denote the part of the intersection
Dy (... Dk lying in the "finite part" of M?, i.e., X =Dy 1 ...{] Dk \ U Op. Then the Euler character-
istic of X can be expressed in terms of the mtersectlon indices of the divisors Dj alone.

THEOREM 1'. E(X) = ND;j + Dy)~}
The proof of Theorem 1! is an almost verbatim repetition of the proof of Theorem 1,

We will need a bit a formalism, Let A, ..., An be n-polyhedra in an n-dimensional space. The mixed
volume of these polyhedra is denoted by V(4, . . ., Ap) as before. Now let F,, . . ., xg) be the Taylor series
of an analytic function of the k variables %y, . . ., Xk at the point 0. We wish to determine the number F(4y,...,
. Ag). I F is a monomial of degreen, x =xM. .. xﬁk, ng +...+nkg=n, then we put

F(Al, . Ak) =nlV (Aly .oy 1, “e ey Ak, ooy Ak)’
n:nmes 7 times

For homogeneous functions Fp of degree n, we complete the definition of F(4;, ..., Ak) by extending it lin-
early, and for arbitrary ¥, we put F(&, ..., &k) = Fnls, . . ., &), where Fy is the homogeneous component
of F of degree n.

THEOREM 2, Let X be a variety defined in (C \\0)! by 2 nondegenerate system of equations f; =. , . =
fi. = 0 with Newton polyhedra 4y, ..., Ak. Then EX) = I1aj(1 + ap~. For example, for a hypersurface (k = 1),
E(X)= 1)2'n1V(a), and for a curve k=n—1), EX) ==n! V(&,.. ., Ap-1, & +. ..+ Apy).

Proof. The theorem on the resolution of singularities (cf. [1]) reduces Theorem 2 to Theorem 1, since
the intersection index of divisors in our case can be expressed in the required way in terms of the mixed Min-
kowski volume (cf. Sec. 1, Paragraph 4),

Remark. Theorem 2 is not new. It was recently announced by Bernshtein (cf. [9], where the history of
the problem is also discussed). His proof is based on Morse theory. It is more elementary, but our proof
gives a better explanation of the form of the formula for E (X).

4. Complete Intersections in C?

1. Consider a variety X defined in CR by a nondegenerate system of polynomial equations fy =...=f =0
with Newton polyhedra 4, ..., Akx. We first assume that all the polynomials f; have zero constant term, or,
in other words, that ali the polyhedra Aj; contain the point zero. We introduce some notation. Let Ry denote
the coordinate planes in the space R®, Ry = RD Let A denote the intersection Ry (1 Aj, Ag’ = Aj. The number
HA’ (1 + At is defined as the result of substituting the polyhedra 4] into the analytic function Mxj( + xi) ™

Here we take into account only monomials_of degree dim RI. They are interpreted with the aid of the mixed
volumes of the corresponding polyhedra Ai in RO (cf. Sec. 3).

THEOREM. Let the system of polynomials f;, . . ., fx be nondegenerate (cf. {1]) for the Newton polyhedra
N, ..., Ag, and let all the fj have zero constant term. Then:

1) The variety X is smooth and transverse to all the coordinate planes of the space C™,

2) The variety X is b1rat10nally equivalent to the part X lying in (C\ 0)2. In particular, hP*(X) = hP*(x)
and y®) = xX) = “1)K-La ..., ABEO).

3) £(%) =JTaid + 47,

Proof. Part 1) follows at once from the nondegeneracy condition of the system fj (cf. [1]). The imbedding
Cc\o0t—~Clijsa bxratmnal isomorphism. The imbedding X — —X is also a birational 1somorph1sm since by
part 1) the variety X contains no irreducible components in the coordinate planes. Further, X is stratified by
its intersections with the coordinate planes. According to part 1), this stratification satisfies the hypotheses
of the Lemma on the additivity of the Euler characteristic. It remains to use Theorem 2 of Sec. 3 and sum the
Euler characteristics H(AI(l + Al))"1 of all the strata. The theorem is proved.

2. We now weaken the condition on the Newton polyhedra Aj. It is not possible to remove this condition
entirely: if all the polyhedra A;j are located far from the zero point, then all the functions fj will vanish at the
point 0 of CP with a large multiplicity, and the point 0 will be very singular for X (but if at least one of the
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polynomials f; has a nonzero constant term, the point 0 does not lie in X and the high multiplicity of the zero
of the remaining functions at 0 plays no role).

We introduce some definitions. We say that the coordinate plane Ry is attached to the polyhedra 4; if
not all the polyhedra AI = Ry () Aj are empty; an attached plane is called weakly attached if some of the Aj are
empty, and strongly attached otherwise. We say that the system of polyhedra Aq, ..., Ak is regularly at-
tached to the coordinate cross if all the coordinate planes are attached to the polyhedra A; and for each weakly
attached plane Ry the polyhedra A{ are dependent. :

Assertion 1. If a generic variety X with polyhedra Ay, ..., Ak is transverse to all the coordinateplanes,
then the polyhedra Aj are regularly attached to the coordinate cross in RO,

Indeed, if at least one of the functions f; becomes identically zero on a coordinate plane Cy, the trans-
versality of X with C1 means that there are no points of intersection. By Bernshtein's condition (Sec. 1, Para-
graph 5), this means in the general case that the polyhedra among the A1 which are nonempty are dependent

Assertion 2, Let the polyhedra Ay, ..., Ak be regularly attached to the coordinate cross. Assume in
addition that: 0) the functions fj are nondegenerate for the Aj (cf. [1]); 1) for weakly attached planes Ry, the
nonzero functions among the f% =f; ICI are nondegenerate for the polyhedra among the A] which are nonempty.

Then the variety X is nonsingular and transverse to all the coordinate planes.

Proof, Let (%I denote the coordinate plane Cy from which all smaller coordinate planes have been re-
moved. If Ry is a strongly attached plane, condition 0) guarantees transversality of X to CI If Ry is a weakly
attached plane, condition 1) guarantees that there are no points of intersection of X with CI

All the assertions of Theorem 1 carry over verbatim to systems fy =. .. = fx = 0 for which the polyhedra
Ay, . .., Ak are regularly attached to the coordinate cross and for which the functions f;, . . ., fi; satisfy the

hypotheses of Assertion 2, [We remark that in the formula for the Euler characteristic E (X) = STTal¢ + alyr,
I

the summation must be performed only over the strongly attached planes Rj.]

5. Remarks

1. A part of the calculations of this paper can be carried over to the local case. For example, the for-
mula for the arithmetic genus of a hypersurface takes the same form here.

THEOREM. The genus of singularity for a nondegenerate function f with a favorable Newton diagram
(cf. [10]) is equal to 1)R times the number of integral points with positive coordinates lying on and below the
Newton diagram.

2. The following problem seems to be very attractive: describe the mixed Hodge structure on & variety
X defined in (C\ 0)1 by a nondegenerate system of equations f; =. . . = fx = 0 with Newton polyhedra A,,.. .,
Ak. The same problem can be posed for a variety X defined by an analogous system in CR, Here it is natural
to limit oneself to the case when the polynomials fj have a constant term [or to the case when the polyhedra 24
are regularly attached to the coordinate cross (cf. Sec. 4)]. These problems are related to the description of
complete intersections in smooth compact toral varieties. In projective spaces, complete intersections have
been thoroughly studied [4]. In the projective case, one in fact deals with general systems of equations with
special Newton polyhedra (simplexes defined in R® by inequalities xj = 0, Zxij = m). In the toral case, no re-
strictions are made on the form of the polyhedra.

Recently, V. 1. Danilov and I solved all the above problems under certain (insignificant) restrictions on
the polyhedra Ay, ..., Ak. The solution will be discussed in a joint paper presently being prepared for pub-
lication,
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