THE REPRESENTABILITY OF ALGEBROIDAL FUNCTIONS
BY SUPERPOSITIONS OF ANALYTIC FUNCTIONS
AND ALGEBROIDAL FUNCTIONS OF ONE VARIABLE

A. G. Khovanskii

In this note we give a necessary condition for the representability of an algebroidal function in the
form of superpositions of analytic functions and algebroidal functions of one variable. In particular, we
show that an algebroidal function of two variables, z(a, b), defined by the equation

2+az+-b=0,
cannot be represented in the form of such superpositions in any neighborhood of the origin. -

Definition 1. An analytic germ fq, definéd at a point 2 of a neighborhood U < CR, is called algebroidal
in this neighborhood if it satisfies some irreducible equation

f+pf . =0, (1)
where pj, i =1, .. ., n, are functions which are analytic in the neighborhood U.
Denote the set of all solutions of Eq. (1) in a neighborhood V & U by f (V).

Definition 2. Two analytic germs f, and gy, defined at the points 2 and b, respectively, of a neighbor-
hood U € CR, are called equivalent in this neighborhood, f, 8 gh, if the germ g}, can be obtfained from the
germ f, by continuation along some curve lying in U.

Denote the value of the germ f, at the point a by f(a).

Denote the closure of the set of values assumed at points of a region V & U by germs gy, which are
_equivalent to f, in the neighborhood U by f (V).

We give another definition of an algebroidal germ.

Definition 3. An analytic germ fa defined at a point a of a neighborhood U &« C1, is called algebroidal
in the neighborhood U if the following conditions are satisfied: 1) there exists an analytic set M & U such
that the germ.f, can be analytically continued along any curve lying in U, beginning at the point @, which
intersects the set M, if at all, only at the initial point; 2) at every point b € U there exist only a finite num-
ber of germs which are equivalent to the germ f,; 3) for every compact W € U, the set f (W) is compact.

Any set M which satisfies the first condition is called a prohibited set for the germ f4.

We will show that Definitions 3 and 1 are equivalent, Suppose that a germ f, satisf{es Definition 1,
and let D be the discriminant set of Eq. (1). It is easy to see that the germ fg satisfies Definition 3 with
prohibited set M.

First consider the case a € M. Letfiz,i=1,...,1n, fia =/a, be the set of all germs which are
equivalent on U to the germ fa at the point 2. Using Riemann's theorem on removable singularities, it is
easy to see that the symmetric functions of the germs f g,
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are germs of functions which are analytic in the neighborhood U. The germ f, satisfies the equation
fn"’Plfn—l coe pe =0,

Now consider the case a ¢ M. We take, together with the germ f4 a germ g}, which is equivalent to the
germ fy on the neighborhood U at a point b £ M. It is clear that the germ f; satisfies the same equation
as the germ gy.

Definition 4. Let fgbe a non~constant algebroidal germ satisfying Eq. (1). Denote the set of roots
of the equation

Y op )BT Lm0
by £ "1(b).
Definition 5. A point a is called regular for the irreducible equation
g ooy - 0,

where the p; are functions which are analytic in the neighborhood U, if at this point there exist exactly n
distinct germs which satisfy this equation. A point a is called regular for the algebroidal germ f,in a
neighborhood U if there exists a prohibited set M< U which does not contain the point a.

Definition 6. A set of k analytic germs at the point a, given in a definite order fo - (fuu, ..., fi).
is called a vector-germ of dimension k at the point a. All of the preceding definitions can be generalized
to vector-germs in a unique way.

LEMMA 1. Let f4 be an algebroidal k-dimensional vector-germ in a neighborhood U & C1, and let g
be an analytic function in a region V & CK such that V = f(U). Then 1) the germ g > fqis algebroidal in the
neighborhood U; 2) there exists an analytic set M< U such that if the germ pp {J g » f; and the point b lies
in U\M, then pp =g ° ¢, where ¢} is a germ which is equivalent to f; on the neighborhood U.

Proof. As the prohibited set M for the germ g o f; it suffices to take any prohibited set of fz. It
will satisfy the condition of the second assertion in the lemma as well,

LEMMA 2. Lletfqgbe an algebroidal germ in a neighborhood U SC™ which is not equal to a constant,
and let ge be an algebroidal germ in a neighborhood V & C! such that V 2 f(U) and ¢ = f . Then 1) the
germ geg o fa is algebroidal in the neighborhood U; 2) there exists an analytic set M < U such that if the
germ pp {J Ec fq and the point b lies in U\M, then pp =qq Y1, where d = ¢ (b), ¢, is a germ which is
equivalent to f; on the neighborhood U, and qq is a germ which is equivalent to g¢ on the neighborhood V.

Proof. Let D(x) be the discriminant of the irreducible equation satisfied by gc. By Lemma 1, the
germ D o f, is algebroidal in the neighborhood U. It is easy to verify that D o f4is not identically equal to
a constant. Let M, denote the set (D ° f)™1(0) (see Definition 4) and M, some prohibited set of the germ fj,.
As a prohibited set M for the germ g¢ °f; we can take the set My U M,. It will also satisfy the condition
contained in the second assertion of the lemma.

We introduce some more notation.

Denote the ring of analytic germs on a linearly connected set X © Cn by Hl'. This ring is an inte-
gral domain. Denote the corresponding field of quotients by LPx.

Let f3 =(f4q, . . .,/ kg) be a vector-germ which is algebroidal in a neighborhood U & CR, and let
Pi(fi, Hy) =0,1i =1, s k, be the irreducible equations of its components. The expanded field of the
polynomials Pj over LHX w111 be denoted by Lx(f), and the Galois group of LPx(f) over Lk by I'y(#).
Let Hx(f) denote the subring of the field Lhx(f) spanned by Hl'y and the roots of all of the polynom1a1s
Pi(fi, HMy) = 0. If the point @ lies in X, then we can define a ring HPx <f5> which is the subring of HJ
spanned by the ring HPy and the germs fy;, . . ., fiq.

It is easy to see that if a is a regular point of the germ fb,fyq, . . ., fiq is the set of all germs at
the point a which are equivalent tof}, on the neighborhood U, and X is a hnearly connected set containing
the point a, then

H'{ <flﬂv ey fka> = H:‘l( (f)
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Before formulating Lemma 3, we note that if the equation yK + plyk"1 +...+pk =0, where the pj are
analytic functions in a neighborhood V containing the point a is irreducible over the ring HE, then all k
roots of this equation coincide at the point a.

LEMMA 3. Let Pj(yj, HD) =0,i=1,...,k, be integral irreducible equations over the ring F[n let
bj = yjla) be the values of the functions yj at a; let b = (by, . . ., bi) be a point in the space CK; and let

g€ Hk be an analytic germ at b € CK. Then the point @ has a nelghborhood V such that

1) the equations Pj(yj, H®) = 0 can be extended to equations Pj(yj, Hn) = 0 in this neighborhood, and
the function g can be defined in a neighborhood U containing y(V);

2) for every point d in V and every vector-germ yq satisfying the equations Pji(yid, HV) =0, the ring
<goyd> is contained in HV yd>.

Proof. Take the point (a, b) in the space Ch x CK, In the ring H(a b) consider the germs Pi(yi, H )
and the germ g* obtained from g under the projection T: CI x ck — ck. Choose a neighborhood V of a m
in the space CM which is small enough for successive application of Weierstrass' theorem on the partition
of germs. Applying this theorem, we get

gye= 3 Py,
i<m
where i =(iy,..., i) [i| =iy ... ik Yi=4yY. .. yk; pcHY and m is some integer. Therefore H}<go.yq>
y Uh Yeds P avs y

< H%( Yd>'
LEMMA 4. Let Py(y, Hztzl) =0 and Py(z, H,ia) =0 be integral irreducible equations over the correspond-

ing rings, where y{@) =b and y is not constant. Then the point ¢ has a neighborhood V and an analytic set
M& V such that

1) the equation Py(y, H“) =0 can be extended to the equation P,(y, HV) =0 in the neighborhood V, and
the equation Py(z, Hb) =0to the equation Py(z, HU) =0 in a neighborhood U containing y(V);

2) Every point ¢ which lies in the set V\M is regular for the equation P,(y, HV) =0, and for every
germ y. which satisfies the equation Py(y, Hn) =0, the point y(c) is regular for the equation P,(z, HU) =0;

3) for every point in the set V\M, the ring HV<zp ° ye>is contained in the rmg HV< Ye» te >, where
ye satisfies the equation Py(y, HV) =0, p =y(c),and zp satisfies the equatlon Py(z, HU) =0, and t¢ is an
analytic germ at the point ¢, some power of which lies in the ring HV<yc >, i.e., tMe H%< ye>.

m
Proof. We will assume that y(@) =0. Since the equatlon Py(z, HU) , it is known that z = (Vx),
where the function ¢ is analytic ina neighborhood of 0. Let Py(y, Ha) = yk +p yk . . +pg. Consider

the polynomial Q(t, HJ) = tmk +p1tm(k . +pk. Suppose that Q(t, HY) = HQi (t, H3) is a decomposi-
i=1
11
tion of this polynomial into irreducible factors. Set V = N V,, where Vj is the neighborhood in which
i=1

the conditions of Lemma 3 hold for the equation Qj(t, Hg) =0 and the function ¢. T.et M; be a prohibited
set for the equation Py(y, HY) =0 and M, the set of zeros of the function pk(x). Set M = M; UM,. Then the
neighborhood V and the set M satisfy the conditions of the lemma. We will go into the proof of the third
assertion only,

Let ¢ € VAM. Then 1) the point ¢ is regular for the equation Py(y, HY}) =0, since ¢ € V\M;, and 2) for
every germ ye¢ which satisfies the equation Py(y, Hg) =0, y(c) # 0 since ¢ € V\M,. Since y(c) = 0, the
m m

equality z - yo =  ¢(V %) makes sense. The germte = V4 satisfies the equation Q(t, H) = 0 and there-
fore one of its irreducible equations Qj(t, H},‘ = 0. Applying Lemma 3 to the germ t, and the functlon @,
we find that the ring HYy<zp°yc> is contained in HY <yes te>

THEOREM 1. If f; is a germ which is algebroidal in a neighborhood U & C1, g, is an algebroidal
germ in a neighborhood V € C! which contains f (U), and ¢ = f@), then the germ gc °f; is algebroidal in U,
and for any point b € U the ring Hb (g of) is contained in the ring RHE(f), where RHJ}() is some radical
extension of Hb(f ).

Proof. The first assertion of the theorem is contained in Lemma 2. Let P(f, HET) =0 denote the
- {
equation, irreducible in H{}, which is satisfied by the germ f,. Let H P;(fi; Hp) be its decomposition in

=1
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the ring Hfz" and fi(b) =ci. Let ﬁﬁg,-:(g;,-, Hc‘i) be the decompositions of the germs g, into irreducible fac-

i
tors in the rings Héi. Set V.V, where the Vij are neighborhoods satisfying the condition of Lemma 4
l'l
for the equations Pi(fi, Hg) =0 and Gij(gij’ Héi) =0, Then it follows from the second assertion of Lemma 2
and from Lemma 4 that the ring H%(fog) is contained in the ring RH{(f), where RH%(f) is some radical
extension of H{(f). Therefore Hf(g < f) & RHE().

THEOREM 2. If £, is a vector-germ which.is algebroidal in a neighborhood U and g-is an analytic
function-in a neighborhood V containing f(U), then the germ g ° f; is algebroidal in U, and for any point
b € U the ring Hf(g ° f) is contained in HJ(f).

Theorem 2 is proved using Lemmas 1 and 3, similar to the proof of Theorem 1 using Lemmas 2 and 4.

We will need the following theorem of Galois theory: a finite extension of a field of characteristic
zero is radical if and only if the Galois group of the smallest Galois extension containing this finite exten-
sion is solvable.

From this theorem and Theorems 1 and 2, some corollaries follow immediately.

COROLLARY 1. Inorder that a functionf which is algebroidal in a neighborhood U be representable
in the form of superpositions of analytic functions and algebroidal functions of one variable, it is necessary
that the group '} (f) be solvable at every point a in U.

COROLLARY 2. Let the integral irreducible equation

A VA R N
where pj € Hg, be given in the ring HY . A necessary and sufficient condition for the existence of a neighbor-
hood U of the point 2, in which an algebroidal function y satisfying this equation can be represented in the
form of superpositions of analytic functions and algebroidal functions of one variable, is the solvability of
the group I’}Zl( ).

We now go into the geometric sense of the group I‘%(f ).

Let f, be an algebroidal germ in the neighborhood U, M its prohibited set, V a neighborhood which
lies in U, ¢ € V\M a regular point of the germ fy, and Q¢ = (f4¢, . - .,S k) the complete set of germs which
are equivalent to f; on the neighborhood U at the point ¢. Take a closed arc ¥(t), lying in VA\M whose ini-
tial point is c.

Continuing the germs f j¢ along ¥(t), we get some permutation of the set Qz. It is easy to see that the
indicated correspondence gives us a homomorphism 7 of the fundamental group 7,(V\M) into the group S(k)
of permutations of k elements, 7: T,(VAM) — S(k).

Definition 7. The image of the fundamental group under the homomorphism described above is called
the monodromy group of the germ fq on V, and is denoted by the symbol M(f).

The monodromy group M{{f) acts naturally on the field LY(f) =LY <fyq, . . .,fge> LY is the invari-
ant field with respect to this action. Thus M{(f) coincides with the group I' vH.

IfW s U, then M{)’V(f ) & M%(f }. Now let X be an arbitrary linearly connected subset of U, and let

Uy 2U,;2...2Um=2...2X%, T Ui =X, where the U; are connected neighborhoods in U. Then M{}l =

M%z 2. ... Therefore the groups M{}; stabilize.

Definition 8. The monodromy group of a germ f; on a linearly connected set X < C" is its monodromy
group on a sufficiently small connected neighborhood V of the set X. This group is denoted by the symbol
M% ().

It is not difficult to show that Mr)l((f ) is isomorphic to I ’}’((f ).

LEMMA 5. Consider the irreducible equation

—1

Yl p) T e pa(x) = 0
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in a simply connected region U of the complex plane. Suppose that the function y(x) does not have multiple
branch points, i.e., at every point b € U there exist not fewer than n—2 distinct analytic germs yi;, which
satisfy this equation. Then I‘{](y) =S(n).

Proof. Let D = {2i} denote the discriminant set. Let c be some point in U\D and let ¥ be a closed
curve in U\D with initial point ¢ which does not pass through the point a;- The curves y; form a basis in
the group m(U\D). By the hypothesis, either identity permutations or transpositions correspond to these
curves in the monodromy group M%T(y) . The monodromy group is transitive, since the equation is irredu-
cible. The unique transitive group of permutations spanned by the transpositions is the group of all permu-
tations.

Consider the equation z5 +az +b =0 over the ring H}. We will compute the group I'}(z), where
z(a,b) is the algebraic function defined by this equation. I'}(z) is isomorphic to the group M%J(Z), where U
is a sufficiently small neighborhood of the origin. Consider the algebraic function z(a,,b) of the variable b
for ay,= 0. Its discriminant set consists of the four solutions of the equation 5%b? = 4%, 1t is easy to
verify that at each point of the discriminant set exactly two roots coincide. Therefore, by Lemma 5, the
monodromy group of the function z(z,, b) for a, # 0 is S(5). We can choose a, so small in absolute value
that all four points of the discriminant set lie in the neighborhood U. Hence it follows that the group I'}(z)
is 8(5). Since S(5) is not solvable, by Corollary 2 the algebraic function of two variables, z(@y) b), defined
by the equation 7% + @z + b =0, cannot be represented in the form of superpositions of analytic functions
" and algebroidal functions of one variable in any neighborhood of the origin.

We note that the function z(a, b) can easily be represented in the form of superpositions of algebraic
functions of one variable and arithmetic operations (addition, multiplication, division} on them. In parti-
cular, we have proved that the operation of division must be involved in any such representation.

The author thanks V. I. Arnol'd for posing the problem and for useful discussions.
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