Summary of Convergence Tests for Series (by Beatriz Navarro-Lameda and Nikita Nikolaev)

Test	When to Use	Conclusions
Geometric Series	$\sum_{n=0}^{\infty} ar^n$	$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \text{ if } r < 1; \text{ diverges if } r \ge 1.$
Necessary Condition	All series	If $\lim_{n \to \infty} a_n \neq 0$, then the series diverges.
Integral Test	• $a_n = f(n)$ • f is continuous, positive and decreasing. • $\int_1^{\infty} f(x) dx$ is easy to compute.	$\sum_{n=1}^{\infty} a_n \text{ and } \int_1^{\infty} f(x) dx$ both converge or both diverge.
p-series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	Converges for $p > 1$; diverges for $p \le 1$.
Basic Com- parison Test	$0 \le a_n \le b_n$	If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges
Limit Com- parison Test	$a_n, b_n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = L \ (0 < L < \infty)$	$\sum_{\substack{n=1\\\text{both converge or both diverge.}}}^{\infty} a_n \text{ and } \sum_{\substack{n=1\\n=1}}^{\infty} b_n$
Alternating Series Test	$\sum_{n=1}^{\infty} (-1)^n b_n, \ b_n > 0$	If $\bullet b_n > 0, \forall n$ $\bullet \{b_n\}$ is decreasing $\bullet \lim_{n \to \infty} b_n = 0$ Then $\sum_{n=1}^{\infty} (-1)^n b_n$ is convergent.
Absolute Conver- gence	Series with some positive terms and some negative terms (including alternating series)	If $\sum_{n=1}^{\infty} a_n $ converges, then $\sum_{n=1}^{\infty} a_n$ converges (absolutely).
Ratio Test	Any series (especially those involving exponentials and/or factorials)	For $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L$ (including $L = \infty$), • If $L < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely • If $L > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges • If $L = 1$, then we can draw no conclusion.