
MAT 137Y - Practice problems
Unit 13 - Series

1. Definition of series. We want to compute the sum of the series
∞∑
n=1

n

(n+ 1)!
.

(a) Compute the first few partial sums. Looking at those values, guess a formula for the value
of the k-th partial sum, and prove it by induction.

(b) Use the definition of series to compute the value of
∞∑
n=1

n

(n+ 1)!
.

2. Geometric series. You have learned that

∞∑
n=0

xn =
1

1− x
if |x| < 1

and the series is divergent if |x| ≥ 1. Calculate the following infinite sums:

(a)
∞∑
n=0

(ln 2)n (b)
∞∑
n=0

(ln 3)n (c)
∞∑
n=0

(−1)n

e2n+3
(d)

∞∑
n=m

xn

(e)
1

5
+

1

52
+

1

54
+

1

55
+

1

57
+

1

58
+

1

510
+

1

511
+ . . .

(f)
1

20.5
+

1

2
+

1

21.5
− 1

22
+

1

22.5
+

1

23
+

1

23.5
− 1

24
+

1

24.5
+

1

25
+

1

25.5
− 1

26
+ . . .

3. Telescopic series. Calculate the value of the following infinite sums. In all cases, you can
start by finding a formula for the k-th partial sum, and then taking the limit.

(a)
∞∑
n=0

[arctann− arctan(n+ 1)]

(b)
∞∑
n=1

[
ln

n

n+ 1

]
(c)

∞∑
n=1

1

n2 + 3n
Hint:

1

n2 + 3n
=
A

n
+

B

n+ 3

(d)
∞∑
n=3

n+ 2

n3 − n

4. Infinite decimal expansions. We can interpret any finite decimal expansion as a finite sum.
For example:

2.13096 = 2 +
1

10
+

3

102
+

0

103
+

9

104
+

6

105

Similarly, we can interpret any infinite decimal expansion as an infinite series.

Interpret the following numbers as series, and add up the series to calculate their value as
fractions:

(a) 0.99999 . . . (b) 0.11111 . . . (c) 0.252525 . . . (d) 0.3121212 . . .



5. The tail of a series. Prove that the series
∞∑
n=0

an is convergent if and only if the series
∞∑
n=1

an

is convergent. Moreover, prove that in that case

[
∞∑
n=0

an

]
= a0 +

[
∞∑
n=1

an

]
.

Note: This was stated as a Theorem without proof in Video 13.7. For your proof, imitate the
proof of linearity in Video 13.6. You can do this just by using the definition of series and limit
laws. There is no need to get messy with epsilons.

6. Convergence tests. Is each of the following series convergent or divergent?

(a)
∞∑
n

1

arctann

(b)
∞∑
n

(−1)n

arctann

(c)
∞∑
n

1

2n/5

(d)
∞∑
n

1

n2/5

(e)
∞∑
n

1

n

(f)
∞∑
n

(−1)n

n

(g)
∞∑
n

1

n2

(h)
∞∑
n

√
n3 + 2n+ 1

n4 + lnn+ 10

(i)
∞∑
n

n2 + 3n+ 1√
n5 + 4n+ 11

(j)
∞∑
n

3 + cos2(n2 + 1)

n3

(k)
∞∑
n

n

n2 + 1

(l)
∞∑
n

(−1)n n

n2 + 1

(m)
∞∑
n

1

(lnn)3

(n)
∞∑
n

1

n (lnn)2

(o)
∞∑
n

1

n
√

lnn

(p)
∞∑
n

lnn

n1.1

(q)
∞∑
n

n2n!

(2n)!

(r)
∞∑
n

sin2 1

n

(s)
∞∑
n

(−1)n sin
1

n

(t)
∞∑
n

sinn

n2

(u)
∞∑
n

(n+ 3)2n

n!

(v)
∞∑
n

(3n)!

n!(2n)!

(w)
∞∑
n

1

nn

(x)
∞∑
n

2 · 4 · 6 · . . . · (2n)

1 · 3 · 5 · . . . · (2n− 1)
· π

n+1

e2n−1

7. Proofs with convergent tests. Let
∞∑
n

an be a CONVERGENT series. Assume that for

all n ∈ N, an > 0. Decide whether each of the following series is convergent, divergent, or we
do not have enough information to decide. If convergent or divergent, write a proof. If you
think we do not have enough information to decide, show it by giving one convergent and one
divergent examples:

(a)
∞∑
n

sin an (b)
∞∑
n

cos an (c)
∞∑
n

√
an (d)

∞∑
n

(an)2



8. One more test. In Video 13.18 you learned the statement of the Ratio Test. The video
includes only an idea of the proof, without writing it formally with all the details.

There is a sibling theorem to the Ratio Test:

Theorem [Root Test]

Let
∞∑
n

an be a series. Assume the limit L = lim
n→∞

n
√
|an| exists or is ∞.

• IF 0 ≤ L < 1 THEN the series is ...

• IF L > 1 THEN the series is ...

Your goal is to figure out what the theorem says and why. Mimic the argument in the “Idea of
the Proof” part of Video 13.18. Then, based on your heuristic argument, decide what the full
statement of the Root Test and convince yourself that it is true. You do not need to write all
the details of a full proof.

9. Estimating an alternating series.

Estimate the value of the series
∞∑
n=1

(−1)n

n3
with an error less than 0.01.



Bonus questions: harmonic sums,

the Euler-Mascheroni constant, and

non-commutative infinite sums

For every positive integer N we define the N -th harmonic sum:

HN =
N∑

n=1

1

n
.

As you know, thanks to the integral test, the series
∞∑
n=1

1

n
and the integral

∫ ∞
1

1

x
dx behave the

same way: both are divergent. We can go one step further: the partial sums of the series and the
“partial integrals” of the integral also “behave the same way”. Specifically, you are going to prove
the following theorem:

Theorem 1: There exists γ ∈ R and a sequence {εN}∞N=1 such that

HN = lnN + γ + εN , and lim
N→∞

εN = 0. (1)

The number γ is called the Euler-Mascheroni constant. In other words:

for large values of N , HN ≈ lnN + γ

As a (surprising) corollary of this theorem you will be able to prove that infinite sums are not
commutative. More specifically, you will be able to prove that these two infinite sums

A = 1 − 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
+ . . . (2)

B = 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+

1

13
+

1

15
− 1

8
+

1

17
+

1

19
− 1

10
+ . . . (3)

are convergent to different numbers: A = ln 2 and B =
3

2
ln 2.

10. Proving Theorem 1.

Let f(x) =
1

x
. For each integer N ≥ 2, let us define

IN =

∫ N

1

f(x)dx = lnN, and SN =
N∑

n=2

f(n) = HN − 1.

(a) Draw a picture. Interpret IN as an area. In the same picture, draw the Riemann sum
corresponding to breaking [1, N ] into subintervals of length 1, and choosing the right-end
point on each subintervals. What is the value of this Riemann sum?



(b) We now define the sequence {bN}∞N=2 by the formula bN = IN − SN . Prove that the se-
quence {bN}∞N=2 is increasing.

Suggestion: Use your picture, interpret bN as an area, and do a “proof by picture”.

(c) Prove that bN ≤ 1 for every N ≥ 2.

Suggestion: Do a “proof by picture” again.

(d) Prove that the sequence {bN}∞N=2 is convergent.

Hint: This should be very quick.

(e) Prove Theorem 1.

Hint: Show the sequence {HN − lnN}∞N is convergent. Call its limit γ.
Define εN = HN − lnN − γ.

11. Non-commutative infinite sums!

(a) Consider the following sums:

EN =
1

2
+

1

4
+

1

6
+

1

8
+ . . .+

1

2N

ON = 1 +
1

3
+

1

5
+

1

7
+

1

9
+ . . .+

1

2N − 1

Find a formula for EN and ON in terms of HN and H2N .

(b) Look back at Equation (2). Interpret it as a series. Let us call AN the N -th partial sum
of this series (that is, the sum of the first N terms). With the help from your answer to
Question 11a, find a formula for A2N in terms of HN and H2N .

(c) Use Equation (1) in your answer to Question 11b to prove that A = lim
N→∞

A2N = ln 2.

(d) Do a similar calculation to prove that B =
3

2
ln 2.



Some answers and hints

1. (a)
k∑

n=1

n

(n+ 1)!
= 1− 1

(k + 1)!

(b)
∞∑
n=1

n

(n+ 1)!
= 1

2. (a)
1

1− ln 2

(b) Divergent

(c)
1

e(e2 + 1)

(d)
xm

1− x
if |x| < 1; divergent otherwise.

(e)
∞∑
n=0

1

5n
−
∞∑
n=0

1

53n
=

5

4
− 125

124
=

15

62

(f)
∞∑
n=1

1(√
2
)n − 2

∞∑
n=1

1

4n
=

1√
2− 1

− 2

3
=
√

2 +
1

3

3. (a) −π/2
(b) −∞
(c) 11/18

(d) 7/12

4. (a) 0.99999... =
∞∑
n=1

9

10n
= 1

(b) 0.11111... =
∞∑
n=1

1

10n
=

1

9

(c) 0.25252525... =
∞∑
n=1

25

102n
=

25

99

(d) 0.3121212... =
3

10
+
∞∑
n=1

12

102n+1
=

103

330

5. Imitate the proof of linearity in Video 13.6.



6. I am indicating one possible test that helps with each one, but there may be others.

(a) Divergent (necessary condition)

(b) Divergent (necessary condition)

(c) Convergent (geometric)

(d) Divergent (p-series)

(e) Divergent (p-series)

(f) Convergent (alternating series test)

(g) Convergent (p-series)

(h) Convergent (LCT)

(i) Divergent (LCT)

(j) Convergent (BCT)

(k) Divergent (LCT)

(l) Convergent (alternating series test)

(m) Divergent (BCT or generalized LCT)

(n) Convergent (integral test)

(o) Divergent (integral test)

(p) Convergent (BCT or generalized LCT)

(q) Convergent (ratio test)

(r) Convergent (LCT)

(s) Covergent (alternating series test)

(t) Convergent (absolute convergence test + BCT)

(u) Convergent (ratio test)

(v) Divergent (ratio test)

(w) Convergent (BCT)

(x) Convergent (ratio test)

7. (a) Convergent

(b) Divergent

(c) We do not have enough information to decide

(d) Convergent



8. The conclusion is the same as in the Ratio Test:

• If 0 ≤ L < 1 then the series is convergent

• If L > 1 then the series is divergent

9. The first partial sum that can be used as an estimate guaranteeing an error smaller than 0.01
is

S4 =
4∑

n=1

(−1)n

n3
≈ −0.896...

The exact value is −0.9015...


