
MAT 137Y – Practice problems
Unit 2 : Limits and continuity

1. Below is the graph of the function f :
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y=f(x)

Compute the following limits

(a) lim
x→2

f(x)

(b) lim
x→0

f(f(x))

(c) lim
x→−3

f(f(x))

(d) lim
x→0

f(2 secx)

(e) lim
x→2

(f(x))2

2. Given a real number x, we defined the floor of x, denoted by bxc, as the largest integer
smaller than or equal to x. For example, bπc = 3, b7c = 7, and b−0.5c = −1.

(a) Sketch the graph of this function. At which points is the function f(x) =
bxc continuous? Which discontinuities are removable and which ones are non-
removable?

(b) Consider the function h(x) = bsinxc. Show that h has exactly one removable
and one non-removable discontinuity inside the interval (0, 2π).

3. Below is the graph of the function g:



For clarification, when −1 < x < 0, g(x) “oscillates” between 0 and 1; as x ap-
proaches 0 from the left, these oscillations become faster and faster. The behaviour
is similar to that of the function f(x) = sin(π/2x), which you can see on Video 2.2.
Find the following limits:

(a) lim
x→0+

g(x)

(b) lim
x→0+

bg(x)c

(c) lim
x→0+

g(bxc)

(d) lim
x→0−

g(x)

(e) lim
x→0−

bg(x)c

(f) lim
x→0−

bg(x)

2
c

(g) lim
x→0−

g(bxc)

4. Compute the following limits

(a) lim
x→1

x+ 1

x+ 2

(b) lim
x→2

x2 + 3x− 10

x2 − 4

(c) lim
x→1

√
x+ 3− 2

x− 1

(d) lim
x→0

sin(3x)

sin(2x)

(e) lim
x→∞

x3 + 2x2 + 1

5x3 + 6x− 1

(f) lim
x→−∞

x5 + 2x2 + 1

5x3 + 6x− 1

(g) lim
x→∞

√
x4 + 2x+ 1 + 3x2 + 1

x2

(h) lim
x→1

x3 − 1

x2 − 2x+ 1

(i) lim
x→0

sin10(2 sin10(3x))

x100

5. Write the formal definition of the following concepts:

(a) lim
x→a

f(x) = L

(b) lim
x→a

f(x) exists

(c) lim
x→a

f(x) 6= L

(d) lim
x→a

f(x) doesn’t exist

(e) lim
x→a+

f(x) = L

(f) lim
x→a

f(x) =∞

(g) lim
x→a−

f(x) = −∞

(h) lim
x→∞

f(x) = L

(i) lim
x→−∞

f(x) =∞

6. Prove the following claims directly from the formal definitions.

(a) lim
x→2

(4x+ 1) = 9

(b) lim
x→∞

1

x2
= 0

(c) lim
x→1

x3 = 1

(d) lim
x→1

1

x2 + 1
=

1

2

(e) lim
x→0

x

|x|
does not exist

(f) lim
x→1+

1

1− x
= −∞

7. Let a, L,M ∈ R. Let f be a function defined, at least, on an interval centered at a,
except maybe at a. Prove that

IF lim
x→a

f(x) = L and lim
x→a

g(x) = M THEN lim
x→a

[f(x)− g(x)] = L−M .

Write a proof directly from the formal definitions, without using any of the limit
laws.

8. Let a ∈ R. Let f be a function defined at least on an interval centered at a, except
possibly at a. Prove that

IF lim
x→a

f(x) =∞ THEN lim
x→a

1

f(x)
= 0.



Write a proof directly from the formal definitions, without using any of the limit
laws.

9. Construct a function f with domain R such that lim
x→0

f(x) = 0 but lim
x→0

f(f(x)) 6= 0.

10. Prove Theorem 3 on Video 2.16. More specifically:

Let a, L ∈ R. Let f be a function defined, at least, on an interval centered at a,
except maybe at a. Let g be a function defined at least on an interval centered at
L. Prove that

IF lim
x→a

f(x) = L and g is continuous at L THEN lim
x→a

g(f(x)) = g(L).

Write a proof directly from the formal definitions, without using any of the limit
laws.

11. Use the Intermediate Value Theorem to prove that the equation

sinx = 2 cos2 x+ 0.5

has at least one solution.

12. Use the Squeeze Theorem to explain why lim
x→0

x cos
1

x
exists, even though lim

x→0
cos

1

x
does not exist. Explain why the same argument does not work for lim

x→0
xe1/x

2

.



Bonus question:

Do you really understand the definition of limit?

13. Let f be a function. Let a, L ∈ R. Assume that f is defined on some open interval
around a, except maybe at a. Below is a list of nine statements.

a. ∀ε > 0, ∃δ > 0 such that 0 < |x− a| < δ =⇒ |f(x)− L| < ε.

b. ∀ε > 0, ∃δ > 0 such that |x− a| < δ =⇒ |f(x)− L| < ε.

c. ∀ε > 0, ∃δ > 0 such that 0 < |x− a| < δ =⇒ 0 < |f(x)− L| < ε.

d. ∀ε ≥ 0, ∃δ > 0 such that 0 < |x− a| < δ =⇒ |f(x)− L| < ε.

e. ∀ε > 0, ∃δ ≥ 0 such that 0 < |x− a| < δ =⇒ |f(x)− L| < ε.

f. ∀ε > 0, ∃δ > 0 such that 0 < |x− a| < δ =⇒ |f(x)− L| ≤ ε.

g. ∀δ > 0, ∃ε > 0 such that 0 < |x− a| < δ =⇒ |f(x)− L| < ε.

h. ∀δ > 0, ∃ε > 0 such that 0 < |x− a|< ε =⇒ |f(x)− L|< δ.

i. ∃δ > 0 such that ∀ε > 0, 0 < |x− a| < δ =⇒ |f(x)− L| < ε.

Match each of the statements above to one of the following (there may be repeats):

A. Every function satisfies this statement.

B. There isn’t any function which satisfies this statement.

C. This statement is (equivalent to) the definition of lim
x→a

f(x) = L.

D. This statement is (equivalent to) the definition of “f is continuous at a”.

E. This statement means that lim
x→a

f(x) = L and that, in addition, f does not take

the value L anywhere on some interval centered at a, except maybe at a.

F. This statement is equivalent to saying that f must be constantly equal to L on
an interval centered at a, except maybe at a.

G. This statement means that f is bounded on every interval centered at a.



Some answers and hints

1. (a) DNE (b) -2 (c) -1 (d) 2 (e) 4

2. (a) f is discontinuous at a when a ∈ Z. f is continuous everywhere else. All the
discontinuities are non-removable.

(b) g has a removable discontinuity at π
2

and a non-removable discontinuity at π.

3. (a) 2 (b) 1 (c) 1.5 (d) DNE (e) DNE (f) 0 (g) 0.5

4. (a) 2/3

(b) 7/4

(c) 1/4

(d) 3/2

(e) 1/5

(f) ∞

(g) 4

(h) DNE

(i) 2103100

5. There are various equivalent ways to write each definition. The parts in blue (and
only the parts in blue) are often omitted and are considered implicit.

(a) ∀ε > 0,∃δ > 0 such that (∀x ∈ R, ) 0 < |x− a| < δ =⇒ |f(x)− L| < ε

(b) ∃L ∈ R such that ∀ε > 0,∃δ > 0 such that (∀x ∈ R, ) 0 < |x− a| < δ =⇒ |f(x)− L| < ε

(c) ∃ε > 0 such that ∀δ > 0,∃x ∈ R such that [0 < |x− a| < δ and |f(x)− L| ≥ ε]

(d) ∀L ∈ R,∃ε > 0 such that ∀δ > 0,∃x ∈ R such that [0 < |x− a| < δ and |f(x)− L| ≥ ε]

(e) ∀ε > 0,∃δ > 0 such that (∀x ∈ R, ) a < x < a+ δ =⇒ |f(x)− L| < ε

(f) ∀M ∈ R, ∃δ > 0 such that (∀x ∈ R, ) 0 < |x− a| < δ =⇒ f(x) > M

(g) ∀M ∈ R, ∃δ > 0 such that (∀x ∈ R, ) a− δ < x < a =⇒ f(x) < M

(h) ∀ε > 0,∃K ∈ R such that (∀x ∈ R, ) x > K =⇒ |f(x)− L| < ε

(i) ∀M ∈ R, ∃K ∈ R such that (∀x ∈ R, ) x < K =⇒ f(x) > M

6. (a) This is similar to the proof in Video 2.7.

(b) WTS: ∀ε > 0, ∃K ∈ R such that ∀x ∈ R, x > K =⇒
∣∣∣∣ 1

x2
− 0

∣∣∣∣ < ε

• Fix ε > 0

• Take K =
1√
ε

.

• Fix x ∈ R. Assume x > K. I need to verify that
1

x2
< ε.

1

x2
<

1

K2
= ε.

(c) This is similar to the proof in Video 2.8

(d) WTS: ∀ε > 0,∃δ > 0 such that ∀x ∈ R, 0 < |x− 1| < δ =⇒
∣∣∣∣ 1

x2 + 1
− 1

2

∣∣∣∣ < ε

• Fix ε > 0



• Take δ = min{1, 2ε/3}. Thus δ ≤ 1 and δ ≤ 2ε/3.

• Fix x ∈ R. Assume 0 < |x− 1| < δ. I need to verify that

∣∣∣∣ 1

x2 + 1
− 1

2

∣∣∣∣ < ε.

By assumption, 0 ≤ 1− δ < x < 1 + δ ≤ 2. Thus |1 + x| < 3.

In addition
1

x2 + 1
≤ 1.∣∣∣∣ 1

x2 + 1
− 1

2

∣∣∣∣ =
|x+ 1||x− 1|

2(x2 + 1)
<

3δ

2 · 1
≤ ε.

(e) This is somewhat similar to the proof in Video 2.9.

(f) WTS ∀M ∈ R,∃δ > 0 such that ∀x ∈ R, 1 < x < 1 + δ =⇒ 1

1− x
< M

• Fix M ∈ R
• Next we need to choose δ. It is probably easiest to break this into two

cases.

– If M ≥ 0, take δ = 1 for example.

– If M < 0 take δ =
1

|M |

• Fix x ∈ R. Assume 1 < x < 1 + δ. I need to verify that
1

1− x
< M .

. . .

(Pay careful attention to the signs. Sometimes you will be working with
negative numbers.)

7. This proof is very similar to the one in Video 2.11.

8. WTS ∀ε > 0, ∃δ > 0 such that ∀x ∈ R, 0 < |x− a| < δ =⇒
∣∣∣∣ 1

f(x)

∣∣∣∣ < ε

• Fix an arbitrary ε > 0.

• Using
1

ε
as the bound in the definition of lim

x→a
f(x) =∞, we can conclude that

∃δ > 0 such that ∀x ∈ R, 0 < |x− a| < δ =⇒ f(x) >
1

ε

This is the value of δ I take.

• Let x ∈ R. Assume 0 < |x− a| < δ. I need to verify that

∣∣∣∣ 1

f(x)

∣∣∣∣ < ε.

This follows immediately from knowing that f(x) >
1

ε
> 0.

9. This is definitely possible. You will need a function that is not continuous at 0,
although being discontinuous at 0 is not enough.

10. I want to prove that

∀ε > 0,∃δ > 0 such that ∀x ∈ R, 0 < |x− a| < δ =⇒ |g(f(x))− g(L)| < ε.



• Fix an arbitrary ε > 0.

• First I use this value of ε in the definition of “g is continuous at L” to conclude
that

∃δ0 > 0 such that ∀y ∈ R, |y − L| < δ0 =⇒ |g(y)− g(L)| < ε.

Second I use this value of δ0 “as the epsilon” in the definition of “lim
x→a

f(x) = L”

to conclude that

∃δ > 0 such that ∀x ∈ R, 0 < |x− a| < δ =⇒ |f(x)− L| < δ0.

This is the value of δ I take.

• Fix x ∈ R. Assume 0 < |x− a| < δ. I need to verify that |g(f(x))− g(L)| < ε.

– Since 0 < |x− a| < δ, we conclude that |f(x)− L| < δ0.

– Since |f(x)− L| < δ0, we conclude that |g(f(x))− g(L)| < ε.

11. Consider the function f defined by f(x) = sin x− 2 cos2 x. f has domain R and is
continuous everywhere.

f(0) = −2 < 0.5, f(π/2) = 1 > 0.5.

Therefore, by the Intermediate Value Theorem, ∃x ∈ (0, π/2) such that f(x) = 0.5.

12. This is similar to the argument in Video 2.12.

13. A. e

B. d

C. a, f, h

D. b

E. c

F. i

G. g


