MAT137 - Calculus with proofs

- Assignment #6 due on January 28.
- Test 3 on February 5.

- The Fundamental Theorem of Calculus
 - TODAY: Part 1
 - WEDNESDAY: Part 2
 - Watch Videos 8.5, 8.6
 - Supplementary Video: 8.7

True or False

Let f be a continuous function with domain \mathbb{R} . Let G be an antiderivative of f.

Which of the following statements must be true?

- 1. $G(x) = \int_0^x f(t)dt$.
- 2. There exists $C \in \mathbb{R}$ such that $G(x) = C + \int_0^x f(t)dt$.
- 3. There exists $C \in \mathbb{R}$ such that $G(x) = C + \int_{1}^{x} f(t)dt$.
- 4. If f(0) = 0, then $G(x) = \int_0^x f(t)dt$.
- 5. If G(0) = 0, then $G(x) = \int_0^x f(t)dt$.

Fill in the blanks

Let G be an antiderivative of f.

$$G(x) = \int_a^x f(t)dt$$

Write $\int_{-\infty}^{b} f(t)dt$ entirely in terms of G:

$$\int_a^b f(t)dt = \boxed{}$$

Examples of FTC-1

Compute the derivative of the following functions

1.
$$F_1(x) = \int_0^1 e^{-t^2} dt$$
.

2.
$$F_2(x) = \int_0^x e^{-\sin t} dt$$
.

3.
$$F_3(x) = \int_1^{x^2} \frac{\sin t}{t^2} dt$$
.

4.
$$F_4(x) = \int_0^{\infty} \sin^3(\sqrt{t}) dt.$$

5.
$$F_5(x) = \int_{2x}^{x^2} \frac{1}{1+t^3} dt$$
.

- 1. $\frac{d}{dx}[x\sin x] =$
- 2. $\frac{d}{dx}[\cos x] =$

Use the previous answers to calculate

3.
$$\int x \cos x \, dx =$$

1.
$$\frac{d}{dx}[xe^x] =$$

3.
$$\int xe^x dx =$$

$$1. \ \frac{d}{dx} \left[x^2 e^{-x} \right] =$$

- 2. ???
- 3. ???

$$4. \int x^2 e^{-x} dx =$$

- $1. \ \frac{d}{dx} [x \ln x] =$
- 2. ???

3. $\int \ln x \, dx =$

A challenge for guess-and-check ninjas

$$\int x e^x \cos x \, dx = ???$$