MAT137 - Calculus with proofs

- Assignment 8 due on March 4
- Test 4 opens on March 12

Today: Basic Comparison Test

Friday: Limit Comparison Test
(Watch videos 12.9, 12.10)

Quick review

For which values of $p \in \mathbb{R}$ is each of the following improper integrals convergent?

1.
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$

2.
$$\int_0^1 \frac{1}{x^p} dx$$

3.
$$\int_0^\infty \frac{1}{x^p} dx$$

A simple BCT application

We want to determine whether $\int_{1}^{\infty} \frac{1}{x + e^{x}} dx$ is convergent or divergent.

We can try at least two comparisons:

- 1. Compare $\frac{1}{x}$ and $\frac{1}{x + e^x}$.
- 2. Compare $\frac{1}{e^x}$ and $\frac{1}{x+e^x}$.

Try both. What can you conclude from each one of them?

True or False - Comparisons

Let $a \in \mathbb{R}$.

Let f and g be continuous functions on $[a, \infty)$.

Assume that $\forall x \geq a$, $0 \leq f(x) \leq g(x)$.

What can we conclude?

- 1. IF $\int_{0}^{\infty} f(x)dx$ is convergent, THEN $\int_{0}^{\infty} g(x)dx$ is convergent.
- 2. IF $\int_{a}^{\infty} f(x)dx = \infty$, THEN $\int_{a}^{\infty} g(x)dx = \infty$.
- 3. IF $\int_{0}^{\infty} g(x)dx$ is convergent, THEN $\int_{0}^{\infty} f(x)dx$ is convergent.
- 4. IF $\int_{a}^{\infty} g(x)dx = \infty$, THEN $\int_{a}^{\infty} f(x)dx = \infty$.

True or False - Comparisons II

Let $a \in \mathbb{R}$.

Let f and g be continuous functions on $[a, \infty)$.

Assume that $\forall x \geq a$, $f(x) \leq g(x)$.

What can we conclude?

- 1. IF $\int_{a}^{\infty} f(x)dx$ is convergent, THEN $\int_{a}^{\infty} g(x)dx$ is convergent.
- 2. IF $\int_{a}^{\infty} f(x)dx = \infty$, THEN $\int_{a}^{\infty} g(x)dx = \infty$.
- 3. IF $\int_{0}^{\infty} g(x)dx$ is convergent, THEN $\int_{0}^{\infty} f(x)dx$ is convergent.
- 4. IF $\int_{a}^{\infty} g(x)dx = \infty$, THEN $\int_{a}^{\infty} f(x)dx = \infty$.

True or False - Comparisons III

Let $a \in \mathbb{R}$.

Let f and g be continuous functions on $[a, \infty)$.

Assume that
$$\exists M \geq a \text{ s.t. } \forall x \geq M, \quad 0 \leq f(x) \leq g(x)$$
.

What can we conclude?

- 1. IF $\int_{0}^{\infty} f(x)dx$ is convergent, THEN $\int_{0}^{\infty} g(x)dx$ is convergent.
- 2. IF $\int_{a}^{\infty} f(x)dx = \infty$, THEN $\int_{a}^{\infty} g(x)dx = \infty$.
- 3. IF $\int_{0}^{\infty} g(x)dx$ is convergent, THEN $\int_{0}^{\infty} f(x)dx$ is convergent.
- 4. IF $\int_{a}^{\infty} g(x)dx = \infty$, THEN $\int_{a}^{\infty} f(x)dx = \infty$.

BCT calculations

Use BCT to determine whether each of the following is convergent or divergent

1.
$$\int_{1}^{\infty} \frac{1 + \cos^2 x}{x^{2/3}} \, dx$$

$$2. \int_{1}^{\infty} \frac{1 + \cos^2 x}{x^{4/3}} \, dx$$

$$3. \int_0^\infty \frac{\arctan x^2}{1+e^x} dx$$

4.
$$\int_0^\infty e^{-x^2} dx$$

$$5. \int_{2}^{\infty} \frac{(\ln x)^{10}}{x^2} \, dx$$