MAT137 - Calculus with proofs

- Assignment 7 due tomorrow
- Assignment 8 due on March 4
- Test 4 opens on March 12

- Today: Theorems about sequences
- Friday: The Big Theorem (Watch Videos 11.7, 11.8)

- 1. (convergent) \implies (bounded)
- 2. (convergent) \implies (monotonic)
- 3. (convergent) \implies (eventually monotonic)
- 4. (bounded) \implies (convergent)
- 5. (monotonic) \implies (convergent)
- 6. (bounded + monotonic) \implies (convergent)
- 7. (divergent to ∞) \implies (eventually monotonic)
- 8. (divergent to ∞) \implies (unbounded above)
- 9. (unbounded above) \implies (divergent to ∞)

Proof of Theorem 3

Write a proof for the following Theorem

Theorem 3

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence.

- IF $\{a_n\}_{n=0}^{\infty}$ is increasing AND unbounded above,
- THEN $\{a_n\}_{n=0}^{\infty}$ is divergent to ∞
- 1. Write the definitions of "increasing", "unbounded above", and "divergent to $\infty "$
- 2. Using the definition of what you want to prove, write down the structure of the formal proof.
- 3. Do some rough work if necessary.
- 4. Write a formal proof.

- 1. Does your proof have the correct structure?
- 2. Are all your variables fixed (not quantified)? In the right order? Do you know what depends on what?
- 3. Is the proof self-contained? Or do I need to read the rough work to understand it?
- 4. Does each statement follow logically from previous statements?
- 5. Did you explain what you were doing? Would your reader be able to follow your thought process without reading your mind?

• $\forall M \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \implies x_n > M$

• *M* is not an upper bound: $\exists n_0 \in \mathbb{N}$ s.t. $x_{n_0} > M$

• $n \ge n_0 \implies x_n \ge x_{n_0} > M$

• WTS $a_n \to \infty$. This means: $\forall M \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \implies x_n > M$

• bounded above: $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, x_n \leq M$

• negation: $\forall M \in \mathbb{R}, \exists n \in \mathbb{N}, x_n > M$

•
$$\forall n \in \mathbb{N}$$
, take $n = n_0$.