
MAT 137Y: Calculus with proofs
Assignment 5 - Sample solutions

1. Every morning Neo packs his backpack and walks a distance L through a straight path in the
forest from his home (A) to the unicorn sanctuary (B). One day he discovers someone has built
an electric fence in the exact middle of his daily path (the dashed, red line in the picture):

A B

The fence has length 2b – it extends for a distance b on each side of the path – and is perpendicular
to the path. After a few days, Neo notices that the electric fence is turned on only half the time,
but he does not know if the fence is on or off on any given day until he walks up to it and throws
his cat at the fence to test it. If the fence is off, he can just quickly climb over it. Otherwise, he
has to walk around it. He devises a plan: he will walk straight from his home to some point P in
the fence; then, he will walk around it or climb over it depending on whether the fence is on or
off. Which point P should he choose in order to minimize the average length of his trip?

Solution:

PART 1: MODELLING

Let us add a few more labels to the picture:

A B
Q

P

R

L/2 L/2

x
b

P is a generic point in the fence, which represents the point Neo may choose on the fence (he
initially walks from A to P ) . Let us call x the distance between P and Q. It will be our
variable. I have also marked the distances b and L/2 on the picture; they are constant. Notice
that 0 ≤ x ≤ b.

For convenience, in what follows, when I write |XY |, it represents the distance between points X
and Y .



When the fence is off, Neo’s path will go from A to P to B:

A B
Q

P

R

and the distance will be

g(x) = |AP |+ |PB| =
√

(L/2)2 + x2 +
√

(L/2)2 + x2 = 2
√

(L/2)2 + x2

When the fence is on, Neo’s path will go from A to P to R to B:

A B
Q

P

R

and the distance will be

h(x) = |AP |+ |PR|+ |RB| =
√

(L/2)2 + x2 + (b− x) +
√

(L/2)2 + b2

The average of the two lengths is f(x) =
1

2
[g(x) + h(x)]. After simplifying

f(x) =
3

2

√
(L/2)2 + x2 − x

2
+ constants, 0 ≤ x ≤ b.

This is the function we want to mimize.

PART 2: CALCULUS

The function f is continuous on the interval [0, b]. By the EVT, it must have a minimum. The
minimum must occur at an endpoint of the interval or at a critical point. Since f is differentiable
on the domain, the only critical points are values of x where f ′(x) = 0. Using the standard
differentiation rules:



f ′(x) =
3

2

x√
(L/2)2 + x2

− 1

2
(1)

To find the critical points, we need to solve the equation

3x−
√

(L/2)2 + x2 = 0

After some algebra there are two solutions

x = ± L

4
√

2

The negative solution is clearly outside of the domain. Let us call the positive solution x0 =
L

4
√

2
.

Notice that x0 may or may not be in the domain, depending on b.

• Case 1: When x0 < b. In this case x0 is an interior point to the domain and it is a critical
point. Moreover, from Equation (1) we can solve that f ′(x) < 0 for x ∈ [0, x0) and f ′(x) > 0
for x ∈ (x0, b]. This means that f has an absolute minimum at x0 and that is the point that
Neo should choose.

• Case 2: When x0 ≥ b. In this case there are no critical points. The minimum must happen
at one of the two endpoints. We could now evaluate f(0) and f(b) to compare them, but
there is a faster way. Look at the equation for f ′ in (1). We see that f ′ is continuous on the
domain. We also know that f ′ is never 0 on the domain. Therefore f ′ must remain always
positive or always negative. Since f ′(0) < 0, f ′ is always negative, and f is decreasing on the
domain. Thus, the minimum happens at x = b. Neo should walk directly to the end of the
fence and not bother.

CONCLUSION

If x0 < b, then Neo should walk to the point P defined by x = x0. Otherwise, Neo should walk
directly from home to the end of the fence.



2. (a) Let f be a function with domain R. Assume f has derivatives of every order. Find all possible
real numbers A,B,C ∈ R such that

lim
x→0

f(x)− [Ax2 + Bx + C]

x2
= 0. (2)

Note: In your answer, A, B and C will depend on values of f and its derivatives. We are
asking for all possible answers. We want you to prove that your choices of A, B, and C
satisfy (2), and that there are no other choices that satisfy (2).

Solution: The only choice that satisfies (2) is

A =
1

2
f ′′(0), B = f ′(0), C = f(0). (3)

I will prove simultaneously that the choices in (3) work and that no other choices work.

We are assuming that f has derivatives of every order. Therefore f and all its derivatives are
continuous (because they are differentiable).

To begin, let us fix arbitrary real numbers A, B, and C, and let us define the limit (if it
exists)

L1 = lim
x→0

f(x)− [Ax2 + Bx + C]

x2
(4)

Since f is continuous, the limit of the numerator in (4) is f(0)− C.

• If C 6= f(0), the limit L1 in (4) is of the form
non-zero number

0
. Notice also that the

denominator is always positive (except at x = 0). Therefore, L1 is either ∞ or −∞,
depending on the sign of f(0)− C. Either way, the limit L1 is not 0 in this case.

For the rest of this solution, I will explore what happens when C = f(0). In that case, we
have an indeterminate form of type 0/0 in (4). We can attempt to use L’Hôpital’s Rule. After
using it, we get the new limit:

L2 = lim
x→0

f ′(x)− [2Ax + B]

2x
(5)

Since f ′ is continuous, the limit of the numerator in (5) is f ′(0)−B.

• If B 6= f ′(0), the limit L2 in (5) is of the form
non-zero number

0
. In addition, the de-

nominator is postive as x→ 0+ and negative as x→ 0−. Therefore, each of the two side
limits in (5) is ∞ or −∞ (and they have opposite signs). In any case, using L’Hôpital’s
Rule was legal (for the left- and right-side limits separately) and hence “L1 = L2”. Once
again, the limit L1 is not 0 in this case.

For the rest of this solution, I will explore what happens when B = f ′(0). In that case, we
have an indeterminate form of type 0/0 in (5). We can attempt to use L’Hôpital’s Rule again.
After using it, we get the new limit:

L3 = lim
x→0

f ′′(x)− [2A]

2



Since f ′′ is continuous, we get that

L3 =
f ′′(0)− 2A

2

This limit exists! Therefore, both uses of L’Hôpital were legal, and we get

L1 = L2 = L3 =
f ′′(0)− 2A

2

Therefore

• If A 6= 1

2
f ′′(0) the limit L1 exists but is not 0.

• If A =
1

2
f ′′(0), I finally have L1 = 0.

Reviewing all the things I have found, I have proven that the choices in (3) work and that no
other choices work.



(b) Let f be a function with domain R. Assume f has derivatives of every order. Let N be a
positive integer. Find a polynomial PN such that

lim
x→0

f(x)− PN(x)

xN
= 0

Suggestion: You may want to do some rough work until you can form a conjecture. Do not
submit the rough work. To prove your conjecture, use induction.

Solution:

For every function f that has derivatives of all orders, and for every positive integer N , I
define the polynomial

PN,f (x) =
f (N)(0)

N !
xN +

f (N−1)(0)

(N − 1)!
xN−1 + . . . +

f ′′′(0)

3!
x3 +

f ′′(0)

2
x2 + f ′(0)x + f(0) (6)

I am going to show that

lim
x→0

f(x)− PN,f (x)

xN
= 0 (7)

Specifically, for every positive integer N , I define the statement

SN = “For all functions f that have domain R and derivatives of all order, (7) holds.”

I am going to prove this statement by induction on N .

BASE CASE (N = 1).1

Let f be a function that has derivatives of all order. I need to show that

lim
x→0

f(x)− [f(0)− f ′(0)x]

x
= 0

Indeed

lim
x→0

f(x)− [f(0)− f ′(0)x]

x
= lim

x→0

[
f(x)− f(0)

x
− f ′(0)

]
= f ′(0)− f ′(0) = 0,

where I have used the definition of the derivative at 0 as a limit.

1It is also possible to prove the claim for all natural numbers N , and then the base case would be N = 0. However,
since the question asked for positive integers N , I will start at N = 1.



INDUCTION STEP.

• Let us fix a positive integer N . I will assume the statement SN . In other words, I assume
that (7) holds for all functions that have derivatives of all orders. I want to prove the
statement SN+1. To do so, let us fix a function f that has derivatives of all orders. I
want to prove that, for this function f , the limit

L1 = lim
x→0

f(x)− PN+1,f (x)

xN+1
(8)

is 0.

• Since f is continuous, the limit of the numerator in (8) is

f(0)− PN+1,f (0) = f(0)− f(0) = 0.

Therefore, we have an indeterminate form of type 0/0 in (8) and we can try to use
L’Hôpital’s Rule. After using L’Hôpital’s Rule we get the limit

L2 = lim
x→0

f ′(x)− P ′N+1,f (x)

(N + 1)xN
(9)

• I am going to try to use the induction hypothesis to conclude that the limit in (9) is 0.
Since f has derivatives of all orders, so does f ′. Therefore the induction hypothesis also
applies to f ′, and, specifically, we know that

L3 = lim
x→0

f ′(x)− PN,f ′(x)

xN

• What is the relation between P ′N+1,f and PN,f ′? On the one hand, by definition

PN+1,f (x) =
f (N+1)(0)

(N + 1)!
xN+1 +

f (N)(0)

N !
xN + · · ·+ f ′′′(0)

3!
x3 +

f ′′(0)

2
x2 + f ′(0)x + f(0)

and so its derivative is

P ′N+1,f (x) =
f (N+1)(0)

(N + 1)!
(N + 1)xN +

f (N)(0)

N !
NxN−1 + · · ·+ f ′′′(0)

3!
3x2 +

f ′′(0)

2!
2x + f ′(0)

=
f (N+1)(0)

N !
xN +

f (N)(0)

(N − 1)!
xN−1 + · · ·+ f ′′′(0)

2!
x2 + f ′′(0)x + f ′(0)

On the other hand

PN,f ′(x) =
f (N+1)(0)

N !
xN +

f (N)(0)

(N − 1)!
xN−1 + · · ·+ f ′′′(0)

2!
x2 + f ′′(0)x + f ′(0)

Therefore
P ′N+1,f = PN,f ′ .



• Now let’s put it all together:

L2 = lim
x→0

f ′(x)− P ′N+1,f (x)

(N + 1)xN

= lim
x→0

[
1

N + 1
· f
′(x)− PN,f ′(x)

xN

]
=

1

N + 1
· L3 =

1

N + 1
· 0 = 0

Therefore, the limit L2 in (9) is 0, the use of L’Hôpital’s Rule was acceptable, and the
limit L1 in (8) is 0 as well. This is what we wanted to prove. We are done!



(c) Using your new result, find polynomials P and Q such that

lim
x→0

ex − P (x)

x6
= 0, lim

x→0

sinx−Q(x)

x11
= 0.

Solution:

We can use the result from part (b): Equation (6).

• We notice that we can choose P = P6,f as defined by (6), for the function f(x) = ex.
Therefore:

• We notice that P = P6,f for the function f(x) = ex. Therefore:

P (x) =
f (6)(0)

6!
x6 +

f (5)(0)

5!
x5 +

f (4)(0)

4!
x4 +

f ′′′(0)

3!
x3 +

f ′′(0)

2!
x2 + f ′(0)x + f(0)

The exponential function satisfies that f (n)(x) = ex, and hence f (n)(0) = 1, for all n ∈ N.
Therefore:

P (x) =
1

6!
x6 +

1

5!
x5 +

1

4!
x4 +

1

3!
x3 +

1

2!
x2 + x + 1

• Similarly, we notice that we can choose Q = P11,g as defined by (6), for the function
g(x) = sin x. Therefore:

Q(x) =
g(11)(0)

11!
x11 +

g(10)(0)

10!
x10 + . . . +

g′′(0)

2!
x2 + g′(0)x + g(0)

The sine function satisfies that

g′(x) = cos x, g′′(x) = − sinx, g′′′(x) = − cosx, g(4)(x) = sinx, . . .

and after that the derivatives cycle. Thus, the even derivatives at 0 are 0, and the odd
derivatives alternate between 1 and −1. Therefore

Q(x) = − 1

11!
x11 +

1

9!
x9 − 1

7!
x7 +

1

5!
x5 − 1

3!
x3 + x.



3. In Video 6.13, you learned about various geometrical notions that we could have used to define
concavity. Here is yet another one.

Let f be a function defined on an interval I. Given two points P and Q on the graph of f , we
will call mP,Q the slope of the line going through P and Q. We say that the function f is “cave
up” on I when for every 3 different points P , Q, and R on the graph of f , if P is to the left of Q,
and Q is to the left of R, then mP,Q < mQ,R. Sketch a graph and make sure you understand this
definition geometrically before continuing.

Assume f is differentiable on I. Prove that IF f is concave up on I, THEN f is cave up on I.

Hint: Use MVT.

Note: It is also possible to prove that cave up implies concave up, but we will skip it for now.
In fact, all of the different versions of concavity you have learned are equivalent for differentiable
functions.

Solution:

• Assume that f is concave up on I. I want to prove that f is cave up on I. Let us fix three points
P,Q,R on the graph of f such that P is to the left of Q, and Q is to the left of R. This means
that we can find a, b, c ∈ I such that a < b < c and P = (a, f(a)), Q = (b, f(b)), R = (c, f(c)).

x

y

y = f(x)

a cb

P

Q R

The slopes of the secant lines are given by

mP,Q =
f(b)− f(a)

b− a
, mQ,R =

f(c)− f(b)

c− b
.

I need to prove that mP,Q < mQ,R.

• The function f is differentiable (and thus continuous) on I, hence f is continuous on [a, b]
and differentiable on (a, b). By the Mean Value Theorem, there exists m ∈ (a, b) such that

f ′(m) =
f(b)− f(a)

b− a
.

Similarly, repeating the same argument for f on [b, c], we find that there exists n ∈ (b, c) such
that

f ′(n) =
f(c)− f(b)

c− b
.

To conclude the proof I need to show that f ′(m) < f ′(n)



• Notice that
a < m < b < n < c,

and thus m < n. Since f is concave up on I, we know that f ′ is increasing on I, and therefore
f ′(m) < f ′(n). That is what I needed to show. Yay!



4. Let’s recall the definition of horizontal/slant asymptote. Let f be a function defined at least on
an interval (c,∞) for some c ∈ R. We say that f has an asymptote as x → ∞ when there exist
numbers m, b ∈ R such that

lim
x→∞

[f(x)− (mx + b)] = 0. (10)

Notice that this includes both slant asymptotes (when m 6= 0) and horizontal asymptotes (when
m = 0).

Consider the following two claims:

Claim A: IF f has an asymptote as x→∞, THEN lim
x→∞

f(x)

x
exists.

Claim B: IF lim
x→∞

f(x)

x
exists, THEN f has an asymptote as x→∞.

(a) Prove that Claim A is true.

Solution:

Assume that f has an asymptote as x→∞. This means there exist m, b ∈ R satisfying (10).
In this case

lim
x→∞

f(x)− (mx + b)

x
= 0

because the numerator has limit 0 and the denominator has limit ∞. Then

lim
x→∞

f(x)

x
= lim

x→∞

[f(x)− (mx + b) + mx + b]

x

= lim
x→∞

[
f(x)− (mx + b)

x
+ m +

b

x

]
= 0 + m + 0 = m,

where I have used the limit law for sums. Hence lim
x→∞

f(x)

x
exists (and equals m).



(b) Prove that Claim B is false.

Solution: I will prove that f(x) = sinx is a counterexample.2 Specifically, I will prove that

lim
x→∞

sinx

x
= 0, but sin has no asymptote as x→∞.

• Claim 1: lim
x→∞

sinx

x
= 0 (and hence exists).

This is due to the Squeeze Theorem, since

−1

x
≤ sinx

x
≤ 1

x

for all x > 0 and

lim
x→∞

−1

x
= lim

x→∞

1

x
= 0.

• Claim 2: sin does not have an asymptote as x→∞.

I need to prove that for every m, b ∈ R

lim
x→∞

[sinx− (mx + b)] 6= 0

This is a proof by cases.

– If m 6= 0, notice that

lim
x→∞

[
sinx

x
−m +

b

x

]
= 0−m + 0 = −m

Therefore

lim
x→∞

[sinx− (mx + b)] = lim
x→∞

x ·
[

sinx

x
−m +

b

x

]
= ±∞

where the limit is∞ if m < 0 and −∞ if m > 0. Either way the limit does not exist.

– On the other hand, if m = 0, we get

lim
x→∞

[sinx− b]

which does not exist, because sin oscillates indefinitely between −1 and 1 as x→∞.

Note: There is a way to skip one case for the proof of Claim 2. In the proof of Claim
A we had noticed that if y = mx + b is an asymptote for f as x → ∞, then necessarily

m = lim
x→∞

f(x)

x
, which in this case is 0. So when verifying that sin does not have an

asymptote, it would have been enough to check that y = b is not an asymptote, rather
than the more general form y = mx + b.

2There are many other counterexamples, such as f(x) = x+ sinx, f(x) =
√
x, or f(x) = lnx.



(c) Here is one more false claim and a bad proof.

Claim C: Assume the function f is differentiable and that lim
x→∞

f(x) =∞.

lim
x→∞

f(x)

x
exists ⇐⇒ lim

x→∞
f ′(x) exists

“Proof”: We can use L’Hôpital’s Rule:

lim
x→∞

f(x)

x
= lim

x→∞

d
dx
f(x)
d
dx
x

= lim
x→∞

f ′(x)

1
= lim

x→∞
f ′(x)

�

Explain the error in the proof.

Then prove that the claim is false with a counterexample.

Solution:

We do not get an “if an only if”.

• IF lim
x→∞

f ′(x) exists, then we can use L’Hôpital’s Rule, and we conclude that

lim
x→∞

f(x)

x
= lim

x→∞
f ′(x)

also exists. This part was correct.

• However, IF lim
x→∞

f ′(x) does not exist (and is not ±∞ either), then L’Hôpital’s Rule does

not apply (that is the error in the proof!) and it is still possible that

lim
x→∞

f(x)

x

exists.

As a counterexample, consider f(x) = x + sinx. Then

lim
x→∞

f(x)

x
= lim

x→∞

x + sinx

x
= lim

x→∞

[
1 +

sinx

x

]
= 1 + 0 = 0

However,
lim
x→∞

f ′(x) = lim
x→∞

[1 + cos x]

which does not exist.


