MAT 137Y: Calculus with proofs Assignment 1 - Sample solutions

Question 1. In this problem, assume all functions have domain \mathbb{R} . I will define a new concept. For every pair of functions f and g, we define the set

$$\Omega_{f}^{g} = \{ x \in \mathbb{R} : f(x) < g(x) \}$$

We say that the function f loves the function g when

 $\forall x \in \Omega_{f}^{g}, \exists y \in \Omega_{q}^{f} \text{ such that } x < y$

(a) Consider the functions Walt and Tor defined by

 $Walt(x) = \sin x$, $Tor(x) = -2\sin x$.

Prove that Tor *loves* Walt.

Suggestion: Before doing anything else, find out what the sets Ω_{Walt}^{Tor} and Ω_{Tor}^{Walt} are.

- (b) Let f(x) = 3 and let g(x) = x. Prove that f doesn't love g.
- (c) Which functions f satisfy that f loves f?

Solutions

(a) • First, I will prove that

$$\Omega_{\text{Walt}}^{\text{Tor}} = \{ x \in \mathbb{R} \mid \exists n \in \mathbb{Z} \text{ s.t. } (2n-1)\pi < x < 2n\pi \}$$
(1)

and

$$\Omega_{\text{Tor}}^{\text{Walt}} = \{ x \in \mathbb{R} \mid \exists n \in \mathbb{Z} \text{ s.t. } 2n\pi < x < (2n+1)\pi \}.$$
(2)

Indeed, by the definitions of Walt and Tor I have that

 $Walt(x) < Tor(x) \iff sin(x) < -2sin(x) \iff 3sin(x) < 0$.

Since 3 is a positive real number, the above is equivalent to sin(x) < 0, so Eq. (1) follows directly from the properties of the function sin and the definition of Ω_{Walt}^{Tor} . Eq. (2) is obtained in complete analogy.

• Now I want to show that Tor loves Walt; in other words, my goal is to prove that

$$\forall x \in \Omega_{\text{Tor}}^{\text{Walt}}, \ \exists y \in \Omega_{\text{Walt}}^{\text{Tor}} \text{ such that } x < y$$
.

To prove this, fix $x \in \Omega_{\text{Tor}}^{\text{Walt}}$, and let $y = x + \pi$. Clearly x < y. I will now prove that $y \in \Omega_{\text{Walt}}^{\text{Tor}}$.

By Eq. (2), there exists an integer n such that

$$2n\pi < x < (2n+1)\pi$$

I can add π to all three expressions in the chain of inequalities to get

$$(2n+1)\pi < x < (2n+2)\pi$$

or, equivalently

$$(2m-1)\pi < x < 2m\pi$$

with m = n + 1. This proves that $y \in \Omega_{Walt}^{Tor}$.

I have proven that there is indeed an element $y \in \Omega_{Walt}^{Tor}$ such that x < y. Since x was arbitrary, this proves that Tor loves Walt.

(b) I need to show that the negation of "f loves g" is true. In other words, I need to argue that there exists some $x \in \Omega_f^g$ for which I cannot find $y \in \Omega_g^f$ such that x < y. Said even differently, I need to prove that

$$\exists x \in \Omega_{f}^{g} \text{ such that } \forall y \in \Omega_{g}^{+}, x \ge y.$$
(3)

Let $x = \pi$. Then:

- $\pi \in \Omega_f^g$ because $f(x) = 3 < \pi = g(x)$.
- Moreover, if $y\in \Omega^{\,f}_{\,g}$ is fixed then

$$\mathbf{y} = \mathbf{g}(\mathbf{y}) < \mathbf{f}(\mathbf{y}) = \mathbf{3} \leqslant \pi = \mathbf{x} \,.$$

This shows that $x = \pi$ is an element as in (3), as desired.

(c) Every function f loves itself. Indeed, fix f and notice that

$$\Omega_{\mathbf{f}}^{\mathbf{f}} = \{ \mathbf{x} \in \mathbb{R} \mid \mathbf{f}(\mathbf{x}) < \mathbf{f}(\mathbf{x}) \} = \emptyset.$$

Therefore, the statement

$$\forall x \in \Omega_{f}^{f}, \exists y \in \Omega_{f}^{f} \text{ such that } x < y$$

is vacuously true, which proves the assertion.

Question 2. We continue with the assumptions, notation and definitions as in Question 1. Given a function f and any $t \in \mathbb{R}$, we define a new function, called f_t , via the equation

$$f_t(x) = f(x) + t$$

Determine whether each of the following claims is true or false. If true, prove it directly. If false, prove it with a counterexample.

(a) Let f, g, and h be functions. IF f loves g and g loves h, THEN f loves h.

Suggestion: It may be helpful to think of functions in terms of graphs instead of in terms of their equations at first.

(b) For every function f there exists a function g such that, for every $t \in \mathbb{R}$, g loves f_t .

Solutions

- (a) The claim is false. I will prove it with a counterexample. Let $f(x) = -\frac{3}{2}$, $g = -2\sin(x)$, and $h(x) = \sin(x)$.
 - We already know from Question 1a that g loves h.
 - I will prove that f loves g. For every $n \in \mathbb{Z}$, let us call

$$c_n = \left(2n + \frac{1}{2}\right)\pi$$

Notice that

$$c_n \in \Omega_g^{\dagger}$$

because

$$g(c_n) = -2 < -\frac{3}{2} = f(c_n)$$

Therefore, if x is *any* real number, there exists an element $y \in \Omega_g^f$ such that x < y: just take $y = c_n$ for sufficiently large $n \in \mathbb{Z}$.

This is true, in particular, for every $x \in \Omega_{f}^{g}$. Therefore, f loves g.

• However, f does *not* love h: $\Omega_{f}^{h} = \mathbb{R}$ and $\Omega_{h}^{f} = \emptyset$, since f(x) < h(x) for every real number x. The statement

$$\forall x \in \mathbb{R}, \exists y \in \emptyset \text{ such that } x < y$$

is not true.

This shows that there exist functions f, g, and h such that f loves g and g loves h, but f does not love h.

(b) The claim is true.

Let us fix a function f. I define the function g via the equation

$$g(\mathbf{x}) = f(\mathbf{x}) + \mathbf{x} \,.$$

Fix $t \in \mathbb{R}$. I will prove that g loves f_t .

For every $x \in \mathbb{R}$ I have that

$$g(x) < f_t(x) \iff f(x) + x < f(x) + t \iff x < t$$

and therefore

$$\Omega_g^{f_t} = (-\infty, t),$$

and similarly

$$\Omega_{f_t}^g = (t, \infty).$$

Therefore, for every $x \in \Omega_g^{f_t}$ the real number y = t + 1 is an element of $\Omega_{f_t}^g$, and it is bigger than x. I conclude that g loves f_t . Since t was arbitrary I have proved the statement.

Question 3. *Prove by induction that for every positive integer* n*, the number* $5^{2n} + 11$ *is a multiple of* 12.

Proof. The base step corresponds to n = 1, in which case I have that $5^{2n} + 11 = 36$, which is a multiple of 12.

For the induction step, let $n \ge 1$ be fixed and assume that there exists an integer a such that

$$5^{2n} + 11 = 12a$$
.

In that case we can write

$$5^{2(n+1)} + 11 = 5^2 \cdot 5^{2n} + 11 =$$

= $25 \cdot 5^{2n} + 11 =$
= $(24 - 1) \cdot 5^{2n} + 11 =$
= $24 \cdot 5^{2n} + 5^{2n} + 11 =$
= $24 \cdot 5^{2n} + (5^{2n} + 11) =$ (by induction hypothesis)
= $24 \cdot 5^{2n} + 12a =$
= $12 \cdot (2 \cdot 5^{2n}) + 12a =$
= $12 \cdot (2 \cdot 5^{2n} + a)$.

Therefore, $5^{2(n+1)} + 11 = 12b$, where $b = 2 \cdot 5^{2n} + a$ is an integer number.

This shows that if $5^{2n} + 11$ is a multiple of 12 then so is $5^{2(n+1)} + 11$, which is the induction step. This concludes the proof.