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Abstract. The primary purpose of this paper is to clarify the relation between previous results in

[Schr11], [Bre17] and [BD18] via the construction of some interesting locally analytic representations.

Let E be a sufficiently large finite extension of Qp and ρp be a p-adic semi-stable representation

Gal(Qp/Qp) → GL3(E) such that the associated Weil–Deligne representation WD(ρp) has rank

two monodromy and the associated Hodge filtration is non-critical. A computation of extensions of
rank one (ϕ,Γ)-modules shows that the Hodge filtration of ρp depends on three invariants in E. We

construct a family of locally analytic representations Σmin(λ,L1,L2,L3) of GL3(Qp) depending

on three invariants L1,L2,L3 ∈ E, such that each representation in the family contains the lo-

cally algebraic representation Alg⊗ Steinberg determined by WD(ρp) (via classical local Langlands
correspondence for GL3(Qp)) and the Hodge–Tate weights of ρp. When ρp comes from an auto-

morphic representation π of a unitary group over Q which is compact at infinity, we show (under

some technical assumption) that there is a unique locally analytic representation in the above family
that occurs as a subrepresentation of the Hecke eigenspace (associated with π) in the completed

cohomology. We note that [Bre17] constructs a family of locally analytic representations depending

on four invariants ( cf. (4) in [Bre17] ) and proves that there is a unique representation in this family
that embeds into the Hecke eigenspace above. We prove that if a representation Π in Breuil’s family

embeds into the Hecke eigenspace above, the embedding of Π extends uniquely to an embedding of a
Σmin(λ,L1,L2,L3) into the Hecke eigenspace, for certain L1,L2,L3 ∈ E uniquely determined by

Π. This gives a purely representation theoretical necessary condition for Π to embed into completed

cohomology. Moreover, certain natural subquotients of Σmin(λ,L1,L2,L3) give an explicit com-
plex of locally analytic representations that realizes the derived object Σ(λ,L ) in (1.14) of [Schr11].

Consequently, the locally analytic representation Σmin(λ,L1,L2,L3) gives a relation between the

higher L -invariants studied in [Bre17] as well as [BD18] and the p-adic dilogarithm function which
appears in the construction of Σ(λ,L ) in [Schr11].
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1. Introduction

Let p be a prime number and F an imaginary quadratic extension of Q such that p splits in F . We
fix a unitary group G over Q which splits over F and such that G(R) is compact. Then to each finite
extension E of Qp and to each prime-to-p level Up in G(A∞,pQ ), one can associate the Banach space

of p-adic automorphic forms Ŝ(Up, E). One can also associate with Up a set of finite places D(Up) of
Q and a Hecke algebra T(Up) which is the polynomial algebra freely generated by Hecke operators at

places of F lying above D(Up). In particular, the commutative algebra T(Up) acts on Ŝ(Up, E) and
commutes with the action of G(Qp) ∼= GLn(Qp) coming from translations on G(A∞Q ).

If ρ : Gal(F/F )→ GLn(E) is a continuous irreducible representation, one considers the associated

Hecke eigenspace Ŝ(Up, E)[mρ], which is a continuous admissible representation of GLn(Qp) over E,

or its locally Qp-analytic vectors Ŝ(Up, E)an[mρ], which is an admissible locally Qp-analytic represen-
tation of GLn(Qp). We fix wp to be a place of F above p. The philosophy of p-adic local Langlands

correspondence predicts that Ŝ(Up, E)[mρ] (and its subspace Ŝ(Up, E)an[mρ] as well) determines and

depends only on ρp
def
= ρ|Gal(Fwp/Fwp )

. The case n = 2 is well-known essentially due to various re-

sults in [Col10] and [Eme]. The case n ≥ 3 is much more difficult and only a few partial results
are known. We are particularly interested in the case when the subspace of locally algebraic vectors

Ŝ(Up, E)alg[mρ] ( Ŝ(Up, E)[mρ] is non-zero, which implies that ρp is potentially semi-stable. Certain
cases when n = 3 and ρp is semi-stable and non-crystalline have been studied in [Bre17] and [BD18].
We are going to continue their work and obtain some interesting relation between results in [Bre17],
[BD18] and previous results in [Schr11] which involve the p-adic dilogarithm function.

1.1. Construction of a family of representations. We consider a weight λ ∈ X(T )+ of the di-
agonal split torus T ⊆ GL3 which is dominant with respect to the upper-triangular Borel subgroup.

Given two locally analytic representations V1, V2 of GL3(Qp), we use the notation V1 V2 (resp.

the notation V1 V2 ) for a locally analytic representation corresponding to a non-zero (resp. pos-

sibly zero) element in Ext1GL3(Qp) (V2, V1). If we consider two elements in Ext1GL3(Qp) (V2, V1) that
differ from each other by a non-zero scalar, then their corresponding representations are naturally
isomorphic. In Section 2.3, we will introduce the generalized analytic Steinberg representations (of
weight λ) Stan3 (λ), vanP1

(λ), vanP2
(λ), L(λ) and various irreducible locally analytic representations C∗w′,w

of GL3(Qp), for certain choices of ∗ ∈ {∅, 1, 2} and elements w,w′ in the Weyl group of GL3.

Theorem 1.1. [Proposition 6.2, Proposition 6.8, Proposition 6.12, (6.42)] For each choice of λ ∈
X(T )+ and L1,L2,L3 ∈ E, there exists a locally analytic representation Σmin(λ,L1,L2,L3) of
GL3(Qp) of the form:

(1.1) Stan3 (λ)

vanP1
(λ)

Cs1,s1 L(λ)⊗E v∞P2

vanP2
(λ)

Cs2,s2 L(λ)⊗E v∞P1

L(λ)

L(λ)
.

Moreover, different choices of L1,L2,L3 ∈ E give non-isomorphic representations.
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We also construct a locally analytic representation Σmin,+(λ,L1,L2,L3) ) Σmin(λ,L1,L2,L3)
of the form

Stan3 (λ)

vanP1
(λ)

Cs1,s1 L(λ)⊗E v∞P2

vanP2
(λ)

Cs2,s2
L(λ)⊗E v∞P1

L(λ)

L(λ)

C1
s2s1,s2s1

C1
s1s2,s1s2

C2
s1,s1s2

C2
s2,s2s1

whose isomorphism class is uniquely determined by that of Σmin(λ,L1,L2,L3). The following is our
main result on local-global compatibility.

Theorem 1.2. [Theorem 7.1] Assume that p ≥ 5 and n = 3. Assume moreover that

(i) ρ is unramified at all finite places of F above D(Up);

(ii) Ŝ(Up, E)[mρ]
alg 6= 0;

(iii) ρp is semi-stable with Hodge–Tate weights {k1 > k2 > k3} such that N2 6= 0;
(iv) ρp is non-critical in the sense of Remark 6.1.4 of [Bre17];

(v) only one automorphic representation contributes to Ŝ(Up, E)alg[mρ].

Then there exists a unique choice of L1,L2,L3 ∈ E such that Ŝ(Up, E)an[mρ] contains (copies of)
the locally analytic representation

Σmin,+(λ,L1,L2,L3)⊗E (ur(α)⊗E ε2) ◦ det

where λ = (λ1, λ2, λ3) = (k1− 2, k2− 1, k3), and α ∈ E× is determined by the Weil–Deligne represen-
tation WD(ρp) associated with ρp. Moreover, we have

(1.2) HomGL3(Qp)

(
Σmin,+(λ,L1,L2,L3)⊗E (ur(α)⊗E ε2) ◦ det, Ŝ(Up, E)an[mρ]

)
∼−→ HomGL3(Qp)

(
L(λ)⊗E St∞3 ⊗E (ur(α)⊗E ε2) ◦ det, Ŝ(Up, E)an[mρ]

)
.

The assumptions of our Theorem 1.2 are the same as that of Theorem 1.3 of [Bre17]. Here we do
not attempt to obtain any explicit relation between L1,L2,L3 ∈ E and ρp, which is similar in flavor
to Theorem 1.3 of [Bre17]. The improvement of our Theorem 1.2 upon Theorem 1.3 of [Bre17] will
be explained in Section 1.3. It is worth mentioning that, under further technical assumptions that
ρp is ordinary with consecutive Hodge–Tate weights and has an irreducible mod p reduction, one can
combine our Theorem 1.2 with Theorem 7.52 of [BD18] and conclude that the isomorphism class of
Σmin,+(λ,L1,L2,L3) and that of ρp determine each other.

Remark 1.3. It is possible to construct a locally analytic representation Σmax(λ,L1,L2,L3) of
GL3(Qp) containing Σmin,+(λ,L1,L2,L3) which is characterized by the fact that it is maximal (for
inclusion) among the locally analytic representations V satisfying the following conditions:

(i) socGL3(Qp)(V ) = V alg = L(λ)⊗E St∞3 ;
(ii) each constituent of V is a subquotient of a locally analytic principal series;
(iii) L(λ)⊗E St∞3 is a Jordan–Hölder factor of V with multiplicity one,
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where V alg is the subspace of locally algebraic vectors in V . Moreover, an immediate generalization
of the arguments in the proof of Theorem 1.2 (and thus of Theorem 1.1 of [Bre17]) shows that

(1.3) HomGL3(Qp)

(
Σmax(λ,L1,L2,L3)⊗E (ur(α)⊗E ε2) ◦ det, Ŝ(Up, E)an[mρ]

)
∼−→ HomGL3(Qp)

(
L(λ)⊗E St∞3 ⊗E (ur(α)⊗E ε2) ◦ det, Ŝ(Up, E)an[mρ]

)
.

One can also show that

Σmax(λ,L1,L2,L3)/L(λ)⊗E St3

is independent of the choice of L1,L2,L3 ∈ E. However, the full construction of Σmax(λ,L1,L2,L3)
is very lengthy and technical, and thus we decided not to put it here.

1.2. Derived object and p-adic dilogarithm. We consider the bounded derived category

Db
(
ModD(GL3(Qp),E)

)
associated with the abelian category ModD(GL3(Qp),E) of abstract modules over the algebraD(GL3(Qp), E)
consisting of locally Qp-analytic distributions on GL3(Qp) (cf. Section 4 of [ST03] for the definition
of the algebra of distributions). Schraen constructs an object

Σ(λ,L )′ ∈ Db
(
ModD(GL3(Qp),E)

)
in Definition 5.19 of [Schr11], and this construction crucially involves the p-adic dilogarithm function.
However, it was not clear in [Schr11] whether there exists an explicit complex [C•] of locally analytic
representations of GL3(Qp) whose strong dual realizes Σ(λ,L )′. Upon minor difference between the
notation of [Schr11] and ours, we show that

Theorem 1.4. [Theorem 6.15, (2.23)] There exists an explicit complex [C•] of locally analytic repre-
sentations of GL3(Qp) such that the object D′ ∈ Db

(
ModD(GL3(Qp),E)

)
associated with

[
C ′−•

]
satisfies

D′ ∼= Σ(λ,L )′ ∈ Db
(
ModD(GL3(Qp),E)

)
.

1.3. Higher L -invariants for GL3(Qp). It follows from (6.43) and (6.44) that Σmin,+(λ,L1,L2,L3)
can be described explicitly by the following picture:

L(λ)⊗E St∞3

C2
s1,1

C1
s2s1,1 C2

s2s1,1

L(λ)⊗E v∞P1 C1
s2,1

Cs1,s1

L(λ)⊗E v∞P2

C2
s2,1

C1
s1s2,1

C2
s1s2,1

L(λ)⊗E v∞P2

C1
s1,1

Cs2,s2

L(λ)⊗E v∞P1

L(λ)1

L(λ)2
Cs1s2s1,1

C1
s2s1,s2s1

C1
s1s2,s1s2

C2
s1,s1s2

C2
s2,s2s1
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Consequently, Σmin,+(λ,L1,L2,L3) contains a unique subrepresentation of the form

L(λ)⊗E St∞3

C2
s1,1

C1
s2s1,1

L(λ)⊗E v∞P1

Cs1,s1
L(λ)⊗E v∞P2

C2
s2,1

C1
s1s2,1

L(λ)⊗E v∞P2

Cs2,s2

L(λ)⊗E v∞P1

C1
s2s1,s2s1

C1
s1s2,s1s2

C2
s1,s1s2

C2
s2,s2s1

which is denoted by

(1.4) L(λ)⊗E St∞3

Π1(k,D)

Π2(k,D)

in Theorem 1.1 of [Bre17]. We write Π for an arbitrary representation of the form (1.4). It follows
from Theorem 1.2 of [Bre17] that

dimEExt1GL3(Qp),λ

(
Πi(k,D), L(λ)⊗E St∞3

)
= 3

for each i = 1, 2. Therefore all possible choices of Π form a family that depends on four invariants
in E. However, a computation of extensions of rank one (ϕ,Γ)-modules suggests that ρp depends on
three invariants in E. As a result, Theorem 1.1 of [Bre17] predicts that the existence of Up and ρ as

well as an embedding Π ↪→ Ŝ(Up, E)an[mρ], should cut out a subfamily of Π that depends on three
invariants. Motivated by Breuil’s prediction, we show the following

Theorem 1.5. [Corollary 7.5] If there exists Up and ρ such that Π embeds into Ŝ(Up, E)an[mρ], then
there exists L1,L2,L3 ∈ E such that Π embeds into

Σmin,+(λ,L1,L2,L3).

Moreover, the isomorphism class of Π and that of Σmin,+(λ,L1,L2,L3) where Π embeds, uniquely
determine each other.

1.4. Sketch of content. The overall goal of the sections before Section 7 is the construction and
study of the locally analytic representations Σmin(λ,L1,L2,L3) and Σmin,+(λ,L1,L2,L3). In par-
ticular, the content of this paper from Section 2 to Section 6 is purely locally analytic representation
theoretical.

In Section 2, we recall various well-known facts around locally analytic representations of p-adic
analytic groups, with more focus on GL2(Qp) and GL3(Qp). In Section 2.3, we fix our notation for
various locally analytic representations of GL2(Qp) and GL3(Qp), including the notation for some
irreducible admissible locally analytic representations for GL3(Qp) that will be frequently used in the
rest of the article. In Section 2.2, we recall a standard spectral sequence (cf. Lemma 2.1) which will
be frequently used in later computation of Ext-groups. In Section 2.4, we fix a branch of the p-adic
logarithm function, recall a branch of the p-adic dilogarithm function from Section 5.3 of [Schr11] and
interpret it as an element of a certain Ext2GL3(Qp)-group following (5.57) of [Schr11]. Using the fixed

branch of the p-adic logarithm function, we define a locally analytic representation Σ(λ,L1,L2) of
GL3(Qp) that depends on two invariants L1,L2 ∈ E (cf. the paragraph before (2.23)).

In Section 3, we prove a crucial fact (Proposition 3.5) on the non-existence of a locally analytic
representation of GL2(Qp) of a certain specific form, which can be interpreted as the vanishing of

a certain Ext1GL2(Qp)-group. The proof of Proposition 3.5 uses arguments involving infinitesimal
characters of locally analytic representations.

In Section 4, we systematically present a list of computational results, grouped into various Propo-
sitions and Lemmas. There exists a standard spectral sequence (cf. Lemma 2.1) to compute certain
ExtGL3(Qp)-groups using results on NP (Qp)-homology of admissible locally analytic representations
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of GL3(Qp), where NP is the unipotent radical of a maximal parabolic subgroup P ( GL3. Con-
sequently, our computation in Section 4 makes extensive use of results on NP (Qp)-homology, most
notably Théorème 4.10 of [Schr11] (a classical Theorem by Kostant) as well as Section 5.2 and 5.3 of
[Bre17] (based on the lists between (4.117) and (4.134) of [Schr11]). The readers may skip Section 4
during a first reading. While reading Section 5 and 6, the reader may check the lists in Section 4
whenever necessary.

In Section 5, we prove various technical results on Ext-groups that will be directly used in the
construction and study of Σmin(λ,L1,L2,L3) (which appears in Section 6). On the one hand, we
prove in Proposition 5.4 the non-existence of locally analytic representations of GL3(Qp) of certain
specific forms, using Proposition 3.5 as a crucial input. On the other hand, we compute or estimate
the dimension of various Ext1GL3(Qp) and Ext2GL3(Qp) in Lemma 5.3, 5.5, 5.7, 5.8 and 5.9. Technically
speaking, the information on dimensions of these Ext-groups will be crucial for us to manipulate
various long exact sequences in Section 6.

Section 6 is the heart of this paper, where we construct and study the representation Σmin(λ,L1,L2,L3)
and its variant. In Section 6.1, we finish the construction of Σmin(λ,L1,L2,L3) (cf. Proposi-
tion 6.8 and the paragraph before (6.28)), and then prove a technical result (cf. Proposition 6.10)
which will be crucial in the proof of Theorem 7.1. In Section 6.2, we further clarify the struc-
ture of various subrepresentations of Σmin(λ,L1,L2,L3) and obtain an explicit description of ex-
tensions inside Σmin(λ,L1,L2,L3) (cf. (6.42) and (6.43)). In order to clarify the relation be-
tween our Σmin(λ,L1,L2,L3) and various representations constructed in [Bre17] (cf. the proof of
Theorem 7.1 for details), we also consider a slightly bigger representation Σmin,+(λ,L1,L2,L3) )
Σmin(λ,L1,L2,L3). In Section 6.3, we obtain as byproduct an explicit complex (cf. Theorem 6.15)
of locally analytic representations of GL3(Qp) that realizes the derived object Σ(λ,L )′ constructed
in [Schr11].

In Section 7, we prove Theorem 7.1 by combining Proposition 6.10 with the technique (recalled or
reformulated in Proposition 7.2, 7.3 and 7.4) from the proof of Théorème 6.2.1 of [Bre17]. At the end,
we give a purely representation theoretical criterion for a representation of the form (1.4) to embed
into the completed cohomology (cf. Corollary 7.5).

1.5. Acknowledgement. This is the second part of the author’s PhD thesis. The author expresses
his gratefulness to his advisor Christophe Breuil for introducing the problem of relating [Schr11] with
[Bre17] and [BD18] and especially for his interest on the role played by the p-adic dilogarithm function.
The author also benefited a lot from countless discussions with Y. Ding especially for Section 3. Finally,
the author thanks B. Schraen for his beautiful thesis which improved the author’s understanding on
the subject.

2. Preliminary

2.1. Locally analytic representations. In this section, we recall some background on the theory
of locally analytic representations of p-adic analytic groups.

We fix a locally Qp-analytic group H and denote the algebra of locally Qp-analytic distributions
with coefficients in E on H by D(H,E), which is defined as the strong dual of the locally convex
E-vector space Can(H,E) consisting of locally Qp-analytic functions on H (cf. Section 4 of [ST03]).

We use the notation Repla
H,E (resp. Rep∞H,E) for the category of admissible locally Qp-analytic rep-

resentations of H (resp. admissible smooth representations of H) with coefficients in E. It follows
from Theorem 6.3 of [ST03] that taking strong dual induces a fully faithful contravariant functor from

Repla
H,E to the abelian category ModD(H,E) of abstract modules over D(H,E). The E-vector space

ExtiD(H,E)(M1,M2) is well-defined for any two objects M1,M2 ∈ ModD(H,E), and we define

ExtiH(Π1,Π2)
def
= ExtiD(H,E)(Π

′
2,Π

′
1)
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for any two objects Π1,Π2 ∈ Repla
H,E where ·′ is the notation for strong dual. We also define the

cohomology of an object M ∈ ModD(H,E) by

Hi(H,M)
def
= ExtiD(H,E)(1

′
H ,M)

where 1H is the trivial representation of H. If H1 is a closed locally Qp-analytic normal subgroup of
H, then H/H1 is also a locally Qp-analytic group. It follows from the fact

D(H,E)⊗D(H1,E) E ∼= D(H/H1, E)

(cf. Section 5.1 of [Bre17]) that Hi(H1,M) admits a structure of D(H/H1, E)-module for each M ∈
ModD(H,E). For each Π ∈ Repla

H,E , if there exists an object Hi(H1,Π) ∈ Repla
H/H1,E such that

Hi(H1,Π)′ ∼= Hi(H1,Π
′),

we call Hi(H1,Π) the H1-homology of Π. Note that Hi(H1,Π), if exists, is well-defined up to isomor-
phism due to Theorem 6.2 of [ST03]. Throughout this paper, whenever we use the notation Hi(H1,Π)

for certain normal subgroup H1 ⊆ H and certain Π ∈ Repla
H,E , we implicitly mean that Hi(H1,Π) ex-

ists as an object of Repla
H/H1,E . We fix a subgroup Z inside the center of H. Then the algebra D(Z,E),

consisting of locally Qp-analytic distribution on Z with coefficients in E, is naturally contained in
the center of D(H,E). For each locally Qp-analytic E-character χ of Z, we define ModD(H,E),χ′ as
the abelian subcategory of ModD(H,E) consisting of all the objects on which D(Z,E) acts by χ′. We

write ExtiModD(H,E),χ′
(−,−) for the usual Ext-groups inside the abelian category ModD(H,E),χ′ . Then

we define
ExtiH,χ(Π1,Π2)

def
= ExtiD(H,E),χ′(Π

′
2,Π

′
1)

for any two objects Π1,Π2 ∈ Repla
H,E such that Π′1,Π

′
2 ∈ ModD(H,E),χ′ . In particular, if Z is the

center of H and acts on Π ∈ Repla
H,E via the character χ, then Π′ ∈ ModD(H,E),χ′ , and we usually say

that Π admits a central character χ.
Assume now that H is the set of Qp-points of a split reductive group over Qp. We fix a maximal

torus and a Borel subgroup T ⊆ B ⊆ H and call a parabolic subgroup P ⊆ H standard if it contains
B. We write P ⊆ H for the opposite parabolic subgroup with L = P ∩ P the standard Levi subgroup
of P . We also write N (resp. N) for the unipotent radical of P (resp. of P ), and use the notation
h, p, n . . . for the E-Lie algebras associated with H ×Qp

E, P ×Qp
E, N ×Qp

E . . . . We consider the

category O together with its subcategory Op
alg for each parabolic subgroup P ⊆ H (cf. Section 9.3

of [Hum08] or [OS15]). For each parabolic subgroup P ⊆ H with Levi quotient L, we have the
Orlik–Strauch functor

FHP : Op
alg × Rep∞L,E → Repla

H,E .

The nice properties of FHP are summarized in the main theorem of [OS15].

2.2. Formal properties. In this section, we summarize some general formal properties of locally
analytic representations of p-adic reductive groups. We fix a split p-adic reductive group H throughout
this section.

We consider a parabolic subgroup P ⊆ H with unipotent radical N and Levi quotient L.

Lemma 2.1. We consider Π1 ∈ Repla
H,E and Π2 ∈ Repla

L,E such that

(i) Hk(N, Π1) ∈ Repla
L,E exists for each k ≥ 0;

(ii) the (FIN) condition in Section 6 of [ST05] holds for Π2.

Then there exists a spectral sequence

ExtjL,∗ (Hk(N, Π1), Π2)⇒ Extj+kH,∗

(
Π1, IndHP (Π2)

an
)

for each ∗ ∈ {∅, χ} where χ is a locally analytic character of the center of H. In particular, we have
an isomorphism

HomL,∗ (H0(N, Π1), Π2)
∼−→ HomH,∗

(
Π1, IndHP (Π2)

an
)
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and a long exact sequence

Ext1L,∗ (H0(N, Π1), Π2) ↪→ Ext1H,∗

(
Π1, IndHP (Π2)

an
)

→ HomL,∗ (H1(N, Π1), Π2)→ Ext2L,∗ (H0(N, Π1), Π2)

for each ∗ ∈ {∅, χ}.

Proof. This follows directly from (44) and (45) of [Bre17] as well as our definition of ExtkH,∗, ExtkL,∗
and Hk in Section 2.1 for each k ≥ 0. �

We fix a finite length locally analytic representation V ∈ Repla
H,E equipped with an increasing

filtration of subrepresentations {FilkV }0≤k≤m such that

Fil0(V ) = 0, Film(V ) = V and grk+1V
def
= Filk+1V/FilkV 6= 0 for all 0 ≤ k ≤ m− 1.

Note that the assumption above automatically implies that

`(V ) ≥ m

where `(V ) is the length of V .

Proposition 2.2. Assume that V1 is another object of Repla
H,E and χ is a locally analytic character

of the center of H.

(i) If Ext1H,χ (V1, grkV ) = 0 for each 1 ≤ k ≤ m, then we have

Ext1H,χ (V1, V ) = 0.

(ii) If there exists 1 ≤ k0 ≤ m such that Ext1H,χ (V1, grkV ) = 0 for each 1 ≤ k 6= k0 ≤ m and

dimEExt1H,χ
(
V1, grk0V

)
= 1, then we have

dimEExt1H,χ (V1, V ) ≤ 1;

if moreover Ext2H,χ (V1, grkV ) = 0 for each 1 ≤ k ≤ k0 − 1 and HomH,χ (V1, grkV ) = 0 for
each k0 + 1 ≤ k ≤ m, then we have

dimEExt1H,χ (V1, V ) = 1.

Proof. For each 1 ≤ k ≤ m− 1, the short exact sequence FilkV ↪→ Filk+1V � grk+1V induces a long
exact sequence

Ext1H,χ (V1, FilkV )→ Ext1H,χ (V1, Filk+1V )→ Ext1H,χ
(
V1, grk+1V

)
which implies

dimEExt1H,χ (V1, Filk+1V ) ≤ dimEExt1H,χ (V1, FilkV ) + dimEExt1H,χ
(
V1, grk+1V

)
.

Therefore we finish the proof of part (i) and the first claim of part (ii) by induction on k and the fact
that gr1V = Fil1V .

Now we prove the second claim of part (ii). The same method as in the proof of part (i) shows that

(2.1) Ext1H,χ (V1, Filk0−1V ) = Ext2H,χ (V1, Filk0−1V ) = 0

and

(2.2) Ext1H,χ (V1, V/Filk0V ) = HomH,χ (V1, V/Filk0V ) = 0

The short exact sequence Filk0−1V ↪→ Filk0V � grk0V induces the long exact sequence

Ext1H,χ (V1, Filk0−1V ) → Ext1H,χ (V1, Filk0V ) → Ext1H,χ
(
V1, grk0V

)
→ Ext2H,χ (V1, Filk0−1V )

which implies that

(2.3) dimEExt1H,χ (V1, Filk0V ) = 1
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by (2.1). The short exact sequence Filk0V ↪→ V � V/Filk0V induces the long exact sequence

HomH,χ (V1, V/Filk0V ) → Ext1H,χ (V1, Filk0V ) → Ext1H,χ (V1, V ) → Ext1H,χ (V1, V/Filk0V )

which finishes the proof by combining (2.2) and (2.3). �

2.3. Some representations of GL2(Qp) and GL3(Qp). In this section, we are going to recall the
construction of some locally analytic representations of GL2(Qp) and GL3(Qp).

We denote the lower-triangular Borel subgroup (resp. the diagonal maximal split torus) of GL2/Qp

by B2 (resp. by T2) and the unipotent radical of B2 by NGL2
. We use the notation s for the non-trivial

element in the Weyl group of GL2. We fix a weight ν ∈ X(T2) of GL2 of the following form

ν = (ν1, ν2) ∈ Z2

which corresponds to an algebraic character of T2(Qp)

δT2,ν
def
=

(
a 0
0 b

)
7→ aν1bν2 .

We denote the upper-triangular Borel subgroup of GL2 by B2. If ν is dominant with respect to B2,
namely if ν1 ≥ ν2, we use the notation LGL2

(ν) (resp. LGL2
(−ν)) for the irreducible algebraic repre-

sentation of GL2(Qp) with highest weight ν (resp. −ν) with respect to the positive roots determined

by B2 (resp. B2). In particular, LGL2
(ν) and LGL2

(−ν) are the dual of each other. We use the
shortened notation

IGL2

B2
(χT2)

def
=
(

Ind
GL2(Qp)

B2(Qp)
χT2

)an
for any locally analytic character χT2

of T2(Qp) and set

iGL2

B2
(χT2

)
def
=
(

Ind
GL2(Qp)

B2(Qp)
χ∞T2

)∞
⊗E LGL2

(ν)

if χT2
= δT2,ν⊗Eχ∞T2

is locally algebraic where χ∞T2
is a smooth character of T2(Qp). Then we define the

locally analytic Steinberg representation (of weight ν) as well as the smooth Steinberg representation
for GL2(Qp) as follows

Stan2 (ν)
def
= IGL2

B2
(δT2,ν)/LGL2

(ν), St∞2
def
= iGL2

B2
(1T2

)/12

where 12 (resp. 1T2) denotes the trivial representation of GL2(Qp) (resp. of T2(Qp)).
We denote the lower-triangular Borel subgroup (resp. the diagonal maximal split torus) of GL3/Qp

by B (resp. by T ) and the unipotent radical of B by N . We write Diag(a, b, c) ∈ T (Qp) for the
diagonal matrix with diagonal entries given by a, b, c ∈ Q×p . We fix a weight λ ∈ X(T ) of GL3 of the
following form

λ = (λ1, λ2, λ3) ∈ Z3,

which corresponds to an algebraic character of T (Qp) defined by

δT,λ(Diag(a, b, c))
def
= aλ1bλ2cλ3 .

We denote the center of GL3 by Z and notice that Z(Qp) ∼= Q×p . Hence the restriction of δT,λ to
Z(Qp) gives an algebraic character of Z(Qp) defined by

δZ,λ(Diag(a, a, a))
def
= aλ1+λ2+λ3 .

We use the shortened notation

ExtiH,λ(−,−)
def
= ExtiH,δZ,λ(−,−)

for each closed subgroup H ⊆ GL3(Qp) that contains Z(Qp). In particular, the notation

ExtiH,0(−,−)

means (higher) extensions with trivial character of Z(Qp). We denote the upper-triangular Borel

subgroup of GL3 by B. If λ is dominant with respect to B, namely if λ1 ≥ λ2 ≥ λ3, we use the notation
L(λ) (resp. L(−λ)) for the irreducible algebraic representation of GL3(Qp) with highest weight λ (resp.
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−λ) with respect to the positive roots determined by B (resp. B). In particular, L(λ) and L(−λ) are

dual of each other. We use the notation P1
def
=

 ∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗

 and P2
def
=

 ∗ 0 0
∗ ∗ ∗
∗ ∗ ∗

 for the two

standard maximal parabolic subgroups of GL3 with unipotent radical N1 and N2 respectively, and
the notation Pi for the opposite parabolic subgroup of Pi for each i = 1, 2. We set

Li
def
= Pi ∩ Pi

and set si for the simple reflection in the Weyl group of Li for each i = 1, 2. In particular, the Weyl
group

WGL3 = {1, s1, s2, s1s2, s2s1, s1s2s1}
of GL3 can be lifted to a subgroup of GL3. Each element w ∈WGL3

acts on X(T ) via the dot action

w · λ def
= w(λ+ (2, 1, 0))− (2, 1, 0).

We will usually use the shortened notation Ni for the set of Qp-points of Ni if this does not cause any
ambiguity. We use the notation M(−λ) for the Verma module in Ob

alg with highest weight −λ (with

respect to B) and simple quotient L(−λ) for each λ ∈ X(T ) (not necessarily dominant). Similarly,
we use the notation Mi(−λ) for the parabolic Verma module in Opi

alg with highest weight −λ with

respect to B (cf. Section 9.4 of [Hum08]). We define Li(λ) as the irreducible algebraic representation
of Li(Qp) with a highest weight λ dominant with respect to B ∩Li. For example, if λ ∈ X(T )+, then

we know that λ, si · λ and sis3−i · λ are dominant with respect to B ∩ L3−i for each i = 1, 2. We use
the following notation for various parabolic inductions

IGL3

B (χ)
def
=
(

Ind
GL3(Qp)

B(Qp)
χ
)an

, IGL3

Pi
(πi)

def
=
(

Ind
GL3(Qp)

Pi(Qp)
πi

)an
if χ is an arbitrary locally analytic character of T (Qp) and πi is an arbitrary locally analytic repre-
sentation of Li(Qp) for each i = 1, 2. Moreover, we use the notation

iGL3

B (χ)
def
=
(

Ind
GL3(Qp)

B(Qp)
χ∞
)∞
⊗E L(λ), iGL3

Pi
(πi)

def
=
(

Ind
GL3(Qp)

Pi(Qp)
π∞i

)∞
⊗E L(λ)

for each i = 1, 2 if χ = δT,λ ⊗E χ∞ and πi = Li(λ) ⊗E π∞i are locally algebraic where χ∞ (resp.
π∞i ) is a smooth representation of T (Qp) (resp. of Li(Qp)). We will also use similar notation for

parabolic induction to Levi subgroups such as ILiB∩Li and iLiB∩Li for each i = 1, 2. Then we define the
locally analytic (generalized) Steinberg representation (of weight λ) as well as the smooth (generalized)
Steinberg representation for GL3(Qp) by

Stan3 (λ)
def
= IGL3

B (δT,λ)/
(
IGL3

P1
(L1(λ)) + IGL3

P2
(L2(λ))

)
, St∞3

def
= iGL3

B (1T )/
(
iGL3

P1
(1L1

) + iGL3

P2
(1L2

)
)

and

vanPi (λ)
def
= IGL3

Pi
(Li(λ))/L(λ), v∞Pi

def
= iGL3

Pi
(1Li)/13

where 13 (resp. 1Li , resp. 1T ) is the trivial representation of GL3(Qp) (resp. of Li(Qp) for each
i = 1, 2, resp. of T (Qp)). We write 1 for the trivial representation of Q×p and define the following
irreducible smooth representations of L1(Qp):

π∞1,1
def
= St∞2 ⊗E 1

π∞1,2
def
= iGL2

B2

(
1⊗E | · |−1

)
⊗E | · |

π∞1,3
def
=

(
St∞2 ⊗E (| · |−1 ◦ det2)

)
⊗E | · |2

and the following smooth representations of L2(Qp):

π∞2,1
def
= 1⊗E St∞2

π∞2,2
def
= | · |−1 ⊗E iGL2

B2
(| · | ⊗E 1)

π∞2,3
def
= | · |−2 ⊗E (St∞2 ⊗E (| · | ◦ det2))
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Consequently, we can define the following locally analytic representations for each i = 1, 2:
(2.4)

C1
si,1

def
= FGL3

P3−i

(
L(−si · λ), 1L3−i

)
C2
si,1

def
= FGL3

P3−i

(
L(−si · λ), π∞3−i,1

)
C1
sis3−i,1

def
= FGL3

P3−i

(
L(−sis3−i · λ), 1L3−i

)
C2
sis3−i,1

def
= FGL3

P3−i

(
L(−sis3−i · λ), π∞3−i,1

)
Csi,si

def
= FGL3

P3−i

(
L(−si · λ), π∞3−i,2

)
Csis3−i,si

def
= FGL3

P3−i

(
L(−sis3−i · λ), π∞3−i,2

)
C1
si,sis3−i

def
= FGL3

P3−i

(
L(−si · λ), d∞P3−i

)
C2
si,sis3−i

def
= FGL3

P3−i

(
L(−si · λ), π∞3−i,3

)
C1
sis3−i,sis3−i

def
= FGL3

P3−i

(
L(−sis3−i · λ), d∞P3−i

)
C2
sis3−i,sis3−i

def
= FGL3

P3−i

(
L(−sis3−i · λ), π∞3−i,3

)
where

d∞P1

def
= | · |−1 ◦ det2 ⊗E | · |2 and d∞P2

def
= | · |−2 ⊗E | · | ◦ det2.

We also define

(2.5) Cs1s2s1,w
def
= FGL3

B (L(−s1s2s1 · λ), χ∞w )

for each w ∈WGL3
where

χ∞1 def
= 1T χ∞s1

def
= | · |−1 ⊗E | · | ⊗E 1 χ∞s2

def
= 1⊗E | · |−1 ⊗E | · |

χ∞s1s2
def
= | · |−2 ⊗E | · | ⊗E | · | χ∞s2s1

def
= | · |−1 ⊗E | · |−1 ⊗E | · |2 χ∞s1s2s1

def
= | · |−2 ⊗E 1⊗E | · |2

The simple objects in the category Op
alg can be described explicitly for each parabolic subgroup

P ⊆ GL3, and the representations considered in (2.4) and (2.5) are all irreducible objects inside

Repla
GL3(Qp),E according to the main theorem of [OS15]. We define Ω as the set that consists of

Cs1s2s1,w for each w ∈WGL3
, as well as the following elements:

(2.6)

L(λ) L(λ)⊗E v∞P1
L(λ)⊗E v∞P2

L(λ)⊗E St∞3
C1
s1,1 C2

s1,1 C1
s2,1 C2

s2,1

C1
s1s2,1 C2

s1s2,1 C1
s2s1,1 C2

s2s1,1

C1
s1,s1s2 C2

s1,s1s2 C1
s2,s2s1 C2

s2,s2s1

C1
s1s2,s1s2 C2

s1s2,s1s2 C1
s2s1,s2s1 C2

s2s1,s2s1

Cs1,s1 Cs1s2,s1 Cs2,s2 Cs2s1,s2

Remark 2.3. The sets of Jordan–Hölder factors of various smooth parabolic inductions of χ∞w and
(parabolic) Verma modules of GL3 are well known (cf. (48),(53) of [Bre17] and Section 9.5 of [Hum08]
respectively). Then it follows quickly from the main theorem of [OS15] that

Ω =
⋃

w∈WGL3

JHGL3(Qp)

(
IGL3

B (χ∞w )
)
.

Lemma 2.4. The representation vanPi (λ) fits into a non-split extension

(2.7) L(λ)⊗E v∞Pi ↪→ vanPi (λ) � C1
s3−i,1

for each i = 1, 2. On the other hand, the representation Stan3 (λ) has the following form:

(2.8) L(λ)⊗E St∞3

C2
s1,1

C2
s2,1

C1
s2s1,1

C1
s1s2,1

C2
s2s1,1

C2
s1s2,1

Cs1s2s1,1 .

Proof. The first claim follows directly from (3.62) of [BD18]. It follows from the main theorem of
[OSc14] that

JHGL3(Qp) (Stan3 (λ)) = {L(λ)⊗E St∞3 , C
2
s1,1, C

2
s2,1, C

1
s2s1,1, C

1
s1s2,1, C

2
s2s1,1, C

2
s1s2,1, Cs1s2s1,1}
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and each Jordan–Hölder factor occurs with multiplicity one. According to the fourth paragraph of
the list before Corollaire 5.2.1 of [Bre17], we observe that

H0

(
Ni, FGL3

Pi

(
L(−s3−isi · λ), iLiB∩Li(1T )

))
= Li(−s3−isi · λ)⊗E iLiB∩Li(1T )

which together with

(2.9) JHGL3(Qp)

(
FGL3

Pi

(
L(−s3−isi · λ), iLiB∩Li(1T )

))
= {C1

s3−isi,1, C
2
s3−isi,1}

implies that FGL3

Pi

(
L(−s3−isi · λ), iLiB∩Li(1T )

)
fits into a non-split extension

(2.10) C1
s3−isi,1 ↪→ F

GL3

Pi

(
L(−s3−isi · λ), iLiB∩Li(1T )

)
� C2

s3−isi,1

for each i = 1, 2. Here (2.9) follows from the exactness of FGL3

Pi
and the irreducibility criterion in

[OS15], as well as the fact that iLiB∩Li(1T ) has length two with Jordan–Hölder factors {1Li , π∞i,1}.
According to Corollaire 5.3.2 as well as the list before Corollaire 5.2.1 of [Bre17], we observe that

H2

(
N3−i, FGL3

Pi

(
Mi(−s3−i · λ), π∞i,1

))
6∼= H2(N3−i, C

2
s3−i,1)⊕H2(N3−i, C

2
s3−isi,1)

which together with

(2.11) JHGL3(Qp)

(
FGL3

Pi

(
Mi(−s3−i · λ), π∞i,1

))
= {C2

s3−i,1, C
2
s3−isi,1}

implies that FGL3

Pi

(
Mi(−s3−i · λ), π∞i,1

)
fits into a non-split extension

(2.12) C2
s3−i,1 ↪→ F

GL3

Pi

(
Mi(−s3−i · λ), π∞i,1

)
� C2

s3−isi,1

for each i = 1, 2. Here (2.11) follows from the exactness of FGL3

Pi
and the irreducibility crite-

rion in [OS15], as well as the fact that Mi(−s3−i · λ) has length two with Jordan–Hölder fac-

tors {Li(−s3−i · λ), Li(−s3−isi · λ)}. We observe that both FGL3

Pi

(
L(−s3−isi · λ), iLiB∩Li(1T )

)
and

FGL3

Pi

(
Mi(−s3−i · λ), π∞i,1

)
are subquotients of IGL3

B (δT,λ) ∼= FGL3

B (M(−λ), 1T ) (cf. [OS15]), and

hence subquotients of Stan3 (λ) as well (using the fact that FGL3

B (M(−λ), 1T ) is multiplicity free,
which is a consequence of the main theorem of [OS15]). We finish the proof by combining (2.10) and
(2.12) with the results before Remark 3.38 of [BD18]. �

Remark 2.5. One can show that all the possibly non-split extensions indicated in (2.8) are non-split.
We decide not to go further here as Lemma 2.4 is precise enough for our application.

2.4. p-adic logarithm and dilogarithm. In this section, we recall the p-adic logarithm and dilog-
arithm function as well as their representation theoretical interpretations.

Let log0 : Q×p → Qp be the branch of p-adic logarithm function which is given by the power series

log0(1 + z)
def
=

∞∑
k=0

zk

k

on the open subgroup 1 + pZp ⊆ Z×p and satisfies the condition log0(p) = log0(ζ) = 0 for each root

of unity ζ. Let valp : Q×p → Z be the p-adic valuation function defined by | · | = p−valp(·) (hence
valp(p) = 1). We notice that

{log0, valp}
forms a basis of the two dimensional E-vector space

Homcont

(
Q×p , E

)
.

We define logL
def
= log0 −L valp for each L ∈ E and consider the following two dimensional locally

analytic representation of Q×p

VL : Q×p → B2(E), a 7→
(

1 logL (a)
0 1

)
.



DILOGARITHM AND HIGHER L -INVARIANTS FOR GL3(Qp) 13

We have

(2.13) socQ×p (VL ) = cosocQ×p (VL ) = 1

where 1 is the trivial character of Q×p . We notice that

Ext1
Q×p

(1, 1) ∼= Homcont

(
Q×p , E

)
,

by a standard fact in (continuous) group cohomology and therefore the set {VL | L ∈ E} exhausts
(up to isomorphism) all different two dimensional locally analytic non-smooth E-representations of
Q×p satisfying (2.13). We abuse the notation VL for the representation of T2(Qp) ∼= Q×p ×Q×p given
by composing with the map

(2.14) T2(Qp)→ Q×p ,

(
a 0
0 b

)
7→ a−1b.

As a result, we can consider the parabolic induction

IGL2

B2
(VL ⊗E δT2,ν)

which fits into an exact sequence (by exactness of IGL2

B2
)

(2.15) IGL2

B2
(δT2,ν) ↪→ IGL2

B2
(VL ⊗E δT2,ν) � IGL2

B2
(δT2,ν).

Then we define ΣGL2(ν,L ) as the subrepresentation of IGL2

B2
(VL ⊗E δT2,ν) /LGL2(ν) with cosocle

LGL2
(ν). It follows from (the proof of) Theorem 3.14 of [BD18] that ΣGL2

(ν,L ) has the form

(2.16) Stan2 (ν) LGL2(ν)

and the set {ΣGL2
(ν,L ) | L ∈ E} exhausts (up to isomorphism) all different locally analytic E-

representations of GL2(Qp) of the form (2.16) that do not contain

LGL2
(ν)⊗E St∞2 LGL2

(ν)

as a subrepresentation. We have the embeddings

ιi : GL2 ↪→ Li

for each i = 1, 2 by identifying GL2 with a Levi block of Li, which induce the embeddings

ιT,i : T2 ↪→ T

by restricting ιi to T2 ( GL2. We use the notation ιT,i(VL ) for the locally analytic representation of
T (Qp) ∼= (Q×p )3 which is VL after restricting to T2 via ιT,i and is trivial after restricting to the other

copy of Q×p . By a direct analogue of ΣGL2(ν,L ), we can construct ΣLi(λ,L ) as the subrepresentation

of ILiB∩Li (ιT,i(VL )⊗E δT,λ) /Li(λ) with cosocle Li(λ). In fact, if we have λ|T2,ιT,i = ν, then we
obviously know that ΣLi(λ,L )|GL2,ιi

∼= ΣGL2
(ν,L ) where the notation (·)|∗,? means the restriction

of · to ∗ via the embedding ?. We observe that the parabolic induction IGL3

Pi
(ΣLi(λ,L )) fits into the

exact sequence

[ vanP3−i
(λ) Stan3 (λ) ] ↪→ IGL3

Pi
(ΣLi(λ,L )) � [ L(λ) vanPi (λ) ].

According to Proposition 5.6 of [Schr11], we know that

Ext1GL3(Qp),λ

(
L(λ), Stan3 (λ)

)
= 0

and thus we can define Σi(λ,L ) as the unique quotient of IGL3

Pi
(ΣLi(λ,L )) that fits into the exact

sequence
Stan3 (λ) ↪→ Σi(λ,L ) � vanPi (λ).

We use the same notation bi,log0
and bi,valp for the image of log0 and valp respectively under the

embedding

(2.17) Ext1
Q×p

(1, 1) ↪→ Ext1T (Qp),0 (1T , 1T )
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induced by the maps

T (Qp) � T2(Qp)
(2.14)−−−−→ Q×p

where the first map comes from the projection Li � GL2 by restriction to T . Hence the set

(2.18) {b1,log0
, b1,valp , b2,log0

, b2,valp}

forms a basis of Ext1T (Qp),0 (1T , 1T ). Recall the elements ci,log, ci,val ∈ Ext1T (Qp),0(1T , 1T ) constructed

after (5.24) of [Schr11] and observe that

(2.19)

{
c1,log = b1,log0

+ 2b2,log0
, c1,val = b1,valp + 2b2,valp

c2,log = 2b1,log0
+ b2,log0

, c2,val = 2b1,valp + b2,valp .

According to (5.70) and (5.71) of [Schr11], we notice that there exists canonical surjections

(2.20) Ext1T (Qp),0 (1T , 1T ) � Ext1GL3(Qp),λ

(
vanPi (λ), Stan3 (λ)

)
with kernel spanned by {ci,log, ci,val}. For each i = 1, 2, the previous constructions of Σi(λ,L ) can
be explained by the composition

(2.21) Homcont

(
Q×p , E

) ∼= Ext1
Q×p

(1, 1) ↪→ Ext1T (Qp),0 (1T , 1T ) � Ext1GL3(Qp),λ

(
vanPi (λ), Stan3 (λ)

)
with the second and third morphism given by (2.17) and (2.20) respectively. We deduce from (2.19)
and the explicit description of (2.17) and (2.20) that the composition (2.21) is actually an isomorphism.
We abuse the notation bi,log0

and bi,valp for the image of log0 and valp under the composition (2.21),
and then notice that the image of c3−i,log and c3−i,val under (2.20) is given by −3bi,log0

and −3bi,valp
respectively.

We define Σ(λ,L1,L2) as the amalgamate sum of Σ1(λ,L1) and Σ2(λ,L2) over Stan3 (λ), for each
L1,L2 ∈ E. Consequently, Σ(λ,L1,L2) has the following form

(2.22) Stan3 (λ)

vanP1
(λ)

vanP2
(λ)

.

In fact, if

(2.23) L1 = −L ′,L2 = −L ∈ E,

we can identify our Σ(λ,L1,L2) with the Σ(λ,L ,L ′) in Definition 5.12 of [Schr11], defined using
the element

(c2,log + L ′c2,val, c1,log + L c1,val) ∈ Ext1GL3(Qp),λ

(
vanP1

(λ)⊕ vanP2
(λ), Stan3 (λ)

)
.

Remark 2.6. In fact, one can identify L1 and L2 with Fontaine–Mazur L -invariants of the corre-
sponding Galois representation via local-global compatibility, according to Remark 3.1 of [Ding18].
This is the reason for the appearance of a sign in (2.23).

We have the following canonical morphism by (5.26) of [Schr11]

(2.24) κ : Ext2T (Qp),0(1T , 1T )→ Ext2GL3(Qp),λ

(
L(λ), Stan3 (λ)

)
.

Note that we also have

(2.25) Ext2T (Qp),0(1T , 1T ) ∼= ∧2
(

Ext1T (Qp),0(1T , 1T )
)

by (5.24) of [Schr11]. The set

(2.26) {b1,valp ∧ b2,valp , b1,log0
∧ b2,valp , b1,valp ∧ b2,log0

, b1,log0
∧ b2,log0

, b1,valp ∧ b1,log0
, b2,valp ∧ b2,log0

}
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forms a basis of ∧2
(

Ext1T (Qp),0(1T , 1T )
)

(cf. (2.18)) and we abuse the same notation (2.26) for the

corresponding basis of Ext2T (Qp),0 (1T , 1T ) (cf. (2.25)). It follows from (5.27) of [Schr11] and (2.19)
that the set

{κ(b1,valp ∧ b2,valp), κ(b1,log0
∧ b2,valp), κ(b1,valp ∧ b2,log0

), κ(b1,log0
∧ b2,log0

)}
forms a basis of the image of (2.24).

Let li2 : Qp \ {0, 1} → Qp be the p-adic dilogarithm function defined by Coleman in [Cole82] and
we consider the function

DL (z)
def
= li2(z) +

1

2
logL (z)logL (1− z)

as in (5.34) of [Schr11]. We also define

d(z)
def
= log0(1− z)valp(z)− log0(z)valp(1− z)

as in (5.36) of [Schr11] and it is clear that

DL −D0 =
L

2
d.

It follows from Theorem 7.2 of [Schr11] that {D0, d} can be interpreted as a basis of

Ext2GL2(Qp),0 (1, Stan2 )

which naturally embeds into Ext2GL2(Qp) (1, Stan2 ) (cf. (5.37) and (5.38) of [Schr11]). Then the map

ιi : GL2 ↪→ Li induces the isomorphisms (cf. (5.42) of [Schr11])

(2.27) Ext2GL2(Qp) (12, Stan2 )
∼←− Ext2Li(Qp),0 (1Li , Stan2 )

∼←− Ext2GL3(Qp),0

(
13, I

GL3

Pi
(Stan2 )

)
where Li(Qp) acts on Stan2 via the projection Li(Qp) � GL2(Qp). We consider the following mor-
phisms

(2.28) Ext2GL2(Qp) (12, Stan2 )
∼−→ Ext2GL3(Qp),0

(
13, I

GL3

Pi
(Stan2 )

)
→ Ext2GL3(Qp),0 (13, Stan3 )

induced by the inverse of the composition (2.27) as well as the surjection IGL3

Pi
(Stan2 ) � Stan3 . Finally

there is a canonical isomorphism

Ext2GL3(Qp),0 (13, Stan3 ) ∼= Ext2GL3(Qp),λ

(
L(λ), Stan3 (λ)

)
by (5.20) of [Schr11].

Lemma 2.7. We have
dimEExt2GL3(Qp),λ

(
L(λ), Stan3 (λ)

)
= 5.

Proof. This follows directly from Proposition 5.6 of [Schr11]. �

Lemma 2.8. There exists α ∈ E× such that

ι1(d) = ι2(d) = −3α
(
κ(b1,log0

∧ b2,valp + b1,valp ∧ b2,log0

)
.

Proof. This follows directly from Lemma 5.8 of [Schr11] and (2.19). �

Remark 2.9. It follows from the proof of Lemma 5.9 of [Schr11] that ι1(D0) − ι2(D0) is a linear
combination of

{κ(b1,valp ∧ b2,valp), κ(b1,log0
∧ b2,valp), κ(b1,valp ∧ b2,log0

), κ(b1,log0
∧ b2,log0

)},
but à priori we do not know the coefficients of this linear combination.

We recall from (5.55) of [Schr11] that

(2.29) c0
def
= α−1ι1(D0)− 1

2
κ(c1,log ∧ c2,log)

where α is defined in Lemma 5.8 of [Schr11].
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Lemma 2.10. The set

{κ(b1,valp ∧ b2,valp), κ(b1,log0
∧ b2,valp), κ(b1,valp ∧ b2,log0

), κ(b1,log0
∧ b2,log0

), c0}

forms a basis of Ext2GL3(Qp),λ

(
L(λ), Stan3 (λ)

)
.

Proof. This follows directly from (5.57) of [Schr11] and (2.19). �

Lemma 2.11. We have

dimEExt1GL3(Qp),λ

(
L(λ), Σ(λ,L1,L2)

)
= 1 and dimEExt2GL3(Qp),λ

(
L(λ), Σ(λ,L1,L2)

)
= 2.

Moreover, the image of

{κ(b1,valp ∧ b2,valp), c0}
under

Ext2GL3(Qp),λ

(
L(λ), Stan3 (λ)

)
→ Ext2GL3(Qp),λ

(
L(λ), Σ(λ,L1,L2)

)
forms a basis of Ext2GL3(Qp),λ

(
L(λ), Σ(λ,L1,L2)

)
.

Proof. This follows directly from Corollary 5.17 of [Schr11] and (2.19). �

3. A key result for GL2(Qp)

The goal of this section is to prove Proposition 3.5, which is a key technical result that excludes
the existence of a locally analytic representation of GL2(Qp) with a specific form. Note that Propo-
sition 3.5 will be crucially used in Section 5 and Section 6 (most notably in Proposition 5.4 and
Proposition 6.2). We usually identify GL2(Qp) with a Levi factor of a maximal parabolic of GL3

when we apply the results from this section.
We use the following shortened notation

I(ν)
def
= IGL2

B2
(δT2,ν), Ĩ(ν)

def
= IGL2

B2
(δT2,ν ⊗E (| · |−1 ⊗E | · |))

for each weight ν ∈ X(T2).

Lemma 3.1. We have

dimEExt1GL2(Qp)

(
Ĩ(s · ν), ΣGL2(ν,L )

)
= 1.

Proof. This is essentially part of the proof of Theorem 3.14 of [BD18]. In fact, we know that

Ext1GL2(Qp)

(
Ĩ(s · ν), LGL2

(ν)⊗E St∞2 I(s · ν)
)

= 0

Ext2GL2(Qp)

(
Ĩ(s · ν), LGL2

(ν)⊗E St∞2 I(s · ν)
)

= 0

and

dimEExt1GL2(Qp)(Ĩ(s · ν), LGL2
(ν)) = 1

which finish the proof by a simple dévissage induced by the short exact sequence(
LGL2(ν)⊗E St∞2 I(s · ν)

)
↪→ ΣGL2(ν,L ) � LGL2

(ν).

�

For each split p-adic reductive group H, we have a natural embedding

U(h) ↪→ D(H,E){1} ↪→ D(H,E)

where D(H,E){1} is the closed subalgebra of D(H,E) consisting of distributions supported at the
identity element (cf. [Koh07]). The embedding above induces another embedding

(3.1) Z(U(h)) ↪→ Z(D(H,E))

by the main result of [Koh07] where Z(·) is the notation for the center of an E-algebra. We say that

Π ∈ Repla
GL2(Qp),E has an infinitesimal character if Z(U(h)) acts on Π′ via a character.
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Lemma 3.2. If V1, V2 ∈ Repla
H,E have both the same central character and the same infinitesimal

character and satisfy

HomH (V2, V1) = 0,

then any non-split extension of the form V1 V2 has both the same central character and the same

infinitesimal character as the one for V1 and V2.

Proof. This is a direct analogue of Lemma 3.1 in [BD18] and follows essentially from the fact that
both D(Z(H), E) and Z(U(h)) are subalgebras of Z(D(H,E)) by [Koh07]. �

We fix a Borel subgroup BH ⊆ H as well as its opposite Borel subgroup BH . We consider the split

maximal torus TH
def
= BH ∩BH and use the notation NH (resp. NH) for the unipotent radical of BH

(resp. of BH). We use the notation JBH (·) for Emertion’s Jacquet functor (cf. [Eme06]).

Lemma 3.3. If V ∈ Repla
H,E has an infinitesimal character, then U(th)WH (as a subalgebra of U(th))

acts on JBH (V ) via a character where WH is the Weyl group of H.

Proof. We know by our assumption that Z(U(h)) acts on V ′ (and hence on V as well) via a character.
We note from (3.1) that Z(U(h)) commutes with D(NH , E) ⊆ D(H,E) and thus the action of Z(U(h))

on V commutes with that of NH , which implies that Z(U(h)) acts on V NH
◦

via a character for each

open compact subgroup NH
◦ ⊆ NH . We write

θ : Z(U(h))
∼−→ U(th)WH

for the Harish-Chandra isomorphism (cf. Section 1.7 of [Hum08]) and j1 and j2 for the embeddings

j1 : Z(U(h)) ↪→ U(h) and j2 : U(th) ↪→ U(h).

We choose an arbitrary Verma module MH(λH) with highest weight λH , namely we have

MH(λ)
def
= U(h)⊗U(bH) λH .

We use the notation MH(λH)µ for the subspace of MH(λ) with th-weight µ and note that

dimEMH(λH)λH = 1.

We easily observe that

(3.2) Z(U(h)) ·MH(λH)λH = MH(λH)λH and U(th) ·MH(λH)λH = MH(λH)λH .

It is well-known that the direct sum decomposition

(3.3) h = nH ⊕ th ⊕ nH

induces a tensor decomposition of E-vector space

(3.4) U(h) = U(nH)⊗E U(th)⊗E U(nH).

Hence we can write each element in U(h) as a polynomial with variables indexed by a standard basis
of h that is compatible with (3.3). It follows from the definition of θ as the restriction to Z(U(h)) of
the projection U(h) � U(th) (coming from (3.4)) that

j1(z)− j2 ◦ θ(z) ∈ U(h) · nH + nH · U(h)

for each z ∈ Z(U(h)). If a monomial f 6= 0 in the decomposition (3.4) of j1(z)− j2 ◦ θ(z) belongs to

nH · U(nH) · U(th),

then we have

0 6= f ·MH(λH)λH ⊆ nH ·MH(λH)λH ⊆
⊕
µ6=λH

MH(λH)µ,

which contradicts (3.2). Hence we conclude that

j1(z)− j2 ◦ θ(z) ∈ U(h) · nH
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and in particular

j1(z) = j2 ◦ θ(z)
on V NH

◦
for each z ∈ Z(U(h)). Hence we deduce that U(th)WH acts on V NH

◦
via a character. We

note by the definition of JBH (cf. [Eme06]) that we have a T+
H -equivariant embedding

(3.5) JBH (V ) ↪→ V NH
◦

where T+
H is a certain submonoid of TH containing an open compact subgroup. As a result, (3.5) is

also U(th)-equivariant and thus U(th)WH acts on JBH (V ) via a character which finishes the proof. �

We take H = GL2(Qp), BH = B2 and BH = B2 in the rest of this section. The idea of the following
lemma which is closely related to Lemma 3.20 of [BD18], owes very much to Y.Ding.

Lemma 3.4. A locally analytic representation of either the form

(3.6) LGL2(ν)⊗E St∞2 I(s · ν) LGL2(ν) LGL2(ν)⊗E St∞2

or the form

(3.7) LGL2
(ν) Ĩ(s · ν) LGL2

(ν)⊗E St∞2 LGL2
(ν)

does not have an infinitesimal character.

Proof. Assume that a representation V of the form (3.6) has an infinitesimal character. Note that V
can be represented by an element in the space Ext1GL2(Qp)(LGL2

(ν) ⊗E St∞2 ,ΣGL2
(ν,L )) for certain

L ∈ E. We consider the upper-triangular Borel subgroup B2 and the diagonal split torus T2. Then
by the proof of Lemma 3.20 of [BD18] we know that the Jacquet functor JB2

(cf. [Eme06] for the

definition) induces a injection

(3.8) Ext1GL2(Qp)

(
LGL2

(ν)⊗E St∞2 , ΣGL2
(ν,L )

)
↪→ Ext1T2(Qp)

(
δT2,ν ⊗E (| · | ⊗E | · |−1), δT2,ν ⊗E (| · | ⊗E | · |−1)

)
.

We deduce by twisting δT2,−ν ⊗E (| · |−1 ⊗E | · |) that we have an isomorphism

(3.9) Ext1T2(Qp)

(
δT2,ν ⊗E (| · | ⊗E | · |−1), δT2,ν ⊗E (| · | ⊗E | · |−1)

) ∼= Ext1T2(Qp) (1T2
, 1T2

) .

It follows from Lemma 3.20 of [BD18] (up to changes on notation) that the image of the composition
of (3.9) and (3.8) is a certain three dimensional subspace Ext1T2(Qp)(1T2

, 1T2
)L of Ext1T2(Qp)(1T2

, 1T2
)

depending on L . More precisely, if we use the notation ε1, ε2 for the two characters

ε1 : T2(Qp)→ Q×p ,

(
a 0
0 b

)
7→ a and ε2 : T2(Qp)→ Q×p ,

(
a 0
0 b

)
7→ b,

then the set

{log0 ◦ ε1, valp ◦ ε1, log0 ◦ ε2, valp ◦ ε2}
forms a basis of Ext1T2(Qp)(1T2

, 1T2
), and the subspace Ext1T2(Qp)(1T2

, 1T2
)L has

{log0 ◦ ε1 + log0 ◦ ε2, valp ◦ ε1 + valp ◦ ε2, log0 ◦ ε1 − log0 ◦ ε2 + L (valp ◦ ε1 − valp ◦ ε2)}

as a basis. It follows from Lemma 3.3 that U(t2)WGL2 acts on JB2
(V ) via a character where WGL2

is the Weyl group of GL2. Note that the subspace of Ext1T2(Qp)(1T2
, 1T2

) corresponding to JB2
(V )

(by twisting δT2,−ν ⊗E (| · |−1 ⊗E | · |)) is killed by U(t2)WGL2 . We observe that the subspace M of

Ext1T2(Qp)(1T2
, 1T2

) killed by U(t2)WGL2 is two dimensional with basis

{valp ◦ ε1, valp ◦ ε2}

and we have

M ∩ Ext1T2(Qp)(1T2
, 1T2

)L = E (valp ◦ ε1 + valp ◦ ε2) .
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However, the representation associated with the line E(valp ◦ ε1 + valp ◦ ε2) has a subrepresentation
of the form

LGL2(ν)⊗E St∞2 LGL2(ν)⊗E St∞2

which contradicts the fact that V has the form (3.6).
The proof of the second statement is a direct analogue as we observe that JB2

also induces the
following embedding

Ext1GL2(Qp)

(
LGL2(ν), LGL2(ν) Ĩ(s · ν) LGL2(ν)⊗E St∞2 LGL2(ν)

)
↪→ Ext1T2(Qp) (δT2,ν , δT2,ν) .

�

We define Σ+
2 (ν,L ) as the unique (up to isomorphism) non-split extension of ΣGL2

(ν,L ) by Ĩ(s·ν)
given by Lemma 3.1.

Proposition 3.5. We have

Ext1GL2(Qp)

(
LGL2(ν)⊗E St∞2 LGL2(ν) , Σ+

2 (ν,L )
)

= 0.

Proof. Assume on the contrary that V is a representation given by a certain non-zero element inside

Ext1GL2(Qp)

(
LGL2(ν)⊗E St∞2 LGL2(ν) , Σ+

2 (ν,L )
)
.

We deduce that V has both a central character and an infinitesimal character from Lemma 3.2 and
the fact

HomGL2(Qp)

(
LGL2(ν)⊗E St∞2 LGL2(ν) , Σ+

2 (ν,L )
)

= 0.

As we have

Ext1GL2(Qp)(LGL2
(ν)⊗E St∞2 , I(s · ν)) = Ext1GL2(Qp)(LGL2

(ν), Ĩ(s · ν)) = 0,

dimEExt1GL2(Qp)

(
LGL2

(ν), LGL2
(ν)⊗E St∞2

)
= 1

and

dimEExt1GL2(Qp)

(
LGL2

(ν), I(s · ν)
)

= 1

by a combination of Lemma 3.13 of [BD18] with Lemma 2.1, we deduce that V has a subrepresentation
of one of the three following forms

(i) LGL2
(ν)⊗E St∞2 LGL2

(ν)⊗E St∞2 ;

(ii) LGL2
(ν)⊗E St∞2 I(s · ν) LGL2

(ν) LGL2
(ν)⊗E St∞2 ;

(iii) LGL2(ν)⊗E St∞2 I(s · ν) LGL2(ν) Ĩ(s · ν) LGL2(ν)⊗E St∞2 LGL2(ν) .

In the first case, we know from Proposition 4.7 of [Schr11] and the main result of [Or05] that

Ext1GL2(Qp),ν

(
LGL2

(ν)⊗E St∞2 , LGL2
(ν)⊗E St∞2

)
= 0

and therefore this case is impossible due to the existence of central character for V (and hence for
its subrepresentations). In the second case, we deduce from Lemma 3.4 a contradiction as V has an
infinitesimal character. In the third case, we thus know that V has a quotient representation of the
form

LGL2
(ν) Ĩ(s · ν) LGL2

(ν)⊗E St∞2 LGL2
(ν)

which can not have an infinitesimal character due to Lemma 3.4, a contradiction again. Hence we
finish the proof. �
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Remark 3.6. Note that the argument in Proposition 3.5 actually implies that

Ext1GL2(Qp)

(
LGL2(ν)⊗E St∞2 LGL2(ν) , I(s · ν) LGL2(ν) Ĩ(s · ν)

)
= 0

and we can show by the same method that

Ext1GL2(Qp)

(
LGL2

(ν)⊗E St∞2LGL2
(ν) , Ĩ(s · ν) LGL2

(ν)⊗E St∞2 I(s · ν)
)

= 0.

4. Computations of Ext I

In this section, we are going to compute a list of Ext-groups based on known results on group
cohomology in Théorème 4.10 of [Schr11] and Section 5.2, 5.3 of [Bre17]. The technical results proved
in this section will be frequently used in more complicated computation in Section 5 and Section 6.
In each proposition or lemma below, we present a list of Ext-groups whose computations are parallel
to each other.

Proposition 4.1. The following E-vector spaces are one dimensional

Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E v∞Pi

)
Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi , L(λ)

)
Ext1GL3(Qp),λ

(
L(λ)⊗E St∞3 , L(λ)⊗E v∞Pi

)
Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi , L(λ)⊗E St∞3

)
Ext2GL3(Qp),λ

(
L(λ)⊗E St∞3 , L(λ)

)
Ext2GL3(Qp),λ

(
L(λ), L(λ)⊗E St∞3

)
Ext2GL3(Qp),λ

(
L(λ)⊗E v∞P1

, L(λ)⊗E v∞P2

)
Ext2GL3(Qp),λ

(
L(λ)⊗E v∞P2

, L(λ)⊗E v∞P1

)
for each i = 1, 2. Moreover, for all the other choices of V1, V2 ∈ {L(λ), L(λ) ⊗E v∞P1

, L(λ) ⊗E
v∞P2

, L(λ)⊗E St∞3 }, we have

ExtkGL3(Qp),λ (V1, V2) = 0

for each k = 1, 2.

Proof. This follows from a special case of Proposition 4.7 of [Schr11] and the main result of [Or05]. �

Lemma 4.2. We have

ExtkGL3(Qp),λ

(
L(λ)⊗E v∞Pi L(λ) , L(λ)⊗E St∞3

)
= 0

ExtkGL3(Qp),λ

(
L(λ)⊗E v∞Pi L(λ)⊗E St∞3 , L(λ)

)
= 0

ExtkGL3(Qp),λ

(
L(λ)⊗E v∞PiL(λ) , L(λ)⊗E v∞P3−i

)
= 0

for each i = 1, 2 and k = 1, 2.

Proof. It is sufficient to prove that

(4.1) Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi L(λ) , L(λ)⊗E St∞3

)
= 0

and

(4.2) Ext2GL3(Qp),λ

(
L(λ)⊗E v∞Pi L(λ) , L(λ)⊗E St∞3

)
= 0

as the other cases are similar. We observe that (4.1) is equivalent to the non-existence of a represen-
tation of the form

L(λ)⊗E St∞3 L(λ)⊗E v∞Pi L(λ)

which is again equivalent to the vanishing

(4.3) Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E St∞3 L(λ)⊗E v∞Pi

)
= 0,

using the fact (cf. Proposition 4.1)

Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E St∞3

)
= 0.
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The short exact sequence(
L(λ)⊗E St∞3 L(λ)⊗E v∞Pi

)
↪→ FGL3

Pi

(
Mi(−λ), π∞1,3

)
� C2

s3−i,s3−isi

induces an injection

Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E St∞3 L(λ)⊗E v∞Pi

)
↪→ Ext1GL3(Qp),λ

(
L(λ), FGL3

Pi

(
Mi(−λ), π∞i,3

))
.

Therefore (4.3) follows from Lemma 2.1 and the fact (using Théorème 4.10 of [Schr11] and a comparison
of Z(Li(Qp))-action)

Ext1Li(Qp),λ

(
H0(Ni, L(λ)), Li(λ)⊗E π∞i,3

)
= HomLi(Qp),λ

(
H1(Ni, L(λ)), Li(λ)⊗E π∞i,3

)
= 0.

On the other hand, the short exact sequence

L(λ)⊗E v∞Pi ↪→
(
L(λ)⊗E v∞Pi L(λ)

)
� L(λ)

induces a long exact sequence

Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E St∞3

)
↪→ Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi L(λ) , L(λ)⊗E St∞3

)
→ Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi , L(λ)⊗E St∞3

)
→ Ext2GL3(Qp),λ

(
L(λ), L(λ)⊗E St∞3

)
→ Ext2GL3(Qp),λ

(
L(λ)⊗E v∞Pi L(λ) , L(λ)⊗E St∞3

)
→ Ext2GL3(Qp),λ

(
L(λ)⊗E v∞Pi , L(λ)⊗E St∞3

)
and thus we can deduce (4.2) from Proposition 4.1 and (4.1). �

According to Proposition 4.1, we may define W0 as the unique (up to isomorphism) locally algebraic
representation of length three satisfying

socGL3(Qp)(W0) = L(λ)⊗E
(
v∞P1
⊕ v∞P2

)
and cosocGL3(Qp)(W0) = L(λ).

We also define the unique (up to isomorphism) locally algebraic representation of the form

(4.4) Wi
def
= L(λ)⊗E v∞Pi L(λ)

for each i = 1, 2

Lemma 4.3. We have

dimEExt1GL3(Qp),λ

(
W0, L(λ)⊗E St∞3

)
= 1

and

Ext2GL3(Qp),λ

(
W0, L(λ)⊗E St∞3

)
= 0.

Proof. The short exact sequence

L(λ)⊗E v∞P1
↪→W0 �W2

induces a long exact sequence

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P1

, L(λ)⊗E St∞3
)
↪→ Ext1GL3(Qp),λ

(
W0, L(λ)⊗E St∞3

)
→ Ext1GL3(Qp),λ

(
W2, L(λ)⊗E St∞3

)
→ Ext2GL3(Qp),λ

(
L(λ)⊗E v∞P1

, L(λ)⊗E St∞3
)

→ Ext2GL3(Qp),λ

(
W0, L(λ)⊗E St∞3

)
→ Ext2GL3(Qp),λ

(
W2, L(λ)⊗E St∞3

)
which finishes the proof by Proposition 4.1, (4.1) and (4.2). �



22 ZICHENG QIAN

Recall that we have introduced a set Ω consisting of irreducible locally analytic representations of
GL3(Qp) in (2.6). We define the following subsets of Ω:

Ω1

(
L(λ)

)
def
= {L(λ)⊗E v∞P1

, L(λ)⊗E v∞P2
, C1

s1,1, C
1
s2,1}

Ω1

(
L(λ)⊗E v∞P1

)
def
= {L(λ), L(λ)⊗E St∞3 , C

2
s1,1, Cs2,s2 , C

1
s1,s1s2}

Ω1

(
L(λ)⊗E v∞P2

)
def
= {L(λ), L(λ)⊗E St∞3 , C

2
s2,1, Cs1,s1 , C

1
s2,s2s1}

Ω1

(
L(λ)⊗E St∞3

)
def
= {L(λ)⊗E v∞P1

, L(λ)⊗E v∞P2
, C2

s1,s1s2 , C
2
s2,s2s1}

Ω2

(
L(λ)

)
def
= {L(λ)⊗E St∞3 , C

2
s1,1, C

2
s2,1, C

1
s1s2,1, C

1
s2s1,1}

Ω2

(
L(λ)⊗E v∞P1

)
def
= {L(λ)⊗E v∞P2

, C1
s1,1, C

2
s1,s1s2 , C

2
s1s2,1, Cs2s1,s2}

Ω2

(
L(λ)⊗E v∞P2

)
def
= {L(λ)⊗E v∞P1

, C1
s2,1, C

2
s2,s2s1 , C

2
s2s1,1, Cs1s2,s1}

Ω2

(
L(λ)⊗E St∞3

)
def
= {L(λ), C1

s1,s1s2 , C
1
s2,s2s1 , C

2
s1s2,s1s2 , C

2
s2s1,s2s1}

Lemma 4.4. For each

V0 ∈ {L(λ), L(λ)⊗E v∞P1
, L(λ)⊗E v∞P2

, L(λ)⊗E St∞3 },

we have {
dimEExt1GL3(Qp),λ (V0, V ) = 1 if V ∈ Ω1(V0);

Ext1GL3(Qp),λ (V0, V ) = 0 if V ∈ Ω \ Ω1(V0).

Proof. We only prove the statements for V0 = L(λ) as other cases are similar. If

V ∈ {L(λ), L(λ)⊗E v∞P1
, L(λ)⊗E v∞P2

, L(λ)⊗E St∞3 }

then the conclusion follows from Proposition 4.1. If

V = FGL3

Pi
(L(−s3−isi · λ), π∞i )

for a smooth irreducible representation π∞i and i = 1 or 2, then it follows from Lemma 2.1 that

(4.5) Ext1Li(Qp),λ

(
H0(Ni, L(λ)), Li(s3−isi · λ)⊗E π∞i

)
↪→ Ext1GL3(Qp),λ

(
L(λ), V

)
→ HomLi(Qp),λ

(
H1(Ni, L(λ)), Li(s3−isi · λ)⊗E π∞i

)
→ Ext2Li(Qp),λ

(
H0(Ni, L(λ)), Li(s3−isi · λ)⊗E π∞i

)
.

We combine (4.5) with Théorème 4.10 of [Schr11] and deduce that

(4.6) Ext1Li(Qp),λ

(
Li(λ), Li(s3−isi · λ)⊗E π∞i

)
↪→ Ext1GL3(Qp),λ

(
L(λ), V

)
→ HomLi(Qp),λ

(
Li(s3−i · λ), Li(s3−isi · λ)⊗E π∞i

)
.

We notice that Z(Li(Qp)) acts via different characters on Li(λ), Li(s3−i ·λ) and Li(s3−isi ·λ)⊗E π∞i ,
and thus we have the equalities

Ext1Li(Qp),λ

(
Li(λ), Li(s3−isi · λ)⊗E π∞i

)
= 0

HomLi(Qp),λ

(
Li(s3−i · λ), Li(s3−isi · λ)⊗E π∞i

)
= 0

which imply that

(4.7) Ext1GL3(Qp),λ

(
L(λ), FGL3

Pi
(L(−s3−isi · λ), π∞i )

)
= 0

for each π∞i and i = 1, 2. If

V = FGL3

Pi
(L(−s3−i · λ), π∞i )

for a smooth irreducible representation π∞i and i = 1 or 2, then the short exact sequence

FGL3

Pi
(L(−s3−i · λ), π∞i ) ↪→ FGL3

Pi
(Mi(−s3−i · λ), π∞i ) � FGL3

Pi
(L(−s3−isi · λ), π∞i )
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induces a long exact sequence

Ext1GL3(Qp),λ

(
L(λ), V

)
↪→ Ext1GL3(Qp),λ

(
L(λ), FGL3

Pi
(Mi(−s3−i · λ), π∞i )

)
→ Ext1GL3(Qp),λ

(
L(λ), FGL3

Pi
(L(−s3−isi · λ), π∞i )

)
which implies an isomorphism

(4.8) Ext1GL3(Qp),λ

(
L(λ), V

) ∼−→ Ext1GL3(Qp),λ

(
L(λ), FGL3

Pi
(Mi(−s3−i · λ), π∞i )

)
by (4.7). It follows from (4.8), Théorème 4.10 of [Schr11] and Lemma 2.1 that

(4.9) Ext1Li(Qp),λ

(
Li(λ), Li(s3−i · λ)⊗E π∞i

)
↪→ Ext1GL3(Qp),λ

(
L(λ), V

)
→ HomLi(Qp),λ

(
Li(s3−i · λ), Li(s3−i · λ)⊗E π∞i

)
→ Ext2Li(Qp),λ

(
Li(λ), Li(s3−i · λ)⊗E π∞i

)
.

As Z(Li(Qp)) acts via different characters on Li(λ) and Li(s3−i · λ)⊗E π∞i , we have the equalities

Ext1Li(Qp),λ

(
Li(λ), Li(s3−isi · λ)⊗E π∞i

)
= 0

Ext2Li(Qp),λ

(
Li(λ), Li(s3−isi · λ)⊗E π∞i

)
= 0

which imply that

(4.10) Ext1GL3(Qp),λ

(
L(λ), V

) ∼−→ HomLi(Qp),λ

(
Li(s3−i · λ), Li(s3−i · λ)⊗E π∞i

)
.

Note that
HomLi(Qp),λ

(
Li(s3−i · λ), Li(s3−i · λ)⊗E π∞i

)
= 0

for each smooth irreducible π∞i 6= 1Li . Hence we deduce that

dimEExt1GL3(Qp),λ

(
L(λ), FGL3

Pi
(L(−s3−i · λ), 1Li)

)
= 1

and

Ext1GL3(Qp),λ

(
L(λ), FGL3

Pi
(L(−s3−i · λ), π∞i )

)
= 0

for each smooth irreducible π∞i 6= 1Li . Finally, similar methods together with Théorème 4.10 of
[Schr11] also show that

Ext1GL3(Qp),λ

(
L(λ), FGL3

B (L(−s1s2s1 · λ), χ∞w )
)

= 0

for each w ∈W . �

Lemma 4.5. For each

V0 ∈ {L(λ), L(λ)⊗E v∞P1
, L(λ)⊗E v∞P2

, L(λ)⊗E St∞3 },
we have {

dimEExt2GL3(Qp),λ (V0, V ) = 1 if V ∈ Ω2(V0);

Ext2GL3(Qp),λ (V0, V ) = 0 if V ∈ Ω \ Ω2(V0).

Proof. We only prove the statements for V0 = L(λ) as other cases are similar. If

V ∈ {L(λ), L(λ)⊗E v∞P1
, L(λ)⊗E v∞P2

, L(λ)⊗E St∞3 }
then the conclusion follows from Proposition 4.1. We notice that Z(Li(Qp)) acts via different char-

acters on Li(λ), Li(s3−i · λ) and Li(s3−isi · λ)⊗E π∞i , and thus we have

(4.11) Ext2Li(Qp),λ

(
Li(λ), Li(s3−isi · λ)⊗E π∞i

)
= 0

Ext1Li(Qp),λ

(
Li(s3−i · λ), Li(s3−isi · λ)⊗E π∞i

)
= 0

Ext3Li(Qp),λ

(
Li(λ), Li(s3−isi · λ)⊗E π∞i

)
= 0

We also notice that

(4.12) HomLi(Qp),λ

(
Li(s3−isi · λ), Li(s3−isi · λ)⊗E π∞i

)
= 0
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for each smooth irreducible π∞i 6= 1Li and

(4.13) dimEHomLi(Qp),λ

(
Li(s3−isi · λ), Li(s3−isi · λ)

)
= 1.

We combine (4.11), (4.12) and (4.13) with Lemma 2.1 and Théorème 4.10 of [Schr11] and deduce that

(4.14) Ext2GL3(Qp),λ

(
L(λ), FGL3

Pi
(L(−s3−isi · λ), π∞i )

)
= 0

for each smooth irreducible π∞i 6= 1Li and

(4.15) dimEExt2GL3(Qp),λ

(
L(λ), FGL3

Pi
(L(−s3−isi · λ), 1Li)

)
= 1

which finishes the proof if
V = FGL3

Pi
(L(−s3−isi · λ), π∞i ).

Similarly, we have

(4.16) Ext2Li(Qp),λ

(
Li(λ), Li(s3−i · λ)⊗E π∞i

)
= 0

HomLi(Qp),λ

(
Li(s3−isi · λ), Li(s3−i · λ)⊗E π∞i

)
= 0

Ext3Li(Qp),λ

(
Li(λ), Li(s3−i · λ)⊗E π∞i

)
= 0

We claim that

(4.17) Ext1Li(Qp),λ

(
Li(s3−i · λ), Li(s3−i · λ)⊗E π∞i

) ∼= Ext1Li(Qp),0 (1Li , π
∞
i )

sm

for each π∞i 6= 1Li , where the RHS means Ext1 inside the abelian category Rep∞Li(Qp),E . The reason

behind (4.17) is that any non-split extension in LHS of (4.17) necessarily has infinitesimal character
(using Lemma 3.2), hence must split after restricting to li. In other words, any non-split extension in
LHS of (4.17) must have the form Li(s3−i ·λ)⊗EW where W is a smooth non-split extension coming
from RHS of (4.17). Hence it is clear that

(4.18) Ext1Li(Qp),λ

(
Li(s3−i · λ), Li(s3−i · λ)⊗E π∞i

)
= 0

for each smooth irreducible π∞i 6= 1Li , π
∞
i,1 and

(4.19) dimEExt1Li(Qp),λ

(
Li(s3−i · λ), Li(s3−i · λ)⊗E π∞i,1

)
= 1.

By adapting arguments in Section 4.2 (cf. (4.23) and Proposition 4.5) of [Schr11], we claim that

(4.20) dimEExt1Li(Qp),λ

(
Li(s3−i · λ), Li(s3−i · λ)

)
= 1, Ext2Li(Qp),λ

(
Li(s3−i · λ), Li(s3−i · λ)

)
= 0.

We combine (4.16) and (4.18) with Lemma 2.1 and Théorème 4.10 of [Schr11] and deduce that

(4.21) Ext2GL3(Qp),λ

(
L(λ), FGL3

Pi
(Mi(−s3−i · λ), π∞i )

)
= 0

for each smooth irreducible π∞i 6= 1Li , π
∞
i,1. Similarly, we use (4.19) and (4.20) to conclude that

(4.22) dimEExt2GL3(Qp),λ

(
L(λ), FGL3

Pi
(Mi(−s3−i · λ), π∞i )

)
= 1

for π∞i = 1Li , π
∞
i,1. The short exact sequence

FGL3

Pi
(L(−s3−i · λ), π∞i ) ↪→ FGL3

Pi
(Mi(−s3−i · λ), π∞i ) � FGL3

Pi
(L(−s3−isi · λ), π∞i )

induces a long exact sequence

Ext1GL3(Qp),λ

(
L(λ), FGL3

Pi
(L(−s3−isi · λ), π∞i )

)
→ Ext2GL3(Qp),λ

(
L(λ), FGL3

Pi
(L(−s3−i · λ), π∞i )

)
→ Ext2GL3(Qp),λ

(
L(λ), FGL3

Pi
(Mi(−s3−i · λ), π∞i )

)
→ Ext2GL3(Qp),λ

(
L(λ), FGL3

Pi
(L(−s3−isi · λ), π∞i )

)
→ Ext3GL3(Qp),λ

(
L(λ), FGL3

Pi
(L(−s3−i · λ), π∞i )

)
.

The first term always vanishes thanks to Lemma 4.4. According to (4.14), the fourth terms vanishes
whenever π∞i 6= 1Li . If π∞i 6= 1Li , π

∞
i,1, then the third term vanishes (cf. (4.21)), and so does the
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second term. If π∞i = π∞i,1, then the third terms has dimension one, and so does the second term. If
π∞i = 1Li , we note that the fifth term vanishes and both the third and fourth term have dimension
one (cf. (4.20) and (4.22)), and thus the second term vanishes. Consequently, we finish the proof if

V = FGL3

Pi
(L(−s3−i · λ), π∞i ).

Finally, similar methods together with Théorème 4.10 of [Schr11] also show that

Ext2GL3(Qp),λ

(
L(λ), FGL3

B (L(−s1s2s1 · λ), χ∞w )
)

= 0

for each w ∈W . �

We define

Ω−
def
= Ω \ {L(λ), L(λ)⊗E v∞P1

, L(λ)⊗E v∞P2
, L(λ)⊗E St∞3 }.

Then we define the following subsets of Ω− for each i = 1, 2:

Ω1

(
C1
si,1

)
def
= {C1

sis3−i,1, C
2
s3−isi,1, C

2
si,1, C

1
si,1}

Ω1

(
C2
si,1

)
def
= {C2

sis3−i,1, Cs3−isi,s3−i , C
1
si,1, C

2
si,1}

Ω1

(
C1
si,sis3−i

)
def
= {C1

sis3−i,sis3−i , Cs3−isi,s3−i , C
2
si,sis3−i , C

1
si,sis3−i}

Ω1

(
C2
si,sis3−i

)
def
= {C2

sis3−i,sis3−i , C
1
s3−isi,s3−isi , C

1
si,sis3−i , C

2
si,sis3−i}

Ω1 (Csi,si)
def
= {Csis3−i,si , C1

s3−isi,1, C
2
s3−isi,s3−isi , Csi,si}

Lemma 4.6. For each

V0 ∈ {C1
si,1, C

2
si,1, C

1
si,sis3−i , C

2
si,sis3−i , Csi,si | i = 1, 2},

we have {
dimEExt1GL3(Qp),λ (V0, V ) = 1 if V ∈ Ω1(V0);

Ext1GL3(Qp),λ (V0, V ) = 0 if V ∈ Ω− \ Ω1(V0).

Proof. The proof is very similar to that of Lemma 4.4, and the main difference is that we need
Corollaire 5.3.2 of [Bre17] instead of the list before Corollaire 5.2.1 of [Bre17]. �

Lemma 4.7. We have

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi L(λ) , C2

si,1

)
= 0

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi L(λ)⊗E St∞3 , C1

si,sis3−i

)
= 0

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞PiL(λ) , C1

si,1

)
= 0

Ext1GL3(Qp),λ

(
L(λ)⊗E St∞3 L(λ)⊗E v∞Pi , C

2
si,sis3−i

)
= 0

for each i = 1, 2.

Proof. We recall the shortened notation Wi from (4.4) and note from (53) of [Bre17] that Wi
∼=

iGL3

P3−i
(d∞P3−i

) for each i = 1, 2 (cf. Section 2.3 for the notation iGL3

P3−i
(·) and d∞P3−i

). We only prove the

first vanishing (among four)

(4.23) Ext1GL3(Qp),λ

(
Wi, C

2
si,1

)
= 0

as the other cases are similar. The embedding

C2
si,1 ↪→ F

GL3

P3−i
(M3−i(−si · λ), π∞3−i,1)

induces an embedding (using a vanishing of Hom)

(4.24) Ext1GL3(Qp),λ

(
Wi, C

2
si,1

)
↪→ Ext1GL3(Qp),λ

(
Wi, FGL3

P3−i
(M3−i(−si · λ), π∞3−i,1)

)
.
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We observe from (48) as well as the first paragraph of the list before Corollaire 5.2.1 of [Bre17] that

(4.25)
H0(N3−i, Wi) = L3−i(λ)⊗E

(
i
L3−i
B∩L3−i

(χ∞s3−i)⊕ d∞P3−i

)
H1(N3−i, Wi) = L3−i(si · λ)⊗E

(
i
L3−i
B∩L3−i

(χ∞s3−i)⊕ d∞P3−i

)
.
.

We notice that Z(L3−i(Qp)) acts on L3−i(λ) and L3−i(si · λ) (resp. d∞P3−i
and π∞3−i,1) via different

characters, and that i
L3−i
B∩L3−i

(χ∞s3−i) has cosocle 1L3−i . Hence we deduce from (4.25) the equalities

Ext1L3−i(Qp),λ

(
H0(N3−i, Wi), L3−i(si · λ)⊗E π∞3−i,1

)
= 0

HomL3−i(Qp),λ

(
H1(N3−i, Wi), L3−i(si · λ)⊗E π∞3−i,1

)
= 0

which imply by Lemma 2.1 that

Ext1GL3(Qp),λ

(
Wi, FGL3

P3−i
(M3−i(−si · λ), π∞3−i,1)

)
= 0.

Hence we finish the proof of (4.23) by the embedding (4.24). �

Lemma 4.8. We have for each i = 1, 2:

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi Csi,si , C

2
si,1

)
= 0

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

C2
si,sis3−i , Csi,si

)
= 0

Ext1GL3(Qp),λ

(
C1
si,sis3−iL(λ) , C1

si,1

)
= 0

Ext1GL3(Qp),λ

(
L(λ)⊗E St∞3 C2

si,1 , C
2
si,sis3−i

)
= 0

Proof. We only prove that

(4.26) Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi Csi,si , C

2
si,1

)
= 0

as the other cases are similar. The surjection

FGL3

P3−i
(M3−i(−λ), π∞3−i,2) � L(λ)⊗E v∞Pi Csi,si

and the embedding

C2
si,1 ↪→ F

GL3

P3−i
(M3−i(−si · λ), π∞3−i,1)

induce an embedding

(4.27) Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi Csi,si , C

2
si,1

)
↪→ Ext1GL3(Qp),λ

(
FGL3

P3−i
(M3−i(−λ), π∞3−i,2), FGL3

P3−i
(M3−i(−si · λ), π∞3−i,1)

)
.

It follows from the second paragraph of the list before Corollaire 5.2.1 of [Bre17] that

H0(N3−i, FGL3

P3−i
(M3−i(−λ), π∞3−i,2)) =

(
L3−i(λ)⊕ L3−i(si · λ)

)
⊗E π∞3−i,2

and

H1(N3−i, FGL3

P3−i
(M3−i(−λ), π∞3−i,2))

=
(
L3−i(si · λ)⊕ L3−i(sis3−i · λ)

)
⊗E π∞3−i,2 ⊕ I

L3−i
B∩L3−i

(δsi·λ)⊕ IL3−i
B∩L3−i

(
δsi·λ ⊗E χ∞s1s2s1

)
.

We notice that Z(L3−i(Qp)) acts on each direct summand of Hk(N3−i, FGL3

P3−i
(M3−i(−λ), π∞3−i,2))

(k = 0, 1) via a different character, and the only direct summand that produces the same character

as L3−i(si · λ)⊗ π∞3−i,1 is I
L3−i
B∩L3−i

(δsi·λ). However, we know that

cosocL3−i(Qp),λ

(
I
L3−i
B∩L3−i

(δsi·λ)
)

= I
L3−i
B∩L3−i

(
δs3−isi·λ

)
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and thus

HomL3−i(Qp),λ

(
I
L3−i
B∩L3−i

(
δs3−isi·λ

)
, L3−i(si · λ)⊗ π∞3−i,1

)
= 0.

As a result, we deduce the equalities

Ext1L3−i(Qp),λ

(
H0(N3−i, FGL3

P3−i
(M3−i(−λ), π∞3−i,2)), L3−i(si · λ)⊗E π∞3−i,1

)
= 0

HomL3−i(Qp),λ

(
H1(N3−i, FGL3

P3−i
(M3−i(−λ), π∞3−i,2)), L3−i(si · λ)⊗E π∞3−i,1

)
= 0

which imply by Lemma 2.1 that

Ext1GL3(Qp),λ

(
FGL3

P3−i
(M3−i(−λ), π∞3−i,2), FGL3

P3−i
(M3−i(−si · λ), π∞3−i,1)

)
= 0.

Hence we finish the proof of (4.26) by the embedding (4.27). �

Lemma 4.9. Up to isomorphism, there exists a unique representation of the form

C2
si,1

C1
s3−isi,1

L(λ)⊗E v∞Pi

Csi,si

and a unique representation of the form

Csi,si

C1
s3−isi,s3−isi

L(λ)⊗E v∞P3−i

C2
si,sis3−i .

Proof. We only prove the first statement as the second one is similar. It follows from Proposition 4.4.2
of [Bre17] that there exists a unique representation of the form

C2
si,1

C1
s3−isi,1

L(λ)⊗E v∞Pi

Csi,si

but it is not proven there whether its quotient

(4.28) C1
s3−isi,1 Csi,si

is split or not. However, If (4.28) is split, then there exists a representation of the form

C2
si,1 L(λ)⊗E v∞Pi Csi,si

which contradicts the first vanishing in Lemma 4.8, and thus we finish the proof. �

Remark 4.10. Our method used in Lemma 4.8 and in Lemma 4.9 is different from the one due to
Y.Ding mentioned in part (ii) of Remark 4.4.3 of [Bre17]. It is not difficult to observe that

(4.29) dimEExt1GL3(Qp),λ

Csi,si , C2
si,1

C1
s3−isi,1

L(λ)⊗E v∞Pi

 = 1

and

(4.30) dimEExt1GL3(Qp),λ

C2
si,sis3−i , Csi,si

C1
s3−isi,s3−isi

L(λ)⊗E v∞P3−i

 = 1
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for each i = 1, 2. Similar methods as those used in Proposition 4.4.2 of [Bre17], in Lemma 4.8 and in
Lemma 4.9 also imply the existence of a unique representation of the form

C1
si,1

Cs3−isi,s3−i

L(λ)

C1
si,sis3−i

or of the form

C2
si,sis3−i

Cs3−isi,s3−i

L(λ)⊗E St∞3

C2
si,1 .

5. Computations of Ext II

In this section, we prove a few technical results which serve as a preparation to the construction and
study of Σmin(λ,L1,L2,L3) in Section 6. Note that we have defined the representation Σ(λ,L1,L2)
in (2.22), which will be the starting point of the construction of Σmin(λ,L1,L2,L3). In order to
add more and more Jordan–Hölder factors into Σ(λ,L1,L2) until we build up Σmin(λ,L1,L2,L3),
it is necessary for us to understand the extensions of various small length representations by certain
subrepresentations of Σ(λ,L1,L2). We compute the dimension of various such Ext-groups in this
section, and a notable result is Proposition 5.4 which excludes the existence of certain representations
of specific forms, using a key input from Proposition 3.5. A summary of different representations
defined in this section can be found in Remark 5.10.

We recall the definition of Σi(λ,L ) for each i = 1, 2 and L ∈ E from the paragraph right before
(2.21).

Lemma 5.1. We have

dimEExt1GL3(Qp),λ (Csi,si , Σi(λ,Li)) = 1

for each i = 1, 2.

Proof. We only prove that

(5.1) dimEExt1GL3(Qp),λ (Cs1,s1 , Σ1(λ,L1)) = 1

as the proof of the other equality is similar. We note that Σ1(λ,L1) admits a subrepresentation of
the form

W
def
= L(λ)⊗E St∞3 C2

s1,1

C1
s2s1,1

L(λ)⊗E v∞P1

due to Lemma 3.34, Lemma 3.37 and Remark 3.38 of [BD18]. Therefore Σ1(λ,L1)) admits a separated
and exhaustive filtration such that W appears as one term of the filtration and the only reducible
graded piece is

V1
def
= C2

s1,1

C1
s2s1,1

L(λ)⊗E v∞P1

.

It follows from Lemma 4.4.1 and Proposition 4.2.1 of [Bre17] as well as our Lemma 4.6 that

(5.2) Ext1GL3(Qp),λ (Cs1,s1 , V ) = 0

for all graded pieces V different from V1. On the other hand, we have

(5.3) dimEExt1GL3(Qp),λ (Cs1,s1 , V1) = 1
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due to (4.29) and

(5.4) Ext2GL3(Qp),λ

(
Cs1,s1 , L(λ)⊗E St∞3

)
= 0

by Proposition 4.6.1 of [Bre17]. Hence we finish the proof by combining (5.2), (5.3), (5.4) and part
(ii) of Proposition 2.2. �

We define Σ+
i (λ,Li) as the unique (up to isomorphism) non-split extension given by a non-zero

element in
Ext1GL3(Qp),λ (Csi,si , Σi(λ,Li))

for each i = 1, 2. Then we consider the amalgamate sum of Σ+
1 (λ,L1) and Σ+

2 (λ,L2) over Stan3 (λ)
and denote it by Σ+(λ,L1,L2). In particular, Σ+(λ,L1,L2) has the following form

(5.5) Stan3 (λ)
vanP1

(λ)

vanP2
(λ)

Cs1,s1

Cs2,s2

.

Lemma 5.2. We have

dimEExt1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, Σ+
i (λ,Li)

)
= 3

for each i = 1, 2.

Proof. By symmetry, it suffices to prove that

dimEExt1GL3(Qp),λ

(
L(λ)⊗E v∞P2

, Σ+
1 (λ,L1

)
= 3.

This follows immediately from Lemma 3.42 of [Bre17] as our Σ+
1 (λ,L1) can be identified with the

locally analytic representation Π̃1(λ, ψ) defined before (3.76) of [Bre17] up to changes on notation. �

Lemma 5.3. We have

dimEExt1GL3(Qp),λ

(
L(λ)⊗E v∞Pi , Σ+(λ,L1,L2)

)
= 2

for each i = 1, 2.

Proof. The short exact sequence

Σ+
2 (λ,L2) ↪→ Σ+(λ,L1,L2) �

(
vanP1

(λ) Cs1,s1

)
induces the following long exact sequence

HomGL3(Qp),λ

(
L(λ)⊗E v∞P1

, vanP1
(λ) Cs1,s1

)
↪→ Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P1

, Σ+
2 (λ,L2)

)
→ Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P1

, Σ+(λ,L1,L2)
)

→ Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P1

, vanP1
(λ) Cs1,s1

)
.

According to Proposition 4.1 and Lemma 4.4, we observe that

dimEHomGL3(Qp),λ

(
L(λ)⊗E v∞P1

, vanP1
(λ) Cs1,s1

)
= 1

and

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P1

, vanP1
(λ) Cs1,s1

)
= 0

by a simple dévissage, which together with Lemma 5.2 and the long exact sequence above imply that

dimEExt1GL3(Qp),λ

(
L(λ)⊗E v∞P1

, Σ+(λ,L1,L2)
)

= 2.

The proof for
dimEExt1GL3(Qp),λ

(
L(λ)⊗E v∞P2

, Σ+(λ,L1,L2)
)

= 2

is parallel. �
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Proposition 5.4. We have

Ext1GL3(Qp),λ(W3−i, Σ+
i (λ,Li)) = 0

and

Ext1GL3(Qp),λ (W3−i, Σi(λ,Li)) = 0

for each i = 1, 2.

Proof. It is clear that

HomGL3(Qp),λ (W3−i, Csi,si) = 0,

which together with a simple dévissage give us an embedding

Ext1GL3(Qp),λ (W3−i, Σi(λ,Li)) ↪→ Ext1GL3(Qp),λ(W3−i, Σ+
i (λ,Li))

for each i = 1, 2. Without loss of generality, it suffices to show the vanishing

(5.6) Ext1GL3(Qp),λ(W2, Σ+
1 (λ,L1)) = 0.

We define ν
def
= λT2,ιT,1 (which is the restriction of λ from T to T2 via the embedding ιT,1 : T2 ↪→ T )

and view Σ+
GL2

(ν,L1) (which is defined before Proposition 3.5) as a locally analytic representation of

L1(Qp) via the projection L1(Qp) � GL2(Qp) and denote it by Σ+
L1

(λ,L1). We note by the definition
of Σ1(λ,L1) (cf. Section 2.4) that we have an isomorphism

Σ1(λ,L1)
∼−→ IGL3

P1
(ΣL1

(λ,L1)) /
(
vanP2

(λ) L(λ)
)
.

Upon viewing Ĩ(s · ν) as a locally analytic representation of L1(Qp) via the projection L1(Qp) �
GL2(Qp), we deduce an isomorphism

Cs1,s1
∼= socGL3(Qp)

(
IGL3

P1

(
Ĩ(s · ν)

))
,

which together with the short exact sequence

Σ+
GL2

(ν,L1) ↪→ Σ+
GL2

(ν,L1) � Ĩ(s · ν)

implies an injection

Σ+
1 (λ,L1) ↪→ IGL3

P1

(
Σ+
L1

(λ,L1)
)
/
(
vanP2

(λ) L(λ)
)
.

We use the shortened notation

V
def
= IGL3

P1

(
Σ+
L1

(λ,L1)
)
/
(
vanP2

(λ) L(λ)
)
.

and obtain an injection (using a vanishing of Hom)

(5.7) Ext1GL3(Qp),λ

(
W2, Σ+

1 (λ,L1)
)
↪→ Ext1GL3(Qp),λ (W2, V ) .

We clearly have an exact sequence

(5.8) Ext1GL3(Qp),λ

(
W2, I

GL3

P1

(
Σ+
L1

(λ,L1)
))

→ Ext1GL3(Qp),λ (W2, V )→ Ext2GL3(Qp),λ

(
W2, vanP2

(λ) L(λ)
)
.

We note that W2
∼= iGL3

P1
(d∞P1

) (cf. (53) of [Bre17]). Then we deduce from (48) as well as the first
paragraph of the list before Corollaire 5.2.1 of [Bre17] that

H0(N1, W2) = L1(λ)⊗E
(
iL1

B∩L1
(χ∞s1 )⊕ d∞P1

)
H1(N1, W2) = L1(s2 · λ)⊗E

(
iL1

B∩L1
(χ∞s1 )⊕ d∞P1

)
.

Hence we observe that

HomL1(Qp),λ

(
H1(N1, W2), Σ+

L1
(λ,L1)

)
= 0
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from the action of Z(L1(Qp)) and

Ext1L1(Qp),λ

(
H0(N1, W2), Σ+

L1
(λ,L1)

)
= 0

according to Proposition 3.5 and the natural identification

Ext1L1(Qp),λ(−,−) ∼= Ext1GL2(Qp)(−,−).

As a result, we deduce

(5.9) Ext1GL3(Qp),λ

(
W2, I

GL3

P1

(
Σ+
L1

(λ,L1)
))

= 0

from Lemma 2.1. We know that

(5.10) Ext2GL3(Qp),λ

(
W2, vanP2

(λ) L(λ)
)

= 0

due to Proposition 4.1, Lemma 4.5 and a simple dévissage. Hence we finish the proof of (5.6) by
combining (5.7), (5.8), (5.9) and (5.10). �

Lemma 5.5. We have

(5.11) dimEExt2GL3(Qp),λ

(
L(λ), Σ+

i (λ,Li)
)

= 3

for each i = 1, 2,

(5.12) dimEExt2GL3(Qp),λ

(
L(λ), Σ+(λ,L1,L2)

)
= 2

and

(5.13) dimEExt1GL3(Qp),λ

(
L(λ), Σ+(λ,L1,L2)

)
= 1.

Proof. We claim that

(5.14) Ext1GL3(Qp),λ

(
L(λ), Csi,si

)
= Ext2GL3(Qp),λ

(
L(λ), Csi,si

)
= 0

using Lemma 4.4 and Lemma 4.5. Hence the equalities (5.12) and (5.13) follow directly from Lemma 2.11
and (5.14), using a long exact sequence induced from the short exact sequence

Σi(λ,Li) ↪→ Σ+
i (λ,Li) � Csi,si .

Due to a similar argument using (5.14), we only need to show that

(5.15) dimEExt2GL3(Qp),λ

(
L(λ), Σi(λ,Li)

)
= 3

to finish the proof of (5.11). The short exact sequence

Stan3 (λ) ↪→ Σi(λ,Li) � vanPi (λ)

induces a long exact sequence

(5.16) Ext1GL3(Qp),λ

(
L(λ), Σi(λ,Li)

)
→ Ext1GL3(Qp),λ

(
L(λ), vanPi (λ)

)
→ Ext2GL3(Qp),λ

(
L(λ), Stan3 (λ)

)
→ Ext2GL3(Qp),λ

(
L(λ), Σi(λ,Li)

)
→ Ext2GL3(Qp),λ

(
L(λ), vanPi (λ)

)
.

We know that

dimEExt2GL3(Qp),λ

(
L(λ), Stan3 (λ)

)
= 5

by Lemma 2.7. It follows from Proposition 4.1, Lemma 4.4, Lemma 4.5 and a simple dévissage that

(5.17) dimEExt1GL3(Qp),λ

(
L(λ), vanPi (λ)

)
= 2

and

(5.18) Ext2GL3(Qp),λ

(
L(λ), vanPi (λ)

)
= 0.

In order to deduce (5.15) from (5.16), it remains to show that

(5.19) Ext1GL3(Qp),λ

(
L(λ), Σi(λ,Li)

)
= 0.
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The short exact sequence(
vanP3−i

(λ) L(λ)
)
↪→ IGL3

Pi
(ΣLi(λ,Li)) � Σi(λ,Li)

induces

Ext1GL3(Qp),λ

(
L(λ), vanP3−i

(λ) L(λ)
)

↪→ Ext1GL3(Qp),λ

(
L(λ), IGL3

Pi
(ΣLi(λ,Li))

)
� Ext1GL3(Qp),λ

(
L(λ), Σi(λ,Li)

)
by the vanishing

Ext2GL3(Qp),λ

(
L(λ), vanP3−i

(λ) L(λ)
)

= 0

using Proposition 4.1 and Lemma 4.5. Therefore we only need to show that

(5.20) dimEExt1GL3(Qp),λ

(
L(λ), vanP3−i

(λ) L(λ)
)

= 1

and

(5.21) dimEExt1GL3(Qp),λ

(
L(λ), IGL3

Pi
(ΣLi(λ,Li))

)
= 1.

The equality (5.21) follows from Lemma 2.1 and the facts

dimEExt1Li(Qp),λ

(
H0(Ni, L(λ)), ΣLi(λ,Li)

)
= 1, HomLi(Qp),λ

(
H1(Ni, L(λ)), ΣLi(λ,Li)

)
= 0

where the first equality essentially follows from Lemma 3.14 of [BD18] and the second equality fol-
lows from checking the action of Z(Li(Qp)). On the other hand, (5.20) follows from (5.17) and
Proposition 4.1 by a simple dévissage. Hence we finish the proof. �

Proposition 5.6. The short exact sequence

L(λ)⊗E v∞Pi ↪→Wi � L(λ)

induces the following isomorphisms

(5.22) Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, Σ+
i (λ,Li)

)
∼−→ Ext2GL3(Qp),λ

(
L(λ), Σ+

i (λ,Li)
)

and

(5.23) Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, Σ+(λ,L1,L2)
)
∼−→ Ext2GL3(Qp),λ

(
L(λ), Σ+(λ,L1,L2)

)
for each i = 1, 2.

Proof. The vanishing from Proposition 5.4 implies that

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, Σ+
i (λ,Li)

)
→ Ext2GL3(Qp),λ

(
L(λ), Σ+

i (λ,Li)
)

is an injection and hence an isomorphism as both spaces have dimension three according to Lemma 5.2
and Lemma 5.5. The proof of (5.23) is similar. We emphasize that both (5.22) and (5.23) can be
interpreted as the isomorphism given by the cup product with the one dimensional space

Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E v∞P3−i

)
.

�

We define

(5.24) Σ[(λ,L1,L2)
def
= Σ(λ,L1,L2)/L(λ)⊗E St∞3 and Σ[i(λ,Li)

def
= Σi(λ,Li)/L(λ)⊗E St∞3

for each i = 1, 2.

Lemma 5.7. We have

dimEExt1GL3(Qp),λ

(
L(λ), Σ[(λ,L1,L2)

)
= 1.



DILOGARITHM AND HIGHER L -INVARIANTS FOR GL3(Qp) 33

Proof. We define Σ[,−(λ,L1,L2) as the subrepresentation of Σ[(λ,L1,L2) that fits into the following
short exact sequence

(5.25) Σ[,−(λ,L1,L2) ↪→ Σ[(λ,L1,L2) �
(
C1
s2,1 ⊕ C

1
s1,1

)
,

(cf. (2.4) for the definition of C1
s2,1, C1

s1,1, C2
s2,1 and C2

s1,1) and then define Σ[,−−(λ,L1,L2) as the

subrepresentation of Σ[,−(λ,L1,L2) that fits into
(5.26)

Σ[,−−(λ,L1,L2) ↪→ Σ[,−(λ,L1,L2) �
((

C2
s1,1 L(λ)⊗E v∞P1

)
⊕
(
C2
s2,1 L(λ)⊗E v∞P2

))
.

It follows from Lemma 4.4 that
Ext1GL3(Qp),λ(L(λ), V ) = 0

for each V ∈ JHGL3(Qp)

(
Σ[,−−(λ,L1,L2)

)
and therefore

(5.27) Ext1GL3(Qp),λ

(
L(λ), Σ[,−−(λ,L1,L2)

)
= 0

by part (i) of Proposition 2.2. On the other hand, we know from Lemma 4.4 and Lemma 4.7 that
there is no representation of the form

C2
si,1 L(λ)⊗E v∞Pi L(λ)

which implies that

(5.28) Ext1GL3(Qp),λ

(
L(λ), C2

si,1 L(λ)⊗E v∞Pi
)

= 0

for each i = 1, 2. Hence we deduce from (5.26), (5.27), (5.28) and Proposition 2.2 that

(5.29) Ext1GL3(Qp),λ

(
L(λ), Σ[,−(λ,L1,L2)

)
= 0.

Therefore (5.25) induces an injection

(5.30) Ext1GL3(Qp),λ

(
L(λ), Σ[(λ,L1,L2)

)
↪→ Ext1GL3(Qp),λ

(
L(λ), C1

s2,1 ⊕ C
1
s1,1

)
.

Assume first that (5.30) is a surjection, then we can choose a representation V0 represented by a non-
zero element in Ext1GL3(Qp),λ

(
L(λ), Σ[(λ,L1,L2)

)
lying in the preimage of Ext1GL3(Qp),λ

(
L(λ), C1

s2,1

)
under (5.30). Note that there is a short exact sequence

Σ[1(λ,L1) ↪→ Σ[(λ,L1,L2) � vanP2
(λ).

We observe that L(λ) lies above neither C1
s1,1 nor L(λ)⊗E v∞P2

inside V0 by our definition and (5.28),
and thus V0 is mapped to zero under the map

f : Ext1GL3(Qp),λ

(
L(λ), Σ[(λ,L1,L2)

)
→ Ext1GL3(Qp),λ

(
L(λ), vanP2

(λ)
)

which means that V0 comes from an element in

Ker(f) = Ext1GL3(Qp),λ

(
L(λ), Σ[1(λ,L1)

)
and in particular

(5.31) Ext1GL3(Qp),λ

(
L(λ), Σ[1(λ,L1)

)
6= 0

The short exact sequence
L(λ)⊗E v∞P2

↪→W2 � L(λ)

induces an injection

(5.32) Ext1GL3(Qp),λ

(
L(λ), Σ[1(λ,L1)

)
↪→ Ext1GL3(Qp),λ

(
W2, Σ[1(λ,L1)

)
.

On the other hand, the short exact sequence

(5.33) L(λ)⊗E St∞3 ↪→ Σ1(λ,L1) � Σ[1(λ,L1)
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induces a long exact sequence

Ext1GL3(Qp),λ

(
W2, L(λ)⊗E St∞3

)
→ Ext1GL3(Qp),λ (W2, Σ1(λ,L1))

→ Ext1GL3(Qp),λ

(
W2, Σ[1(λ,L1)

)
→ Ext2GL3(Qp),λ

(
W2, L(λ)⊗E St∞3

)
which implies

(5.34) Ext1GL3(Qp),λ (W2, Σ1(λ,L1))
∼−→ Ext1GL3(Qp),λ

(
W2, Σ[1(λ,L1)

)
as we have

Ext1GL3(Qp),λ

(
W2, L(λ)⊗E St∞3

)
= Ext2GL3(Qp),λ

(
W2, L(λ)⊗E St∞3

)
= 0

from Lemma 4.2. We combine Proposition 5.4, (5.32) and (5.34) and deduce that

Ext1GL3(Qp),λ

(
L(λ), Σ[1(λ,L1)

)
= 0

which contradicts (5.31). In all, we have thus shown that

(5.35) dimEExt1GL3(Qp),λ

(
L(λ), Σ[(λ,L1,L2)

)
< dimEExt1GL3(Qp),λ

(
L(λ), C1

s2,1 ⊕ C
1
s1,1

)
= 2

by combining Lemma 4.4. Finally, the vanishing

Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E St∞3

)
= 0

from Proposition 4.1 implies an injection

Ext1GL3(Qp),λ

(
L(λ), Σ(λ,L1,L2)

)
↪→ Ext1GL3(Qp),λ

(
L(λ), Σ[(λ,L1,L2)

)
which finishes the proof by combining Lemma 2.11 and (5.35). �

Lemma 5.8. We have

dimEExt1GL3(Qp),λ (W0, Σ(λ,L1,L2)) = 2.

Proof. The short exact sequence

Σ[i(λ,Li) ↪→ Σ[(λ,L1,L2) � vanP3−i
(λ)

induces a long exact sequence

(5.36) HomGL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, vanP3−i
(λ)
)
↪→ Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, Σ[i(λ,Li)
)

→ Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, Σ[(λ,L1,L2)
)
→ Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, vanP3−i
(λ)
)
.

It is easy to observe that

dimEHomGL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, vanP3−i
(λ)
)

= 1

and

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, vanP3−i
(λ)
)

= 0

from Proposition 4.1 and Lemma 4.4. We can actually observe from Lemma 4.4 that the only V ∈
JHGL3(Qp)(Σ

[
i(λ,Li)) such that

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, V
)
6= 0

is V = C2
s3−i,1 and

dimEExt1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, C2
s3−i,1

)
= 1.

Hence we deduce that

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, Σ[i(λ,Li)
)
≤ 1
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and therefore (using (5.36))

(5.37) Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, Σ[(λ,L1,L2)
)

= 0

for each i = 1, 2. The short exact sequence

L(λ)⊗E
(
v∞P1
⊕ v∞P2

)
↪→W0 � L(λ)

induces

Ext1GL3(Qp),λ

(
L(λ), Σ[(λ,L1,L2)

)
↪→ Ext1GL3(Qp),λ

(
W0, Σ[(λ,L1,L2)

)
→ Ext1GL3(Qp),λ

(
L(λ)⊗E

(
v∞P1
⊕ v∞P2

)
, Σ[(λ,L1,L2)

)
which implies

(5.38) Ext1GL3(Qp),λ

(
L(λ), Σ[(λ,L1,L2)

)
∼−→ Ext1GL3(Qp),λ

(
W0, Σ[(λ,L1,L2)

)
by (5.37). Finally, the short exact sequence (5.33) induces

Ext1GL3(Qp),λ

(
W0, L(λ)⊗E St∞3

)
↪→ Ext1GL3(Qp),λ (W0, Σ(λ,L1,L2))

→ Ext1GL3(Qp),λ

(
W0, Σ[(λ,L1,L2)

)
→ Ext2GL3(Qp),λ

(
W0, L(λ)⊗E St∞3

)
which finishes the proof by Lemma 5.7, (5.38), and the fact

dimEExt1GL3(Qp),λ

(
W0, L(λ)⊗E St∞3

)
= 1 and Ext2GL3(Qp),λ

(
W0, L(λ)⊗E St∞3

)
= 0

coming from Lemma 4.3. �

Lemma 5.9. We have the inequality

dimEExt1GL3(Qp),λ

(
W0, vanPi (λ) Csi,si

)
≤ 2

for each i = 1, 2.

Proof. We know that

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pj , C

1
si,1

)
= Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pj , L(λ)⊗E v∞Pi

)
= 0

for i, j = 1, 2 from Proposition 4.1 and Lemma 4.4, and thus

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pj , v

an
Pi (λ)

)
= 0

for i, j = 1, 2 which together with (5.17) implies that

(5.39) dimEExt1GL3(Qp),λ

(
W0, v

an
Pi (λ)

)
≤ dimEExt1GL3(Qp),λ

(
Wi, v

an
Pi (λ)

)
≤ dimEExt1GL3(Qp),λ

(
L(λ), vanPi (λ)

)
− dimEHomGL3(Qp),λ

(
L(λ)⊗E v∞Pi , v

an
Pi (λ)

)
= 2− 1 = 1.

We also note that we have

Ext1GL3(Qp),λ

(
L(λ), Csi,si

)
= Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi , Csi,si

)
= 0

by Lemma 4.4, which implies

(5.40) dimEExt1GL3(Qp),λ (W0, Csi,si) ≤ dimEExt1GL3(Qp),λ

(
L(λ)⊗E v∞P3−i

, Csi,si

)
= 1

where the last equality follows again from Lemma 4.4. We finish the proof by combining (5.39) and
(5.40) with the inequality

dimEExt1GL3(Qp),λ

(
W0, vanPi (λ) Csi,si

)
≤ dimEExt1GL3(Qp),λ

(
W0, v

an
Pi (λ)

)
+ dimEExt1GL3(Qp),λ (W0, Csi,si) .
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�

Remark 5.10. The representations that appear in this section can be summarized by the following
diagram

Σ[i(λ,Li) Σ(λ,Li) Σ+(λ,Li)

Σ[(λ,L1,L2) Σ(λ,L1,L2) Σ+(λ,L1,L2)

� _

��

� _

��

� _

��

oooo

oooo

� � //

� � //

for each i = 1, 2. Note that the first (resp. second, resp. third) column is defined in (5.24) (resp.
(2.22), resp. (5.5)).

6. The family Σmin(λ,L1,L2,L3)

6.1. Construction of Σmin(λ,L1,L2,L3). In this section, we finish our construction of Σmin(λ,L1,L2,L3)
(cf. the paragraph before (6.28)), using results from Section 5. A summary about the technique used
in this section can be found in Remark 6.11.

Lemma 6.1. We have the inequality

dimEExt1GL3(Qp),λ

(
W0, Σ+(λ,L1,L2)

)
≤ 3.

Proof. The short exact sequence

Σ(λ,L1,L2) ↪→ Σ+(λ,L1,L2) � (Cs1,s1 ⊕ Cs2,s2)

induces the exact sequence

(6.1) Ext1GL3(Qp),λ (W0, Σ(λ,L1,L2)) ↪→ Ext1GL3(Qp),λ

(
W0, Σ+(λ,L1,L2)

)
→ Ext1GL3(Qp),λ (W0, Cs1,s1 ⊕ Cs2,s2) .

We know that

dimEExt1GL3(Qp),λ (W0, Cs1,s1 ⊕ Cs2,s2)

= dimEExt1GL3(Qp),λ (W0, Cs1,s1) + dimEExt1GL3(Qp),λ (W0, Cs2,s2) = 1 + 1 = 2

by Lemma 4.4 and Lemma 4.5. We also know that

dimEExt1GL3(Qp),λ (W0, Σ(λ,L1,L2)) = 2

by Lemma 5.8, and thus we obtain the following inequality:

(6.2) dimEExt1GL3(Qp),λ

(
W0, Σ+(λ,L1,L2)

)
≤ dimEExt1GL3(Qp),λ (W0, Σ(λ,L1,L2)) + dimEExt1GL3(Qp),λ (W0, Cs1,s1 ⊕ Cs2,s2) = 2 + 2 = 4.

Assume on the contrary that

(6.3) dimEExt1GL3(Qp),λ

(
W0, Σ+(λ,L1,L2)

)
= 4.

The short exact sequence

Σ+
1 (λ,L1) ↪→ Σ+(λ,L1,L2) �

(
vanP2

(λ) Cs2,s2

)
induces a long exact sequence

(6.4) Ext1GL3(Qp),λ

(
W0, Σ+

1 (λ,L1)
)
↪→ Ext1GL3(Qp),λ

(
W0, Σ+(λ,L1,L2)

)
→ Ext1GL3(Qp),λ

(
W0, vanP2

(λ) Cs2,s2

)
which implies

(6.5) dimEExt1GL3(Qp),λ

(
W0, Σ+

1 (λ,L1)
)
≥ 2
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by (6.3) and Lemma 5.9. We consider a separated and exhaustive filtration of Σ+
1 (λ,L1) whose only

reducible graded piece is

C2
s1,1 L(λ)⊗E v∞P1

.

It follows from Proposition 4.1, Lemma 4.4 together with a simple dévissage that

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P1

, C2
s1,1 − L(λ)⊗E v∞P1

)
= 0,

which together with Lemma 4.4 implies that

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P1

, V
)

= 0

for all graded pieces V 6= L(λ) ⊗E St∞3 of the filtration above. Hence we deduce by part (ii) of
Proposition 2.2 an isomorphism of one dimensional spaces

(6.6) Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P1

, L(λ)⊗E St∞3
) ∼−→ Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P1

, Σ+
1 (λ,L1)

)
.

Then the short exact sequence

L(λ)⊗E v∞P1
↪→W0 �W2

induces a long exact sequence

Ext1GL3(Qp),λ

(
W2, Σ+

1 (λ,L1)
)
↪→ Ext1GL3(Qp),λ

(
W0, Σ+

1 (λ,L1)
)

→ Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P1

, Σ+
1 (λ,L1)

)
,

which together with (6.5) and (6.6) implies that

dimEExt1GL3(Qp),λ

(
W2, Σ+

1 (λ,L1)
)
≥ 1.

This contradicts Proposition 5.4. Hence we finish the proof. �

Proposition 6.2. We have

dimEExt1GL3(Qp),λ

(
W0, Σ+(λ,L1,L2)

)
= 3.

Proof. The short exact sequence

L(λ)⊗E
(
v∞P2
⊕ v∞P1

)
↪→W0 � L(λ)

induces a long exact sequence

(6.7) Ext1GL3(Qp),λ

(
L(λ), Σ+(λ,L1,L2)

)
↪→ Ext1GL3(Qp),λ

(
W0, Σ+(λ,L1,L2)

)
→ Ext1GL3(Qp),λ

(
L(λ)⊗E

(
v∞P2
⊕ v∞P1

)
, Σ+(λ,L1,L2)

)
→ Ext2GL3(Qp),λ

(
L(λ), Σ+(λ,L1,L2)

)
and thus we have

(6.8) dimEExt1GL3(Qp),λ(W0, Σ+(λ,L1,L2))

≥ dimEExt1GL3(Qp),λ(L(λ), Σ+(λ,L1,L2))+dimEExt1GL3(Qp),λ(L(λ)⊗E
(
v∞P2
⊕ v∞P1

)
, Σ+(λ,L1,L2))

− dimEExt2GL3(Qp),λ(L(λ), Σ+(λ,L1,L2)) = 1 + 4− 2 = 3

due to Lemma 5.3 and Lemma 5.5, which finishes the proof by a comparison with Lemma 6.1. �

We define Σ](λ,L1,L2) as the unique non-split extension of Σ(λ,L1,L2) by L(λ) (cf. Lemma 2.11)
and then define Σ],+(λ,L1,L2) as the amalgamate sum of Σ](λ,L1,L2) and Σ+(λ,L1,L2) over
Σ(λ,L1,L2). Hence Σ](λ,L1,L2) has the form

Stan3 (λ)
vanP1

(λ)

vanP2
(λ)

L(λ)
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and Σ],+(λ,L1,L2) has the form

Stan3 (λ)
vanP1

(λ)

vanP2
(λ)

Cs1,s1

Cs2,s2

L(λ) .

Then we set

Σ∗,[(λ,L1,L2)
def
= Σ∗(λ,L1,L2)/L(λ)⊗E St∞3

for ∗ = {+}, {]} and {],+}.

Lemma 6.3. We have

Ext1GL3(Qp),λ

(
L(λ), Σ](λ,L1,L2)

)
= Ext1GL3(Qp),λ

(
L(λ), Σ],+(λ,L1,L2)

)
= 0

and

(6.9) dimEExt2GL3(Qp),λ

(
L(λ), Σ](λ,L1,L2)

)
= dimEExt2GL3(Qp),λ

(
L(λ), Σ],+(λ,L1,L2)

)
= 2.

Proof. According to (5.14) and a simple dévissage, it suffices to show that

Ext1GL3(Qp),λ

(
L(λ), Σ](λ,L1,L2)

)
= 0 and dimEExt2GL3(Qp),λ

(
L(λ), Σ](λ,L1,L2)

)
= 2.

The desired results then follow from Lemma 2.11, the long exact sequence

HomGL3(Qp),λ

(
L(λ), L(λ)

)
↪→ Ext1GL3(Qp),λ

(
L(λ), Σ(λ,L1,L2)

)
→ Ext1GL3(Qp),λ

(
L(λ), Σ](λ,L1,L2)

)
→ Ext1GL3(Qp),λ

(
L(λ), L(λ)

)
→ Ext2GL3(Qp),λ

(
L(λ), Σ(λ,L1,L2)

)
→ Ext2GL3(Qp),λ

(
L(λ), Σ](λ,L1,L2)

)
→ Ext2GL3(Qp),λ

(
L(λ), L(λ)

)
,

and the equalities (cf. Proposition 4.1)

dimE HomGL3(Qp),λ(L(λ), L(λ)) = 1

Ext1GL3(Qp),λ(L(λ), L(λ)) = 0

Ext2GL3(Qp),λ(L(λ), L(λ)) = 0 .

�

Remark 6.4. It is not difficult to observe from the proof of Lemma 5.5 and that of Lemma 6.3 that
the following diagram

Σ(λ,L1,L2)

Σ+(λ,L1,L2)

Σ](λ,L1,L2)

Σ],+(λ,L1,L2)
# �

11
� {

--

� {

--
# �

11

induces isomorphisms between two dimensional E-vector spaces

Ext2GL3(Qp),λ

(
L(λ), Σ∗(λ,L1,L2)

)
for ∗ = ∅, {+}, {]} and {],+}.

Lemma 6.5. We have

(6.10) Ext1GL3(Qp),λ(L(λ), Σ],[(λ,L1,L2)) = Ext1GL3(Qp),λ(L(λ), Σ],+,[(λ,L1,L2)) = 0

and

dimEExt2GL3(Qp),λ(L(λ), Σ],[(λ,L1,L2)) = dimEExt2GL3(Qp),λ(L(λ), Σ],+,[(λ,L1,L2)) ≥ 1.
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Proof. According to (5.14) and a simple dévissage, it suffices to show that

(6.11) Ext1GL3(Qp),λ(L(λ), Σ],[(λ,L1,L2)) = 0

and

(6.12) dimEExt2GL3(Qp),λ(L(λ), Σ],[(λ,L1,L2)) ≥ 1.

The equality (6.11) follows from Lemma 5.7, Proposition 4.1 and a long exact sequence induced from
the short exact sequence

Σ[(λ,L1,L2) ↪→ Σ],[(λ,L1,L2) � L(λ).

The inequality (6.12) follows from Proposition 4.1, (6.11), Lemma 6.3 and the long exact sequence

(6.13) Ext1GL3(Qp),λ(L(λ), Σ],[(λ,L1,L2))→ Ext2GL3(Qp),λ(L(λ), L(λ)⊗E St∞3 )

→ Ext2GL3(Qp),λ(L(λ), Σ](λ,L1,L2))→ Ext2GL3(Qp),λ(L(λ), Σ],[(λ,L1,L2))

as we have

dimEExt2GL3(Qp),λ(L(λ), Σ],[(λ,L1,L2))

≥ dimEExt2GL3(Qp),λ(L(λ), Σ](λ,L1,L2))− dimEExt2GL3(Qp),λ(L(λ), L(λ)⊗E St∞3 ) = 2− 1 = 1.

�

We use the shortened notation L
def
= (L1,L2,L ′1,L

′
2) for a tuple of four elements in E. We recall

from Proposition 5.6 an isomorphism of two dimensional spaces

(6.14) Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi , Σ+(λ,L1,L2)

) ∼−→ Ext2GL3(Qp),λ

(
L(λ), Σ+(λ,L1,L2)

)
for each i = 1, 2. We emphasize that the isomorphism (6.14) can be naturally explained by the cup
product map

(6.15) Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi , Σ+(λ,L1,L2)

)
∪ Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E v∞Pi

)
→ Ext2GL3(Qp),λ

(
L(λ), Σ+(λ,L1,L2)

)
where Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E v∞Pi

)
is one dimensional by Proposition 4.1. According to Lemma 2.11

and Remark 6.4, we may abuse the notation

{κ(b1,valp ∧ b2,valp), c0}

for a basis of Ext2GL3(Qp),λ

(
L(λ), Σ∗(λ,L1,L2)

)
for each ∗ = ∅, {+}, {]} and {],+}. In particular,

the element

c0 + L κ(b1,valp ∧ b2,valp)

generates a line in Ext2GL3(Qp),λ

(
L(λ), Σ+(λ,L1,L2)

)
for each L ∈ E. We define Σ+

i (λ,L1,L2,L ′i )
as the representation represent by the preimage of

c0 + L ′i κ(b1,valp ∧ b2,valp)

in

Ext1GL3(Qp),λ

(
L(λ)⊗E v∞Pi , Σ+(λ,L1,L2)

)
via (6.14), for each i = 1, 2. Then we define Σ+(λ,L ) as the amalgamate sum of Σ+

1 (λ,L1,L2,L ′1)
and Σ+

2 (λ,L1,L2,L ′2) over Σ+(λ,L1,L2), and therefore Σ+(λ,L ) has the form

Stan3 (λ)
vanP1

(λ)

vanP2
(λ)

Cs1,s1

Cs2,s2

L(λ)⊗E v∞P2

L(λ)⊗E v∞P1

.



40 ZICHENG QIAN

We define Σ],+(λ,L ) as the amalgamate sum of Σ+(λ,L ) and Σ](λ,L1,L2) over Σ(λ,L1,L2), and
thus Σ],+(λ,L ) has the form

Stan3 (λ)
vanP1

(λ)

vanP2
(λ)

Cs1,s1

Cs2,s2

L(λ)

L(λ)⊗E v∞P2

L(λ)⊗E v∞P1

.

We also need the quotients

Σ+,[(λ,L )
def
= Σ+(λ,L )/L(λ)⊗E St∞3 , Σ],+,[(λ,L )

def
= Σ],+(λ,L )/L(λ)⊗E St∞3 .

Lemma 6.6. We have the inequality

dimEExt1GL3(Qp),λ

(
L(λ), Σ],+,[(λ,L )

)
≤ 1.

Proof. The short exact sequence

Σ],+,[(λ,L1,L2) ↪→ Σ],+,[(λ,L ) � L(λ)⊗E
(
v∞P2
⊕ v∞P1

)
induces an injection

(6.16) Ext1GL3(Qp),λ

(
L(λ), Σ],+,[(λ,L )

)
↪→ Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E

(
v∞P2
⊕ v∞P1

))
by Lemma 6.5. Note that we have

dimEExt1GL3(Qp),λ

(
L(λ), L(λ)⊗E

(
v∞P2
⊕ v∞P1

))
= 2

by Proposition 4.1. Assume first that (6.16) is a surjection, and thus we can choose a representation
V0 represented by a non-zero element lying in the preimage of L(λ)⊗E v∞P2

under (6.16). We observe
that the very existence of V0 implies that

(6.17) Ext1GL3(Qp),λ

(
W2, Σ],+,[(λ,L1,L2)

)
6= 0.

We define
Σ+,[
i (λ,Li)

def
= Σ+

i (λ,Li)/L(λ)⊗E St∞3
and thus obtain an embedding

Σ+,[
i (λ,Li) ↪→ Σ],+,[(λ,L1,L2)

for each i = 1, 2. We notice that the quotient Σ],+,[(λ,L1,L2)/Σ+,[
1 (λ,L1) fits into a short exact

sequence (
vanP2

(λ) L(λ)
)
↪→ Σ],+,[(λ,L1,L2)/Σ+,[

1 (λ,L1) � Cs2,s2 .

We observe that

(6.18) Ext1GL3(Qp),λ (W2, Cs2,s2) = 0

from Lemma 4.4 and part (i) of Proposition 2.2. It follows from Proposition 4.1, Lemma 4.4 and a
simple dévissage that

(6.19) Ext1GL3(Qp),λ

(
L(λ)⊗E v∞P2

, C1
s1,1

)
= Ext1GL3(Qp),λ

(
L(λ), C1

s1,1 L(λ)
)

= 0.

Hence if

Ext1GL3(Qp),λ

(
W2, C1

s1,1 L(λ)
)
6= 0,

there must exist a representation of the form

C1
s1,1 L(λ) L(λ)⊗E v∞P2

which contradicts (6.19) and Lemma 4.7. As a result, we have shown that

Ext1GL3(Qp),λ

(
W2, C1

s1,1 L(λ)
)

= 0
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which together with Proposition 4.1 and part (i) of Proposition 2.2 implies

(6.20) Ext1GL3(Qp),λ

(
W2, vanP2

(λ) L(λ)
)

= 0.

Now we can deduce

(6.21) Ext1GL3(Qp),λ

(
W2, Σ],+,[(λ,L1,L2)/Σ+,[

1 (λ,L1)
)

= 0

from (6.18) and (6.20). We combine (6.21) with Proposition 5.4 and conclude that

Ext1GL3(Qp),λ

(
W2, Σ],+,[(λ,L1,L2)

)
= 0

which contradicts (6.17). Consequently, the injection (6.16) must be strict and we finish the proof. �

According to Lemma 6.5, the short exact sequence

Σ],+(λ,L1,L2) ↪→ Σ],+(λ,L ) � L(λ)⊗E (v∞P2
⊕ v∞P1

)

induces a long exact sequence:

(6.22) Ext1GL3(Qp),λ

(
L(λ), Σ],+(λ,L )

)
↪→ Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E (v∞P2

⊕ v∞P1
)
)

f−→ Ext2GL3(Qp),λ

(
L(λ), Σ],+(λ,L1,L2)

)
.

According to (6.10) and a long exact sequence induced from

L(λ)⊗E St∞3 ↪→ Σ],+(λ,L1,L2) � Σ],+,[(λ,L1,L2),

we obtain a natural embedding

(6.23) Ext2GL3(Qp),λ

(
L(λ), L(λ)⊗E St∞3

)
↪→ Ext2GL3(Qp),λ

(
L(λ), Σ],+(λ,L1,L2)

)
.

Proposition 6.7. We have

dimEExt1GL3(Qp),λ(L(λ), Σ],+,[(λ,L )) = 1

and the image of f is not contained in the image of (6.23).

Proof. We use a shortened notation for the two dimensional space

M
def
= Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E (v∞P2

⊕ v∞P1
)
)
.

We have the following commutative diagram

(6.24) Ext1GL3(Qp),λ

(
L(λ), Σ],+(λ,L )

)
M Ext2GL3(Qp),λ

(
L(λ), Σ],+(λ,L1,L2)

)

Ext1GL3(Qp),λ

(
L(λ), Σ],+,[(λ,L )

)
M Ext2GL3(Qp),λ

(
L(λ), Σ],+,[(λ,L1,L2)

)
i f

j g
h k

� � // //
� _

�� ��
� � // //

where the middle vertical map is just an equality. We know that h is injective by the vanishing

Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E St∞3

)
= 0

and k has a one dimensional image by (6.13). Both i and j are injective due to (6.9) and (6.10).
Therefore by a simple diagram chasing we have

dimEExt1GL3(Qp),λ

(
L(λ), Σ],+,[(λ,L )

)
= dimEM − dimEIm(g) ≥ dimEM − dimEIm(k) = 2− 1 = 1

by Lemma 6.5, and therefore

dimEExt1GL3(Qp),λ

(
L(λ), Σ],+,[(λ,L )

)
= 1

by Lemma 6.6. Moreover, the map g has a one dimensional image and hence k ◦ f has one di-
mensional image, meaning that the image of f has dimension one or two and is not contained in
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Ker(k) (which is exactly the image of (6.23)). We consider the restriction of f to the direct summand
Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E v∞Pi

)
which together with (cf. Remark 6.4)

(6.25) Ext2GL3(Qp),λ

(
L(λ), Σ+(λ,L1,L2)

) ∼= Ext2GL3(Qp),λ

(
L(λ), Σ+,](λ,L1,L2)

)
gives a map

(6.26) Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E v∞Pi

)
→ Ext2GL3(Qp),λ

(
L(λ), Σ+(λ,L1,L2)

)
.

According to our definition of Σ],+(λ,L ), the image of (6.26) is indeed given by the line

(6.27) E
(
c0 + L ′i κ(b1,valp ∧ b2,valp)

)
.

It is clear that (6.27) is different from the image of (6.23) which is exactly the line Eκ(b1,valp ∧
b2,valp). �

Proposition 6.8. We have

dimEExt1GL3(Qp),λ

(
L(λ), Σ],+(λ,L )

)
≤ 1

and the equality holds if and only if L ′1 = L ′2 = L3 for a certain L3 ∈ E.

Proof. The inequality follows directly from Proposition 6.7 and the fact that the morphism h in (6.24)
is an embedding. It follows from (6.22) that the equality

Ext1GL3(Qp),λ

(
L(λ), Σ],+(λ,L )

)
= 1

holds if and only if the image of f is one dimensional. Then we notice from the proof of Proposition 6.7
that the image of

Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E v∞Pi

)
under f is (6.27), up to the isomorphism (6.25). Therefore the image of f is one dimensional if and
only if the two lines (6.27) (for i = 1, 2) coincide, which means that

L ′1 = L ′2 = L3

for a certain L3 ∈ E. �

We use the notation Σ],+(λ,L1,L2,L3) for the representation Σ],+(λ,L ) when

L = (L1,L2,L3,L3).

We define Σmin(λ,L1,L2,L3) as the unique representation (up to isomorphism) given by a non-
zero element in Ext1GL3(Qp),λ

(
L(λ), Σ],+(λ,L1,L2,L3)

)
according to Proposition 6.8. Therefore our

Σmin(λ,L1,L2,L3) has the following form

(6.28) Stan3 (λ)

vanP1
(λ)

vanP2
(λ)

Cs1,s1

Cs2,s2

L(λ)

L(λ)⊗E v∞P2

L(λ)⊗E v∞P1

L(λ) .

It follows from Proposition 4.1, Proposition 6.8, the definition of Σmin(λ,L1,L2,L3) and a simple
dévissage that

(6.29) Ext1GL3(Qp),λ

(
L(λ), Σmin(λ,L1,L2,L3)

)
= 0.

Remark 6.9. The definition of the invariant L3 ∈ E of Σmin(λ,L1,L2,L3) obviously depends on the
choice of c0, and hence on the choice of a branch of p-adic dilogarithm function which is D0. This
is similar to the definition of the invariants L1,L2 ∈ E which depends on the choice of a branch of
p-adic logarithm function which is log0. Note that the choice of p-adic logarithm function naturally
determines a choice of p-adic dilogarithm function.

The following result will be useful in the proof of Theorem 7.1.
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Proposition 6.10. We have

dimEExt1GL3(Qp),λ

(
W0, Σ],+(λ,L1,L2)

)
= 2.

Moreover, if V is the locally analytic representation determined by a line

MV ( Ext1GL3(Qp),λ

(
W0, Σ],+(λ,L1,L2)

)
satisfying the condition that MV is different from the image of (6.23), then there exists a unique
L3 ∈ E such that

V ∼= Σmin(λ,L1,L2,L3).

Proof. The short exact sequence

L(λ)⊗E
(
v∞P1
⊕ v∞P2

)
↪→W0 � L(λ)

together with Lemma 6.3 induce a commutative diagram
(6.30)

Ext1GL3(Qp),λ (W0, V
+) Ext1GL3(Qp),λ

(
V alg
1 ⊕ V alg

2 , V +
)

Ext2GL3(Qp),λ

(
L(λ), V +

)
Ext1GL3(Qp),λ

(
W0, V

],+
)

Ext1GL3(Qp),λ

(
V alg
1 ⊕ V alg

2 , V ],+
)

Ext2GL3(Qp),λ

(
L(λ), V ],+

)
g1

g2
h1 h2 h3

k1

k2

//

��
� � //

� _

��

// //

//
��

where we use shortened notation V alg
i for L(λ)⊗Ev∞Pi , V

+ for Σ+(λ,L1,L2) and V ],+ for Σ],+(λ,L1,L2)
to save space. We observe that g2 is an injection due to Lemma 6.3, k1 is a surjection by the proof
of Proposition 6.2, h3 is an isomorphism by Proposition 4.1 and a simple dévissage, and finally h2
is an injection (due to an obvious vanishing of Hom). Assume that h2 is not surjective, then any
representation given by a non-zero element in Coker(h2) admits a quotient of the form

(6.31) C1
si,1 L(λ) V alg

i

for i = 1 or 2 due to Lemma 4.4. However, it follows from Lemma 4.7 that there is no representation
of the form (6.31), which implies that h2 is indeed an isomorphism, and hence k2 is surjective by a
diagram chasing. Therefore we conclude that

dimEExt1GL3(Qp),λ

(
W0, V

],+
)

= dimEExt1GL3(Qp),λ

(
V alg
1 ⊕ V alg

2 , V ],+
)
− dimEExt2GL3(Qp),λ

(
L(λ), V ],+

)
= dimEExt1GL3(Qp),λ

(
V alg
1 ⊕ V alg

2 , V +
)
− dimEExt2GL3(Qp),λ

(
L(λ), V +

)
= 4− 2 = 2.

The final claim on the existence of a unique L3 follows from Proposition 6.8, our definition of
Σmin(λ,L1,L2,L3) and the observation that the restriction of k2 to the direct summand

Ext1GL3(Qp),λ

(
V alg
i , V ],+

)
induces isomorphisms

Ext1GL3(Qp),λ

(
V alg
i , V ],+

)
∼−→ Ext2GL3(Qp),λ

(
L(λ), V ],+

)
which can be interpreted as the cup product morphism with the one dimensional space

Ext1GL3(Qp),λ

(
L(λ), V alg

i

)
for each i = 1, 2. �

Remark 6.11. We give a summary on main ideas behind various techniques used in Section 5 and
Section 6.1. Our overall goal is to construct the representation Σmin(λ,L1,L2,L3) using Σ(λ,L1,L2)
as one of the building blocks, but the tricky point is what representation to add during each step of the
construction. It is not difficult to construct Σ],+(λ,L1,L2) from Σ(λ,L1,L2) by adding Cs1,s1 , Cs2,s2
and L(λ), each with multiplicity one, then the gap between Σ],+(λ,L1,L2) and Σmin(λ,L1,L2,L3)
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is the length three locally algebraic representation W0. If one adds L(λ) ⊗E v∞P1
and L(λ) ⊗E v∞P2

first, one obtains Σ],+(λ,L ) which depends on four invariants. Then it is not always possible to
add one extra L(λ) to Σ],+(λ,L ), as the exact sequence (6.22) really depends on the choice of
L = (L1,L2,L3,L4). Nevertheless, we may consider the quotient

Σ],+,[(λ,L ) = Σ],+(λ,L )/L(λ)⊗E St∞3

which technically helps us determine exactly for which L we can add the extra L(λ) (cf. Proposi-
tion 6.7 and Proposition 6.8). Having a local-global compatibility theorem in mind, we expect that:
if Σ],+(λ,L ) embeds into any Hecke eigenspace, an extra L(λ) should also appear in the Hecke
eigenspace. Consequently, instead of adding L(λ) ⊗E v∞P1

and L(λ) ⊗E v∞P2
first, we view W0 as a

whole and study the extension of W0 by Σ],+(λ,L1,L2) (cf. Proposition 6.2 and Proposition 6.10).
This will be crucial in the proof of Theorem 7.1. A frequently used technique (cf. Lemma 5.7 and

Proposition 6.7) is the following: given a certain V ∈ Repla
GL3(Qp),E which appears in our compu-

tation, if we cannot determine ExtkGL3(Qp),λ(·, V ) directly, we study ExtkGL3(Qp),λ(·, V [) first (with

V [
def
= V/L(λ)⊗E St∞3 ), and then make use of a long exact sequence induced from

L(λ)⊗E St∞3 ↪→ V � V [.

The idea behind is that V might depend on choice of invariants but V [ doesn’t, which usually makes
the computation (via various dévissage) of ExtkGL3(Qp),λ(·, V [) simpler than that of ExtkGL3(Qp),λ(·, V ).

6.2. Structure of Σmin(λ,L1,L2,L3). In this section, we further clarify the internal structure of
Σmin(λ,L1,L2,L3) in Proposition 6.12, (6.42) and (6.43). In particular, we want to describe all
subrepresentations of Σmin(λ,L1,L2,L3) whose cosocle is isomorphic to L(λ). The picture (6.28)
certainly does not contain enough information on this. At the end of this section, we also introduce
the representation Σmin,+(λ,L1,L2,L3) (cf. the paragraph before Remark 6.14), which is slightly
bigger than Σmin(λ,L1,L2,L3).

We define Σmin,−(λ,L1,L2,L3) as the unique subrepresentation of Σmin(λ,L1,L2,L3) of the
form

Stan3 (λ)
vanP1

(λ)

vanP2
(λ)

Cs1,s1

Cs2,s2

L(λ)⊗E v∞P2

L(λ)⊗E v∞P1

,

which fits into the short exact sequence

(6.32) Σmin,−(λ,L1,L2,L3) ↪→ Σmin(λ,L1,L2,L3) � L(λ)⊕2.

We also define Σmin,−−(λ,L1,L2,L3) as the unique subrepresentation of Σmin,−(λ,L1,L2,L3) of
the form

Stan3 (λ)
L(λ)⊗E v∞P1

L(λ)⊗E v∞P2

Cs1,s1

Cs2,s2

,

which fits into the short exact sequence
(6.33)
Σmin,−−(λ,L1,L2,L3) ↪→ Σmin,−(λ,L1,L2,L3) �

(
L(λ)⊗E v∞P1

)
⊕
(
L(λ)⊗E v∞P2

)
⊕ C1

s2,1 ⊕ C
1
s1,1.

The short exact sequence (6.32) induces a long exact sequence

HomGL3(Qp),λ

(
L(λ), L(λ)⊕2

)
↪→ Ext1GL3(Qp),λ

(
L(λ), Σmin,−(λ,L1,L2,L3)

)
→ Ext1GL3(Qp),λ

(
L(λ), Σmin(λ,L1,L2,L3)

)
→ Ext1GL3(Qp),λ

(
L(λ), L(λ)⊕2

)
which easily implies that

dimEExt1GL3(Qp),λ

(
L(λ), Σmin,−(λ,L1,L2,L3)

)
= 2
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by Proposition 4.1 and (6.29). We consider a separated and exhaustive filtration on Σmin,−−(λ,L1,L2,L3)
whose only reducible graded pieces are

C1
si,1 L(λ)⊗E v∞Pi

for i = 1, 2. According to Lemma 4.4 and Lemma 4.7, we deduce that

Ext1GL3(Qp),λ

(
L(λ), V

)
= 0

for all graded pieces V of the filtration above, which implies that

Ext1GL3(Qp),λ

(
L(λ), Σmin,−−(λ,L1,L2,L3)

)
= 0.

Therefore (6.33) induces an injection of a two dimensional space into a four dimensional space

(6.34) Mmin def
= Ext1GL3(Qp),λ

(
L(λ), Σmin,−(λ,L1,L2,L3)

)
↪→M+ def

= Ext1GL3(Qp),λ

(
L(λ),

(
L(λ)⊗E v∞P1

)
⊕
(
L(λ)⊗E v∞P2

)
⊕ C1

s2,1 ⊕ C
1
s1,1

)
.

It follows from the definition of Σmin,−(λ,L1,L2,L3) that we have embeddings

Σ(λ,L1,L2) ↪→ Σ+(λ,L1,L2) ↪→ Σmin,−(λ,L1,L2,L3)

which allow us to identify

M−
def
= Ext1GL3(Qp),λ

(
L(λ), Σ(λ,L1,L2)

)
with a line in Mmin. We use the number 1, 2, 3, 4 to index the four representations L(λ) ⊗E v∞P1

,

L(λ)⊗E v∞P2
, C1

s2,1 and C1
s1,1 respectively, and we use the notation MI for each subset I ⊆ {1, 2, 3, 4}

to denote the corresponding subspace of M+ with dimension the cardinality of I. For example, M{1,2}
denotes the two dimensional subspace

Ext1GL3(Qp),λ

(
L(λ),

(
L(λ)⊗E v∞P1

)
⊕
(
L(λ)⊗E v∞P2

))
of M+.

Proposition 6.12. We have the following characterizations of Mmin inside M+:

Mmin ∩M{i,j} = 0 for {i, j} 6= {3, 4},

Mmin ∩M{1,3,4} = Mmin ∩M{2,3,4} = Mmin ∩M{3,4} = M−,

and
Mmin = (Mmin ∩M{1,2,3})⊕ (Mmin ∩M{1,2,4}).

Proof. As C1
s1,1 and C1

s2,1 are in the cosocle of Σ(λ,L1,L2), it is immediate that

M− ⊆M{3,4}.
It follows from (6.28) that

Mmin 6⊆M{3,4}
and thus Mmin ∩M{3,4} is one dimensional which must coincide with M−. The proof of Lemma 6.1

implies that Mmin 6⊆M{i,3,4} for each i = 1, 2 and therefore Mmin∩M{i,3,4} is one dimensional, which
together with the inclusion

Mmin ∩M{3,4} ⊆Mmin ∩M{i,3,4}
for each i = 1, 2, implies that

Mmin ∩M{i,3,4} = M−.

We note from Proposition 5.4 that that

M− ∩M{3} = M− ∩M{4} = 0,

and thus

Mmin ∩M{1,3} = Mmin ∩ (M{1,3,4} ∩M{1,3}) = (Mmin ∩M{3,4}) ∩M{1,3} = M− ∩M{3} = 0.
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Similarly, we conclude that

Mmin ∩M{i,j} = M− ∩M{i,j} = 0

for each {i, j} 6= {3, 4}, {1, 2}. We define Σmin,−,\(λ,L1,L2,L3) as the unique subrepresentation of
Σmin,−(λ,L1,L2,L3) that fits into the short exact sequence

Σmin,−,\(λ,L1,L2,L3) ↪→ Σmin,−(λ,L1,L2,L3) � C1
s1,1 ⊕ C

1
s2,1 ⊕ Cs1s2s1,1

and then define

Σmin,−,\,[(λ,L1,L2,L3)
def
= Σmin,−,\(λ,L1,L2,L3)/L(λ)⊗E St∞3 .

Assume for the moment that Mmin ∩M{1,2} 6= 0, then we have

Ext1GL3(Qp),λ

(
L(λ), Σmin,−,\(λ,L1,L2,L3)

)
6= 0

which together with (cf. Proposition 4.1)

Ext1GL3(Qp),λ

(
L(λ), L(λ)⊗E St∞3

)
= 0

implies that

(6.35) Ext1GL3(Qp),λ

(
L(λ), Σmin,−,\,[(λ,L1,L2,L3)

)
6= 0.

We observe that there exists a direct sum decomposition

Σmin,−,\,[(λ,L1,L2,L3) = V1 ⊕ V2
where Vi is a representation of the form

C2
si,1

C1
s3−isi,1

C2
s3−isi,1

L(λ)⊗E v∞Pi
Csi,si

L(λ)⊗E v∞P3−i
.

Switching V1 and V2 if necessary, we can assume by (6.35) that

(6.36) Ext1GL3(Qp),λ

(
L(λ), V1

)
6= 0.

We also have an embedding

V1 ↪→ Σ+,[
1 (λ,L1) L(λ)⊗E v∞P2

which induces an embedding (using a vanishing of Hom)

Ext1GL3(Qp),λ

(
L(λ), V1

)
↪→ Ext1GL3(Qp),λ

(
L(λ), Σ+,[

1 (λ,L1) L(λ)⊗E v∞P2

)
which together with (6.36) implies that

(6.37) Ext1GL3(Qp),λ

(
L(λ), Σ+,[

1 (λ,L1) L(λ)⊗E v∞P2

)
6= 0.

The short exact sequences

L(λ)⊗E St∞3 ↪→ Σ1(λ,L1) � Σ[1(λ,L1), L(λ)⊗E St∞3 ↪→ Σ+
1 (λ,L1) � Σ+,[

1 (λ,L1)

induce isomorphisms

(6.38) Ext1GL3(Qp),λ

(
L(λ), Σ1(λ,L1)

)
∼−→ Ext1GL3(Qp),λ

(
L(λ), Σ[1(λ,L1)

)
Ext1GL3(Qp),λ

(
L(λ), Σ+

1 (λ,L1)
)
∼−→ Ext1GL3(Qp),λ

(
L(λ), Σ+,[

1 (λ,L1)
)

by Lemma 4.2. Hence we deduce that

(6.39) Ext1GL3(Qp),λ

(
W2, Σ[1(λ,L1)

)
= Ext1GL3(Qp),λ

(
W2, Σ+,[

1 (λ,L1)
)

= 0
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from Proposition 5.4 and (6.38). The surjection W2 � L(λ) induces an embedding (using a vanishing
of Hom)

Ext1GL3(Qp),λ

(
L(λ), Σ[1(λ,L1)

)
↪→ Ext1GL3(Qp),λ

(
W2, Σ[1(λ,L1)

)
which together with (6.39) implies that

Ext1GL3(Qp),λ

(
L(λ), Σ[1(λ,L1)

)
= 0

and hence

(6.40) Ext1GL3(Qp),λ

(
L(λ), Σ+,[

1 (λ,L1)
)

= 0

by (5.14) and a simple dévissage. It follows from (6.39) and (6.40) that there does not exists a
representation of the form

Σ+,[
1 (λ,L1) L(λ)⊗E v∞P2

L(λ)

or of the form

Σ+,[
1 (λ,L1) L(λ) ,

and therefore

Ext1GL3(Qp),λ

(
L(λ), Σ+,[

1 (λ,L1) L(λ)⊗E v∞P2

)
= 0

which contradicts (6.37). A a result, we have shown that

Mmin ∩M{1,2} = 0.

As M− 6⊆ M{1,2,i} for i = 3, 4, we deduce that both Mmin ∩M{1,2,3} and Mmin ∩M{1,2,4} are one
dimensional. On the other hand, since we know that

(Mmin ∩M{1,2,3}) ∩ (Mmin ∩M{1,2,4}) = Mmin ∩M{1,2} = 0,

we deduce the following direct sum decomposition

Mmin = (Mmin ∩M{1,2,3})⊕ (Mmin ∩M{1,2,4}).

�

It follows from Proposition 6.12 that the two dimensional E-vector space Mmin has three special
lines inside, given by M−, Mmin ∩M{1,2,3} and Mmin ∩M{1,2,4}. We use the notation L(λ)i for copy

of L(λ) inside L(λ)⊕2 corresponding to the one dimensional space Mmin ∩M{1,2,i+2} inside Mmin,
and therefore we have a surjection

(6.41) Σmin(λ,L1,L2,L3) �
(
C1
s2,1 L(λ)1

)
⊕
(
C1
s1,1 L(λ)2

)
.

In other words, given a subrepresentation V ⊆ Σmin(λ,L1,L2,L3) whose cosocle is isomorphic to
L(λ), if the radical (minimal subrepresentation rad(V ) ⊆ V such that V/rad(V ) is semisimple) of V
does not map surjectively to(

L(λ)⊗E v∞P1

)
⊕
(
L(λ)⊗E v∞P2

)
⊕ C1

s2,1 ⊕ C
1
s1,1,

then V is either Σ](λ,L1,L2) (cf. M−), or the unique subrepresentation of Σmin(λ,L1,L2,L3) with
cosocle L(λ)i (cf. Mmin ∩M{1,2,i+2}), for i = 1 or 2.

According to our discussion above, the representation Σmin(λ,L1,L2,L3) has the following form:

(6.42) Stan3 (λ)

vanP1
(λ)

Cs1,s1 L(λ)⊗E v∞P2

vanP2
(λ)

Cs2,s2 L(λ)⊗E v∞P1

L(λ)1

L(λ)2
.
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If we clarify the internal structure of Stan3 (λ), vanP1
(λ) and vanP2

(λ) using Lemma 2.4, then Σmin(λ,L1,L2,L3)
has the following form:

(6.43) L(λ)⊗E St∞3

C2
s1,1

C1
s2s1,1 C2

s2s1,1

L(λ)⊗E v∞P1 C1
s2,1

Cs1,s1

L(λ)⊗E v∞P2

C2
s2,1

C1
s1s2,1

C2
s1s2,1

L(λ)⊗E v∞P2

C1
s1,1

Cs2,s2

L(λ)⊗E v∞P1

L(λ)1

L(λ)2
Cs1s2s1,1 .

Remark 6.13. It is actually possible to show that all the possibly split extensions illustrated in (6.43)
are non-split. However, the proof of these facts is quite technical and (6.43) is sufficient for our purpose
(cf. Theorem 6.15 and Theorem 7.1), so we decide not to go further here.

We observe that Σmin(λ,L1,L2,L3) admits a unique subrepresentation ΣExt1,−(λ,L1,L2,L3) of
the form

L(λ)⊗E St∞3

C2
s1,1

C1
s2s1,1

L(λ)⊗E v∞P1

Cs1,s1
L(λ)⊗E v∞P2

C2
s2,1

C1
s1s2,1

L(λ)⊗E v∞P2

Cs2,s2

L(λ)⊗E v∞P1

which can be uniquely extend to a representation ΣExt1(λ,L1,L2,L3) of the form:

(6.44) L(λ)⊗E St∞3

C2
s1,1

C1
s2s1,1

L(λ)⊗E v∞P1

Cs1,s1
L(λ)⊗E v∞P2

C2
s2,1

C1
s1s2,1

L(λ)⊗E v∞P2

Cs2,s2

L(λ)⊗E v∞P1

C1
s2s1,s2s1

C1
s1s2,s1s2

C2
s1,s1s2

C2
s2,s2s1

according to Section 4.4 and 4.6 of [Bre17] together with our Lemma 4.9. Finally, we define Σmin,+(λ,L1,L2,L3)

as the amalgamate sum of Σmin(λ,L1,L2,L3) and ΣExt1(λ,L1,L2,L3) over ΣExt1,−(λ,L1,L2,L3).

Remark 6.14. It is actually possible to prove (by several technical computations of Ext-groups) that
the quotient

Σmin,+(λ,L1,L2,L3)/L(λ)⊗E St∞3

and the quotient

Σmin(λ,L1,L2,L3)/L(λ)⊗E St∞3

are independent of the choices of L1,L2,L3 ∈ E.
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6.3. Relation to derived object. In this section, as a byproduct of our construction in Section 6.1,
we obtain an explicit complex (cf. Theorem 6.15) of locally analytic representations of GL3(Qp) that
realizes the derived object constructed in Definition 5.19 of [Schr11]. We use a shortened notation
ModD(GL3(Qp),E),λ for ModD(GL3(Qp),E),δ′Z,λ

, which is the abelian category of abstract modules over

D(GL3(Qp), E) with D(Z,E) acting by δ′Z,λ (cf. Section 2.1 and Section 2.3 for necessary notation).

We define Σ],+i (λ,L1,L2,L3) as the subrepresentation of Σ],+(λ,L1,L2,L3) (defined right after
Proposition 6.8) that fits into the short exact sequence

Σ],+i (λ,L1,L2,L3) ↪→ Σ],+(λ,L1,L2,L3) � L(λ)⊗E v∞Pi
for each i = 1, 2. We use the notation Di(λ,L1,L2,L3)′ for the object in the derived category
Db
(
ModD(GL3(Qp),E),λ

)
associated with the complex[

W ′3−i −→ Σ],+i (λ,L1,L2,L3)′
]
.

Theorem 6.15. The object

Di(λ,L1,L2,L3)′ ∈ Db
(
ModD(GL3(Qp),E),λ

)
fits into the distinguished triangle

(6.45) L(λ)′ −→ Di(λ,L1,L2,L3)′ −→ Σ],+(λ,L1,L2)′[−1]
+1−−→

for each i = 1, 2. Moreover, the E-line inside

(6.46) Ext2GL3(Qp),λ

(
L(λ), Σ(λ,L1,L2)

)
∼−→ Ext2GL3(Qp),λ

(
L(λ), Σ],+(λ,L1,L2)

)
∼= HomDb(ModD(GL3(Qp),E),λ)

(
Σ],+(λ,L1,L2)′[−2], L(λ)′

)
associated with the distinguished triangle (6.45) is

(6.47) E(c0 + L3κ(b1,valp ∧ b2,valp)).

In particular, for each i = 1, 2, Di(λ,L1,L2,L3)′ is isomorphic to the derived object constructed in
Definition 5.19 of [Schr11] (with Q there chosen to be zero) if L1 = −L , L2 = −L ′ and L3 = L ′′.

Proof. It follows from Proposition 3.2 of [Schr11] that there is a unique (up to isomorphism) object

D(λ,L1,L2,L3)′ ∈ Db
(
ModD(GL3(Qp),E),λ

)
that fits into a distinguished triangle

(6.48) L(λ)′ −→ D(λ,L1,L2,L3) −→ Σ],+(λ,L1,L2)[−1]
+1−−→

such that the element in Ext2GL3(Qp),λ

(
L(λ), Σ(λ,L1,L2)

)
associated with (6.48) via (6.46) is (6.47).

It follows from TR2 (cf. Section 10.2.1 of [Wei94]) that

(6.49) D(λ,L1,L2,L3)′ −→ Σ],+(λ,L1,L2)′[−1] −→ L(λ)′[1]
+1−−→

is another distinguished triangle. The isomorphism (6.14) can be reinterpreted as the isomorphism

(6.50) HomDb(ModD(GL3(Qp),E),λ)

(
Σ],+(λ,L1,L2)′[−1],

(
L(λ)⊗E v∞P3−i

)′)
∼−→ HomDb(ModD(GL3(Qp),E),λ)

(
Σ],+(λ,L1,L2)′[−1], L(λ)′[1]

)
induced by the composition with HomDb(ModD(GL3(Qp),E),λ)

((
L(λ)⊗E v∞P3−i

)′
, L(λ)′[1]

)
. As a re-

sult, each morphism

Σ],+(λ,L1,L2)′[−1]→ L(λ)′[1]
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uniquely factors through a composition

Σ],+(λ,L1,L2)′[−1]→
(
L(λ)⊗E v∞P3−i

)′
→ L(λ)′[1]

which induces a commutative diagram with four distinguished triangles

(6.51) Σ],+(λ,L1,L2)′[−1]

(
L(λ)⊗E v∞P3−i

)′
L(λ)′[1]

Σ],+i (λ,L1,L2,L3)′

D(λ,L1,L2,L3)′

W ′3−i[1]

+1

+1

+1

+1

DD

77

''

DD

77

''

��

��

DD

77

''

��

by TR4. Hence we deduce that

Σ],+i (λ,L1,L2,L3)′ −→ D(λ,L1,L2,L3)′ −→W ′3−i[1]
+1−−→

or equivalently

W ′3−i −→ Σ],+i (λ,L1,L2,L3)′ −→ D(λ,L1,L2,L3)′
+1−−→

is a distinguished triangle. On the other hand, it is easy to see that Di(λ,L1,L2,L3)′ fits into the
distinguished triangle

W ′3−i −→ Σ],+i (λ,L1,L2,L3)′ −→ Di(λ,L1,L2,L3)′
+1−−→

and thus we conclude that

Di(λ,L1,L2,L3)′ ∼= D(λ,L1,L2,L3)′ ∈ Db
(
ModD(GL3(Qp),E),λ

)
by the uniqueness in Proposition 3.2 of [Schr11]. The last claim follows directly from (2.23) and an
obvious comparison between our L3 and the L ′′ in Definition 5.19 of [Schr11]. Hence we finish the
proof. �

Remark 6.16. Now we explain the meaning of the notation Σmin(λ,L1,L2,L3). The philosophy of
p-adic local Langlands naturally predicts that one should be able to construct a family of locally
analytic representations depending on three invariants, such that each representation in the family
contains Stan3 (λ) as a subrepresentation. As a direct generalization of the case of GL2(Qp), one firstly
construct a family Σ(λ,L1,L2) that depends on two invariants L1,L2 ∈ E. It was firstly observed
in [Schr11] that the third invariant should appear in

(6.52) Ext2GL3(Qp),λ

(
L(λ), Σ(λ,L1,L2)

)
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rather than Ext1GL3(Qp),λ

(
L(λ), Σ(λ,L1,L2)

)
, purely due to the dimensional reason (cf. Lemma 2.11).

In order to give a reasonable normalization of third invariant (in a way which conjecturally matches
the third Fontaine–Mazur invariant on Galois side), one needs a special E-line inside (6.52). Then it
turns out that the p-adic dilogarithm function admits a cohomological interpretation (cf. Section 5.3
of [Schr11]) which gives the required special E-line. Consequently, a family of abstract derived objects
that depends on three invariants is constructed in Definition 5.19 of [Schr11]. Having the family of
abstract derived objects in mind, our family Σmin(λ,L1,L2,L3) admits following characterization (cf.
(6.42) and (6.43) for intuition): each representation in our family is minimal among representations
V satisfying the following conditions

(i) V contains Σ](λ,L1,L2) as a subrepresentation for some L1,L1 ∈ E;
(ii) there exists a complex with terms given by suitable subquotients of V , such that its associated

object in Db
(
ModD(GL3(Qp),E),λ

)
canonically determines a E-line in (6.52) of the form (6.47)

for some L3 ∈ E.

7. Local-global compatibility

In this section, we prove our main result on local-global compatibility (cf. Theorem 7.1 and Corol-
lary 7.5), which roughly says the following: up to suitable normalization and certain mild global
assumption, if L(λ) ⊗E St∞3 appears in the Hecke eigenspace associated with a global Galois repre-
sentation, then there exists a unique choice of L1,L2,L3 ∈ E such that Σmin,+(λ,L1,L2,L3) also
appears in the same Hecke eigenspace.

We are going to borrow most of the notation and assumptions from Section 6 of [Bre17]. We fix
embeddings ι∞ : Q ↪→ C, ιp : Q ↪→ Qp, an imaginary quadratic CM extension F of Q and a unitary
group G/Q attached to the extension F/Q such that G ×Q F ∼= GL3 and G(R) is compact. If ` is

a finite place of Q which splits completely in F , we have isomorphisms ιG,w : G(Q`)
∼−→ G(Fw) ∼=

GL3(Fw) for each finite place w of F over `. We assume that p splits completely in F , and we fix a
finite place wp of F dividing p and therefore G(Qp) ∼= G(Fwp) ∼= GL3(Qp).

We fix an open compact subgroup Up ( G(A∞,pQ ) of the form Up =
∏
` 6=p U` where U` is an open

compact subgroup of G(Q`). Note that Up is called sufficiently small if there exists ` 6= p such that U`
has no non-trivial element with finite order. For each finite extension E of Qp inside Qp, we consider
the following OE-lattice:

(7.1) Ŝ(Up,OE)
def
= {f : G(Q)\G(A∞Q )/Up → OE , f continuous}

inside the p-adic Banach space Ŝ(Up, E)
def
= Ŝ(Up,OE) ⊗OE E. The right translation of G(Qp) on

G(Q)\G(A∞Q )/Up induces a p-adic continuous action of G(Qp) on Ŝ(Up,OE) which makes Ŝ(Up, E)

an admissible Banach representation ofG(Qp) in the sense of [ST02]. We use the notation Ŝ(Up, E)alg ⊆
Ŝ(Up, E)an following Section 6 of [Bre17] for the subspaces of locally Qp-algebraic vectors and locally

Qp-analytic vectors inside Ŝ(Up, E) respectively. Moreover, we have the following decomposition:

(7.2) Ŝ(Up, E)alg ⊗E Qp
∼=
⊕
π

(πv0f )Up ⊗Q (πv0 ⊗Q Wp)

where the direct sum is over the automorphic representations π of G(AQ) over C and Wp is the Qp-

algebraic representation of G(Qp) over Qp associated with the algebraic representation π∞ of G(R)
over C via ιp and ι∞. In particular, each distinct π appears with multiplicity one (cf. the paragraph
after (55) of [Bre17] for further references).

We use the notation D(Up) for the set of finite places ` of Q that are different from p, split
completely in F and such that U` is a maximal open compact subgroup of G(Q`). Then we consider

the commutative polynomial algebra T(Up)
def
= E[T

(j)
w ] generated by the variables T

(j)
w indexed by

j ∈ {1, · · · , n} and w a finite place of F over a place ` of Q such that ` ∈ D(Up). The algebra T(Up)

acts on Ŝ(Up, E), Ŝ(Up, E)alg and Ŝ(Up, E)an via the usual double coset operators. The action of
T(Up) commutes with that of G(Qp).
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We fix now α ∈ E×, hence a Deligne–Fontaine module D over Qp = Fwp of rank three of the form

(7.3) D = Ee2 ⊕ Ee1 ⊕ Ee0, with

 ϕ(e2) = αe2
ϕ(e1) = p−1αe1
ϕ(e0) = p−2αe0

and

 N(e2) = e1
N(e1) = e0
N(e0) = 0 .

and finally a tuple of Hodge–Tate weights k = (k1 > k2 > k3). If ρ : Gal(F/F ) → GL3(E) is an
absolute irreducible continuous representation which is unramified at each finite place w lying over a
finite place ` ∈ D(Up), we can associate with ρ a maximal ideal mρ ⊆ T(Up) with residual field E by
the usual method described in the middle paragraph on Page 58 of [Bre17]. We use the notation ?mρ for

spaces of localization and ?[mρ] for torsion subspaces where ? ∈ {Ŝ(Up, E), Ŝ(Up, E)alg, Ŝ(Up, E)an}.
We assume that there exists Up and ρ such that

(i) ρ is absolutely irreducible and unramified at each finite place w of F over a place ` of Q
satisfying ` ∈ D(Up);

(ii) Ŝ(Up, E)alg[mρ] 6= 0 (hence ρ is automorphic and ρwp
def
= ρ|Gal(Fwp/Fwp )

is potentially semi-

stable, cf. [BLGGT14], [Ca14]);
(iii) ρwp has Hodge–Tate weights k and gives the Deligne–Fontaine module D.

By identifying Ŝ(Up, E)alg with a representation of GL3(Qp) via ιG,wp , we have the following isomor-
phism up to normalization from (7.2) and [Ca14]:

(7.4) Ŝ(Uv0 , E)alg[mρ] ∼=
(
L(λ)⊗E St∞3 ⊗E (ur(α)⊗E ε2) ◦ det

)⊕d(Up,ρ)
for all (Up, ρ) satisfying the conditions (i), (ii) and (iii), where λ = (λ1, λ2, λ3) = (k1 − 2, k2 − 1, k3)
and d(Up, ρ) ≥ 1 is an integer depending only on Up and ρ.

Theorem 7.1. We consider Up =
∏
` 6=p U` and ρ : Gal(F/F )→ GL3(E) such that

(i) ρ is absolutely irreducible and unramified at each finite place w of F lying above D(Up);

(ii) Ŝ(Up, E)alg[mρ] 6= 0;
(iii) ρ has Hodge–Tate weights k and gives the Deligne–Fontaine module D as in (7.3);
(iv) the Hodge filtration on D is non-critical in the sense of (ii) of Remark 6.1.4 of [Bre17];

(v) only one automorphic representation π contributes to Ŝ(Up, E)alg[mρ].

Then there exists a unique choice of L1,L2,L3 ∈ E such that:

(7.5) HomGL3(Qp)

(
Σmin,+(λ,L1,L2,L3)⊗E (ur(α)⊗E ε2) ◦ det, Ŝ(Up, E)an[mρ]

)
∼−→ HomGL3(Qp)

(
L(λ)⊗E St∞3 ⊗E (ur(α)⊗E ε2) ◦ det, Ŝ(Up, E)an[mρ]

)
.

We recall several useful results from [Bre17] and [BH18]. We recall the upper-triangular Borel
B as well as its radical N from Section 2.3 and let Π be an arbitrary admissible locally analytic
representation of GL3(Qp). We consider the subspace Π[n = 0] ⊆ Π consisting of vectors killed by n,

and notice that Π[n = 0] is stable under the action of B(Qp) and the smooth action of N(Qp). Hence

the subspace of N(Zp)-invariant ΠN(Zp) ⊆ Π[n = 0] is stable under the action of B(Zp) and t. For

each character η : U(t) → E, we write ΠN(Zp)[t = η] ⊆ ΠN(Zp) for the subspace where U(b) acts by

η via U(b) � U(t). We note that ΠN(Zp)[t = η] = Π[n = 0][t = η]N(Zp) is stable under the action of
T (Qp)

+ where

T (Qp)
+ def

= {t ∈ T (Qp) | tN(Zp)t−1 ⊆ N(Zp)}.
For each character χ : T (Qp)

+ → E×, we write ΠN(Zp)[t = η]χ ⊆ ΠN(Zp)[t = η] for the generalized
eigenspace associated with χ.

Proposition 7.2. Suppose that Up =
∏
` 6=p U` is a sufficiently small open compact subgroup of

G(A∞,pQ ), Ŝ(Up, E)an ↪→ Π � Π1 is a short exact sequence inside Repla
GL3(Qp),E, χ : T (Qp) → E×
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is a locally analytic character and η : U(t) → E its derived character, then we have the following
T (Qp)

+-equivariant short exact sequences of finite dimensional E-vector spaces

(Ŝ(Up, E)an)N(Zp)[t = η] ↪→ ΠN(Zp)[t = η] � Π
N(Zp)
1 [t = η]

and

(Ŝ(Up, E)an)N(Zp)[t = η]χ ↪→ ΠN(Zp)[t = η]χ � Π
N(Zp)
1 [t = η]χ.

Proof. This is Proposition 6.3.3 of [Bre17] and Proposition 4.1 of [BH18]. �

Proposition 7.3. We fix Up and ρ as in Theorem 7.1. For a locally analytic character χ : T (Qp)→
E×, we have

HomT (Qp)+

(
χ⊗E (ur(α)⊗E ε2) ◦ det, (Ŝ(Up, E)an[mρ])

N(Zp)
)
6= 0

if and only if χ = δT,λ.

Proof. This is Proposition 6.3.4 of [Bre17]. �

We recall the notation iGL3

B (χ∞w ) for a smooth principal series for each w ∈ W from Section 2.3.
Given three locally analytic representations Vi for i = 1, 2, 3 and two surjections V1 � V2 and V3 � V2,
we use the notation V1 ×V2

V3 for the fiber product of V1 and V3 over V2 with natural surjections
V1 ×V2 V3 � V1 and V1 ×V2 V3 � V3. We also use the shortened notation V alg for the maximally
locally algebraic subrepresentation (given by the set of locally algebraic vectors) of a locally analytic
representation V . We recall the set Ω (consisting of irreducible representations) from (2.6) and the
sentence before it.

Proposition 7.4. We fix Up and ρ as in Theorem 7.1 and assume moreover that Up is a sufficiently
small open compact subgroup of G(A∞,pQ ). We also fix a non-split short exact sequence V1 ↪→ V2 � V3

inside Repla
GL3(Qp),E such that V1 ⊗E (ur(α) ⊗E ε2) ◦ det embeds into Ŝ(Up, E)an[mρ]. We conclude

that:

(i) if V3 ∈ Ω is not locally algebraic, then we have an embedding

V2 ⊗E (ur(α)⊗E ε2) ◦ det ↪→ Ŝ(Up, E)an[mρ];

(ii) if there exists a surjection

L(λ)⊗E iGL3

B (χ∞w ) � V3

for a certain w ∈ WGL3
, then there exists a quotient V4 of V2 ×V3

(
L(λ)⊗E iGL3

B (χ∞w )
)

satisfying

socGL3(Qp)(V4) = V alg
4 = L(λ)⊗E St∞3

such that we have an embedding

V4 ⊗E (ur(α)⊗E ε2) ◦ det ↪→ Ŝ(Up, E)an[mρ].

Proof. This is an immediate generalization (or rather summary) of Section 6.4 of [Bre17]. More

precisely, part (i) (resp. (ii)) generalizes the Étape 1 (resp. the Étape 2) of Section 6.4 of [Bre17]. �

proof of Theorem 7.1. According to the Étape 1 and 2 of Section 6.2 of [Bre17], we may assume
without loss of generality that Up is sufficiently small and it is sufficient to show that there exists a
unique choice of L1,L2,L3 ∈ E such that

(7.6) HomGL3(Qp)

(
Σmin,+(λ,L1,L2,L3)⊗E (ur(α)⊗E ε2) ◦ det, Ŝ(Up, E)an[mρ]

)
6= 0.
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For each i = 1, 2, we recall the representation Πi(k,D) constructed in Section 4.5 of [Bre17], which
has the following form

(7.7)

C2
s3−i,1

C1
sis3−i,1

L(λ)⊗E v∞P3−i

Cs3−i,s3−i
L(λ)⊗E v∞Pi

C1
sis3−i,sis3−i

C2
s3−i,s3−isi

under notation (cf. Section 2.3) of our paper. We deduce from (7.7), (6.44) as well as the definition
of Σmin,+(λ,L1,L2,L3) before Remark 6.9 that Σmin,+(λ,L1,L2,L3) contains a unique subrepre-

sentation ΣExt1(λ,L1,L2,L3) of the form

(7.8) L(λ)⊗E St∞3

Π1(k,D)

Π2(k,D)

.

Moreover, Σmin,+(λ,L1,L2,L3) is uniquely determined by ΣExt1(λ,L1,L2,L3) up to isomorphism.

It is known by Étape 3 of Section 6.2 of [Bre17] that there is at most one choice of L1,L2,L3 ∈ E
such that

HomGL3(Qp)

(
ΣExt1(λ,L1,L2,L3)⊗E (ur(α)⊗E ε2) ◦ det, Ŝ(Up, E)an[mρ]

)
6= 0,

and thus there is at most one choice of L1,L2,L3 ∈ E such that (7.6) holds. As a result, it remains
to show the existence of L1,L2,L3 ∈ E that satisfies (7.6). We notice that Σmin,+(λ,L1,L2,L3)
admits an increasing, separated and exhaustive filtration Fil• satisfying the following conditions

(i) the representations Σmin(λ,L1,L2,L3) and Σ],+(λ,L1,L2) (cf. their definition after Propo-
sition 6.2 and Proposition 6.8) appear as two consecutive terms of the filtration;

(ii) each graded piece is either locally algebraic or irreducible.

As a result, the only reducible graded pieces of this filtration is the quotient

Σmin(λ,L1,L2,L3)/Σ],+(λ,L1,L2) ∼= W0.

Then we can prove the existence of L1,L2,L3 ∈ E satisfying (7.6) by reducing to the isomorphism

(7.9) HomGL3(Qp)

(
Filk+1Σmin,+(λ,L1,L2,L3)⊗E (ur(α)⊗E ε2) ◦ det, Ŝ(Up, E)an[mρ]

)
∼−→ HomGL3(Qp)

(
FilkΣmin,+(λ,L1,L2,L3)⊗E (ur(α)⊗E ε2) ◦ det, Ŝ(Up, E)an[mρ]

)
for each k ∈ Z. If

Grk
def
= Filk+1Σmin,+(λ,L1,L2,L3)/FilkΣmin,+(λ,L1,L2,L3)

is not locally algebraic, then (7.9) is true by part (i) of Proposition 7.4. The only locally algebraic
graded pieces of the filtration except L(λ) ⊗E St∞3 are L(λ) ⊗E v∞P1

, L(λ) ⊗E v∞P2
and W0. The

isomorphism (7.9) when the graded piece Grk equals L(λ)⊗E v∞P1
or L(λ)⊗E v∞P2

has been treated in

Étape 2 of Section 6.4 of [Bre17]. As a result, it remains to show that

(7.10) HomGL3(Qp)

(
Σmin(λ,L1,L2,L3)⊗E (ur(α)⊗E ε2) ◦ det, Ŝ(Up, E)an[mρ]

)
∼−→ HomGL3(Qp)

(
Σ],+(λ,L1,L2)⊗E (ur(α)⊗E ε2) ◦ det, Ŝ(Up, E)an[mρ]

)
to finish the proof of Theorem 7.1. It follows from (53) of [Bre17] that iGL3

B (χ∞s1s2s1) has the form

St∞3

v∞P1

v∞P2

13
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and thus there is a surjection

L(λ)⊗E iGL3

B (χ∞s1s2s1) �W0.

According to part (ii) of Proposition 7.4, we only need to show that any quotient V of

V �
def
= Σmin(λ,L1,L2,L3)×W0

(
L(λ)⊗E iGL3

B (χ∞s1s2s1)
)

satisfying

(7.11) socGL3(Qp)(V ) = V alg = L(λ)⊗E St∞3

must have the form

Σmin(λ,L1,L2,L
′
3)

for certain L ′3 ∈ E. We recall from Proposition 6.8 and our definition of Σmin(λ,L1,L2,L3) after-
wards that Σmin(λ,L1,L2,L3) fits into a short exact sequence

(7.12) Σ],+(λ,L1,L2) ↪→ Σmin(λ,L1,L2,L3) �W0

and thus V � fits (by definition of fiber product) into a short exact sequence

(7.13) Σ],+(λ,L1,L2) ↪→ V � � iGL3

B (χ∞s1s2s1)

and in particular

socGL3(Qp)(V
�) =

(
L(λ)⊗E St∞3

)⊕2
.

Hence the condition (7.11) implies that V fits into a short exact sequence

L(λ)⊗E St∞3
j−→ V � � V

and that

j
(
L(λ)⊗E St∞3

)
∩ Σ],+(λ,L1,L2) = 0 ⊆ V �

which induces an injection

Σ],+(λ,L1,L2) ↪→ V.

Therefore V fits into a short exact sequence

Σ],+(λ,L1,L2) ↪→ V �W0

and thus corresponds to a line MV inside

Ext1GL3(Qp),λ

(
W0, Σ],+(λ,L1,L2)

)
which is two dimensional by Proposition 6.10. Moreover, the condition (7.11) implies that MV is
different from the line given by the image of

Ext1GL3(Qp),λ

(
W0, L(λ)⊗E St∞3

)
↪→ Ext1GL3(Qp),λ

(
W0, Σ],+(λ,L1,L2)

)
.

Hence it follows from Proposition 6.10 that there exists L ′3 ∈ E such that

V ∼= Σmin(λ,L1,L2,L
′
3).

�

Corollary 7.5. If a locally analytic representation Π of the form (7.8) is contained in Ŝ(Up, E)an[mρ]
for a certain Up and ρ as in Theorem 7.1, then there exists L1,L2,L3 ∈ E uniquely determined by
Π such that

Π ↪→ Σmin,+(λ,L1,L2,L3).
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Proof. We fix Up and ρ such that the embedding

(7.14) Π ↪→ Ŝ(Up, E)an[mρ]

exists. Then (7.14) restricts to an embedding

L(λ)⊗E St∞3 ↪→ Ŝ(Up, E)an[mρ]

which extends to an embedding

(7.15) Σmin,+(λ,L1,L2,L3) ↪→ Ŝ(Up, E)an[mρ]

for a unique choice of L1,L2,L3 ∈ E according to Theorem 7.1. The embedding (7.15) induces by
restriction an embedding

ΣExt1(λ,L1,L2,L3) ↪→ Ŝ(Up, E)an[mρ]

and therefore we have
Π ∼= ΣExt1(λ,L1,L2,L3)

by Théorème 6.2.1 of [Bre17]. In particular, we deduce an embedding

Π ↪→ Σmin,+(λ,L1,L2,L3)

for certain invariants L1,L2,L3 ∈ E determined by Π. �
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