DILOGARITHM AND HIGHER .Z-INVARIANTS FOR GL;3(Q,)

ZICHENG QIAN

ABSTRACT. The primary purpose of this paper is to clarify the relation between previous results in
[Schr1d], [Brel7] and [BDI8] via the construction of some interesting locally analytic representations.
Let E be a sufficiently large finite extension of Q, and p, be a p-adic semi-stable representation
Gal(Qp/Qp) — GL3(E) such that the associated Weil-Deligne representation WD(pp) has rank
two monodromy and the associated Hodge filtration is non-critical. A computation of extensions of
rank one (¢, I')-modules shows that the Hodge filtration of p, depends on three invariants in E. We
construct a family of locally analytic representations Y™ (), .7, %,.%3) of GL3(Qp) depending
on three invariants £, %, % € E, such that each representation in the family contains the lo-
cally algebraic representation Alg ® Steinberg determined by WD(p,) (via classical local Langlands
correspondence for GL3(Qp)) and the Hodge—Tate weights of p,. When p, comes from an auto-
morphic representation 7 of a unitary group over Q which is compact at infinity, we show (under
some technical assumption) that there is a unique locally analytic representation in the above family
that occurs as a subrepresentation of the Hecke eigenspace (associated with 7) in the completed
cohomology. We note that constructs a family of locally analytic representations depending
on four invariants ( cf. (4) in [Brel7] ) and proves that there is a unique representation in this family
that embeds into the Hecke eigenspace above. We prove that if a representation II in Breuil’s family
embeds into the Hecke eigenspace above, the embedding of II extends uniquely to an embedding of a
rwin(\ £, %, £3) into the Hecke eigenspace, for certain %1, %,.%s € E uniquely determined by
II. This gives a purely representation theoretical necessary condition for IT to embed into completed
cohomology. Moreover, certain natural subquotients of ™M\, £}, %, £3) give an explicit com-
plex of locally analytic representations that realizes the derived object 3(\,.%) in (1.14) of [Schr1i].
Consequently, the locally analytic representation S™™ (X, %, %, #3) gives a relation between the
higher .#-invariants studied in [Brel7| as well as [BD18| and the p-adic dilogarithm function which
appears in the construction of (), %) in [Schrii].
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1. INTRODUCTION

Let p be a prime number and F' an imaginary quadratic extension of Q such that p splits in F. We
fix a unitary group G over Q which splits over F' and such that G(R) is compact. Then to each finite
extension E of Q, and to each prime-to-p level U? in G(AOQO”’ ), one can associate the Banach space
of p-adic automorphic forms S (UP, E). One can also associate with UP a set of finite places D(UP) of
Q and a Hecke algebra T(UP) which is the polynomial algebra freely generated by Hecke operators at
places of F' lying above D(UP). In particular, the commutative algebra T(U?) acts on :S'\(Up7 E) and
commutes with the action of G(Q,) = GL,(Q,) coming from translations on G(Ag).

If p: Gal(F/F) — GL,(E) is a continuous irreducible representation, one considers the associated
Hecke eigenspace S (UP, E)[m,], which is a continuous admissible representation of GL,,(Q,) over E,
or its locally Q,-analytic vectors S(Ur,E)™ [m,], which is an admissible locally Q,-analytic represen-
tation of GL,(Q,). We fix w, to be a place of F' above p. The philosophy of p-adic local Langlands
correspondence predicts that S(U?, E)[m,] (and its subspace S(Ur, E)™ [m,] as well) determines and

depends only on p, def p|Gal(F— JFu)" The case n = 2 is well-known essentially due to various re-

wp

sults in [Coll0] and [Eme]. The case n > 3 is much more difficult and only a few partial results
are known. We are particularly interested in the case when the subspace of locally algebraic vectors
S(Ur, E)e [m,] C S, E)[m,] is non-zero, which implies that p, is potentially semi-stable. Certain
cases when n = 3 and p,, is semi-stable and non-crystalline have been studied in [Brel7] and [BD18].
We are going to continue their work and obtain some interesting relation between results in [Brel7],
[BD18| and previous results in [Schrll] which involve the p-adic dilogarithm function.

1.1. Construction of a family of representations. We consider a weight A € X (T4 of the di-
agonal split torus T" C GL3 which is dominant with respect to the upper-triangular Borel subgroup.
Given two locally analytic representations V1, V2 of GL3(Q,), we use the notation V3 — V, (resp.
the notation V; — - V4 ) for a locally analytic representation corresponding to a non-zero (resp. pos-
sibly zero) element in ExtéLS(Qp) (Va, V1). If we consider two elements in ExtéLS(Qp) (Va, V1) that
differ from each other by a non-zero scalar, then their corresponding representations are naturally
isomorphic. In Section we will introduce the generalized analytic Steinberg representations (of
weight \) St3"(A), v8!(A), vE (M), L(A) and various irreducible locally analytic representations C7;, ,
of GL3(Q,), for certain choices of * € {&, 1,2} and elements w,w’ in the Weyl group of GL3.

Theorem 1.1. [Proposition Proposition Proposition ] For each choice of A €
X(T)y and £, %, L € E, there exists a locally analytic representation L™\, L, Lo, L3) of

GL3(Qp) of the form:

Cs s — L)) Qg v®
U?D?(A)/ 1,51 () E UYp,

P —T()\)
1.1 Sta™ (A _ .
- i )\Ug(,\)j/[/(,\)

o 082752 - Z()\) (299 5) 'U})D?

Moreover, different choices of L1, %, L5 € E give non-isomorphic representations.
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We also construct a locally analytic representation L™+ (X, &, %, %) D LW\ L), L, L)
of the form

1
$281,8281 — ~2

— 081,8152

- —
o ——T()

an()\) / ®E U%;
v
sy "’ ——=1()
3 _
— LA
. . 10
o \ 1 /: 0322,5251

whose isomorphism class is uniquely determined by that of ™ (\, %, %, .%). The following is our
main result on local-global compatibility.

Theorem 1.2. [Theorem Assume that p > 5 and n = 3. Assume moreover that

(i) p is unramified at all finite places of F above D(UP);
(i) S(U, B)lm,Je £ 0;
(iii) p, is semi-stable with Hodge—Tate weights {k1 > ko > ks} such that N? # 0;
(iv) pp is non-critical in the sense of Remark 6.1.4 of [BrelT];
(v) only one automorphic representation contributes to S(UP, E)& [m,].

Then there exists a unique choice of L1, %2, L5 € E such that §(U”,E)‘m[mp] contains (copies of)
the locally analytic representation

Yt (N A, L, L) @p (ur(a) @ %) o det

where X = (A1, A2, A3) = (k1 — 2, ko — 1,k3), and o € E* is determined by the Weil-Deligne represen-
tation WD(p,) associated with p,. Moreover, we have

(1.2) Homgr,q,), (zmin>+(A, L Lo, L) @ (ur(a) @p £2) o det, S(UP, E)an[mp})

— Homgr,(q,) (Z()\) ®p St5° ®p (ur(a) @p 2) o det, S(U?, E)an[mp]) :

The assumptions of our Theorem are the same as that of Theorem 1.3 of [Brel7]. Here we do
not attempt to obtain any explicit relation between %, %, %3 € E and p,, which is similar in flavor
to Theorem 1.3 of [Brel7]. The improvement of our Theorem upon Theorem 1.3 of [Brel7] will
be explained in Section It is worth mentioning that, under further technical assumptions that
pp is ordinary with consecutive Hodge-Tate weights and has an irreducible mod p reduction, one can
combine our Theorem with Theorem 7.52 of [BD18] and conclude that the isomorphism class of
ymint (N 2, %, %) and that of p, determine each other.

Remark 1.3. It is possible to construct a locally analytic representation X™2*(\, 4, %%, %) of
GL3(Q,) containing X™™T (), 4, %, %) which is characterized by the fact that it is maximal (for
inclusion) among the locally analytic representations V' satisfying the following conditions:

(1) SOCGLg(QP)(V) = Valg = Z(A) ®E Stgo,
(ii) each constituent of V' is a subquotient of a locally analytic principal series;

(i) L(A) ®g St5° is a Jordan-Holder factor of V' with multiplicity one,
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where V218 is the subspace of locally algebraic vectors in V. Moreover, an immediate generalization
of the arguments in the proof of Theorem (and thus of Theorem 1.1 of [Brel7]) shows that

(1.3) Homgr,(q,) (Emax()\, L1, Ly, L5) @p (ur(a) @ £2) o det, S(U?, E)™ [mp]>

= Homgy,q,) (f(/\) ®5 St° @p (ur(a) ®F €2) o det, S(UP, E)an[mp}) .

One can also show that

Emax(/\,fl,XQ,gg)/Z(A) ®p Sts
is independent of the choice of £, %, %5 € E. However, the full construction of ¥™**(\, £, %, %3)
is very lengthy and technical, and thus we decided not to put it here.

1.2. Derived object and p-adic dilogarithm. We consider the bounded derived category

D’ (Modp(cry(Q,).5))

associated with the abelian category Mod p(qLs(q,),z) of abstract modules over the algebra D(GL3(Q,), )
consisting of locally Q,-analytic distributions on GL3(Q,) (cf. Section 4 of [ST03] for the definition
of the algebra of distributions). Schraen constructs an object

S\, Z)" € D’ (Modp(aLy(q,).5))

in Definition 5.19 of [Schrll], and this construction crucially involves the p-adic dilogarithm function.
However, it was not clear in [Schril] whether there exists an explicit complex [C,] of locally analytic
representations of GL3(Q,) whose strong dual realizes £(\,.Z)’. Upon minor difference between the
notation of [Schrll] and ours, we show that

Theorem 1.4. [Theorem[6.15, (2.23)] There exists an explicit complex [Cs] of locally analytic repre-
sentations of GL3(Q,) such that the object D' € D° (ModD(GLS(Qp)’E)) associated with [C’ ] satisfies

D =~ E(/\,Z)/ S Db (MOdD(GLg(Q,,),E)) .

1.3. Higher Z-invariants for GL3(Q,). It follows from (6.43)) and (6.44) that S™n+ (X £, %, %)
can be described explicitly by the following picture:

1

S 05251,8281 —_

~ 2 (V!
L()\) RE Stgo \/ 0513251,1
\ \V 7 Z(/\)2
C? /N
s2,1 —_ Cl
N IWes s =Coun /
- /s
6;152,1 — CS21$271 z()\) ®E U}o)ol

/ \
052’52 052 EPY]
\ _— 2,8281

Cl

$182,5152
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Consequently, S+ (N %, %, #3) contains a unique subrepresentation of the form

o — 0;231,1 —_— — 031281,8251 — 9
s1,1 — _— CYSlﬁl —_ _— “s1,8182
L(A) ®g St3° _ _
\02 /L()\) ®EUP2\C /L(/\) ®E’UP1\02
sa2,1 —_— Cl — 52,52 —_ Cl _— Tsa,s281
s189,1 5182,5182
which is denoted by
_ I (k, D)

(1.4) L(\)

®p St5°

- IPkD)
in Theorem 1.1 of [Brel7]. We write II for an arbitrary representation of the form (1.4). It follows
from Theorem 1.2 of [Brel7] that

dimpExt i, g, (T (k D), T(A) @ St57) = 3

for each i = 1,2. Therefore all possible choices of II form a family that depends on four invariants
in E. However, a computation of extensions of rank one (¢, I')-modules suggests that p, depends on
three invariants in E. As a result, Theorem 1.1 of [Brel7| predicts that the existence of UP and p as
well as an embedding IT < S(U?, E)*® [m,], should cut out a subfamily of I that depends on three
invariants. Motivated by Breuil’s prediction, we show the following

Theorem 1.5. [Comllary If there exists UP and p such that I1 embeds into :S'\(Up7 E)**[m,], then
there exists L1, %o, L5 € E such that II embeds into

SN, A, L, D).

Moreover, the isomorphism class of II and that of X™™F(\, A, %, L3) where 11 embeds, uniquely
determine each other.

1.4. Sketch of content. The overall goal of the sections before Section [7] is the construction and
study of the locally analytic representations X™%(\, 2, %, . %43) and S0 H(\ 2, %, %), In par-
ticular, the content of this paper from Section [2] to Section [f] is purely locally analytic representation
theoretical.

In Section [2] we recall various well-known facts around locally analytic representations of p-adic
analytic groups, with more focus on GL2(Q,) and GL3(Q,). In Section we fix our notation for
various locally analytic representations of GL2(Q,) and GL3(Q,), including the notation for some
irreducible admissible locally analytic representations for GL3(Q,) that will be frequently used in the
rest of the article. In Section we recall a standard spectral sequence (cf. Lemma which will
be frequently used in later computation of Ext-groups. In Section [2.4] we fix a branch of the p-adic
logarithm function, recall a branch of the p-adic dilogarithm function from Section 5.3 of [Schr1l] and
interpret it as an element of a certain ExtéLs(Qp)—group following (5.57) of [Schrll]. Using the fixed
branch of the p-adic logarithm function, we define a locally analytic representation (A, %, %) of
GL3(Q,) that depends on two invariants .2, % € E (cf. the paragraph before )

In Section [3| we prove a crucial fact (Proposition on the non-existence of a locally analytic
representation of GL2(Q,) of a certain specific form, which can be interpreted as the vanishing of
a certain ExtéLQ(Qp)—group. The proof of Proposition uses arguments involving infinitesimal
characters of locally analytic representations.

In Section [4] we systematically present a list of computational results, grouped into various Propo-
sitions and Lemmas. There exists a standard spectral sequence (cf. Lemma to compute certain
Extgr,(q,)-groups using results on Np(Q))-homology of admissible locally analytic representations
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of GL3(Qp), where Np is the unipotent radical of a maximal parabolic subgroup P C GLj3. Con-
sequently, our computation in Section {4 makes extensive use of results on Np(Q,)-homology, most
notably Théoreme 4.10 of [Schrll] (a classical Theorem by Kostant) as well as Section 5.2 and 5.3 of
[Brel7] (based on the lists between (4.117) and (4.134) of [Schrll]). The readers may skip Section
during a first reading. While reading Section [5] and [6] the reader may check the lists in Section
whenever necessary.

In Section [5] we prove various technical results on Ext-groups that will be directly used in the
construction and study of X™n(\, %, %, %) (which appears in Section @ On the one hand, we
prove in Proposition n 5.4) the non-existence of locally analytic representations of GL3(Q,) of certain
specific forms, using Proposition as a crucial input. On the other hand we compute or estimate
the dimension of various Ext(l}L3(Qp) and EXtGLg.(Qp) in Lemma !and . Technically
speaking, the information on dimensions of these Ext-groups will be crucial for us to manipulate
various long exact sequences in Section [6}

Sect10n|§|1$ the heart of this paper where we construct and study the representation XM (\, %, %, %)
and its variant. In Section we finish the construction of X™"(\, £, %, %) (cf. Proposi-
tion and the paragraph before ), and then prove a technical result (cf. Proposition [6.10)
which will be crucial in the proof of Theorem [7.1} In Section we further clarify the struc-
ture of various subrepresentations of Emm()\ 31,92”2,92”3 and obtaln an explicit description of ex-
tensions inside Y™™\, .24, %, %) (cf. and - In order to clarify the relation be-
tween our LM\, L), %, L) and Various representatlons constructed in [Brel7] (cf. the proof of
Theorem for details), we also consider a slightly bigger representation Y™+ (X, 4, %, %
Lmin(\ L, %, %). In Section we obtain as byproduct an explicit complex (cf. Theorem [6.15))
of locally analytic representations of GL3(Q,) that realizes the derived object £(\,.Z)" constructed
in [Schr1i].

In Section [7}, we prove Theorem by combining Proposition with the technique (recalled or
reformulated in Proposition and from the proof of Théoréme 6.2.1 of [Brel7]. At the end,
we give a purely representation theoretical criterion for a representation of the form to embed
into the completed cohomology (cf. Corollary .

1.5. Acknowledgement. This is the second part of the author’s PhD thesis. The author expresses
his gratefulness to his advisor Christophe Breuil for introducing the problem of relating [Schril] with
[Brel7] and [BDI8| and especially for his interest on the role played by the p-adic dilogarithm function.
The author also benefited a lot from countless discussions with Y. Ding especially for Section[3] Finally,
the author thanks B. Schraen for his beautiful thesis which improved the author’s understanding on
the subject.

2. PRELIMINARY

2.1. Locally analytic representations. In this section, we recall some background on the theory
of locally analytic representations of p-adic analytic groups.

We fix a locally Qp-analytic group H and denote the algebra of locally Qp-analytic distributions
with coefficients in F on H by D(H, E), which is defined as the strong dual of the locally convex
E-vector space C*"(H, E) consisting of locally Q,-analytic functions on H (cf. Section 4 of [ST03]).
We use the notation Rep}a[’ g (resp. Repyy g) for the category of admissible locally Q,-analytic rep-
resentations of H (resp. admissible smooth representations of H) with coefficients in E. It follows
from Theorem 6.3 of [ST03] that taking strong dual induces a fully faithful contravariant functor from
Repﬁ’ g to the abelian category Modp g, gy of abstract modules over D(H, E). The E-vector space

Ext%(H,E)(Ml, My) is well-defined for any two objects My, Ma € Modp (g, ), and we define

EXti‘I (Hla HQ) = EXt’LD(H,E) (H/27 Hll)
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for any two objects 111,15 € Replj_}’E where

cohomology of an object M € Modp(y, gy by

is the notation for strong dual. We also define the

HY(H, M) = Exth g g1y, M)
where 1p is the trivial representation of H. If H; is a closed locally Q,-analytic normal subgroup of
H, then H/H, is also a locally Q,-analytic group. It follows from the fact

D(H,E) ®pw,,p) £ = DH/H,,E)

(cf. Section 5.1 of [Brel7]) that H*(Hy, M) admits a structure of D(H/H;, E)-module for each M €
Modp(g, ). For each IT € Rep}’f}’E, if there exists an object H;(H;,1II) € Rep}’f}/Hl’E such that
H;(Hy, 1) = H'(Hy, 1),

we call H;(Hq,1II) the Hi-homology of II. Note that H;(H;,II), if exists, is well-defined up to isomor-
phism due to Theorem 6.2 of [ST03]. Throughout this paper, whenever we use the notation H;(Hy,II)
for certain normal subgroup H; C H and certain II € Replf_}’E, we implicitly mean that H;(H,II) ex-
ists as an object of Replg/H1 .- We fix a subgroup Z inside the center of H. Then the algebra D(Z,E),
consisting of locally Qp-analytic distribution on Z with coefficients in FE, is naturally contained in
the center of D(H, E). For each locally Qp-analytic E-character x of Z, we define Modpx, ), as
the abelian subcategory of Modp g, i) consisting of all the objects on which D(Z, E) acts by x’. We
write EXt’lL.VIOdD(H,E),x’ (=, —) for the usual Ext-groups inside the abelian category Modp (g, k), Then

we define

Extly (11, TT2) = Bxth g gy, (15, 117)
for any two objects II,Ils € ReplfLE such that II7,II5 € Modp(g,gy,y- In particular, if Z is the
center of H and acts on I € Replﬁ’E via the character x, then II" € Modp (g, g),, and we usually say
that IT admits a central character .

Assume now that H is the set of Q,-points of a split reductive group over Q,. We fix a maximal
torus and a Borel subgroup T'C B C H and call a parabolic subgroup P C H standard if it contains
B. We write P C H for the opposite parabolic subgroup with L = P N P the standard Levi subgroup
of P. We also write N (resp. N) for the unipotent radical of P (resp. of P), and use the notation
b, p, n... for the E-Lie algebras associated with H xq, F, P xq, E/, N xq, E'.... We consider the
category O together with its subcategory Ofdg for each parabolic subgroup P C H (cf. Section 9.3
of [HumO08] or [OS15]). For each parabolic subgroup P C H with Levi quotient L, we have the
Orlik—Strauch functor

.7-'5: Oslg X Repr — Rep}'?‘LE.
The nice properties of FH are summarized in the main theorem of [OST].

2.2. Formal properties. In this section, we summarize some general formal properties of locally
analytic representations of p-adic reductive groups. We fix a split p-adic reductive group H throughout
this section.

We consider a parabolic subgroup P C H with unipotent radical N and Levi quotient L.

Lemma 2.1. We consider 11; € Rep}’f‘LE and Iy € ReplﬁE such that

(i) Hx(N, II;) € ReplLaE exists for each k > 0;
(ii) the (FIN) condition in Section 6 of [STO05] holds for Ils.
Then there exists a spectral sequence

Bxt],, (Hi(N, Th), Th) = Bt (11, Tndff (I1,)™)

for each x € {&, x} where x is a locally analytic character of the center of H. In particular, we have
an isomorphism

Homy,. (Ho(N, I1y), IIy) = Homy, (Hl, Ind? (Hz)‘m)
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and a long exact sequence

Ext} , (Ho(N, TIy), Tly) < Extl , (Hl, Ind# (HQ)"“‘)
— Homy, . (Hy(N, IIy), TI5) — Ext} , (Ho(N, IIy), II,)
for each x € {@, x}.

Proof. This follows directly from (44) and (45) of [Brel7] as well as our definition of Extlqu Extlzy*
and Hy, in Section 2.1] for each k > 0. O

We fix a finite length locally analytic representation V € Replg}’ g equipped with an increasing
filtration of subrepresentations {FilyV }o<k<m such that

Fily(V) = 0, Fil,,(V) =V and gry,V < Fily 1 V/Fil,V # 0 for all 0 < k <m — 1.
Note that the assumption above automatically implies that
LV)>m
where (V) is the length of V.

Proposition 2.2. Assume that Vi is another object of Repfl,E and x is a locally analytic character
of the center of H.

(i) If Ext}{’x (V1, gr,V) =0 for each 1 <k < m, then we have
Exty, (Vi, V) =0.
(ii) If there exists 1 < ko < m such that Ext}i’x (Vi, gr,V) =0 for each 1 < k # ko < m and
dimEExt}LLX (Vl, g, V) =1, then we have
dimpExty  (Vi, V) < 1;

if moreover Ext%yx (Vi, gr,V) =0 for each 1 <k < kg — 1 and Hompg , (V1, gr,V) =0 for
each kg + 1 < k < m, then we have

dimpExty; , (V1,V) = L.
Proof. For each 1 < k < m — 1, the short exact sequence Fily V' — Filgy1V — gry,,V induces a long
exact sequence
Exty , (Vi, FilyV) — Exty (Vi, Filgy1V) = Exty (Vi, gresV)
which implies
dimgExty  (Vi, Filgs1V) < dimgExty  (Vi, FilkV) + dimgExty;  (Vi, gre,, V).

Therefore we finish the proof of part (i) and the first claim of part (ii) by induction on k and the fact
that gryV =Fil; V.
Now we prove the second claim of part (ii). The same method as in the proof of part (i) shows that

(2.1) Exty (Vi, Filg,—1V) = Ext3;, (Vi, Filg,—1V) =0
and
(2.2) Exty (Vi, V/Fily, V) = Homp,, (Vi, V/Fil,, V) =0

The short exact sequence Filg, 1V < Filg, V' — gr; V' induces the long exact sequence

Exty, (Vi, Filg—1V) — Exty,, (Vi, Filg, V) = Exty  (Vi, gr, V) — Exty (Vi, Filg,—1V)
which implies that
(2.3) dimgExty , (Vi, Filg, V) =1
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by (2.1]). The short exact sequence Filg, V' — V — V/Fil;,V induces the long exact sequence
Homp, (Vi, V/Fily, V) — Exty  (Vi, Fily, V) — Exty (i, V) — Exty (Vi, V/Fil;,V)
which finishes the proof by combining (2.2) and (2.3). O

2.3. Some representations of GL1(Q,) and GL3(Q,). In this section, we are going to recall the
construction of some locally analytic representations of GL2(Q,) and GL3(Q,).

We denote the lower-triangular Borel subgroup (resp. the diagonal maximal split torus) of GLy,q,
by Bz (resp. by T») and the unipotent radical of By by Ngr,,. We use the notation s for the non-trivial
element in the Weyl group of GLs. We fix a weight v € X (T3) of GLy of the following form

v=(v1,1n) € Z*

which corresponds to an algebraic character of T2(Q,,)

(5T2,u d:Cf ( 8 2 ) — a”' b2,

We denote the upper-triangular Borel subgroup of GLy by By. If v is dominant with respect to Bo,
namely if v; > 1o, we use the notation Lar,(v) (resp. Lar,(—v)) for the irreducible algebraic repre-
sentation of GL2(Q,) with highest weight v (resp. —v) with respect to the positive roots determined
by Bs (resp. Bs). In particular, Lgp,(v) and Lgr,(—v) are the dual of each other. We use the
shortened notation n

15 (xn,) < (Indﬁffé?)”)m)
for any locally analytic character xp, of T»(Q),) and set

. def GL2(Qp) 00\ 7

Z%iz (x1) = (Indnggf) )XTQ) ®p Lo, (V)

if xr, =01, ®E X%‘; is locally algebraic where X%; is a smooth character of T5(Q,). Then we define the
locally analytic Steinberg representation (of weight v) as well as the smooth Steinberg representation
for GL2(Qy) as follows

Sta™(v) =I5 (01,.) [Ler, (v), St5° = G2 (17,)/12

where 15 (resp. 1p,) denotes the trivial representation of GL2(Q,) (resp. of T5(Q,)).

We denote the lower-triangular Borel subgroup (resp. the diagonal maximal split torus) of GL3,q,
by B (resp. by T') and the unipotent radical of B by N. We write Diag(a,b,c) € T(Q,) for the
diagonal matrix with diagonal entries given by a,b,c € Q. We fix a weight A € X(T') of GL3 of the
following form

A= ()\1, Aa, )\3) S Z3,
which corresponds to an algebraic character of T'(Q,) defined by

o7 x(Diag(a, b, c)) L pMprats,

We denote the center of GL3 by Z and notice that Z(Q,) = Q. Hence the restriction of iz \ to
Z(Qp) gives an algebraic character of Z(Q,) defined by

0z x(Diag(a, a,a)) dof gritAatAs

We use the shortened notation
def

Extiy (= =) = Extyys, (= —)
for each closed subgroup H C GL3(Q,) that contains Z(Q,). In particular, the notation
EXt;LO(—, =)
means (higher) extensions with trivial character of Z(Q,). We denote the upper-triangular Borel

subgroup of GLj3 by B. If \ is dominant with respect to B, namely if \; > Ay > A3, we use the notation
L(A) (resp. L(—A\)) for the irreducible algebraic representation of GL3(Q),) with highest weight A (resp.
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—\) with respect to the positive roots determined by B (resp. B). In particular, L(\) and L(—\) are
x % 0 * 0 0

dual of each other. We use the notation P; def * x 0 and P def * ok % for the two
¥ % % ¥ % %

standard maximal parabolic subgroups of GLj3 with unipotent radical N; and N> respectively, and
the notation P; for the opposite parabolic subgroup of P; for each i = 1,2. We set
def

Li=P NP

and set s; for the simple reflection in the Weyl group of L; for each ¢ = 1,2. In particular, the Weyl
group
War, = {1, s1, 82, 5152, $251, S15251}
of GLj3 can be lifted to a subgroup of GL3. Each element w € War,, acts on X(T') via the dot action
w- A E wA+(2,1,0) — (2,1,0).

We will usually use the shortened notation N; for the set of Qp-points of IV; if this does not cause any
ambiguity. We use the notation M(—\) for the Verma module in Oslg with highest weight —\ (with
respect to B) and simple quotient L(—\) for each A € X(T) (not necessarily dominant). Similarly,
we use the notation M;(—\) for the parabolic Verma module in Ozfg with highest weight —\ with
respect to B (cf. Section 9.4 of [Hum08|). We define L;()\) as the irreducible algebraic representation
of L;(Q,) with a highest weight A dominant with respect to BN L;. For example, if A € X (T)4, then
we know that X, s; - A and s;s3_; - A are dominant with respect to B N Ls_; for each i = 1,2. We use
the following notation for various parabolic inductions

154 (0 = (ndfg 3x) ™ 18 () < (ma§id® )

if x is an arbitrary locally analytic character of T(Q,) and 7, is an arbitrary locally analytic repre-
sentation of L;(Q,) for each i = 1,2. Moreover, we use the notation

iS00 & (mdgfg Px=) " @p T, 15 (r) & (mdgi S me)” @n I

for each i = 1,2 if x = 67, ®p x> and m; = L;(\) ®p 75° are locally algebraic where x> (resp.
7$°) is a smooth representation of T'(Q,) (resp. of L;(Q,)). We will also use similar notation for
parabolic induction to Levi subgroups such as I ém 1, and zéﬂ 1, for each i = 1,2. Then we define the
locally analytic (generalized) Steinberg representation (of weight A) as well as the smooth (generalized)

Steinberg representation for GL3(Q,) by

S6" () 2 15 (6r.0)/ (I52 M) + T2 (Ta(V)) 86 2 iGh (1r)/ (1812 (1) + 5 (11.))
and
an def oo def
VB = IR (Li(N)/LN), o = ip(11,)/13
where 13 (resp. 1g,, resp. 1lp) is the trivial representation of GL3(Q,) (resp. of L;(Q,) for each

i = 1,2, resp. of T(Q,)). We write 1 for the trivial representation of Q, and define the following
irreducible smooth representations of L;(Q,):

def

71'??1 = Stgo ®e 1l

e = iRt (esl ) el

iy £ (St @p (|- o dety)) @ |-
and the following smooth representations of Lo (Q,):

LEN] def 1®p St5°

me £ T esig(es )

m5% = |2 0p (St5° 95 (|- | o dety))
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Consequently, we can define the following locally analytic representations for each i = 1, 2:
(2.4)

cl = Fls (L(- TN o = Fs (L(-si - ,wgim)
cgsh = FR (L(—sis3- - ) 1, ) 038“ = FR (L(=sis3—i - ), T2,1)
Cs, ., = FRE (L(=si - M), 752,,) Cosars, = fgji (L( $i83-5 N)y T, 5)
Clvo, = FEB (s N, 05) G, & (L : ,wgii,g)
Clay o = TR (Blesisai N, 05) Clay ey & f%i (El=sisai- N, 75 15)
where
0% = [lodeto ®p |- [P and 0% = |72 @p | - | o dets.
We also define
(2.5) Coy 5381w def]-"GLB'( L(—s18251 - A), X))
for each w € Wgr,, where
X704t 1 Xoy L) |7t ep || ®@E1 Xos & 1@p|-|"'®r]|-|
Xovs: & |72 @p | | @] | Xaa | 7@ [T'Qe ] ? XgesX | [?@pleg]-|?

The simple objects in the category O§1g can be described explicitly for each parabolic subgroup
P C GL3, and the representations considered in and are all irreducible objects inside
Repé’LS(QP)’ g according to the main theorem of [OS15]. We define Q as the set that consists of
Cs, 508,00 for each w € War,,, as well as the following elements:

1 2
Csl 1 051,1 52,1 52,1
! 2 Cl 2
(2 6) 8182, 5132, S281,1 S281,1
. 1 2
51,5132 8175182 $2,8281 $2,8281
1 2 1 2
$182,8182 S182,5182 §281,5281 §281,5281
CSl,Sl C15132,51 C52752 C5251752

Remark 2.3. The sets of Jordan-Holder factors of various smooth parabolic inductions of x5 and
(parabolic) Verma modules of GL3 are well known (cf. (48),(53) of [Brel7] and Section 9.5 of [Hum08]
respectively). Then it follows quickly from the main theorem of [OS15] that

0= |J Mo, (I§20)
weWaLy

Lemma 2.4. The representation v} () fits into a non-split extension

(2.7) L) ®@p vy < v (A) - C,

S$3—4,1

for each i =1,2. On the other hand, the representation St3"(X) has the following form:

c?, ——C! —C?

_— 81,1 $281,1 s281,1
(2.8) ZOERE >< Caysgont -
ng 1 031132 1 031327

Proof. The first claim follows directly from (3.62) of [BDI§|. It follows from the main theorem of
[OSc14] that

JHGL3(Qp) (Stgn(A)) = {Z(A) QF St?) ) 091 15 032 15 Cslgsl,lv 031132,17 09281 1s 03132,17 031328171}
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and each Jordan—Holder factor occurs with multiplicity one. According to the fourth paragraph of
the list before Corollaire 5.2.1 of [Brel7], we observe that

H() (N27 .FI%L3 (L(—53_isi . A), ZéLﬁL,(lT)>) = Zi(—Sg_iSi . )\) ®E ZéLﬁL,(lT)

which together with
(2.9) Hary@) (FA (L(=ssmisi- V), iy, (1)) = {CL_ons €2}
implies that fgLB (L(—33_isi - A), Zém}; (1 )) fits into a non-split extension

(2.10) Cl 1 Fpe (L(_S?Hisi “A), g, (1 )) - C2

53—i84, S3_iSi,1

for each i = 1,2. Here 1’ follows from the exactness of fg‘iL3 and the irreducibility criterion in

[OS15], as well as the fact that ik, 1, (17) has length two with Jordan-Hélder factors {1r,, 775}
According to Corollaire 5.3.2 as well as the list before Corollaire 5.2.1 of [Brel7], we observe that

Hy (No—sy FEP (Mi=sg—i - N), 735)) # Ha(Nomi, €2, 1) @ Ha(No—iy €2, 1)
which together with

(211) JHGL3(Qp (]:G 3( ( 53—i /\)7 )) { s3_4,17 53 13“1}'
implies that fgLS (Mi(—sz),_i - ), ﬂﬁ) fits into a non-split extension
(2.12) C2 1= Fpl (Mi(=s3—i - \), m%) = C2,_ . 4

for each ¢« = 1,2. Here follows from the exactness of .7-'GL3 and the irreducibility crite-
rion in [OSI5], as well as the fact that M;(—ss_; - A) has length two with Jordan-Hoélder fac-
tors {L;(—s3—; - A), Li(—s3_;s;-\)}. We observe that both fgLS ( (—83_48; - A, ZémL,i(lT)> and
FGLd( i(—s3—i - A), m59) are subquotients of IS5 (0ry) =2 F5¥ (M(=N), 17) (cf. [OSI3]), and
hence subquotients of St3"(\) as well (using the fact that Fg=® (M (=), 1r) is multiplicity free,

which is a consequence of the main theorem of [OS15]). We finish the proof by combining (2.10) and
(2.12) with the results before Remark 3.38 of [BDIS]. O

Remark 2.5. One can show that all the possibly non-split extensions indicated in (2.8 are non-split.
We decide not to go further here as Lemma is precise enough for our application.

2.4. p-adic logarithm and dilogarithm. In this section, we recall the p-adic logarithm and dilog-
arithm function as well as their representation theoretical interpretations.
Let logy: Q. — Qp be the branch of p-adic logarithm function which is given by the power series

logy(1+2) = Zk;

on the open subgroup 1+ pZ, C Z) and satisfies the condition log,(p) = logy(¢) = 0 for each root
of unity ¢. Let val,: QX — Z be the p-adic valuation function defined by |- | = p=**»() (hence
val,(p) = 1). We notice that
{logy, val,}
forms a basis of the two dimensional E-vector space
Homont (Q;, E).

We define log o et logy — Zval, for each . € E and consider the following two dimensional locally
analytic representation of Q)

Ve: QX = Ba(E), ar ( é logi’f(a) )
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We have
(2.13) S0Cqx (V) = €OSOC g x (Vg)=1
where 1 is the trivial character of Q,'. We notice that

Extg; (1,1) = Homeont (Q;, E),

by a standard fact in (continuous) group cohomology and therefore the set {Vg | £ € E} exhausts
(up to isomorphism) all different two dimensional locally analytic non-smooth E-representations of
Q, satisfying (2.13). We abuse the notation Vg for the representation of 75(Q,) = Q) x Q) given
by composing with the map

a 0 1
(2.14) (Q,) — Q,, ( 0 b ) —a b
As a result, we can consider the parabolic induction
ISQL? (Ve ®g 0m,,0)
which fits into an exact sequence (by exactness of ISZLQ)
(2-15) IgQLQ (5T2,u) — 11(5552 (V.ff QF 5T2,u) - Igiz (5T2,V)-

Then we define Yqr,(v,.%) as the subrepresentation of Ing (Vg @5 0r,.,) /LaL, (¥) with cosocle
Lar,(v). Tt follows from (the proof of) Theorem 3.14 of [BDIS] that Yqr, (v, %) has the form

(2.16) St5"(v) — Law, (v)

and the set {ZqL,(,.%) | £ € E} exhausts (up to isomorphism) all different locally analytic F-
representations of GL2(Q)) of the form (2.16) that do not contain

L1, (v) ®p St3° — Lar, (v)

as a subrepresentation. We have the embeddings

Li: GLQ — L;
for each ¢ = 1,2 by identifying GLs with a Levi block of L;, which induce the embeddings

Lri- Tg — T
by restricting ¢; to To € GLy. We use the notation t7 (V) for the locally analytic representation of
T(Qp) = (Q))? which is Vi after restricting to T via tp; and is trivial after restricting to the other
copy of Q,. By a direct analogue of Xqr, (v, £), we can construct X, (), £) as the subrepresentation
of Ié?ﬁLi (v1,i(Ve) @ 67,0) /Li(X) with cosocle L;i(X). In fact, if we have Mg, = v, then we
obviously know that X, (A, -Z)|GLy,. = TaL, (v, -Z) where the notation (-)|. . means the restriction

of - to x via the embedding x. We observe that the parabolic induction ISiL'“” (3, (A, Z)) fits into the
exact sequence

[vBy () —St5"(\) ] = Ip" (S,(A\,.2) — [T(\) — vB (M) |-

i

According to Proposition 5.6 of [Schrll], we know that
Extgr,q,)a (LY, St3"(1)) =0

and thus we can define ¥;(\,.¢) as the unique quotient of II%L3 (21, (A, Z)) that fits into the exact
sequence

St5"(A) = Bi(\, Z) = vp (A).
We use the same notation b;1og, and b;val, for the image of log, and val, respectively under the
embedding

(2.17) Extg; (1, 1) = Extrq,)o (17, 17)
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induced by the maps
E19
T(Qp) - T2(Qp) =— Q)

where the first map comes from the projection L; — GLs by restriction to 7. Hence the set
(218) {b1710g07 bl,valpa b2,10g0a b2,valp}

forms a basis of ExtlT(Qp),O (17, 17). Recall the elements ¢; iog, Cival € Ext}(Qp)vo(lT, 17) constructed
after (5.24) of [Schrll] and observe that

Cl,log = bl,logo + 2b2,10g07 Cl,val = bl,valp + 2b2,va1p
(2.19)
C2log = 2bl,logO + b2,log07 C2,val = 2bl,va,l,[, + b2,va1,,

According to (5.70) and (5.71) of [Schril], we notice that there exists canonical surjections

(2.20) Extrq,)0 (17, 17) = Extgr,q,)a (05 (A), St5*(N))

with kernel spanned by {ci,log, Cival}- For each ¢ = 1,2, the previous constructions of ¥;(A,.Z) can
be explained by the composition

(2.21) Homeon (Qy, E) gExt}Q; (1, 1) = Extrq,)0 (17, 17) = Extgr,q,)a (V8 (), St3*(V))

with the second and third morphism given by and respectively. We deduce from
and the explicit description of and that the composition is actually an isomorphism.
We abuse the notation b; 1og, and b; va1, for the image of logy and val, under the composition ,
and then notice that the image of c3_; 10 and c3_;va1 under is given by —3b; 10g, and —3b; va1,
respectively.

We define (A, %1, %) as the amalgamate sum of 31 (A, .41) and 3a(\, %) over St§"(X), for each
A, % € E. Consequently, 3(\, .4, %) has the following form

v (Y
(2.22) St5"(A)

v
In fact, if
(2.23) A= S=—FL B,

we can identify our X(\, .4, %) with the 3(\,.%Z,.%’) in Definition 5.12 of [Schrll], defined using
the element

(2,108 + L' Caval, C1log + L1 val) € EXt%}Lg(Qp),,\ (v}%ﬁl()\) D U?Drzl(/\)a Stgn(/\)) .

Remark 2.6. In fact, one can identify .#; and % with Fontaine-Mazur Z-invariants of the corre-
sponding Galois representation via local-global compatibility, according to Remark 3.1 of [Dingl8].
This is the reason for the appearance of a sign in (2.23)).

We have the following canonical morphism by (5.26) of [Schrll]

(224) K. EXt%(Qp),O(lT’ 1T) — EXtQGLg(Q;,),)\ (Z()\), Stgn()\)) .
Note that we also have
(2.25) ExtZ(q,)0(l7, 17) 2 A2 (ExtlT(Qp)’O(lT, 1T))

by (5.24) of [Schr1l]. The set

(226) {bl,valp A bQ,Valp ) bl,logo A b2,va1p7 bl,valp A b2,log0a bl,log0 A bQ,logO ) bl,val,) A b1,10g07 b2,va1p A b2,log0}
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forms a basis of A2 (Ext%w(Qp),o(lT, 1T)) (cf. (2.18)) and we abuse the same notation (2.26]) for the

corresponding basis of Ext?p(Qp),o (17, 17) (cf. (2.25))). It follows from (5.27) of [Schril] and (2.19)
that the set

{"f(bl,valp A b2,valp), ’i(bl,logo A b2,va1p)a "f(bl,val,, A b2,log0)7 "J(bl,logo A b2,10g0)}

forms a basis of the image of ([2.24]).
Let lio: Qp \ {0,1} — Q, be the p-adic dilogarithm function defined by Coleman in [Cole82] and

we consider the function
def

Dy(2) = lia(2) + %logg(z)logf(l —z)
as in (5.34) of [Schrll]. We also define
d(z) £ logy (1 — z)val,(z) — logy(z)val,(1 — 2)
as in (5.36) of and it is clear that

Dy — Dy = %d.

It follows from Theorem 7.2 of [Schrll] that {Dy,d} can be interpreted as a basis of

EXtéLz(Qp),O (]., Stgn)

which naturally embeds into ExtQGLQ(QP) (1, St3™) (cf. (5.37) and (5.38) of [Schr1l]). Then the map
ti: GLg < L; induces the isomorphisms (cf. (5.42) of [Schr1i])

(2.27) ExtZy,(q,) (12, St3") <~ Ext? g0 1z, S6") < Exty, ()0 (13, IgLS(Stgn))

where L;(Q,) acts on St5" via the projection L;(Q,) - GL2(Q,). We consider the following mor-
phisms

(2.28) ExtZyr,q,) (12, St3") = Extir, )0 (13, JgLB(St;n)) — ExtZy, ()0 (13, St§")

induced by the inverse of the composition 1) as well as the surjection I giL?’ (St3") — St3". Finally
there is a canonical isomorphism

by (5.20) of [Schrli].

Lemma 2.7. We have .
dimEEXtéLg,(Qp),)\ (L()\)a Stgn()‘)) = 5

Proof. This follows directly from Proposition 5.6 of [Schrii]. O
Lemma 2.8. There exists « € E* such that

11(d) = 12(d) = =3a (K(b1,10g, A b2,val, + b1val, A b2log, ) -
Proof. This follows directly from Lemma 5.8 of [Schr1l] and (2.19). O
Remark 2.9. Tt follows from the proof of Lemma 5.9 of [Schrll] that t1(Dg) — t2(Dp) is a linear

combination of
{H(bl,valp A b2,valp)7 K(bl,logo A b2,va1p)a H(bl,valp A b2,10g0)7 H(bl,logo A bZ,IOgO)}a
but & priori we do not know the coefficients of this linear combination.

We recall from (5.55) of [Schrll] that

of  _ 1
(2.29) co = a1 (Do) — 5“(01,105; A €2,10g)

where « is defined in Lemma 5.8 of [Schr1].
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Lemma 2.10. The set
{K(b1,va1, A b2val, ), £(D1,10g, A b2val, ), £(b1,val, A b21og,)s 5(b1,10g, A b2,10g,)s Co}
forms a basis of EXt2GL3(QP),)\ (L(N), St5"(N)).
Proof. This follows directly from (5.57) of [Schrll] and (2.19). O
Lemma 2.11. We have
dimpExtgr, g (L), B, 21, %)) =1 and dimpExtéy, g0 (L), S\, 2, .2)) = 2.

Moreover, the image of
{K(b1,va1, Abayval, ), Cot
under
Extgr, ) (LY, St5* (V) = Extgr, ) (L), S\, 21, %))

forms a basis of EXtQGLg_(Qp),)\ (LN, T\, 4, 2)).
Proof. This follows directly from Corollary 5.17 of [Schrll] and (2.19). |

3. A KEY RESULT FOR GL2(Q))

The goal of this section is to prove Proposition which is a key technical result that excludes
the existence of a locally analytic representation of GL2(Q,) with a specific form. Note that Propo-
sition will be crucially used in Section [5| and Section |§| (most notably in Proposition and
Proposition . We usually identify GL2(Q,) with a Levi factor of a maximal parabolic of GLj
when we apply the results from this section.

We use the following shortened notation

I(v) = 15,2 (0r,0), 1) S 1512 (0n,0 @5 (|7 @0 |- 1))
for each weight v € X (T3).
Lemma 3.1. We have
dimpExthy, q,) (I(s ), Taw, v, g)) — 1.

Proof. This is essentially part of the proof of Theorem 3.14 of [BD18]. In fact, we know that

EXtéLg(Qp) T(S . l/), IGLQ (U) ®E St;o — I(S . V) = O

ExtéLz(Qp) I(s-v), LgL,(v)®pSts® — I(s-v) = 0
and

dimpExt{y, q,)(L(s - v), Lew,(v) =1
which finish the proof by a simple dévissage induced by the short exact sequence

(Tew.0) 0686 —I(s+v) ) = Sar, (1. 2) = Tar, (v).

For each split p-adic reductive group H, we have a natural embedding

where D(H, E)qy is the closed subalgebra of D(H, E) consisting of distributions supported at the
identity element (cf. [Koh07]). The embedding above induces another embedding

(3.1) Z(U(h)) — Z(D(H, E))

by the main result of [Koh07] where Z(-) is the notation for the center of an E-algebra. We say that
Il e Rengz(QPL p has an infinitesimal character if Z(U(h)) acts on I via a character.



DILOGARITHM AND HIGHER Z-INVARIANTS FOR GL3(Qjp) 17

Lemma 3.2. If V1,1, € Rep?LE have both the same central character and the same infinitesimal
character and satisfy
HomH (VQ, Vl) S 07

then any non-split extension of the form Vi — V5 has both the same central character and the same
infinitesimal character as the one for Vi and V5.

Proof. This is a direct analogue of Lemma 3.1 in [BDI8] and follows essentially from the fact that
both D(Z(H), E) and Z(U(h)) are subalgebras of Z(D(H, E)) by [Koh07]. O

We fix a Borel subgroup By C H as well as its opposite Borel subgroup By. We consider the split

maximal torus Ty B 7 N By and use the notation Ny (resp. TH) for the unipotent radical of By
(resp. of By). We use the notation Jgz—(-) for Emertion’s Jacquet functor (cf. [Eme06]).

Lemma 3.3. IfV € RepﬁE has an infinitesimal character, then U(ty)V# (as a subalgebra of U(ty))
acts on JE(V) via a character where Wy is the Weyl group of H.

Proof. We know by our assumption that Z(U(h)) acts on V' (and hence on V as well) via a character.
We note from that Z(U(h)) commutes with D(Ng, E) C D(H, E) and thus the action of Z(U(h))
on V commutes with that of Nz, which implies that Z(U(h)) acts on Vi yia a character for each
open compact subgroup Ny~ C Ny. We write

0: Z(U(h)) = Ulty)"™
for the Harish-Chandra isomorphism (cf. Section 1.7 of [HumO8|) and j; and j, for the embeddings
ji: Z(U(h)) = U(h) and jz: U(ty) — U(h).

We choose an arbitrary Verma module My (Agy) with highest weight Az, namely we have

def

Mp(A) = U(b) ®p ) Au-
We use the notation Mg (Ag), for the subspace of My () with ty-weight p and note that
dimgMpg(Ag)r, = 1.
We easily observe that
(3.2) ZUM) - MagMm)ay = Ma(Ag)a, and U(ty) - Mg(Am)ag = Ma(Am)ay-
It is well-known that the direct sum decomposition
(3.3) hb=ng Oty g
induces a tensor decomposition of E-vector space
(3.4) U(b) =U(ng) ®p Ulty) ®p UMg).
Hence we can write each element in U(h) as a polynomial with variables indexed by a standard basis
of b that is compatible with . It follows from the definition of # as the restriction to Z(U(h)) of
the projection U(h) — U(ty) (coming from (3.4)) that
Ji1(2) = j200(2) € U(h) -t +nm - U(h)

for each z € Z(U(h)). If a monomial f # 0 in the decomposition of j1(z) — j2 0 8(z) belongs to

ny - Ulng) - Ulty),
then we have

0# f Mui)ay € MuOi)ry € €D Mu(Ai)y,
HAENH
which contradicts (3.2]). Hence we conclude that

j1(2) —j200(2) € U(h) -ng
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and in particular
J1(z) = ja 0 6(2)
on Ve’ for each z € Z (U(h)). Hence we deduce that U(ty)"V# acts on Vi’ via a character. We
note by the definition of Jz— (cf. [Eme06]) that we have a 7' F-equivariant embedding
(3.5) Jg(V) < Vi
where T;} is a certain submonoid of Ty containing an open compact subgroup. As a result, 1} is

also U (ty)-equivariant and thus U(t,)"V# acts on J5(V) via a character which finishes the proof. [J

We take H = GL2(Q,), By = B and By = Bs in the rest of this section. The idea of the following
lemma which is closely related to Lemma 3.20 of [BDIS], owes very much to Y.Ding.

Lemma 3.4. A locally analytic representation of either the form

(3.6) Lew, (v) @p St5° — I(s - v) — Lar, (v) — Law, () ®& St5°
or the form
(3.7) Lar, (v) — I(s - v) — Law, (v) ®5 St3° — Lar, (v)

does mot have an infinitesimal character.

Proof. Assume that a representation V' of the form ([3.6)) has an infinitesimal character. Note that V'
can be represented by an element in the space ExtéLz(Qp)(LGLz(z/) ®F St5°, XaL, (v, L)) for certain

% € E. We consider the upper-triangular Borel subgroup B, and the diagonal split torus 75. Then
by the proof of Lemma 3.20 of [BD18] we know that the Jacquet functor Jg (cf. [Eme06] for the
definition) induces a injection

(38) EXt%}Lz(Qp) (ZGLQ (I/) RF Stgo, EGLQ (l/, Z))

— Extsz(Qp) (61,0 @6 (|- @6 |-, én0 @6 (|- @] 71).
We deduce by twisting 7, —, ®p (|- |7 ®g | - |) that we have an isomorphism
(3.9) Extr,(q,) (010 @5 (|- [@p]-[7"), 0n,, @6 (|- |®8|-[7")) = Exty,q,) (I, 11,) -

It follows from Lemma 3.20 of [BD1§] (up to changes on notation) that the image of the composition
of |D and 1) is a certain three dimensional subspace Extsz(Qp)(lTQ, 17,) e of ExtlTQ(Qp)(lT27 1m,)
depending on .Z. More precisely, if we use the notation €1, €5 for the two characters

612T2(Qp)—>Q;<,(g 2>|—>aand62:Tg(Qp)—>Q;,(g 2)'—)[),

then the set
{log o €1, val, o €1,log 0 €3, val, 0 €3}

forms a basis of ExtlTQ(QP)(lTQ, 17,), and the subspace Extsz(Qp)(lTQ, 17,) 2 has
{logy 0 €1 + log o €2, val, 0 €1 + val, o €2,10g; 0 €1 — log, 0 €3 + L (val, 0 €1 — val, 0 €2)}

as a basis. It follows from Lemma that U(ta)"Werz acts on J5;(V) via a character where Wqr,
is the Weyl group of GLs. Note that the subspace of Exth(QP)(lTw L7,) corresponding to Jg(V)
(by twisting 67, —, ®g (|- |71 @& | - ])) is killed by U(t2)"cr2. We observe that the subspace M of
Ext%p2 (@,) (11, 11;,) killed by U(ta)"erz is two dimensional with basis

{val, o €1,val, 0 €2}

and we have
MnN Extsz(Qp)(lTQ, 1n,) e = E(val, o€ +valy o €r) .
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However, the representation associated with the line E(val, o €; + val, o €2) has a subrepresentation
of the form

L, (v) ®p St5° —— La, (v) ®p St5°

which contradicts the fact that V' has the form (3.6)).
The proof of the second statement is a direct analogue as we observe that Jg also induces the
following embedding

Bxtér,q,) (Lera): Toraw) —I(s+v) — Low. () @5 865 — Low.(v) )
— EXt%—b(QP) (5T27,/, §T27y) .
O
We define X7 (v, .£) as the unique (up to isomorphism) non-split extension of Xqr,, (v, ) by I(s-v)
given by Lemma [3.1

Proposition 3.5. We have
EXtGL,(q,) ( Lo, (v) ®p St3° — Law,(v) » 25 (v, f)) =0.
Proof. Assume on the contrary that V' is a representation given by a certain non-zero element inside

Exthiay) ( Lor.(r) @6 St5° — Lar, (v) - B (1.2)).

We deduce that V' has both a central character and an infinitesimal character from Lemma and
the fact

Homgr,(q,) ( Lo, (v) ®p St5° — L, (v) » 5 (v, 3)) =0.
As we have

EXtéLg(QP)(ZGLz (l/) RF Stgo, I(S . y)) = EXtéLz(Qp)(ZGLz (U), f(s . V)) =0,

dimEEXtéLz(Qp) (ZGLQ (V)v ZGLz (V) OF Stgo) =1
and
diI’I/lE':E‘J}(té;L2 (Qp) (ZGLQ (l/)) I(s : V)) = 1

by a combination of Lemma 3.13 of [BD18] with Lemmal[2.1] we deduce that V has a subrepresentation
of one of the three following forms

(i) LgL,(v) ®g St5° — LaL, (V) @ St3° ;
(i) Law,(v) ®@p St5° — I(s - v) — Lar,(v) — Law, (V) @5 St5° ;
(iii) Ler,(v) ®p St3° — I(s-v) — LaL,(v) — I(s - v) — LaL, (v) ®p St3° — Law, (v) -
In the first case, we know from Proposition 4.7 of [Schr11] and the main result of [Or05] that
ExtéLz(Qp)’V (Lar, (v) ®5 St5°, Lar, (V) ®E St5°) =0

and therefore this case is impossible due to the existence of central character for V' (and hence for
its subrepresentations). In the second case, we deduce from Lemma a contradiction as V has an
infinitesimal character. In the third case, we thus know that V' has a quotient representation of the
form

LaL,(v) — I(s - v) — Law, (v) @5 St5° — Law, (v)

which can not have an infinitesimal character due to Lemma [3.4] a contradiction again. Hence we
finish the proof. O
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Remark 3.6. Note that the argument in Proposition actually implies that

Extar,(q,) (fGLz(V) ®p St5° — Law,(v) » I(s+v) — Lar,(v) — I(s-v) ) =0

and we can show by the same method that
ExteLy(q,) (ZGLa(V) — Law, () @ S5 I(s-v) — Law,(v) @5 St5° — I(s - v) ) =0

4. COMPUTATIONS OF Ext I

In this section, we are going to compute a list of Ext-groups based on known results on group
cohomology in Théoreéme 4.10 of [Schrll] and Section 5.2, 5.3 of [Brel7]. The technical results proved
in this section will be frequently used in more complicated computation in Section [5 and Section [6]
In each proposition or lemma below, we present a list of Ext-groups whose computations are parallel
to each other.

Proposition 4.1. The following E-vector spaces are one dimensional

Extgr, ) (EOY), L) @5 0F) Extgr, g, (DY) @6 vE, L(V)
EX‘cGLB DA (L(A) ®e St5°, L(A) ®p vF) ExtGLS(Q » (L) ®@p vy, LX) @p St3°)
EXtGLg(Qp) A\ (f()\) ®p Sts° (/\)) ExtGL3 Q)2 (f()\), L(\) ®@p Stg°)
ExtGL3 Q) (L) @ vy, LX) ©p vF) EXtGLS(Q » (L) ®@p v, LA @pvF)

for each i = 1,2. Moreover, for all the other choices of Vi,Va € {L(\),L(\) ®p v¥,L(\) ®p
vy, L(\) ®@p St3°}, we have

Extgr, g, (Vi, V) =0
for each k =1,2.

Proof. This follows from a special case of Proposition 4.7 of [Schrll] and the main result of [Or05]. O
Lemma 4.2. We have

Extliry (@ ( L) @50 — L(\) , L) ©p St ) —0

Extin, g, ( L) 9505 — I @p 8t , L)) =0

Extlir,q,a ( L) — L\ @50, I(A) ©p vj’;‘;_i) ~0
for eachi=1,2 and k =1, 2.

Proof. 1t is sufficient to prove that

(4.1) Xt (0,0 ( IO @5 vE —I(\) , L\ @5 St§°> —0
and
(4.2) EXt31,(qu) (Z(A) ©pvE —L(\) , L(\) @p Stgo) ~0

as the other cases are similar. We observe that (4.1)) is equivalent to the non-existence of a represen-
tation of the form

L(\) ®@p St5° — L(\) @p vy — L()\)
which is again equivalent to the vanishing
(4.3) EXth1(qu)n (Z()\), IO\ ®p St — L(\) @5 v ) —0,
using the fact (cf. Proposition

Extgr, (g, (LY, LA ®p St5°) = 0.
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The short exact sequence

(Z) @ st —I0) @pof ) = FE (Mi(-)), 77%) - C2

$3—1,53—iSi

induces an injection

Exthiyqua (D), I\ @5 St5° — L) @5 v ) < Bxtl,q,a (EO), FE (Mi(=A), 735))

Therefore (4.3) follows from Lemma[2.1]and the fact (using Théoréme 4.10 of [Schr1l] and a comparison
of Z(L;(Qp))-action)

EXtii(Q,,),,\ (Ho(Ni, L)), Li(N) ®p 775) = Homy,(q,). (Hi(Ni, L(N), Li(\) ®p 755) = 0.
On the other hand, the short exact sequence
O @5 vE < ( L\ ©p vy — L()) ) IO

induces a long exact sequence

Extar, g,y (LY, LY ®p St5°) — Extir, g, (Z(/\) ®@p vy —L(\), L) ®p St§°)
— Extér, g, (L) @5 vE, L) @8 St3°) = Extér, q,)x (L), L) ®g St5°)
— Extir, (g, ( L) @5 vE —I(\), L\ ©p St§°) — Ext2y, (g (L) @505, LV @5 StT)

and thus we can deduce (4.2)) from Proposition and (4.1)). O

According to Proposition we may define Wy as the unique (up to isomorphism) locally algebraic
representation of length three satisfying

s0caLy(Q,)(Wo) = L(A) @p (vp, ®vE) and cosocgr,(q,)(Wo) = L(A).
We also define the unique (up to isomorphism) locally algebraic representation of the form

def

(4.4) W; = L(\) ®p vg — L(\)

for each i =1,2

Lemma 4.3. We have
dimEEXtélﬁ(Qp)’)\ (WO, f()\) ®E Stgo) =1
and

EXtéLe,(Qp),)\ (WO, Z(A) ®E Stgo) = 0

Proof. The short exact sequence

L) @pvp < Wo — Wa
induces a long exact sequence
Extr, ) (DY) @603, LA ®p St5°) = Extir,q,)x (Wo, LX) @ St3°)
— Extérg g, (War L) @5 St5°) = Extgr, ) (L) @evg;, L) @5 St3°)

which finishes the proof by Proposition (4.1) and (4.2). |
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Recall that we have introduced a set 2 consisting of irreducible locally analytic representations of
GL3(Qp) in (2.6)). We define the following subsets of €

(L) & (L) @pvE, L) @pvE, Ch 1, Cial

0 (f(/\) RF ’U%?) def {L(N\), L(\) ®p St3°, C’21 15 Css.80) 031173182}
Q (f(/\) QF Uf:‘;) df {L(N\), L(\) ®p St3°, C’s.2 15 Csis15 081279291}
(L) @psSty) & {LQN) @pvg, LN @5 v, CF 4. Cf et
Qo (Z()\» def {f()\) XF Sts ) 021 1 052 1 Cslsg 15 01251 1}
Qo (Z()‘) XF U%ﬁ) def {f()\) OF UPQ 31 15 Cfl 51899 Czlsg,la 05251752}
Qo (Z(/\) ) v}%) def {f()‘) ®F UPl 52,19 0322 S2817 Cszsl 15 05182,81}
Q2 (L) @p865°) & {L(N), Cf 100 0512,5251’ Cllansrsnr Chystsnss )

Lemma 4.4. For each
Vo € {L(A\), L(\) ®p vF, L(\) ®@p vF, L) ®p St5°},
we have
dlmEExtGLg(Q Vo, V=1 df Ve(W);
{ ExtGLS(QP) Vo, V) =0 if VeQ\Q(W).
Proof. We only prove the statements for Vy = L()\) as other cases are similar. If
V e{L(\), L(\) @p vy, L(A) @ v3, L(\) ®p St3°}
then the conclusion follows from Proposition If
V = Fpl(L(—s3-:5i - A), )

for a smooth irreducible representation 7° and ¢ = 1 or 2, then it follows from Lemma that

(4.5) EXt}Li(Qp),A (Ho(Ni, L(N)), Li(ss—isi - \) @p 75°) < EXt%}Lg(Qp),)\ (L), V)
— HOHlLi(Qp)yA (Hl(Nu E(A)), fi(53_isi . A) RE ’/Tfo)
— EXt%i(Qp)7A (Ho(Ni, Z()\)), Zi(83_i8i . )\) RE 71'?0) .
We combine (4.5) with Théoreme 4.10 of [Schr1l] and deduce that

(46) EXtii(Qp):A (fl()\), fi(Sg_iSi . )\) XRE 7'&'100) — EthGLg(Qp),)\ (Z()\), V)
— Homy, () (Li(ss—i - A), Li(ss—isi - A) @p m°) .
We notice that Z(L;(Q,)) acts via different characters on L;(\), L;(s3—;-A) and L;(s3-;8; - \) @ p 75°,

and thus we have the equalities
HOIHLI.(QP)’)\ (Li(53—i . /\), Li(83_i8i . /\) KRE ﬂ'fo) = 0
which imply that
(47) EXt%}L3(QP)7A ( (A) ]:GLS( ( §3_4S; * A), W?)) =0
for each 7{® and ¢ = 1,2. If
V = Fp (L(—s3- - \), ©5°)

3

for a smooth irreducible representation 7° and ¢ = 1 or 2, then the short exact sequence

FEl(L(=s3-i - A), m°) = Fpr(Mi(—ss—i - ), m5°) = Fp* (L(—s3-is; - A), )
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induces a long exact sequence
Bxtbr, @ (L), V) = Extlry g (DO), PR (Mi(=s5i- ), 759))
— ExtGL,(qQ,).a (Z()\), FEl (L(=s3-isi - \), Wi’o))
which implies an isomorphism
(4.8) Exthr, (g, (V) V) 55 Exthr, ) (f()\), FGU (Mi(—s5_5 - ), wgo))
by ([4.7). It follows from (4.8)), Théoréme 4.10 of [Schrll] and Lemma [2.1] that
(4.9) Exty, gy (Li(Y), Li(ss—i - A) @p 7°) < Extgr, ) (LY, V)
— Homp, (q,)x (Li(ss—i - A), Li(ss—i - A) ©p 77°) = Exty, g yx (Li(A), Li(ss—i - A) ©p 7(°) .
As Z(L;(Q,)) acts via different characters on L;(\) and L;(s3—; - \) ®p 72°, we have the equalities

EXt;Li(Q,,),,\ @i()\), E(Ss—isi A)@pm®) = 0
Ext?,(q,)x (Li(A); Li(ss—isi-A) @p7°) = 0
which imply that
(4.10) EthGLS(Qp)))\ (Z()\), V) l> HOI’IILI.(QP)’)\ (Zi(83_i . )\), Zi(83_i . )\) KF 77;)0) .

Note that B .
HomLi(Qp),)\ (Li(Sg_i “A), Li(s3—i - \) ®p W?o) =0
for each smooth irreducible 7$® # 1,,. Hence we deduce that
dimpExtly, () (f(/\), FEGUs (L(—s5 - \), 1Li)) —1
and
EXthr, () (Z(/\), FSHs(L(—s5_1 - \), wfc)) —0

for each smooth irreducible 7$° # 1r,. Finally, similar methods together with Théoreme 4.10 of
[Schr1l] also show that

Exthr, g, (EO), F§¥ (L(=s15251 - 2), %)) = 0
for each w € W. O

Lemma 4.5. For each
Vo € {L(\), L(\) ®p v3, L(\) ®p v3, L) ®p St3°},
we have

dimpExtgr, g Vo, V) =1 if  VeQ(V);
Ext?r g, (Vo V) =0 if VeQ\ Q).

Proof. We only prove the statements for Vy = L()\) as other cases are similar. If
Ve{L(\), L\) ®g vy, L(\) @p v, L(\) ®§ St5°}

then the conclusion follows from Proposition We notice that Z(L;(Q,)) acts via different char-
acters on L;(\), Li(s3—; - \) and L;(s3_;s; - \) ®p 7°, and thus we have

(411) EXt%i(Qp),)\ (Zl(A), Zi(83,i8i . )\) ®E 71'?0) =0
ExtlLi(Qp),,\ (Li(s3—i - A), Li(ss—isi-A) @pm®) =0
EXtii(Qp)7A (Ll(/\), Li(Sg_iSi . /\) RE 71'100) =0

We also notice that

(412) HomLi(Qp),)\ (zi(83_i5i . )\), fi(Sg_fL'Si . )\) RF W;)O) =0



24 ZICHENG QIAN

for each smooth irreducible 7® # 1, and

(413) dimEHomL,i(Qp),A (fi(s;;_isi . )\), fi(s;;_isi . A)) =1.
We combine (4.11), (£.12) and ([4.13) with Lemma 2.1 and Théoréme 4.10 of [Schr1l] and deduce that
(4.14) Ext41,(q,)a (f()\), FEIs (L(—s3_i55 - N), w;”)) ~0

for each smooth irreducible 7{° # 1, and
(4.15) dimpExtZ;, (g, (Z(/\), FSU (L(—s3_is: - \), 1Li)) =1
which finishes the proof if

V= ]-'SiLs(L(—S:)ﬁiSi - A), ™).

3

Similarly, we have

(4.16) Ext?, ) (Li(A), Li(ss—i - A) @p m5°) -
Homp,(q,) (Zi(53,i5i “A), Li(s3_i - \) ®@p 7r§’°) =
Ext?, g,y (Li(A), Li(ss—i - A) @p m5°) =0

We claim that

(4.17) Extr, ) (Lilss—i - A), Li(ss—i- A) @5 %) = Extr, q,)0 (1L, 7)™

for each 7{® # 1y,,, where the RHS means Ext! inside the abelian category Rep%‘i(Qp), g- The reason
behind is that any non-split extension in LHS of necessarily has infinitesimal character
(using Lemma , hence must split after restricting to [;. In other words, any non-split extension in
LHS of must have the form L;(s3_; - \) @ g W where W is a smooth non-split extension coming
from RHS of . Hence it is clear that

(418) EthLi(Qp),)\ (11(8372‘ . )\)7 fi(s;;,i . )\) ®E Wfo) =0
for each smooth irreducible 77 # 1., 779 and
(419) dimEEXtii(Qp),A (fi(Sg_i . )\), Zi(53—i . )\) R 7T7,0701) =1.

By adapting arguments in Section 4.2 (cf. (4.23) and Proposition 4.5) of [Schr1], we claim that
(4.20) dimpExty, q )\ (Li(ss—i-A), Li(ss—i-A) =1, Ext? q ) (Li(ss—i- A), Li(ss—i- X)) = 0.
We combine and with Lemma and Théoréme 4.10 of [Schrll] and deduce that
(4.21) Bxthr g (D), FEW (Mi(=s5i - N), 7)) =0

for each smooth irreducible 77 # 1., 779. Similarly, we use and to conclude that

(4.22) dimpExtiy, g ) (Z()\), FEUs (M (=53 - ), W;?o)) _
for 77 = 1r,, m79. The short exact sequence
Tl (L(=s3—i * A), %) = Fp®(Mi(—s3—i - A), %) = Fp*(L(—s3-i8; - \), 75°)

K2 K2

induces a long exact sequence
Exthr, (Q,)a (f()\), FEIs (L( =534 - N), W;?O)) — Extir, qu)a (f(A), FEW (L(=s5_: - \), w§°)>
= Extr, q,a (EO), FE2(Mi(=s3-5+ N), 7)) = Extép,q,)a (T, FE(L(=sisi - A), 7
= Extlir, g, (EO), FE2(L(=s3i- ), 77%)).

The first term always vanishes thanks to Lemma According to (4.14), the fourth terms vanishes
whenever w2 # 1p,. If 77 # 1r,, 729, then the third term vanishes (cf. (4.21)), and so does the
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second term. If 77° = 7, then the third terms has dimension one, and so does the second term. If
¢ = 1, we note that the fifth term vanishes and both the third and fourth term have dimension

one (cf. (4.20) and (4.22)), and thus the second term vanishes. Consequently, we finish the proof if
V= Fp(L(=s3-i - \), m°).

K2

Finally, similar methods together with Théoreme 4.10 of [Schr1l] also show that
Extér, g, (EO), F§¥ (L(=s1s251 - 0), %)) =0
for each w € W. O

We define
Q" EO\{ZW), TN @rvE, L) @p v, L) @5 StF).
Then we define the following subsets of Q~ for each i =1, 2:

Ql (Cl 1) d:ef { S;83—4,19 0523,1'51-,17 sl 1 31,1}
al, d:ef { SiS3_4,19 083481,8347 sL 1 sl,l}
sl 5i83—i d:ef { 8i83—i,8i83—4° CSS 154,83 —4) 03“5153 i? C;i,si53,i}
S'“S S3—4 dIEf {05153 i,8i83—4 033 i8i,83—i8i’7 C;i781837i7 O?i,é‘isgfi}
Ql( 51751 dZEf {qu‘,sa—i,sm O;L; i8:,1 0923 18i,53_i8;) 37',731'}
Lemma 4.6. For each
Vo € {stI 1» 51, C; SiS3_; Ci SiS3—i CShSi i = 172}7

we have
dlmEExtGL (Q)).A Vo, V)=1 if Ve (W);
Extry (g, (Vo, V) =0 if Ve \ W)

Proof. The proof is very similar to that of Lemma [£4] and the main difference is that we need
Corollaire 5.3.2 of [Brel7] instead of the list before Corollaire 5.2.1 of [Brel7]. O

Lemma 4.7. We have

Exthiy g ( L) @6 vF —I(N) , C2,) —0
EXtéLS(QpL)\ z )\) ®E U%j - L( ) ®E St3 0311791,93 7) = 0
) — I @p v, CL) =0
)

EXtéLg(Qp),,\ L\ @5 St — L) @ vy, C2 o, ) =0

) _
Extary Q| L

for each i =1,2.

Proof. We recall the shortened notation W; from and note from (53) of [Brel7] that W,; =
21%;31( #,_,) for each i = 1,2 (cf. Sectlon 3| for the notation zGL3 (-) and 2%, ). We only prove the
first vanishing (among four)

(4.23) Extgr, ) (Wi, C21) =
as the other cases are similar. The embedding

0321.71 — FggL_i(Ms—i(—Si “A), m52i1)
induces an embedding (using a vanishing of Hom)

(4.24) Extisr,(quya (Wis C21) < Exthr, g, (W FEWs (My_i(—si - N), 752 m)).
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We observe from (48) as well as the first paragraph of the list before Corollaire 5.2.1 of [Brel7] that

w5 Ho(Ns—i, W) = Toa(N @ (G, () 0%, )
Hi(N3_i, Wi) = Lz i(si-A) @g (iéﬁigﬁ(xgii)@aﬁ-i)
We notice that Z(Ls_;(Q,)) acts on Ly_;(A) and Lg_;(s; - A) (resp. 0%, and 75°, ) via different

characters, and that ié?{fg,i (x35_,) has cosocle 1z,_,. Hence we deduce from l) the equalities

EXtig_i(Qp),A (Ho(N3—i, Wi), Lz—i(si-A) ®p75°2,1) =0
Homy, ,(q,) (Hi(Ns—i, Wi), Ls_i(si- \) @575, 1) =0
which imply by Lemma [2.1] that
EXthr, () (W FEW (My_i(—s; - \), wgiiyl)) —0.
Hence we finish the proof of by the embedding (4.24)). O
Lemma 4.8. We have for each i = 1,2:

295 ’U%j — CSi,Si ) Ci@) =

EXt%}I@(Qp)»)\ Z( )

L(A) ®E U%.;,i - Cgi,siss,,qy ) Csi,s.;) =0
(A)
(A)

1
Extar,(q,).a
1 1
EXtGLg(Qp),)\ A 7031’,,31'83—7; ’ Csli,l) =

EXtéL3(Qp),>\ A) ®p Stgo 0827'»1 ’ Csi;SiSS—i) =

Proof. We only prove that
(4.26) EXth1 Q) (f()\) 2p vE — Csp, 0(3“1) —0
as the other cases are similar. The surjection

Fpn (Ma—i(=X), m52;5) = L(N) ©p vF — Cs,.s,

and the embedding
C2 = Fpis (Ms_i(—si - ), 75%,,)

induce an embedding
(4.27) EthGLiS(Qp)y)\ (Z(}\) ®E IZ.}IOD? - Csi,si ) Cszi,l)

= Extliy (@ (R (Momi(=N), 78240), FR (Msi(—si-N), 752,1))
It follows from the second paragraph of the list before Corollaire 5.2.1 of [Brel7] that

Ho(Ns—i, Fp* (Ms—i(=A), 752;5)) = (Ls—i(A) @ Ls_s(si - A)) @ 7525
and
Hy(N3_i, Fp® (Ms_i(=X), 752;5))

= (La—i(si- N) ® La_i(sis3—i - \)) @p w52, @ Ié?w_Lig,i (0s,0) © I}é?\fa,i (Gsix OB Xsns1) -

We notice that Z(Ls—;(Q,)) acts on each direct summand of Hy(N3_;, .7-'1(5?131_ (M3—i(=A), 72,5))
(k =0,1) via a different character, and the only direct summand that produces the same character
as Ly_i(s; - \) @ w52, | is Ié?{ﬁé_i (0s,.1). However, we know that

L —i L —i
COSOCL,_,(Qp),A (IB?WLg,i (551“)\)) = IB?WLg,i (553—1'51'-)\)
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and thus
Ls_; T oo
HomL3—t(Qp)7>‘ (IB%Lgfi (55371.51.4)\) ) L3*i(si ) )‘) ® 7T37i,1) =0.

As a result, we deduce the equalities

Extr, QA (HO(Ng,Z-, Fars (Ms_i(=X), 75%,5)), Ls—i(si - A) @p 7T§°—i,1) =0
Homp, ;(q,)x (Hl(NS% Fars (Ms_i(=X), 75%,5)), Ls—i(si - \) @p Wéfo_i,l) =0

which imply by Lemma [2.1] that
Extér, Q). (]:Se,Lj (Ms—i(=X), 75%59), Frr® (Ms_i(—si - M), 7T§<ii,1)) =0.

sy
Hence we finish the proof of (4.26) by the embedding (4.27]). O

Lemma 4.9. Up to isomorphism, there exists a unique representation of the form

Ciafisul
8iyl — —

CSi,Si

and a unique representation of the form

Ol

$3—-i57,83—iSq
_— T VoL
\7 _— 8i,8183—4 *

L(\) ®@g vE,_,

Csi75i

Proof. We only prove the first statement as the second one is similar. It follows from Proposition 4.4.2
of [Brel7] that there exists a unique representation of the form

C{}g_isi,l —
2 — T~
CS,;,l OS{,,Si
— —
but it is not proven there whether its quotient
(4~28) Cslg,,isi,,l -0 CSi;Si

is split or not. However, If (4.28]) is split, then there exists a representation of the form
Cs2i,1 — L)) ®g v, — Ciiss
which contradicts the first vanishing in Lemma and thus we finish the proof. O

Remark 4.10. Our method used in Lemma (.8 and in Lemma [£.9] is different from the one due to
Y.Ding mentioned in part (ii) of Remark 4.4.3 of [Brel7]. It is not difficult to observe that

1

S3_iS8i,1
(4.29) dimpExtér, | Csivsis Ci,l\/ =1
L(\) ®@g vy
and
(4.30) dimpExthy, qa | C2 aes s Ci -1

L()\) ®F U%‘;,i
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for each ¢ = 1,2. Similar methods as those used in Proposition 4.4.2 of [Brel7], in Lemma and in
Lemma also imply the existence of a unique representation of the form

05371’575’53—1'

/ —— Ol

1
si,1

or of the form
CSS*iSinBfi
0521 S$iS3—i - \ 052 1-
, - s

5. COMPUTATIONS OF Ext II

In this section, we prove a few technical results which serve as a preparation to the construction and
study of XM (\, %, %, L) in Section@ Note that we have defined the representation (X, %, %%)
in , which will be the starting point of the construction of X™®(\, %, %, .%3). In order to
add more and more Jordan-Holder factors into X(\, .2}, .%) until we build up X™*(\, 4, %, %),
it is necessary for us to understand the extensions of various small length representations by certain
subrepresentations of X(\, £, %). We compute the dimension of various such Ext-groups in this
section, and a notable result is Proposition [5.4) which excludes the existence of certain representations
of specific forms, using a key input from Proposition A summary of different representations
defined in this section can be found in Remark [5.101

We recall the definition of 3;(X,.%) for each i = 1,2 and .Z € E from the paragraph right before
(12.21)).

Lemma 5.1. We have
dimEEXtéLg(Qp),)\ (Csi,sia ZZ(AP’%)) = 1
for each i =1,2.

Proof. We only prove that
(5.1) dimpExtgr, gy (Corsis T1(A,241)) =1

as the proof of the other equality is similar. We note that %1 (\, %)) admits a subrepresentation of

the form

1
s281,1

W= T\ ©p StF — C2,

~—

due to Lemma 3.34, Lemma 3.37 and Remark 3.38 of [BD18]. Therefore 31 (), .%})) admits a separated
and exhaustive filtration such that W appears as one term of the filtration and the only reducible
graded piece is

1
s281,1

Ve C?
L(\) ®p vF

It follows from Lemma 4.4.1 and Proposition 4.2.1 of [Brel7] as well as our Lemma [4.6] that

(5.2) Extgr, @y (Corsns V) =0

for all graded pieces V different from V;. On the other hand, we have

(5.3) dimpExtg, Q) (Coisns Vi) =1
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due to (4.29) and

(5.4) Extgr, ) (Corsrr L(A) ®pSt5°) =0

by Proposition 4.6.1 of [Brel7]. Hence we finish the proof by combining (5.2)), (5.3), (5.4) and part
(ii) of Proposition O

We define ¥1 (), .%;) as the unique (up to isomorphism) non-split extension given by a non-zero
element in

EXt%}L3(Qp),>\ (Csi,,si ) El()‘a z))

for each i = 1,2. Then we consider the amalgamate sum of X1 (), #1) and X5 (), %) over St3"(\)
and denote it by X7 ()X, 4, %). In particular, X (), %, %) has the following form

U?’?<>‘) - 051781
(5.5) St (\) T .
T U?DZ(A) - 082752

Lemma 5.2. We have
dimEExtéLS(Qp),)\ (f()\) ®F VP, _,» Zj@‘w%)) =3
for each i =1,2.
Proof. By symmetry, it suffices to prove that
dimpExtéy, g, (L) @5 v5, ST, 4) =3.

This follows immediately from Lemma 3.42 of [Brel7] as our %] (), %) can be identified with the
locally analytic representation IT' (), ¢)) defined before (3.76) of [Brel7] up to changes on notation. [

Lemma 5.3. We have

dimEExtéL3(Qp)’)\ (LN @ vy, TN\, 4,%)) =2
for each i =1,2.
Proof. The short exact sequence

SEN2) o ST, B) > (VB — Cae, )

induces the following long exact sequence

HomGLg(Qp),)\ (Z()\) XF ’U;’ON U?Drll()\) - CS1,51 )
—> EXtéLS(Qp)7>\ (Z(}\) ®E 'Uj.;v?, E;(A, .,%2))
— EXtéLS(Qp)7>\ (Z()\) ®E ’U%l), E+()\,Zl,$2))

- EXt%}Lg(Q,,),A (Z()\) Qpvp, Vp(A)—Cs s ) .
According to Proposition [.1] and Lemma [£.4] we observe that
dimgHomer,(q, ). (f()\) Dp v, V(N — Coy e ) -1
and
EXtér,(q,) (f()\) ©p v, V() — Cy e ) —0
by a simple dévissage, which together with Lemma [5.2] and the long exact sequence above imply that
dimgExtir, g, 0 (CON) @50, ST\, 4, 2)) =2.

The proof for B
dimEExtéLS(Qp)))\ (L()\) (29 5) U?D(;; Z+()‘7$17$2)) =2
is parallel. O
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Proposition 5.4. We have
EXtéLg(Qp),)\(Wi’)*h Ejo""gi)) =0

and
EXtGLg( ) (W3 iy 2()\7$)) = 0
for each i =1,2.

Proof. 1t is clear that
Homgr,(q,).x (Ws—i, Cs,s;) =0,
which together with a simple dévissage give us an embedding
Extar, ) Wa—i, Si(A,24)) = Extir,qya(Wa—is 37 (A, £))
for each ¢ = 1,2. Without loss of generality, it suffices to show the vanishing

(5.6) Extép, qa(We, ST Z)) =0
(Qp)

We define v & ATy, (Which is the restriction of A from T to T via the embedding vr1: Tp — T)
and view Zng (v,%1) (which is defined before Proposition as a locally analytic representation of
L1(Qp) via the projection L1(Q,) - GL2(Q,) and denote it by Ezl (A, Z1). We note by the definition
of ¥1(N,Z4) (cf. Section that we have an isomorphism

10 #1) S 189 (81, (0, 2)) / (VB0 — T ).

Upon viewing f(s -v) as a locally analytic representation of L;(Q,) via the projection Li(Q,) —
GL2(Qp), we deduce an isomorphism

Cs, .51 = 80CaL,(Q,) (Igll‘3 (f(s . ll))) ,
which together with the short exact sequence

S, L) = B 0, A) - (s v)
implies an injection

SEOL2) < I (55,00 24) / (vBO) — T ).
We use the shortened notation
v E IS (5 00 A) /(v — I ).

and obtain an injection (using a vanishing of Hom)
(5.7) Extgr, ) (War ST (A, -4)) < Bxtar,q,yn (Wa, V).

We clearly have an exact sequence
(5:8) Exthryqoa (Wa 157 (S, (0 4)))
5 Extly, g,y (We. V) = Extir, g )a (Wg, V() —— T(N) )

We note that Wy = GL3( %) (cf. (53) of [Brel7]). Then we deduce from (48) as well as the first
paragraph of the list before Corollalre 5.2.1 of [Brel7] that

Ho(Ny, Wo) = Ta(N) @ (ihh,, 00) 0% )
Hi(Ny, Wo) = Ta(s2-N) @ (i5h,, (63) © 0% )

Hence we observe that
HOle(Qp)7/\ (Hl(Nl, WQ), 221 (/\,9%1)) = 0
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from the action of Z(L1(Qp)) and
Extr, (q,)x (Ho(Ni, Wa), Sf (A, 4)) =0
according to Proposition [3.5] and the natural identification

EthLl(Qp),A(_v —-) = EXt%}L2(Qp)(_7 -)-

As a result, we deduce

(5.9) Exthr iy (Wo 167 (35, (0040)) ) =0

from Lemma 2.3l We know that

(5.10) Extér g (War v ——I() ) =0

due to Proposition Lemma and a simple dévissage. Hence we finish the proof of (5.6) by
combining (5.7), (5.8), (5.9) and (5.10). U
Lemma 5.5. We have

(5.11) dimpExtg, ) (L), 7 (A, 2)) =3

for each i =1,2,

(5.12) dimpExtgr, gy (L), BT\, 21, %)) =2

and

(5.13) dimEExtéLg(Qp)’/\ (L), ST\, 4,24)) =1.

Proof. We claim that

(514) EXtéLs(Qp))\ (Z(A), Csi,si) - EXtéLS(Qp))\ (Z(}\), Os,;,si) = 0

using Lemmad.4and Lemmal[d.5] Hence the equalities (5.12)) and (5.13) follow directly from Lemmal[2.11]
and (5.14)), using a long exact sequence induced from the short exact sequence

S\ L) = ST\ Z) — O, s
Due to a similar argument using , we only need to show that
(5.15) dimpExtgr, g, (L), Si(A, Z)) =3
to finish the proof of . The short exact sequence
SR < Ti(A,Z) = 0 ()

induces a long exact sequence

(5.16) Extgr,(q,)a (LAY, Tih, Z)) = Extr,q,)a (L), v8(V)
— Extér, g, (L), St5(N) = Extér, g,y (L), Ti(A,4)) = Extgr, ) (LA, v (V).
We know that
dimEExtéLs(Qp),,\ (L(N), St5"(\)) =5
by Lemma [2.7] It follows from Proposition [£.I} Lemma [I.4] Lemma[4.5] and a simple dévissage that

(5.17) dimpExtgr, ) (LY, v8(N) =2
and
(5.18) Extdr,q,) (L), vB (V) = 0.

In order to deduce (5.15)) from (5.16)), it remains to show that
(5.19) Ext%;LS(QPL/\ (L(N), (N, Z)) = 0.
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The short exact sequence
(VB =T ) = I8 (B, 4) %0 )
induces
Bxtbiyqpa (EO), o800 —I() )

= Exthrqua (EO) 157 (B0 24))) = Extlir, )1 (EO): Si\, £)
by the vanishing
ExtZi, i, (ZO), VB0 — () ) =0

using Proposition [4.1] and Lemma [4.5] Therefore we only need to show that

(5.20) dimpExtie, g, (L), o8 () —I() ) =1
and
(5.21) dimpFxtlr 0 (L), 157 (B1,(A2))) = 1.

The equality (5.21)) follows from Lemma and the facts
dimEEXtii(Qp),A (Ho(Ni, Z(A)), EL,()‘aQZ)) = 1, HOIIILI.(QP),)\ (Hl(Nz, f()\)), ZLL()\,DZ)) =0

where the first equality essentially follows from Lemma 3.14 of [BD1§| and the second equality fol-
lows from checking the action of Z(L;(Qp)). On the other hand, (5.20) follows from (5.17) and
Proposition by a simple dévissage. Hence we finish the proof. O

Proposition 5.6. The short exact sequence
induces the following isomorphisms
(5.22) EXt1, Q) (f()\) DpvE._ zj(x,z)) = ExtZn, quya (T, =F O\, 2))
and
(5.23)  Exthr,qu)a (Z(A) DpvE._, zﬂxyhgz)) = Extin, qua (L), SHO\, 21,.%))
for each i =1,2.
Proof. The vanishing from Proposition implies that
Exthiy g (D) @8 05, SE2)) > Bxtir,q,a (EO), S5 (\2))

is an injection and hence an isomorphism as both spaces have dimension three according to Lemma5.2]

and Lemma The proof of (5.23)) is similar. We emphasize that both (5.22) and (5.23]) can be

interpreted as the isomorphism given by the cup product with the one dimensional space

Exthiy g (E), T @505 ) -

We define
(524) Y\ Z, L) LD A, L) /LN ©p St5° and (N, L) €5\, L) /LN ©p St
for each i =1, 2.
Lemma 5.7. We have
dimEExt(l}LﬂQpM (Z()\), Zb()\,fhi@)) = 1.
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Proof. We define X%~ (\, £, %) as the subrepresentation of X°(\, %1, %) that fits into the following
short exact sequence

(525) Eb7_(/\a$17$2) — Zb()‘7°§/pl’$2) - (0512,1 ® 051171) ’
(cf. (2.4) for the definition of CL, ;, CL |, C2 | and C? ) and then define 5"~ ~(\, £, %) as the

so2,19 s1,10

subrepresentation of ¥~ (\,.%;,.%) that fits into
(5.26)

S (AL D) s SN, L, L) (( C2 , —T(\) @p v ) @ ( C2 ., —TI(\) @p v )) .

Tt follows from Lemma [£.4] that B
Extgr, (LA, V) =0

for each V' € JHqr,(q,) (Eb7__()\,$1,$2)) and therefore
(5.27) Exthiy g (L), 577" (A4, %)) =0

by part (i) of Proposition On the other hand, we know from Lemma and Lemma that
there is no representation of the form

C: 1 — L\ ®@p vy —IL(\)

which implies that

(5.28) EXtL, () (f()\), C2, —T(\) ®p vy ) =0

for each i = 1,2. Hence we deduce from (5.26)), (5.27), (5.28) and Proposition that
(5.29) EXthr,y () (Z(AL Zb’_()\,iﬂl,fg)) = 0.

Therefore induces an injection

(5.30) EXthr, () (f(A), Eb()\7$1,$2)> < Extly, g,y (L), CL, @ CL ).

Assume first that ((5.30)) is a surjection, then we can choose a representation 1 represented by a non-
zero element in Extgy, (g, (L(N), °(\,.21,.%)) lying in the preimage of ExtéLs(Qp)J\ (L), CL 1)
under (5.30). Note that there is a short exact sequence

SN L) = (N, L, L) — v (D).

We observe that L()) lies above neither C}, | nor L(A) ®p v, inside Vy by our definition and (5.28),
and thus 1} is mapped to zero under the map

f: EXtéLS(QP),)\ (I()\)7 Zb()\’fl’f2)) — EXtéLS(Qp))\ (Z()\), 'U?‘Drzl()\))
which means that Vj comes from an element in
Ker(f) = Extér, ) (f()\), zz(A,gl))
and in particular
(5.31) Extbry(q,a (L) TH2)) #0

The short exact sequence

L(\) ®p vy, < Wa — L())

induces an injection

(5.32) X1, () (f(A), zz(x.,s,ﬂl)) S (Wg, zi(A,.,s,ﬂl)) .
On the other hand, the short exact sequence

(5.33) I\ @p St = 21\, 4) - 21\, 24)
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induces a long exact sequence
Extar, g,y (Wa, L(A) ®5 St5°) — Extér,q,)x (Wa, S1(A,21))
— Exth, g, (WQ, zm,fl)) 5 Ext?r,q,y (W, I(Y) ®p St5°)
which implies
(5.34) Extir,(quyn (Wer 1A 21) = Extlr, quya (Wg, zz(A,.zl))
as we have
Extgr, g,y (Wa, LV ®5 St5°) = Extgr, g,y (W2, L(A) ®@5 St5°) =0
from Lemma We combine Proposition and and deduce that
Exthiy g (D), T1OL2)) =0
which contradicts . In all, we have thus shown that
(5.35)  dimpExtéy,(q,) (f()\)7 zb(x.,sfl,gg)) < dimpExtly, g, (EN). CL @ CL ) =2
by combining Lemma Finally, the vanishing
Extgr, ) (EV), LA @5 St5°7) =0
from Proposition [4.1] implies an injection
Exthiy g (EO): SO0 A, 2)) < Extér, i (TO), D00 4,%))
which finishes the proof by combining Lemma and . O

Lemma 5.8. We have
dimEEXtéLg(Qp),)\ (WO, E()\,fh.ﬁ/ﬁz)) =2.

Proof. The short exact sequence
SN L) = BN LA, L) uB (V)

induces a long exact sequence
(5.36) Homar,(q,).a (Z(A) DpvE v}%g_i()\)> < Exthp, (@, (Z(A) DpvE E';(A,.Z—))

— Extly,qu)a (f(/\) ©pvE ., 2O, 31,32)) — Extly, (quyn (f()\) DpvE v?;;fi(x)) :
It is easy to observe that
dimEHomGLg,(Qp),)\ (Z()\) RE U?’Z—H U?pg_l(A)) =1
and
Exthiy g (L) 5 v, v (V) =0
from Proposition and Lemma [£.4] We can actually observe from Lemma that the only V €
JHGLS(QP)(ZE()\,,,Z)) such that
EXtGL(Qy) (Z(/\) ®p Up, V) #0
isV=C2 | and
dimEEXtéLg(Q;,),)\ (Z(A) ®E vl%?s—i’ 0537“1) = 1

Hence we deduce that
Exthryiaa (O 88 05_, T 24)) <1
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and therefore (using (5.36))
(5.37) EXtér,(q,) (Z(A) EvE Eb()\,i”l,o%)) —0
for each ¢ = 1,2. The short exact sequence

L(\) ®@p (v, ®vp,) < Wo — L())

induces
Exthr g (D), SO0 4, %)) © Bxtlyyq,a (Wo, T\ 21,.%))

— Extd, g, (Z(A) op (V3 ®vE), zb(x,gl,zz))
which implies
(5.38) EXthr, Q) (Z(/\), 2"(,\,21,32)) = Extlr, ) (WO, z"(A,zl,.zQ))
by (5.37 . Finally, the short exact sequence induces
EX‘BGLS(Q » (Wo, L(N) ®E St5°) < Extér, g0 Wo, B(N,4,.%))
— Extd, g, (Wm ()\,.,Sfl, .,%)) — Ext?r,q,)n (Wo, Z(Y) ®5 St5°)
which finishes the proof by Lemma[5.7] (5.38), and the fact
dimpExtgr, )0 (Wo, LX) ®p St5°) = 1 and Exty,q,)x (Wo, L(A) ©g St5°) =0
coming from Lemma O
Lemma 5.9. We have the inequality
dimpExtly, (q,). (WO, V() —— Cy, ) ) <9
for each i =1,2.
Proof. We know that
ExtGLS(Q )A ( () @ vp, C. ) = ExtéLg(Q )A (f()\) ®F VP, L\ ®gp v,%f) =0
for 4,5 = 1,2 from Proposition .1 and Lemma [£.4] and thus
ExtgLS(QPM (f(A) ©p vE, vg(x)) =0
for i,j = 1,2 which together with implies that
(5.39)  dimpExtir,q,)x (Wo, v8 (V) < dimpExtér, q,)x (Wi, vE(V)

< dimEExtéLS(QP)A (L(A), v (N) — dimgHomgr,(q,)» (LX) @5 v, vB(N))
=2—-1=1.
We also note that we have

EXté}Lg(Qz,),A (L), Cs,.s,) = EXtéLg(Qp),)\ (L) ®@p vy, Css) =0
by Lemma [£.4] which implies

(5.40) dimpExtgr, g0 (Wo, Cs, ) < dimpEXtGr g (f(A) QB VP _, C) =1

where the last equality follows again from Lemma We finish the proof by combining (5.39) and
(5.40) with the inequality

dimEEXt%;LS(QP))\ (WO, U?D?(/\) —Cy,.s, )
< dimgExtgr, q,) (Wo, 08/ (V) 4+ dimpExtgr, g0 (Wo, Cs,s,) -
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O

Remark 5.10. The representations that appear in this section can be summarized by the following
diagram
S\ ) <—— S\ L)\, L)

'

Eb()‘wi/ﬂlva) < Z(A,$1,$2) Z+(A7°§/ﬂla$2)
for each ¢ = 1,2. Note that the first (resp. second, resp. third) column is defined in (5.24) (resp.
(2.22), resp. (5.9)).
6. THE FAMILY ™%\, 2, %, L3)

6.1. Construction of X™*(\, %, %, .%3). In this section, we finish our construction of Y™™ (X, .4, %, 3)
(cf. the paragraph before (6.28)), using results from Section 5} A summary about the technique used
in this section can be found in Remark [6.11]

Lemma 6.1. We have the inequality
dimpExtgr, )0 (Wo, ST\, 2, %)) < 3.
Proof. The short exact sequence
SN, L, L) = TN, A, L) > (Cs, 5, ®Clsys)
induces the exact sequence
(6.1)  Extgr,q,x (Wo, B\, 21, 2)) = Extir,q,)a (Wo, 5T\, 4, £))
= Extér, @,y (Wo, Css @ Cyosy) -
We know that
dimpExtGr, )0 (Wos Copsy @ Cas)
= dimpExtgr, q,yx (Wo, Cysy) +dimeExtér, gy a (Wo, Caysn) =141=2
by Lemma [£.4] and Lemma [£.5] We also know that
dimpExtgy, )0 Wo, B\, 21, %)) =2
by Lemma [5.8] and thus we obtain the following inequality:
(6.2) dimpExtér, ) (Wo, BTN, 21, %))
< dimgExtgy, q, )0 (Wo, B\, £, %)) + dimpExtgr, g,y 0 (Wos Csysy @ Coysy) =242 = 4.
Assume on the contrary that
(6.3) dimpExtgr, 0 (Wo, ST\ 2, %)) =4
The short exact sequence
SEOL ) o B AL, Z) > (VB —— Cuas, )
induces a long exact sequence

(64) EXtéLS(Qp)M\ (VVO7 ET(A,gl)) — EXt%}Lg(Qp),X (Wo, Z+()\,$1,D§/p2))

- EXtéLS(QP),A <W07 v (A) — Csy s, )
which implies

(6.5) dimpExtg, )0 (Wo, T (A, 41)) > 2
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by (6.3) and Lemma We consider a separated and exhaustive filtration of X7 (\, ;) whose only
reducible graded piece is

031,1 73(}\) ®E U%? .
It follows from Proposition [4.1] Lemma [{.4] together with a simple dévissage that
Extgr, ) () @pvf, CF 1 —L(\) @pvp) =0,
which together with Lemma [£.4] implies that
EXtéLS(Qp);A (Z(A) ®E ’U(])g?, V) = O

for all graded pieces V # L()\) ®p Sty of the filtration above. Hence we deduce by part (ii) of
Proposition an isomorphism of one dimensional spaces

(6.6)  Extéry g, (L) @5 vE, LA) @5 St5°) = Extgr,q,)a (L) @p 03, SF(A,4)).

Then the short exact sequence

L(A\) @p vp, — Wy — Wy
induces a long exact sequence
Extgr, ) (Wa, EF (A, 4)) < Extar, g, (Wo, EF(A,24))
— Ext%;Lg(QPM (L) ®@p vy, SF(A\24)),
which together with and implies that
dimpExtér, g,y (Wa, BT (A, 4)) > 1.
This contradicts Proposition [5.4] Hence we finish the proof. O

Proposition 6.2. We have

dimEExtéLs(Qp)A (Wo, B*(\, A4, 2)) = 3.
Proof. The short exact sequence
L(\) ®p (v, ®vp) < Wo — L())

induces a long exact sequence

(67) EthGLS(Qp)7)\ (f()\), E_‘—(/\,.iﬁ,gg)) — EthGLg(Q;,%A (WO, Z+()\7D§/pl,$2))
— EXt%}Lg,(Qp),)\ (f(/\) R (U%; S5 U})g?) R E+()\,D§/p1,$2)) — EXtQGLg(Qp))\ (Z()\), E+(/\,$1,$2))

and thus we have

(6.8) dimgExtér, g, A(Wo, ST\, L4, 2))
> dimpExtgr, )2 (L), ST\, 2, %)) +dimpExtér, ) (LN @e (v, G vE) , ST\, 24, %))
— dimpExtgr, g, (L), ST\, A,2) =1+4—-2=3
due to Lemma and Lemma which finishes the proof by a comparison with Lemma O
We define X4\, 2}, %) as the unique non-split extension of X(\, £, %) by L(A) (cf. Lemma

and then define X5 (\, 4, %) as the amalgamate sum of Xf(\, .2, %) and YT (), .4, %) over
Y\, LA, L), Hence XF (N, L1, %) has the form

0N

St3" (M)
\ P
vi, (V)

Iw
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and ¥4+ (\, 4, %) has the form

Then we set
def

SN L, L) E SN L, L) /LN @F St
for x = {+}, {#} and {f,+}.
Lemma 6.3. We have

Extgr, i (B, SHA, 2, %)) = Extir,q,a (LAY, SPT(N, 24, 2)) =0
and
(6.9) dimpExtgr g, (L), TN, L, 2)) = dimgExtg, q,)a (L), ST\, 4, 2)) =2.
Proof. According to and a simple dévissage, it suffices to show that
Extgr,q,a (LY, SHA, 2, £)) = 0 and dimgExtgy, q,)» (L), SHA, 24, 2)) = 2.
The desired results then follow from Lemma the long exact sequence
Homgr, (g, (L), L(N) = Extér, g (L), S\, 21, %))
— Extir, o (L), SH, 2, £5)) — Extir, ) (LY, TOY)
— Extér, g, (L), B\, £, %)) = Extar, g, (L), SF\, 2, %))
— Extgr,q,n (L), L),

and the equalities (cf. Proposition

dimg HOHlleLg(Qp),,\@()\)y L) = 1
Extery @Al
EXtGL3(Qp)v>\<L

O

Remark 6.4. Tt is not difficult to observe from the proof of Lemma [5.5] and that of Lemma that
the following diagram

ST\ A4, L
P 2 I )

Y\, 4, Z yht(\, 4, L
1 2)\ Zu(A7$1a°§/p2>C/,// ( 1 2>

induces isomorphisms between two dimensional E-vector spaces
EXtéLS(Q,,),,\ (L), (N, 4, %))
for x = @, {+}, {#} and {f, +}.
Lemma 6.5. We have
(6.10) Extér,qa (L), S\, 4, £)) = Extér, g (L), S (N, 21,.4)) =0
and

dimpExtgy, q,) (L), S (), A, £)) = dimpExtg;, g, A (L(N), T (N, 4, 2)) > 1.
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Proof. According to ([5.14)) and a simple dévissage, it suffices to show that

(6.11) Extér,(qua (L), B\, 4, %)) =0
and
(6.12) dimgExtgy, g, A(L(N), S (N4, 2)) > 1.

The equality (6.11) follows from Lemma Proposition and a long exact sequence induced from
the short exact sequence

SN AL L) s SE(N, AL, L) — L(N).
The inequality (6.12)) follows from Proposition (6.11), Lemma and the long exact sequence

(6.13) Extéyr, gLV, (N 21, %)) = Extgr, g, (LN, L(A) ®p St5°)
= Bxtar, (L), BH A, 2)) = Extey g (L), B0\, 21,.4))

as we have

dimpgExtey, g, A (L), (N, .24, %))
> dimpExtg, ) (L), SH, 2, ) — dimpExtgr, q,) A (L), L) @pSt5) =2—1=1.
0

We use the shortened notation & < (4, %, L), L)) for a tuple of four elements in E. We recall
from Proposition [5.6] an isomorphism of two dimensional spaces

(614) EthGL3(Qp)7)\ (I(}\) ®E ’U?)?, Z+()\,$1,$2)) l) EthGLg(Qp),A (Z(A), Z+()\,$1,$2))

for each ¢ = 1,2. We emphasize that the isomorphism (6.14]) can be naturally explained by the cup
product map

(615) EXtéLg(QP),/\ (Z(}\) XRE ’Ufpj, E+()\,$1,$2)) @] EXtéLS(QP),/\ (Z(}\), Z(}\) RF Uf)?)

— Extgr, g, (L), ST\, 24, %))
where Extgy, Q) (L), L(N) ®p vy) is one dimensional by Proposition According to Lemmam
and Remark we may abuse the notation

{R(bl,va]p A b2,va1p); CO}

for a basis of ExtéLs(Qp)J\ (L), (N, L, 2)) for each x = @, {+},{t} and {,+}. In particular,
the element

co + ZLk(b1 var, A b2 val,)

generates a line in ExtéLs(Qp)J\ (L(N), ST\, A, %)) for each £ € E. We define £ (X, .21, %, £))
as the representation represent by the preimage of

co + L} k(b1 val, AD2val,)
in
EXtéLs(Qp),A (L) ®pvg, (N4, %))
via (6.14)), for each i = 1,2. Then we define %+ (),.%) as the amalgamate sum of X (\, .4, %, .%])
and X5 (\, 4, %, L) over BT (\, 4, %), and therefore X1 (), Z) has the form
V() —— Copes — I(N) @ 035

SN T

TR —— Caysy, — L) ©p 0
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We define ©4F()\, ) as the amalgamate sum of 1 (\,.£) and S¥(\, %, %) over (A, %, %), and
thus X%% (), £) has the form

081,81 — Z()\) XRE /Uj.)z

52,50 — L(\) @ vF
We also need the quotients

SN L) € ST L) /TN ©p S, SPT(N,.2) = 8RO, Z2) /L)) ®p S
Lemma 6.6. We have the inequality

dimpExtéy, g, (f()\), zﬁvﬁb(x,@) <1.
Proof. The short exact sequence
SR L, L) = SR (N,Z) - TN @F (v ©0F)
induces an injection
(6.16) Exthr, () (f(/\), zﬁ’”(x,g)) < Exthy,(q,) (LY,
by Lemma Note that we have
dimpExtgr, ) (L), L) @ (vE @ 0p))) =2

by Proposition Assume first that (6.16) is a surjection, and thus we can choose a representation
Vo represented by a non-zero element lying in the preimage of L(\) ®g vg, under 1) We observe
that the very existence of Vj implies that

(6.17) EXtér, () (W2’ 2ﬁ7+,b()\,$1,$2)) £ 0.
We define

L) ®g (vy ®vp))

S5O 2) B (L)L) ©p St
and thus obtain an embedding
PPN L) = RPN 2, L)

for each 7 = 1,2. We notice that the quotient Zﬁ’+’b()\,$1,fg)/Zf’b()\,fl) fits into a short exact
sequence

(VB — I ) = T AL L) /S L) = Cop
We observe that
(618) EXtéLB(Qp)7)\ (WQ, 032732) =0

from Lemma and part (i) of Proposition It follows from Proposition Lemma and a
simple dévissage that

(6.19) EXtéLg(Qp),A (L) @ vE, 0311,1) = EXté}LS(Qp),A (Z(/\), Cii— I ) =0.
Hence if
EXt%}L3(Qp),)\ <W27 031171 — L)) ) #0,

there must exist a representation of the form
Cla—I(\) — L) &x v
which contradicts (6.19) and Lemma As a result, we have shown that

Exthryqa (War Chi——I() ) =0
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which together with Proposition and part (i) of Proposition implies

(6.20) Exthr, g (War VB —I() ) =0,
Now we can deduce
(621) EXté’La(Qp)yk (WQa Zﬁ’Jﬁb()‘v fla 32)/2T,b(>‘7$1)) =0

from (6.18) and (6.20). We combine (6.21)) with Proposition [5.4 and conclude that
Extli, (g, (W T (0 24,%)) =0
which contradicts (6.17). Consequently, the injection (6.16]) must be strict and we finish the proof. O
According to Lemma the short exact sequence
SEE(N L, L) = BTN L) —» L) ®@p (v & oF)
induces a long exact sequence:
(6.22) Extir,qa (LY, S5 (N, L)) = Extér, g, (L), L) @5 (v, & vF,))
L Bxtli g (B, T\ 4,.2)).
According to (6.10) and a long exact sequence induced from
L)) ®p St3° — ST (N4, %) —» ST (N4, L),
we obtain a natural embedding
Proposition 6.7. We have
dimpExtgy, g, (L), T (1.2)) =1
and the image of f is not contained in the image of .
Proof. We use a shortened notation for the two dimensional space
def

We have the following commutative dlagram

(6.24)  Extgr,q,)a (L), S9N, 2) % MHExtGLS(Q a (L), S5F(N,24, %))
| |
Extgr, ) (LY, 9H2(0,.2) <—> M—>ExtGL3(Q o (L), S (N 4, %))
where the middle vertical map is just an equality. We know that h is injective by the vanishing

EXtéLg(Qp),)\ (Z()\), Z()\) ®E Stgo) = 0

and k has a one dimensional image by (6.13). Both ¢ and j are injective due to and (6.10]).
Therefore by a simple diagram chasing we have

dimpExthr g, (L), T4 (0,.2))
=dimgM — dimglm(g) > dimgM — dimgIm(k) =2-1=1
by Lemma and therefore
dimpExtér, ) (Z(A), SEF2 (N, z)) —1

by Lemma [6.60 Moreover, the map g has a one dimensional image and hence k o f has one di-
mensional image, meaning that the image of f has dimension one or two and is not contained in
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Ker(k) (which is exactly the image of (6.23)). We consider the restriction of f to the direct summand
ExtéLS(Qp)J\ (L(N), L(X) ®p vy) which together with (cf. Remark

(6.25) Extgr, g (L), 5T\ 241, %)) = Extgr, g, (L), ETH, 4, 24))

gives a map

(6.26) Extgr, @ (EOV), LA @pv3) = Extgr, g (L), ST\, 21, %)) .

According to our definition of L%+ (), ), the image of is indeed given by the line

(6.27) E (co 4+ &/ k(b1 vat, A b2val,)) -

It is c)lear that is different from the image of which is exactly the line Er (b1 val, A
b2 val, )- O

Proposition 6.8. We have
dimpExtgr, a0 (LAY, ST(A,.2)) <1
and the equality holds if and only if £ = L5 = L5 for a certain &5 € E.

Proof. The inequality follows directly from Proposition and the fact that the morphism A in ((6.24)
is an embedding. It follows from (6.22)) that the equality

Extgr, g (LY, 9T (A,2)) =1

holds if and only if the image of f is one dimensional. Then we notice from the proof of Proposition [6.7]
that the image of

under f is (6.27)), up to the isomorphism (6.25)). Therefore the image of f is one dimensional if and
only if the two lines (6.27)) (for ¢ = 1,2) coincide, which means that

L= L= 2,
for a certain %5 € E. O
We use the notation L4+ (\, £, %, %) for the representation %+ (\,.Z) when
L = (L, Lo, L3, L3).

We define Emi“()\,fl,ﬁmfgl as the unique representation (up to isomorphism) given by a non-
zero element in ExtéLB(QpM (LX), S8F(N, A, L, 23)) according to Proposition m Therefore our
ymin(\ L %, . #3) has the following form

an _——Usi,s L()‘) ®F vlo:’o
(N o _ . 2
(6.28) Stan () () T SZI.
— 22
UP«_,()‘) —

p—— 032782 73()\) XRE Ui,)—_,?

It follows from Proposition Proposition the definition of X™™(\, .4, %, %) and a simple
dévissage that

(6.29) Extar, ) (DY), (N, 21, %, %)) = 0.

Remark 6.9. The definition of the invariant %3 € E of ¥™%(\, .4, %, £3) obviously depends on the
choice of ¢y, and hence on the choice of a branch of p-adic dilogarithm function which is Dg. This
is similar to the definition of the invariants %, % € E which depends on the choice of a branch of
p-adic logarithm function which is log,. Note that the choice of p-adic logarithm function naturally
determines a choice of p-adic dilogarithm function.

The following result will be useful in the proof of Theorem [7.1]
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Proposition 6.10. We have
dimpExtgr, )0 (Wo, S9T(N, 4, £)) = 2.
Moreover, if V is the locally analytic representation determined by a line
My € Extér, g (Wo, 0T (N, 4, 2))

satisfying the condition that My is different from the image of , then there exists a unique
% € E such that .
V2 XM A, L, D).

Proof. The short exact sequence
L) ®p (vB ®v) < Wo — L(A)

together with Lemma [6.3| induce a commutative diagram
(6.30)
k

g1 a. a. T
Extgr, q,)a (Wor V) ——= Bxtér, q,)a (V1 s g yRle, V+) s Bxtgp, g (LAY, V)

h ha | hs)
Extén @,n (Wo VAT Extdy, ) (Vf’”g ® Ve, VM) Fo Bxt, g (TO), V)

where we use shortened notation V;*'# for LN ®gvy, VT for ST(X, 21, %) and VT for S8 (N, 24, %)
to save space. We observe that go is an injection due to Lemma k1 is a surjection by the proof
of Proposition h3 is an isomorphism by Proposition and a simple dévissage, and finally hs
is an injection (due to an obvious vanishing of Hom). Assume that hs is not surjective, then any
representation given by a non-zero element in Coker(hs) admits a quotient of the form

(6.31) Cig— L) — V™

for i =1 or 2 due to Lemma [£:4 However, it follows from Lemma [£.7] that there is no representation
of the form (6.31]), which implies that ho is indeed an isomorphism, and hence ko is surjective by a
diagram chasing. Therefore we conclude that

dimEEXtéLg(Qp),)\ (VVO7 Vﬁ7+)
= dimEExtéLg(Qp)y)\ (Vlalg ® V;lg, Vﬁ,+) _ dimEEXt%LB(Qp),A (Z(/\), Vﬁ7+)

= dimpExtér, ) (Vf‘lg o Ve, v+) — dimpExtgr g, (L), V) =4-2=2.

The final claim on the existence of a unique %3 follows from Proposition our definition of
ymin(N - L L, L) and the observation that the restriction of ks to the direct summand

al
ExtGr,a,a (V™ V)
induces isomorphisms
al ~ T
ExtGryaa (V™% VET) 5 Extéryaa (EO), V4F)

which can be interpreted as the cup product morphism with the one dimensional space

EXt(l}Lg.(Qp),)\ (z()\)v Vz'alg>
for each 1 =1, 2. a

Remark 6.11. We give a summary on main ideas behind various techniques used in Section |5 and
Section Our overall goal is to construct the representation Y™ (\, %, %, .%3) using B(\, L1, L)
as one of the building blocks, but the tricky point is what representation to add during each step of the
construction. It is not difficult to construct ¥4+ (\, £, %) from X(\, 4, %) by adding Cs, s, Cs, s,

and L()), each with multiplicity one, then the gap between X4+ (), 4, %) and ¥™(\, £, %, L3)
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is the length three locally algebraic representation Wy. If one adds L(\) ®g vp, and L()\) ®p vp

first, one obtains Y+ (), £) which depends on four invariants. Then it is not always possible to
add one extra L()\) to %+ (),.%), as the exact sequence (6.22) really depends on the choice of
£ = (4, L, L, %), Nevertheless, we may consider the quotient

SR\, Z) = SN, L) /TN @p St
which technically helps us determine exactly for which . we can add the extra L(\) (cf. Proposi-
tion and Proposition . Having a local-global compatibility theorem in mind, we expect that:
if ©%+()\,.Z) embeds into any Hecke eigenspace, an extra L()) should also appear in the Hecke
eigenspace. Consequently, instead of adding L()\) @ vy, and L(\) ®@p vy first, we view Wy as a
whole and study the extension of Wy by X5 (\, 21, %) (cf. Proposition and Propositio.
This will be crucial in the proof of Theorem A frequently used technique (cf. Lemma [5.7 and
Proposition is the following: given a certain V € RepléLs(Qp)’ g which appears in our compu-
tation, if we cannot determine EXtIéL:}(Qp),A(',V) directly, we study Ext’éh(Qp)’)\(be) first (with

V€ V/L(N) ©p St5°), and then make use of a long exact sequence induced from
L\ ®p St° =V — V.

The idea behind is that V might depend on choice of invariants but V” doesn’t, which usually makes
the computation (via various dévissage) of Ext]éLs(Qp)’)\(-, V?) simpler than that of Ext’éLg_(Qp)’)\Q7 V).

6.2. Structure of Y™ (\, .4, %, .%). In this section, we further clarify the internal structure of
Lmin(\ L, %, L) in Proposition and . In particular, we want to describe all
subrepresentations of X™(\, .4, %, #3) whose cosocle is isomorphic to L(A). The picture (6.28)
certainly does not contain enough information on this. At the end of this section, we also introduce
the representation L™+ (N %, %, %) (cf. the paragraph before Remark , which is slightly
bigger than Y™ (\, 4, %, L3).

We define ™™= (), 2, %, %) as the unique subrepresentation of X™i(\, .2, %, %) of the
form

o — v (A) —— Ciy oy — L(N) @ 05
St5™ (A _ :
TR (N —— Caysy, — L) ©p 0

which fits into the short exact sequence
(6.32) YT\, A, L, L) — SN, L, L, L) — L(N)P2.

We also define Y™™ == (\ A, %, .%3) as the unique subrepresentation of ™%~ (\, .4, %, %) of
the form
Z()\) RF ’U%O - 081,81
St5" () — 1

\ . )
LN ©p vE, ———— Csss

which fits into the short exact sequence
(6.33) . _ _
DUNTT(N A, Lo, L) o BTN L, L, L) — (LN @5 0f) © (L) @pvE) © O, @ O,

S

The short exact sequence (6.32)) induces a long exact sequence
Homgr,(q,)x (L(A), L(A)#?) — EXt%}Lg(QP),)\ (L(N), S™7 (N, A, Lo, L3))
— EthGL3(Qp),>\ (Z(A), Emin(A,gl,XQ,Zg)) — EthGL3(Qp),>\ (Z(A), Z(}\)@z)
which easily implies that
dimpExtgr, gy (LAY, T (N, 21, %, %)) =2
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by Propositionand (6.29). We consider a separated and exhaustive filtration on ™=~ (\, &, %, %)
whose only reducible graded pieces are

C;ivl — Z(}\) ®E 'U]OJ?

for i = 1,2. According to Lemma [£.4] and Lemma we deduce that
for all graded pieces V of the filtration above, which implies that

Extgr,qua (DY), ST (N, 4, %, %)) = 0.
Therefore (6.33) induces an injection of a two dimensional space into a four dimensional space
(6.34) pmin & Extar, o (DY), S\, 2, %, L))

def T T o0 T s}

< M+ = Extér, g (L), (L) @pvE) @ (L) @pv) @ ClL &0y ).
It follows from the definition of X™"~(\, %, %, .%3) that we have embeddings
2()‘7 317 9%2) — E+()\7 gl, 9%2) — Zmin,_()‘a gl; 327 33)
which allow us to identify
M- Extér, g (LY, B\, 4, %))

with a line in M™®. We use the number 1,2,3,4 to index the four representations L()\) @ v,
L(\) ®p vy, CL, ; and O}, | respectively, and we use the notation M; for each subset I C {1,2,3,4}
to denote the corresponding subspace of M+ with dimension the cardinality of I. For example, My 0y
denotes the two dimensional subspace

Extgr,qu (D), (L) @e o) & (L(A) @5 vE))

of M.

Proposition 6.12. We have the following characterizations of M™™ inside M~ :

M™" 0 Mg 5 =0 for {i,j} # {3,4},
M™™ N\ My g4y =M™ N Mgz4y =M™ N Mgy =M",
and . 4 .
M™" = (M™" N My 23y) @ (M™" N My 2.4y)-
Proof. As C} | and CJ, ; are in the cosocle of £(X, £, %), it is immediate that
M~ C My .4y

It follows from (6.28)) that
Jmin g M{3,4}
and thus M™™ N M3 4y is one dimensional which must coincide with M ™. The proof of Lemma
implies that M™" ¢ My; 3.4y for each i = 1,2 and therefore Mwin M My; 3,4y is one dimensional, which
together with the inclusion ' .
Mmln ﬂ M{374} g Mmll'l ﬁ M{Z73’4}
for each ¢« = 1, 2, implies that '
Mmln ﬂ M{i,3,4} - M_.
We note from Proposition [5.4] that that
M~ ﬂM{g} =M" ﬁM{4} =0,
and thus
M™in A M{173} = M™inn (M{173)4} n M{173}) e (Mmin n M{374}) N M{1)3} =M N M{g} =0.
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Similarly, we conclude that
M™® O My 5y =M™ 0 M5 =0

for each {i,j} # {3,4},{1,2}. We define X™™8(\, £, %, %) as the unique subrepresentation of
wmin= (N, 4, %, L) that fits into the short exact sequence

SN Ly, Ly, L) — SN L, L, L) Ch L @ CL @ Cypnn
and then define
omin—bb (N L Ly, L) LI\ LA Ly L) /LN ©p S
Assume for the moment that M™™ N My oy # 0, then we have
Extér, g (L), SN 4, 2, %)) #0
which together with (cf. Proposition
ExtéLg(Qp)) x (LX), L(A) @5 St3°) =0
implies that
(6.35) EXthr,(q,)a (f(/\), zminv—vhvb(x,zl,gz,zg)) £ 0.
We observe that there exists a direct sum decomposition
SN L B, L) =Vie Vs
where V; is a representation of the form

$3—i5i, —
Clon— L)) ®p v,
cz,— T T—=C..— o
Sl —10 s

L\ ®g ’U%;
Switching V7 and V3 if necessary, we can assume by (6.35) that
(6.36) Extgr, ) (LY, V1) #0.

We also have an embedding
Vi uP\Z) — L) @p o,
which induces an embedding (using a vanishing of Hom)
Exthr, i, (CO, Vi) = Bxtbry g (ZO), £7°(0,.2) — L) @55 )
which together with (6.36]) implies that
(6.37) X1, () (Z(/\), S (A A) — L) @p v ) £ 0.
The short exact sequences
L(\) ®p St° — 31(\, ZA4) —» (AL, L) @ St3° — T (N, A) — Ef’b()\,fl)

induce isomorphisms
(6.38) Extgr, iy (EOV, 210, 21)) 2 Extar,q,ya (B, Z1(A2))

T ~ T b

EXt%}Lg(Qp),,\ (L), =X 4) = EXtéLS(Q,,),,\ (L()‘)v =7 (Aajl))

by Lemma Hence we deduce that
(6.39) EXthr, () (Wz, EQ(A,,%)) = Exthr, (q,)a (WQ, Ef’b()\7$1)) —0
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from Proposition and (6.38)). The surjection Wy — L()\) induces an embedding (using a vanishing
of Hom)

X1, () (Z(/\), EQ(A,.,%)) S (WQ, zﬁ(A,zl))
which together with (6.39) implies that

Extar, ,)a (Z(A% E?(/\wfl)) =0
and hence
(6.40) Exthi g (L) S17(\4)) =0

by (5.14) and a simple dévissage. It follows from (6.39) and (6.40) that there does not exists a
representation of the form

SO 2) — L) @ v — L)
or of the form
ST Z) — L)
and therefore
Exthry g (D), 5770 4) — L) @5 v, ) =0
which contradicts (6.37)). A a result, we have shown that
Mmin ﬂ M{LQ} == 0
As M~ & My 24 for i = 3,4, we deduce that both Mmin A My 23y and Mmin A My 2,4y are one
dimensional. On the other hand, since we know that
(M™™ N Mgy 2,31) N (M™m™ N M 24y) = M™n 0 M0y =0,
we deduce the following direct sum decomposition
Mmin _ (Mmin ) M{I,Z,S}) e (Mmin N M{1’2$4}).
O

It follows from Proposition that the two dimensional E-vector space M™» has three special

lines inside, given by M~, M™ N My 2,3y and M™in A M{1,2,.4y. We use the notation L(\)! for copy

of L(\) inside L(X\)®? corresponding to the one dimensional space M™™ N My 5 ;401 inside M™",
and therefore we have a surjection

(6.41) MO\ A, Lo, Z) > (CLy— T ) @ (CL L — T2 ).

In other words, given a subrepresentation V C Y™in()\, ¥, %, %) whose cosocle is isomorphic to
L()), if the radical (minimal subrepresentation rad(V) C V such that V/rad(V) is semisimple) of V'
does not map surjectively to
(L) @p o) @ (LN @ vE) ® Cy,, @ Cy, ,
then V is either X#(\, .4, %) (cf. M ™), or the unique subrepresentation of Y™ (\, 4, %, %) with
cosocle L(A)* (cf. M™™ N\ Myq 510y), for i =1 or 2.
According to our discussion above, the representation X™"(\, .7, %, .%3) has the following form:

_ C151,51 - Z(A) OF UJODZ

U?D?()‘) \Z AL
v () ——1L()
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If we clarify the internal structure of St3"(\), v} (A) and v (\) using Lemma then XM\, A, L, L3)
has the following form:

/ CSI,SI \

C181281,1 = 03231 1 Z(A) ®E Up,
oy -~ \
Csl,l N/ >
/ 2 L)

e
0815281,1

(6.43) L\ ®@p St /N

. /N7 Z(\)?
sz 1— s\ )
\ f(/\) oo _ Csl,l /
P 4
081132,1 /\ C.sz’lsz,l Z()\) RE ’U%clj
o=

Remark 6.13. Tt is actually possible to show that all the possibly split extensions illustrated in ((6.43)
are non-split. However, the proof of these facts is quite technical and (6.43) is sufficient for our purpose
(cf. Theorem and Theorem [7.1]), so we decide not to go further here.

We observe that X™%(\, .4, %, %) admits a unique subrepresentation EE’“I’*(A,D%, b, L) of
the form

081281,1
2 T C

s1,1 — _—s1s —
B L(\) ®p vE L(\) ®p v

L(\) ®g St5°
\

Csz,l —_— 1 — 082,82

s182,1

which can be uniquely extend to a representation EEth()\, L, L, L) of the form:

c! ct. .
02 — s281,1 —_— c — Ts281,8251 — 2
s1,1 — TS5 — ___— 81,8182

(644)  I(\) @5 St - -
\02 /L()\) RE UP2 o /L()\) KR Upl\CQ
s2,1 —_— 1 — 52,52 —_ Cl _— sa,8281
s189,1 5182,5182

according to Section 4.4 and 4.6 of [Brel7] together with our Lemma Finally, we define Xm0+ (X, 2, %, %)
as the amalgamate sum of X" (\, %, %, %) and yBxt! N\, A, L, L3) over EEXH’*()\, L, Lo, Ls).

Remark 6.14. Tt is actually possible to prove (by several technical computations of Ext-groups) that
the quotient

ymint (N L L L) /TN @ St
and the quotient
YN L, L, L) /L(N) @p St
are independent of the choices of .2, %, %5 € E.
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6.3. Relation to derived object. In this section, as a byproduct of our construction in Section [6.1
we obtain an explicit complex (cf. Theorem of locally analytic representations of GL3(Q,) that
realizes the derived object constructed in Definition 5.19 of [Schril]. We use a shortened notation
Modp(cLs(Q,),E),» for ModD(GL3(Qp),E),5/ZA, which is the abelian category of abstract modules over

3 , wit , acting by ct. Section 2.1f and Section |2.3| for necessary notation).
D(GL3(Qp), F) with D(Z, E i b5’Z’>\ f. Section [2.1| and Section [2.3] f i

We define E§’+()\7$1,.,€”27$3) as the subrepresentation of X1 (\, %, %, #3) (defined right after
Proposition that fits into the short exact sequence

SEP N, L, Lo, L) s SEY (N, L, Lo, L) — L) @ 0F
for each ¢ = 1,2. We use the notation D;(\, &1, %, %) for the object in the derived category
Db (MOdD(GLg(Qp),E),A) associated with the complex

Wi — st o5, 5)).
Theorem 6.15. The object
Di(\, A, L2, 25) € D’ (Modp(cry(q,).p).))
fits into the distinguished triangle
(6.45) L) — Di(\, A, L, L) — SN, A, L) [-1] =
for each i = 1,2. Moreover, the E-line inside
(6.46) Extgr, () (LY, B\, £, %))
= Extér, ) (LAY, RN A, 2))

o~ Home( ) (En""()\,ghgz)’[_ﬂ, Z(/\)/)

Modp(cLz(Qp).E) A
associated with the distinguished triangle is
(647) E(CO + ggﬁ?(vaalp A b2,valp))-

In particular, for each i = 1,2, D;(\, ‘LA, L, L3) is isomorphic to the derived object constructed in
Definition 5.19 of [Schrll] (with Q there chosen to be zero) if Y4 = —-%, Lo = - and L5 =2L".

Proof. Tt follows from Proposition 3.2 of [Schrll] that there is a unique (up to isomorphism) object
D\, £, %, £3)' € D* (Modp(cry(q,)F).))

that fits into a distinguished triangle

(6.48) L) — DN, L4, Lo, L) — SEH (N, A, L) ][-1] =

such that the element in EXtéLS(QP)’/\ (L(N), (X, 4, %)) associated with 46.48D via Q6.46[) is Q6.47[).
It follows from TR2 (cf. Section 10.2.1 of [Wei94]) that

(6.49) DN, L, Lo, L) — SEH(N, A, L) [-1] — T[] =5
is another distinguished triangle. The isomorphism (6.14) can be reinterpreted as the isomorphism

. !
(6:50)  HOM 1y (nodp iy 00) (Eﬁv+()\,$1;$2)’[_l]a (L(A) ®F v;;;i) )

— Homp,, ) (PN, 21, ) [-1], TOV)'[1])

Modp(ars(Qp).B).A

_ o
induced by the composition with Home(MOdD(GL @) ((L()\) QF vf;;_v) , L()\)/[l]). As a re-
3(Qp),E), 4

sult, each morphism

SRR\ A, L) (1) = L[]
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uniquely factors through a composition
_ r_
SEHOAL ) [-1] — (L()\) ®5 v;g;i) ST

which induces a commutative diagram with four distinguished triangles

VA

)\ gluf27$3
A) ®p vp3 D(A 31732733
(6.51) S\, A, L) [ Wil
H\*

by TR4. Hence we deduce that

SN, L, Lo, L) — DN, L, Lo, Ls) — Wh_,[1] ==
or equivalently

Wé—i — Eg’+(/\,$1,$2,$3)/ — D()\,D‘Zl,gg,ggg)/ i)
is a distinguished triangle. On the other hand, it is easy to see that D;(\, .4, %, %) fits into the
distinguished triangle

Wéfi — E§’+()\,gl,$2,$3)/ — Di()\,gl,gg,fg)/ —1)
and thus we conclude that

Di(\, L1, %, L) = DN, 21, %, 23) € D' (Modp(aLy(q,),2),0)

by the uniqueness in Proposition 3.2 of [Schr1l]. The last claim follows directly from (2.23]) and an
obvious comparison between our .Z3 and the 2" in Definition 5.19 of [Schrll]. Hence we finish the
proof. O

Remark 6.16. Now we explain the meaning of the notation X™*(\, %, %, .%3). The philosophy of
p-adic local Langlands naturally predicts that one should be able to construct a family of locally
analytic representations depending on three invariants, such that each representation in the family
contains St5"(A) as a subrepresentation. As a direct generalization of the case of GL2(Qj), one firstly
construct a family (A, %, %) that depends on two invariants £;,.% € E. It was firstly observed
in [Schr1l] that the third invariant should appear in

(652) EXtéLg(Qp),k (Z(A), Z(A,c%l,gQ))



DILOGARITHM AND HIGHER Z-INVARIANTS FOR GL3(Qjp) 51

rather than ExtéLs(QpM (LX), (N, L1, %)), purely due to the dimensional reason (cf. Lemma.
In order to give a reasonable normalization of third invariant (in a way which conjecturally matches
the third Fontaine-Mazur invariant on Galois side), one needs a special E-line inside (6.52)). Then it
turns out that the p-adic dilogarithm function admits a cohomological interpretation (cf. Section 5.3
of [Schr11]) which gives the required special E-line. Consequently, a family of abstract derived objects
that depends on three invariants is constructed in Definition 5.19 of [Schr1l]. Having the family of
abstract derived objects in mind, our family X™*(\, %, %, .%3) admits following characterization (cf.
and for intuition): each representation in our family is minimal among representations
V satisfying the following conditions

(i) V contains Xf(\, .71, %) as a subrepresentation for some %, .7, € E;
(ii) there exists a complex with terms given by suitable subquotients of V', such that its associated

object in DP (ModD(GL3(Qp),E)1)\) canonically determines a E-line in |D of the form lj
for some %3 € F.

7. LOCAL-GLOBAL COMPATIBILITY

In this section, we prove our main result on local-global compatibility (cf. Theorem and Corol-
lary , which roughly says the following: up to suitable normalization and certain mild global
assumption, if L(\) ®g St3° appears in the Hecke eigenspace associated with a global Galois repre-
sentation, then there exists a unique choice of %}, %, % € E such that XM+ (), 2, %, %) also
appears in the same Hecke eigenspace.

We are going to borrow most of the notation and assumptions from Section 6 of [Brel7]. We fix
embeddings too: Q < C, 1,1 Q = Q,, an imaginary quadratic CM extension F' of Q and a unitary
group G/Q attached to the extension F/Q such that G xq F' = GL3 and G(R) is compact. If ¢ is
a finite place of Q which splits completely in F, we have isomorphisms (g ., : G(Q/) — G(F,) =
GL3(F,) for each finite place w of F over £. We assume that p splits completely in F, and we fix a
finite place w, of F' dividing p and therefore G(Q,) = G(Fy,) = GL3(Q,).

We fix an open compact subgroup UP C G(Aao’p) of the form UP = H#p U, where Uy is an open
compact subgroup of G(Qy). Note that UP is called sufficiently small if there exists £ # p such that Uy
has no non-trivial element with finite order. For each finite extension E of Q, inside Q,, we consider
the following Op-lattice:

(7.1) S(UP,05) € {f: G(Q)\G(AZ)/UP — Og, f continuous}

def &

inside the p-adic Banach space §(UP,E) = S(U?,0r) ®o, E. The right translation of G(Q,) on
G(Q)\G(AgZ)/U?P induces a p-adic continuous action of G(Q,) on S(U?, Og) which makes S(U?, E)
an admissible Banach representation of G(Q,) in the sense of [ST02]. We use the notation S(UP, E)s C

S(UP, E)* following Section 6 of [Brel7] for the subspaces of locally Q,-algebraic vectors and locally
Q,-analytic vectors inside S(U?, E) respectively. Moreover, we have the following decomposition:

(7.2) S(UP, By 2p Q= Py e (1, ©g W))

where the direct sum is over the automorphic representations 7 of G(Aq) over C and W), is the Q,-
algebraic representation of G(Q,) over Q, associated with the algebraic representation m, of G(R)
over C via i, and . In particular, each distinct 7 appears with multiplicity one (cf. the paragraph
after (55) of [Brel7] for further references).

We use the notation D(UP) for the set of finite places £ of Q that are different from p, split
completely in F' and such that Uy, is a maximal open compact subgroup of G(Q/). Then we consider
the commutative polynomial algebra T(UP) ) [Té,j )] generated by the variables T, 15? ) indexed by
j€{l,---,n} and w a finite place of F over a place ¢ of Q such that £ € D(U?). The algebra T(U?)
acts on §(UP,E), §(UP,E)alg and §(U”,E)an via the usual double coset operators. The action of
T(U?) commutes with that of G(Q,).
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We fix now a € E*, hence a Deligne-Fontaine module D over Q,, = F,,, of rank three of the form
plea) = ey N(es) = e
(7.3) D = FEey ® Eey @ Feg, with o(e1) = plae; and N(e1) = e
oleg) = p2ae N(ep) = 0

and finally a tuple of Hodge-Tate weights k = (k1 > ko > k3). If p: Gal(F/F) — GL3(E) is an
absolute irreducible continuous representation which is unramified at each finite place w lying over a
finite place £ € D(U?), we can associate with p a maximal ideal m, C T(U?) with residual field E by
the usual method described in the middle paragraph on Page 58 of [Brel7]. We use the notation %y, , for
spaces of localization and [m,] for torsion subspaces where x € {S(U?,E),5(U?, E)~s, §(U?, E)™}.
We assume that there exists UP and p such that
(i) p is absolutely irreducible and unramified at each finite place w of F over a place £ of Q
satisfying £ € D(UP);
(ii) S(U?, E)~e [m,] # 0 (hence p is automorphic and py, & Plca#,/F,, ) is potentially semi-
stable, cf. [BLGGTTA], [Cald)); o
(iii) pw, has Hodge Tate weights & and gives the Deligne-Fontaine module D.

By identifying S (UP, E)*# with a representation of GL3(Q,) via LG,w,, We have the following isomor-
phism up to normalization from (7.2]) and [Cal4]:

(7.4) S, E)*&m,] = (L(\) ®@F St5° @ (ur(a) @ £2) o det)
for all (UP, p) satisfying the conditions (i), (ii) and (iii), where A = (A1, A2, Ag) = (k1 — 2, ko — 1, k3)
and d(UP, p) > 1 is an integer depending only on UP and p.
Theorem 7.1. We consider UP =[], Ur and p: Gal(F/F) — GL3(FE) such that

(i) p is absolutely irreducible and unramified at each finite place w of F lying above D(UP);

(i) S(UP,E)™8[m,] # 0;

(iii) p has Hodge—Tate weights k and gives the Deligne—Fontaine module D as in ;

(iv) the Hodge filtration on D is non-critical in the sense of (ii) of Remark 6.1.4 of [BrelT|;

(v) only one automorphic representation m contributes to §(U”,E)alg [m,].
Then there exists a unique choice of L1, %e, L3 € E such that:

®d(U”,p)

(7.5) Homa(q,) (Z"" (A 4, %, %) @ (w(a) @5 ) o det, S(U?, E)™[m,])

— Homgr,(q,) (f()\) ®p StP ®p (ur(a) ®p e2) o det, S(U?, E)an[mp]) .

We recall several useful results from [Brel7] and [BHIS]. We recall the upper-triangular Borel
B as well as its radical N from Section and let II be an arbitrary admissible locally analytic
representation of GL3(Qp). We consider the subspace II[n = 0] C II consisting of vectors killed by w,
and notice that II[n = 0] is stable under the action of B(Q,) and the smooth action of N(Q,). Hence
the subspace of N(Z,)-invariant IIN(%») C TI[i = 0] is stable under the action of B(Z,) and t. For
each character n: U(t) — E, we write HW(ZP)[t =] C V(@) for the subspace where U(b) acts by
n via U(b) — U(t). We note that HN(ZP)[f =n=Lnh=0]t= n}ﬁ(zp) is stable under the action of
T(Qp)t where

T(Qy)* Ete T(Qp) | tN(Zy)t™" C N(Zy)}.
For each character x: T(Q,)" — EX, we write IINZ)[t = 5], C IN@s)[t = 5] for the generalized
eigenspace associated with y.

Proposition 7.2. Suppose that UP = H#p Uy is a sufficiently small open compact subgroup of
G(AQ™"), S(UP,E)™ < II — II; is a short ezact sequence inside RepléLs(Qp),E, x: T(Qp) — E*
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is a locally analytic character and n: U(t) — E its derived character, then we have the following
T(Qyp)*-equivariant short exact sequences of finite dimensional E-vector spaces
(SWP, By )N @[t = ] o IV E [t = ] —» 1Y )t =
and
a an\ N N N(Zyp
(P, By NE e =l = TN [t =gy — 1Y fe =),
Proof. This is Proposition 6.3.3 of [Brel7] and Proposition 4.1 of [BHIS]. O

Proposition 7.3. We fiz UP and p as in Theorem . For a locally analytic character x: T(Q,p) —
E>*, we have

Homy(q, )+ (x ®& (ur(a) &5 &) o det, (S(U7, B)™[m,)) @) #0

if and only if x = 07 .
Proof. This is Proposition 6.3.4 of [BrelT]. O

We recall the notation igL3 (x%) for a smooth principal series for each w € W from Section

Given three locally analytic representations V; for i = 1,2, 3 and two surjections V3 — V5 and V3 — Vb,
we use the notation V; xy, Vs for the fiber product of Vi and Vs over Vo with natural surjections
Vi xv, V3 = Vi and Vi xy, V3 — V3. We also use the shortened notation Valg for the maximally
locally algebraic subrepresentation (given by the set of locally algebraic vectors) of a locally analytic
representation V. We recall the set Q (consisting of irreducible representations) from and the
sentence before it.

Proposition 7.4. We fix UP and p as in Theorem[7.1] and assume moreover that UP is a sufficiently
small open compact subgroup of G(AoQo’p). We also fix a non-split short exact sequence Vi — Vo — Vs

inside Repgh(QP)E such that Vi ®p (ur(e) ®p £2) o det embeds into S(UP, E)™[m,]. We conclude
that:

(i) if V3 € Q is not locally algebraic, then we have an embedding
Vo @p (ur(e) ®p €2) o det — §(UP7E)a“[mp];
(ii) if there exists a surjection
L) @p i5 (xay) = Vs

for a certain w € Wgr,, then there exists a quotient Vi of Vo Xy, (f()\) QF igL?’ (X%O))
satisfying
socary(q,) (Va) = Vi = L(\) ®p St3°
such that we have an embedding
Vi®g (ur(a) ®p %) o det — §(U”,E)an[mp].
Proof. This is an immediate generalization (or rather summary) of Section 6.4 of [Brel7]. More

precisely, part (i) (resp. (ii)) generalizes the Etape 1 (resp. the Etape 2) of Section 6.4 of [Brel7]. O

proof of Theorem[7.1l According to the Etape 1 and 2 of Section 6.2 of [Brel7], we may assume
without loss of generality that UP is sufficiently small and it is sufficient to show that there exists a
unique choice of &, %, %3 € E such that

(7.6) Homgr,(q,) (Emin’+()\,$1,$2,$3) ®p (ur(a) @g £2) o det, §(Up, E)*™ [mp]) # 0.
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For each i = 1,2, we recall the representation IT(k, D) constructed in Section 4.5 of [Brel7], which
has the following form

1 1
o2 . Cs'i53—i,1 —_— c I CSiSS—i;SiSS—i —_ s
S3—ipl — o — TU88=iS3—i — — s3_i,83-is;
L()\) RF Uj’;f;_i L()\) RF ’Ufpj

(7.7)

under notation (cf. Section of our paper. We deduce from ([7.7]), (6.44) as well as the definition
of ¥mint (N Z, %, #3) before Remark that L™ (\, 2, %, %) contains a unique subrepre-
sentation SEX' N\, A, L, L) of the form

' (k, D)

B -
(7.8) IL(\) ®g St

I1?(k, D)
Moreover, SNt (X, L, %, %) is uniquely determined by SE (X, %, %, %) up to isomorphism.

It is known by Etape 3 of Section 6.2 of [Brel7] that there is at most one choice of £, %%, % € E
such that

Homgr,(q,) (ZEth()\7$1,$2,$3) ®p (ur(a) @p 2) o det, S(UP, E)an[mp]> #0,
and thus there is at most one choice of £, %, %5 € F such that (7.6) holds. As a result, it remains

to show the existence of .2;,.%, %3 € E that satisfies (7.6). We notice that X™™+ (N 2, %, %)
admits an increasing, separated and exhaustive filtration Fil, satisfying the following conditions

(i) the representations ™ (), 7, %, %3) and X8 (\, 2, %) (cf. their definition after Propo-
sition [6.2] and Proposition appear as two consecutive terms of the filtration;
(ii) each graded piece is either locally algebraic or irreducible.

As a result, the only reducible graded pieces of this filtration is the quotient
SMN(N Ly, Lo, L) [SHT(N, AL L) = W,
Then we can prove the existence of .2, %%, %5 € E satisfying (7.6) by reducing to the isomorphism

(79) HomGLB(QP) (Fi1k+12min,+()\7$1’ gg,gg) QF (ur(a) RE 62) o det, §(Up, E)an[mpD
= Homar,(q,) (Fﬂkzmi“u,,sfl, Lo, L) @5 (ur(a) ©F £2) o det, S(UP, E)an[mp])
for each k € Z. If

Gry, & Fily S0 (N, 4, S, £) [Fil, ™0 (N, 21, S, L)

is not locally algebraic, then is true by part (i) of Proposition The only locally algebraic
graded pieces of the filtration except L(\) ®p St3° are L(\) ®g vy, L(\) ®g vE, and Wy. The
isomorphism when the graded piece Gry, equals L(A) ® vE or L(A) ®p vf has been treated in
Etape 2 of Section 6.4 of [Brel7]. As a result, it remains to show that

(7.10) Homar,(a,) (E""(\ 21, %, %) @ (w(a) @p 2) o det, S(UP, B)™[m,])
= Homgr,(q,) (EM(A, L, ) @5 (ur(a) @5 €2) o det, S(U?, E)an[mp])
to finish the proof of Theorem It follows from (53) of [Brel7] that 735 (X4,s,) has the form

,UOO
St = " =t

UP2
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and thus there is a surjection
LN @B i3 (X ays) = Wo-
According to part (ii) of Proposition we only need to show that any quotient V' of
ve s\ £, %, Z) xw, (L) @5 155 (i)
satisfying
(7.11) s0cGr,(Q,) (V) = V¥ = L(\) ®p St5°

must have the form
Zmin(Av zh gZa fé)

55

for certain .2 € E. We recall from Proposition and our definition of Y™\, .4, %, %) after-

wards that Y™\, .2, %, 23) fits into a short exact sequence
(7.12) YN, A, L) = SN, LA L, L) - W
and thus V° fits (by definition of fiber product) into a short exact sequence
(7.13) SR L, 2) o VO i (X )
and in particular

socary(@,) (V°) = (L) @5 St5°) 2.
Hence the condition implies that V fits into a short exact sequence

IO\ @5 St L Ve -V
and that
j (Z(/\) Rp Stgo) N Eﬁ’+()\,$1,$2) =0C Ve
which induces an injection
EﬁﬂL(/\, fl, .,%2) — V.
Therefore V fits into a short exact sequence
Zﬁ’+(/\,$1,$2) —V = W
and thus corresponds to a line My inside

Ext&r, @, (Wo, BT (N\ 4, 2))

which is two dimensional by Proposition Moreover, the condition (7.11)) implies that My is

different from the line given by the image of
Extr, g,y (Wo, LN ®5 St5°) — Extgr,q,x (Wo, S0 (N, 24, 2)) .
Hence it follows from Proposition that there exists %4 € E such that
VYN A L L),

O

Corollary 7.5. If a locally analytic representation II of the form is contained in §(U7’7 E)*[m,]

for a certain UP and p as in Theorem 7.1, then there exists £y, %s, s € E uniquely determined by

II such that
II — Zmin’+(/\,$1,$2,$3).
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Proof. We fix UP and p such that the embedding
(7.14) I — S(UP, E)*[m,]
exists. Then ([7.14) restricts to an embedding
L(\) ®@p St < S(UP, E)™[m,]

which extends to an embedding
(7.15) smint(\, 4, S, L) — S(UP, E)™[m,]
for a unique choice of .2, %, %5 € E according to Theorem n The embedding (7.15) induces by
restriction an embedding

EEXt (/\, fl, .,%2,33) — S(Up, E)a“[mp]
and therefore we have )

I EEXt ()\7 $17$27 53)

by Théoreme 6.2.1 of [Brel7]. In particular, we deduce an embedding
IT — Xt (\, A, L, L)

for certain invariants .Z;,.%%, %5 € E determined by II. a
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