ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GL,(Q,) IN THE
ORDINARY CASE

CHOL PARK AND ZICHENG QIAN

ABSTRACT. Let p be a prime number, n > 2 an integer, and F a CM field in which p splits
completely. Assume that a continuous automorphic Galois representation 7 : Gal(Q/F) —
GL,, (fp) is upper-triangular and satisfies certain genericity conditions at a place w above p, and
that every subquotient of FIGal(Q /Fw) of dimension > 2 is Fontaine-Laffaille generic. In this
p/ Fuw
paper, we show that the isomorphism class of F|Gal(§p/Fw) is determined by GLj, (Fy)-action
on a space of mod p algebraic automorphic forms cut out by the maximal ideal of a Hecke
algebra associated to 7. In particular, we show that the wildly ramified part of ?|Ga1(6p/Fw)

is determined by the action of Jacobi sum operators (seen as elements of F,[GLy (Fp)]) on this

space.
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1. INTRODUCTION

It is believed that one can attach a smooth F-representation of GL,(K) (or a packet of such
representations) to a continuous Galois representation Gal(Q,/K) — GL,(F,) in a natural way,
that is called mod p Langlands program for GL, (K), where K is a finite extension of Q. This
conjecture is well-understood for GL2(Q,) ([BL94], [Berl0], [Bre03a], [Bre03b], [Col10], [Pasl3],
[CDP], [Eme]). Beyond the GL3(Qj)-case, for instance GL,(Q,) for n > 2 or even GL2(Q,r) for
an unramified extension Qs of Q, of degree f > 1, the situation is still quite far from being under-
stood. One of the main difficulties is that there is no classification of such smooth representations
of GL,,(K) unless K = Q,, and n = 2: in particular, we barely understand the supercuspidal rep-
resentations. Some of the difficulties in classifying the supercuspidal representations are illustrated
in [BP12], [Hul0] and [Schr15].

Let F be a CM field in which p is unramified, and 7 : Gal(Q/F) — GL,(F,) an automorphic
Galois representation. Although there is no precise statement of mod p Langlands correspondence
for GL,,(K) unless K = Q,, and n = 2, one can define smooth representations II(7) of GL,,(Fy)
in the spaces of mod p automorphic forms on a definite unitary group cut out by the maximal
ideal of a Hecke algebra associated to 7, where w is a place of F' above p. A precise definition
of II(7) when p splits completely in F', which is our context, will be given in Section 1.4. (See
also Section 5.6.) One wishes that II(7) is a candidate on the automorphic side corresponding
to F|Ga1(6p /Fy) for a mod p Langlands correspondence in the spirit of Emerton [Eme]. However,
we barely understand the structure of II(7) as a representation of GL, (F},), though the ordinary
part of II(7) is described in [BH15] when p splits completely in F' and F‘Gal(ap /F,) is ordinary. In
particular, it is not known whether II(7) and 7| Gal(Q,/Fu) determine each other. But we have the
following conjecture:

Conjecture 1.0.1. The local Galois representation 7| g, q s, i determined by II(T).
P w

This conjecture is widely expected to be true by experts but not explicitly written down before.
The case GL(Q,s) was treated by Breuil-Diamond [BD14]. Herzig-Le-Morra [HLM] considered
the case GL3(Q,) when T|Gal(6,,/Fw) is upper-triangular, while the case GL3(Q,) when T|Gal(6p/Fw)
is an extension of a two dimensional irreducible representation by a character was considered by
Le-Morra—Park [LMP]. We are informed that John Enns from the University of Toronto has
worked on this conjecture for the group GL3(Q,s). All of the results above are under certain
generic assumptions on the tamely ramified part of 7| Cal(@Q, ) Fu)"

From another point of view, to a smooth admissible F,-representation I of GL,,(K) for a finite
extension K of Q,, Scholze [Sch15] attaches a smooth admissible F,-representation S(II) of D*



ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GL,(Q,) IN THE ORDINARY CASE 3

for a division algebra D over K with center K and invariant %7 which also has a continuous action
of Gal(ap/ K), via the mod p cohomology of the Lubin—Tate tower. Using this construction,
it was possible for Scholze to prove Conjecture 1.0.1 in full generality for GLy(K) (cf. [Schl5],
Theorem 1.5). On the other hand, the proof of Theorem 1.5 of [Sch15] does not tell us where the
invariants that determine S(IT) lie. We do not know if there is any relation between these two
different methods.

The weight part of Serre’s conjecture already gives part of the information of II(7): the local
Serre weights of 7 at w determine the socle of II(T)|L, (0, at least up to possible multiplicities,

where Op, is the ring of integers of F,,. If F|Ga1@ /Fy) is semisimple, then it is believed that the
»/ Fu
Serre weights of 7 at w determine ?‘Gal(a /F,) UP to twisting by unramified characters, but this is
P w

no longer the case if it is not semisimple: the Serre weights are not enough to determine the wildly
ramified part of ﬂGal(Q, /F,)» S0 that we need to understand a deeper structure of II(7) than just
its GL,,(Op,, )-socle.

In this paper, we show that Conjecture 1.0.1 is true when p splits completely in F' and FlGal(ép/Fw)
is upper-triangular and sufficiently generic in a precise sense. Moreover, we describe the invari-

ants in II(7) that determine the wildly ramified part of F|Gal(6 JFy) The generic assumptions
P w

onr

Gal(Q, /F,,) €nsure that very few Serre weights of 7 at w will occur, which we call the weight
D w

elimination conjecture, Conjecture 1.3.1. The weight elimination results are significant for our
method to prove Conjecture 1.0.1. But Bao V. Le Hung pointed out that this weight elimination
conjecture can be proved by constructing certain deformation rings, and the results will appear
in the forthcoming paper [LHMPQ)]. We follow the basic strategy in [BD14, HLM]: we define
Fontaine-Laffaille parameters on the Galois side using Fontaine—Laffaille modules as well as au-
tomorphic parameters on the automorphic side using the actions of Jacobi sum operators, and
then identify them via the classical local Langlands correspondence. However, there are many new
difficulties that didn’t occur in [BD14] or in [HLM]. For instance, the classification of semi-linear
algebraic objects of rank n > 3 on the Galois side is much more complicated. Moreover, failing of
the multiplicity one property of the Jordan—Holder factors of mod p reduction of Deligne—Lusztig
representations of GL,,(Z,) for n > 3 implies that new ideas are required to show crucial non-
vanishing of the automorphic parameters. In the rest of the introduction, we explain our ideas and
results in more detail.

1.1. Local Galois side. Let E be a (sufficiently large) finite extension of Q,, with ring of integers
Og, a uniformizer wg, and residue field F, and let Iq, be the inertia subgroup of Gal(Qp/Qp)

and w the fundamental character of niveau 1. We also let p, : Gal(Q,/Q,) — GL,(F) be a
continuous (Fontaine-Laffaille) ordinary generic Galois representation. Namely, there exists a

basis e := (ep—1,€n—2, - ,€p) for py such that with respect to e the matrix form of 5, is written
as follows:
wen-1+(n—1) *p_1 * e * *

0 wen—2+(n—2) ki —2 - * *

0 0 an73+(n73) e * *
(1.1.1) Polig, =

0 0 0 e watl g

0 0 0 e 0 weo

for some integers ¢; satisfying some genericity conditions (cf. Definition 3.0.5). We also assume
that p, is maximally non-split, i.e., *; # 0 for all ¢ € {1,2,--- ;n — 1}.

Our goal on the Galois side is to show that the Frobenius eigenvalues of certain potentially
crystalline lifts of p, determine the Fontaine-Laffaille parameters of p,, which parameterize the
wildly ramified part of p,. When the unramified part and the tamely ramified part of p, are
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fixed, we define the Fontaine-Laffaille parameters via the Fontaine—Laffaille modules corresponding
to poy (cf. Definition 3.2.3). These parameters vary over the space of W copies of the
projective line P'(F), and we write FL7(5,) € P'(F) for each pair of integers (ig,jo) with

0 < jo < jo+1 < ig < n—1. For each such pair (ig, jo), the Fontaine-Laffaille parameter FL7° (5,)

is determined by the subquotient p;, ; of py which is determined by the subset (e;,,€i,—1,- -+ ;€j,)
of e (cf. (3.0.2)): in fact, we have the identity FL?0(5,) = FLﬁﬁiﬁ-ﬁfﬂﬁiom) (cf. Lemma 3.2.4).

Since potentially crystalline lifts of p, are not Fontaine-Laffaille in general, we are no longer
able to use Fontaine-Laffaille theory to study such lifts of p,; we use Breuil modules and strongly
divisible modules for their lifts. It is obvious that any lift of p, determines the Fontaine-Laffaille
parameters, but it is not obvious how one can explicitly visualize the information that determines
Do in those lifts. Motivated by the automorphic side, we believe that for each pair (ig,jo) as
above the Fontaine-Laffaille parameter FL° (5,) is determined by a certain product of Frobenius

eigenvalues of the potentially crystalline lifts of p, with Hodge-Tate weights {—(n—1),---,—1,0}
and Galois type @/~ &@*""" where & is the Teichmiiller lift of the fundamental character w of

niveau 1 and
o Cip %0 —Jo— 1 for ¢ = ig;
(112) k;O’JO = Cjo — (io —Jo— 1) for i = jo;
C otherwise
modulo (p—1). Here, ¢; are the integers determining the tamely ramified part of p, in (1.1.1) and
our normalization of the Hodge—Tate weight of the cyclotomic character ¢ is —1.
Our main result on the Galois side is the following:
Theorem 1.1.1 (Theorem 3.7.1). Fix ig,jo € Z with 0 < jo < jo+1 < ip < n—1. As-
sume that p, is generic (cf. Definition 3.0.5) and that p,, ; is Fontaine-Laffaille generic (cf.
Definition 3.2.5), and let (Alodo \I0:d9 . A070) € (Op)" be the Frobenius eigenvalues on the
(@knoflo,@kﬁo;éo,~~ 7(I;kéo’m)—i.s‘ozfypic components of Dgp’"_l(po) where po is a potentially crys-
talline lift of py with Hodge—Tate weights {—(n—1), —(n—2),--- , 1,0} and Galois type @ &' .
Then the Fontaine—Laffaille parameter FL;°7° associated to p, is computed as follows:

L p[(nfl)*m;m](io*jo*l) |
FLio9 (3) = [1- € PL(F).

TR
Note that by ® € F in the theorem above we mean the image of @ € O under the natural
surjection Op — F. We also note that p; ; being Fontaine-Laffaille generic implies FLi{”j" (o) #
0, 0o for all i, jo as in Theorem 1.1.1, but is a strictly stronger assumption if ig — jg > 3.
Let us briefly discuss our strategy for the proof of Theorem 1.1.1. Recall that the Fontaine—
Laffaille parameter FL©7° (Pg) is defined in terms of the Fontaine-Laffaille module corresponding
to py. Thus we need to describe FL¥°(5,) by the data of the Breuil modules of inertial type

@?:_Ol Wi corresponding to p,, and we do this via étale ¢-modules, which requires classification
of such Breuil modules. If the filtration of the Breuil modules is of a certain shape, then a
certain product of the Frobenius eigenvalues of the Breuil modules determines a Fontaine-Laffaille
parameter (cf. Proposition 3.4.2). In order to get such a filtration, we need to assume that p, ; is
Fontaine-Laffaille generic (cf. Definition 3.2.5). Then we determine the structure of the filtration of
the strongly divisible modules lifting the Breuil modules by direct computation, which immediately
gives enough properties of Frobenius eigenvalues of the potentially crystalline representations we
consider. But this whole process is subtle for general ig, jo. To resolve this issue we prove that
any potentially crystalline lift of p, with Hodge-Tate weights {—(n — 1),—(n — 2),---,0} and
Galois type @;:01 &% has a potentially crystalline subquotient p;, j, of Hodge-Tate weights
)

{—d0, -, —Jo} and of Galois type P, Gk lifting 7, ;,- More precisely,
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Theorem 1.1.2 (Corollary 3.6.2). Fuvery potentially crystalline lift py of py with Hodge—Tate

. . —1 ~pgi0sd0 . . .
weights {—(n —1),—(n —2),---,0} and Galois type @P;—, @ is a successive extension
Prn—1,n—1 * * * *
Pig+1,i0+1 * *
po = Pio,jo *
Pio—1,50—1
£0,0
where

o form—12>1i>1ig and jo > i >0, p;; is a 1-dimensional potentially crystalline lift of p; ;

with Hodge—Tate weight —i and Galois type ki’ ;

O Pig,jo 15 @ (io — jo + 1)-dimensional potentially crystalline lift of p;, ;, with Hodge—Tate
weights {—ig, —io + 1, ,—jo} and Galois type iO:jU Gk

Note that we actually prove the niveau f version of Theorem 1.1.2 since it adds only little more
extra work (cf. Corollary 3.6.2).

The representation p;, j, ® e790 is a (ig — jo + 1)-dimensional potentially crystalline lift of Pio.jo
with Hodge—Tate weights {—(i0 — jo), —(t0 —jo — 1), -+ - , 0} and Galois type zf’:jo o*"" | so that,
by Theorem 1.1.2, Theorem 1.1.1 reduces to the case (ig,jo) = (n —1,0): we prove Theorem 1.1.1
when (ig, jo) = (n — 1,0), and then use the fact FL,°7(p,) = Fng:;gfl (Pig.jo) to get the result
for general ig, jg.

The Weil-Deligne representation WD(pg) associated to pg (as in Theorem 1.1.1) contains those
Frobenius eigenvalues of pg. We then use the classical local Langlands correspondence for GL,, to
transport the Frobenius eigenvalues of py (and so the Fontaine-Laffaille parameters of p, as well
by Theorem 1.1.1) to the automorphic side (cf. Corollary 3.7.3).

1.2. Local automorphic side. We start by introducing the Jacobi sum operators in character-
istic p. Let T (resp. B) be the maximal torus (resp. the maximal Borel subgroup) consisting
of diagonal matrices (resp. of upper-triangular matrices) of GL,,. We let X(T') := Hom(T, G,,)
be the group of characters of T and ®* be the set of positive roots with respect to (B,T).
We define ¢, € X(T) as the projection of T' = G, onto the i-th factor. Then the elements
{e; | 1 < i < n} forms a Z-basis for the free abelian group X(7'). We will use the notation
(di,ds,-+ ,dy) € Z™ for the element Y ,_, dyex € X(T). Note that the group of character-
s of the finite group T'(F,) = (F,)" can be identified with X(T')/(p — 1)X(T'), and therefore
we sometimes abuse the notation (di,ds,- - ,d,) for its image in X(T')/(p — 1) X (T). We define
A={ap =€ —€eps1 |1 <k <n-—1} C ®T as the set of simple positive roots. Note that we
write sy, for the reflection of the simple root ay,. For an element w in the Weyl group W, we define
o} ={a € dt Jw(a) € ~T} C &+ and Uy = [[,cq+ Ua, where U, is a subgroup of U whose on-
ly non-zero off-diagonal entry corresponds to a. Note in particular that ®* = & »» Where wy is the
longest element in W. For w € W and for a tuple of integers k = (ka)a€<1>$ e{0,1,--- ,p— 1}“b$‘,
we define the Jacobi sum operator

Skw = Y II Ak | A-w € Fy[GL,(F,)]

AeU’w(FP) O£€<I>$

where A, is the entry of A corresponding to o € ®. In Section 4, we establish many technical
results, both conceptual and computational, around these Jacobi sum operators. The use of these
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Jacobi sum operators can be traced back to at least [CL76], and are widely used for GLs in [BP12]
and [Hul0] for instance. But systematic computation with these operators seems to be limited to
GLs3 or GL3. In this paper, we need to do some specific but technical computation on some special
Jacobi sum operators for GL,, (F}), which is enough for our application to Theorem 1.4.1 below.
By the discussion on the local Galois side, our target on the local automorphic side is to capture
the Frobenius eigenvalues coming from the local Galois side. By the classical local Langlands
correspondence, the Frobenius eigenvalues of py are transported to the unramified part of x in

the tamely ramified principal series Indg%&(?” )X corresponding to the Weil-Deligne representation
P

WD(pg) attached to po in Theorem 1.1.1, and it is standard to use Up-operators to capture the
information in the unramified part of .

The normalizer of the Iwahori subgroup I in GL,(Q,) is cyclic modulo I, and this cyclic
quotient group is generated by an element =, € GL,(Q,) that is explicitly defined in (4.4.1).
One of our goals is to translate the eigenvalue of Up-operators into the action of Z,, on the space

(Ind i35 ¥ %)L, (z,)-  This is firstly dome for GLa(Q,s) in [BD14], and then the method is

generalized to GL3(Q,) in the ordinary case by [HLM]. Both [BD14] and [HLM] need a pair of
group algebra operators: for instance, group algebra operators S, S” € Q,[GL3(Q,)] are defined
in [HLM] and the authors prove an intertwining identity of the form S’ - =3 = ¢S on a certain

I(1)-fixed subspace of Indg%éi?”)x with x assumed to be tamely ramified, where I(1) is the pro-p
Sylow subgroup of I. Here, the constant ¢ € O captures the eigenvalues of Up-operators. This
is the first technical point on the local automorphic side, and we generalize the results in [BD14]
and [HLM] by the following theorem.

For an n-tuple of integers (a,—1,an_2,---,a0) € Z", we write S, and S;, for Sy, with
E' = (k};) and Sy
kil)’i’+1 =lapn—i—1—ap_1J1+n—2for1 <i<n-—1,and kzlj = kzlj’ = 0 otherwise. Here, (i, ) is the
entry corresponding to o if & = ¢; —¢; € @+ and by [z]; for x € Z we mean the integer in [0,p—1)
such that z = [z]; modulo (p — 1). We define S,, € Z,[GL,(Z,)] (resp. S, € Z,[GL,(Z,)]) by
taking the Teichmiiller lifts of the coefficients and the entries of the matrices of S,, € Fp|GLy, (F))]
(resp. of S}, € Fp[GL,,(F,))).

We use the notation e for the composition of maps or group operators to distinguish from the
notation o for an Og-lattice inside a representation.

wo With £ = (kllj') respectively, where kf;,; = [a0 — an_iJ1 + 71 — 2,

Theorem 1.2.1 (Theorem 4.4.9). Assume that the n-tuple of integers (an—1,an—2, - ,ag) s
n-generic in the lowest alcove (cf. Definition 4.1.1), and let

GL,(Qp
I, = Tndg ) (1 ® x2 © X3 @ .. ® X2 ® Xn-1 ® X0)

be a tamely ramified principal series representation with the smooth characters xx : Q) — E*
satisfying Xk|z§ =w» for0<k<n-1.

On the 1-dimensional subspace T (anazan—1.00) 0 hove the identity:

n—2
(1.2.1) S0 (En)" 2 =p" 2k (H m—(p)) Sn
k=1

for kn € Z satisfying k, = € “Prlan—1, -+ ,a9) mod (wg) where

n—2
e = (_1)110—a;c
k=1
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and
n—2n—3

A — Ap— 1+] %
Pn(a'n—17"'a H H eZp
=1 j=0 ap —ap+7

In fact, there are many identities similar to the one in (1.2.1) for each operator U} for 1 <
i < mn —1 (defined in (4.4.2)) which can be technically always reduced to Proposition 4.4.3, but
it is clear from the proof of Theorem 1.2.1 in Section 4.4 that we need to choose U"~? for the

I1(1),(a1,a2,...,an—1,a0)

Up-operator acting on II, , motivated from the local Galois side via Theorem

1.1.1. The crucial point here is that the constant p"~ 2k, (Hz_lz & (p )) which is closely related

to FL'""1%(5,) via Theorem 1.1.1 and classical local Langlands correspondence, should lie in O}
for each II,, appearing in our application of Theorem 1.2.1 to Theorem 1.4.1.

The next step is to consider the mod p reduction of the identity (1.2.1), which is effective to
capture p" 2 HZ;% Y& (p) modulo (wg) only if 8,7 # 0 modulo (wg) for v € IIj, LQ):(a1,82,....an-1,00)
It turns out that this non-vanishing property is very technical to prove for general GL,,(Q,). Before
we state our non-vanishing result, we fix a little more notation: let

*

w = (an—1 —n+2,an-9, - ,a1,a0 +n — 2);

Ho = (a‘nflv ai1,a2,- - ,ap-3,0n—2, (Lo);

H1 = (a17a27 T aan737an72aan717a0);
A

Hy = (an—la ag, @1,A2, " ,0n-3, an—Q)

be four characters of T'(F,), and write my (resp. ) for the characteristic p principal series
(resp. the characteristic 0 principal series) induced by the characters ug (resp. by its Teichmiiller
lift zip). Note that we can attach an irreducible representation F(X\) of GL,(F,) to each A €
X(T)/(p — 1)X(T) satisfying some regular conditions (cf. the beginning of Section 4). If we
assume that (a,—_1,--- ,ag) € Z™ is n-generic in the lowest alcove, the characters p*, po, p1 and p}
do satisfy the regular condition and thus we have four irreducible representations F'(u*), F(uo),
F(p1) and F(u}) of GL,(Fp). There is a unique (up to homothety) Og-lattice 7 in 7§ ®p,, E such
that

socgL, (F,) (T ®o, F) = F(u*).
We are now ready to state the non-vanishing theorem.

Theorem 1.2.2 (Corollary 4.8.3). Assume that the n-tuple of integers (an—1,an—2, - ,aq9) s
2n-generic in the lowest alcove (cf. Definition 4.1.1).
Then we have

S, ((7- R0, F)U(Fp)m) £0 and ST/L ((T R0, F) Fp), ul) £0.

The definition of p1, p}, 1o and p* is motivated by our application of Theorem 1.2.2 to Theorem
1.4.1 and is closely related to the Galois types we choose in Theorem 1.1.1. We emphasize that,
technically speaking, it is crucial that F'(u*) has multiplicity one in mg. The proof of Theorem 1.2.2
is technical and makes full use of the results in Sections 4.1, 4.6, and 4.7.

1.3. Weight elimination and automorphy of a Serre weight. The weight part of Serre’s
conjecture is considered as a first step towards mod p Langlands program, since it gives a description
of the socle of II(7)|gL, (z,) up to possible multiplicities. Substantial progress has been made for
the groups GL2(Ok), where O is the ring of integers of a finite extension K of Q, ([BDJ10],
[Geell], [GK14], [GLS14], [GLS15]). For groups in higher semisimple rank, we also have a detailed
description. (See [EGH15], [HLM], [LMP], [MP], [LLHLM] for GL3; [Her09], [GG10], [BLGG],
[LLL], [GHS] for general n.)

Weight elimination results are significant for the proof of our main global application, Theo-
rem 1.4.1. For the purpose of this introduction, we quickly review some notation. Let F* be the
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maximal totally real subfield of a CM field F', and assume that p splits completely in F. Fix a
place w of F above p and set v := w|p+. We assume that 7 is automorphic: this means that there
exist a totally definite unitary group G,, defined over F'* that is an outer form of GL,, ,r+ and split
at places above p, an integral model G,, of G,, such that G,, x O pt 18 reductive if v’ is a finite place
of F'* that splits in F, a compact open subgroup U = G,,(Op+) xU¥ C Gy, (Opt) X G (AFL") that
is sufficiently small and unramified above p, a Serre weight V = ®U,‘p V., that is an irreducible
smooth Fp—representation of G,(Op+ ,), and a maximal ideal my associated to 7 in the Hecke
algebra acting on the space S(U, V) of mod p algebraic automorphic forms such that

(1.3.1) S(U,V)[mz| # 0.
We write W (7) for the set of Serre weights V satisfying (1.3.1) for some U, and W, (T) for the set

of local Serre weights V,,, that is irreducible smooth representations of Q,L((’)Fj) ~ GL,(OF,) &
GLn(Zp), such that V, ® (&),, Vor) € W(T) for an irreducible smooth representation @), Vo
of [1,4, 9 (O F,J?)' The local Serre weights V,, have an explicit description as representations of
GL,(F,): there exists a p-restricted (ie. 0 < a; —a;—; < p—1foralll<i<mn-—1) weight
a:= (ap—-1,an-2, - ,a9) € X(T') such that F(a) = V, where F(a) is the irreducible socle of the
dual Weyl module associated to a (cf. Section 5.2 as well as the beginning of Section 4).

Assume that F'Gal(ap /F.,) = Po» where py is defined as in (1.1.1). We define certain characters

pH and it of T(F),) and a principal series

ﬂ-il J1 — Indg%;lff‘p) (NDJLJ& ywo

at the beginning of Section 5.3. Our main conjecture for weight elimination is

Conjecture 1.3.1 (Conjecture 5.3.1). Assume that p;, ; is Fontaine-Laffaille generic and that
pidt s 9n-generic. Then we have an inclusion
W () N (7)) € (F ()Y (a9,

We emphasize that the condition p; ; is Fontaine-Laffaille generic is crucial in Conjecture 1.3.1.
For example, if n = 4 and (ig, jo) = (3,0) and we assume merely FL3%(5,) # 0, 00 (which is strictly
weaker than Fontaine-Laffaille generic), then we expect that an extra Serre weight can possibly
appear in W, (7) N JH((m7*)V).

The Conjecture 1.3.1 is motivated by the proof of Theorem 1.1.1 and the theory of shape in

[LLHLM]. The special case n = 3 of Conjecture 1.3.1 was firstly proven in [HLM] and can also be
deduced from the computations of Galois deformation rings in [LLHLM].

Remark 1.3.2. In an earlier version of this paper, we prove Conjecture 1.3.1 for n < 5. But our
method is rather elaborate to execute for general n. Bao V. Le Hung pointed out that one can prove
Conjecture 1.3.1 completely by constructing certain potentially crystalline deformation rings. A
proof of Conjecture 1.3.1 will appear in [LHMPQ)].

Finally, we also show the automorphy of the Serre weight F' (MD)V. In other words,
(1.3.2) F(uP)Y € Wy (F) N JH((z91)V).

Showing the automorphy of a Serre weight, in general, is very subtle. But thanks to the work
of [BLGG] we are able to show the automorphy of F(u”)Y by checking the existence of certain
potentially diagonalizable crystalline lifts of 5, (cf. Proposition 5.3.2).

1.4. Mod p local-global compatibility. We now state our main results on mod p local-global
compatibility. As discussed at the beginning of this introduction, we prove that II(7) determines
the ordinary representation p,. Moreover, we also describe the invariants in II(7) that determine
the wildly ramified parts of p,. We first recall the definition of II(7).



ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GL,(Q,) IN THE ORDINARY CASE 9

Keep the notation of the previous sections, and write b; = —c¢,_1_; for all 0 < i < n—1, with ¢;
as in (1.1.1). We fix a place w of F above p and write v := w|p+, and we let 7 : Ggp — GL,(F) be
an irreducible automorphic representation, of a Serre weight V' = @),, Viy (cf. Section 1.3), with
Tlar, = Po-

Let V' := @),, Vor and set S(U", V') := liLnS(U” - Uy, V') where the direct limit runs over
compact open subgroups U, C Qn(OFJ). This space S(U?,V’) has a natural smooth action of
Gn(F}) = GL,(F,) = GL,(Q,) by right translation as well as an action of a Hecke algebra that
commutes with the action of G, (F,"). We define

(7) := S(U", V')[ms]

where my is the maximal ideal of the Hecke algebra associated to 7. In the spirit of [Eme], this is
a candidate on the automorphic side for a mod p Langlands correspondence corresponding to pj.
Note that the definition of TI(7) relies on U? and V’ as well as choice of a Hecke algebra, but we
suppress them in the notation.

Fixn—12>1i9 > jo+ 1> jo > 0, and define i; and j; by the equation iy +ig = j1 +jo = n — 1.
Note that the following Jacobi sum operators

Sihjl7 Silvjh/’ Si‘:l,jl’ 817/:173'1»/ c FP[Glef’Ll‘Fl(FP)]
are defined at the beginning of Section 5.5.

Now we can state the main results in this paper.

Theorem 1.4.1 (Theorem 5.6.2). Fiz a pair of integers (ig,jo) satisfying 0 < jo < jo+ 1 <ig <
n—1, and let 7 : Gp — GL,(F) be an irreducible automorphic representation with T|g. = py-
Assume that

° uD,ihjl 18 Qn-generiC;
© Dio.jo 18 Fontaine-Laffaille generic.
Assume further that
(1.4.1) {F(UP)Y} € W (1) N JH((m 1)) € {F ()Y F (207},

Then there exists a primitive vector (cf. Definition 5.6.1) in H(F)I(l)’“il’jl. Moreover, for each

A i1, . L
primitive vector vl € H(F)I(l)"‘l1 " we have S+ o SMtyitdt £ () and

Sihjl:/ ° Sil:jlx/ ° (En)jl—il—lvil,jl — Eihjl'pihjl (bnfly . 7b0) . FL:;)’jO (ﬂGFU,) 5 Si17j1 ° Sil’jl’vil’jl
where
ji—1
gt — H (_1)bi1—bk—j1+i1+1
k=i1+1
and

J11J1111

Pirjr (bn—1,--- ;b H H —J ¢ Z.

,b _
k=i1+1 j=1 “ k ‘7

Note that the conditions in (1.4.1) can be removed under some standard Taylor—Wiles conditions
(cf. Remark 1.3.2 and (1.3.2)).

Theorem 1.4.1 relies on the choice of a principal series type (the niveau 1 Galois type @,
But this choice is somehow the unique one that could possibly make our strategy of the proof of
Theorem 1.4.1 work.

Be careful that we cannot apply Theorem 1.2.1 and Theorem 1.2.2 directly to our local global-
compatibility for general (i1,71). Instead, we need to generalize Theorem 1.2.2 (resp. Theo-
rem 1.2.1) to Proposition 5.5.5 (resp. Proposition 5.5.1) .

n—1 Nkio Jo).
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Corollary 1.4.2. Keep the notation of Theorem 1.4.1 and assume that each assumption in The-
orem 1.4.1 holds for all (ig,jo) such that 0 < jo < jo+1 < ig < n—1. Assume further that a
freeness result mentioned in Remark 5.6.4 is true.

Then the structure of II(F) as a smooth admissible F-representation of GL,,(Q,) determines the
Galois representation py up to isomorphism.

1.5. Notation. Much of the notation introduced in this section will also be (or have already been)
introduced in the text, but we try to collect together various definitions here for ease of reading.

We let E be a (sufficiently large) extension of Q, with ring of integers O, a uniformizer wg,
and residue field F. We will use these rings E, O, and F for the coefficients of our representations.
We also let K be a finite extension of Q, with ring of integers Ok, a uniformizer w, and residue
field k. Let W (k) be the ring of Witt vectors over k and write K for W(k)[%] (K is the maximal
absolutely unramified subextension of K.) In this paper, by K we always mean a tamely ramified
extension of Q, with e :=[K : Ko] = p/ — 1 where f = [k : F,)].

For a field F, we write G for Gal(F/F) where F is a separable closure of F. For instance, we
are mainly interested in Gq, as well as Gk, in this paper. The choice of a uniformizer w € K
provides us with a map:

We : Gq,—W(k) : g+— @
whose reduction mod (w) will be denoted as wg. This map factors through Gal(K/Q,) and
Wwla x, becomes a homomorphism. Note that the choice of the embedding oo : k < F provides
us with a fundamental character of niveau f, namely wy = 00 0 W |gai(k/K,), and we fix the
embedding in this paper.

For a € k, we write a for its Teichmiiller lift in W (k). We also use the notation [a] for @, in
particular, in Section 4.4. When the notation for an element e in & is quite long, we prefer [e] to
e. For instance, if a,b, c,d € k then we write

[(a=b)(a—c)la—d)(b—c)(b—d)] for (a—b)(a—c)(a—d)b—c)(b—d).

Note that Wy is the Teichmiiller lift of wy.

‘We normalize the Hodge—Tate weight of the cyclotomic character € to be —1. Our normalization
on class field theory sends the geometric Frobenius to the uniformizers. If a € F* or a € Oj; then
we write U, for the unramified character sending the geometric Frobenius to a. We may regard a
character of Gq, as a character of Q, via our normalization of class field theory.

As usual, we write S for the p-adic completion of W (k)[u, %]%N, and let So, := S ®z, Op
and Sg := So, ®z, Qp. We also let Sg := So, /(wg,Fil’So,) = (k ®F, F)[u]/u?. Choose a
uniformizer w of K and let E(u) € W(k)[u] be the monic minimal polynomial of w. The group
Gal(K/Kp) acts on S via the character Wy, and we write (S, )zm for the w-isotypical component
of S for m € Z. We define (?F)wg in a similar fashion. If Og or F are clear, we often omit them,
i.e., we write Szm and ?wg, for (So,)zm and (gp)wg, respectively. In particular,

So = S.0 = (k@r, F)[u]/u®

and

o i
So == Szo = {Z aiE(Z,il't) | a; € W(k) ®z, Op and a; — 0 p—adically} .
i=0

The association a ® b — (o (a)b), gives rise to an isomorphism k ®r, F =[] .. ¢ F, and we
write e, for the idempotent element in k¥ ®g, F that corresponds to the idempotent element in
[I,.x,¢ F whose only non-zero entry is 1 at the position of o.

To lighten the notation, we often write G for GL,,/z,. (By G, we mean an outer form of
GL,, defined in Section 5.1.) We let B be the Borel subgroup of G consisting of upper-triangular
matrices of G, U the unipotent subgroup of B, and T the torus of diagonal matrices of GL,,. We
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also write B~ and U~ for the opposite Borel of B and the unipotent subgroup of B~, respectively.
Let @1 denote the set of positive roots with respect to (B,T), and A = {aj}1<g<n—1 the subset
of simple positive roots. We also let W be the Weyl group of GL,,, which is often considered as
a subgroup of GL,,, and let s be the simple reflection corresponding to ay. We write wy for the
longest Weyl element in W, and we hope that the reader is not confused with places w or w’ of F'.

We often write K for GL,,(Z,) for brevity. (Note that we use K for a tamely ramified extension
of Q, as well, and we hope that it does not confuse the reader.) We will often use the following
three open compact subgroups of GL,(Z,): if we let red : GL,(Z,) — GL,(F,) be the natural
mod p reduction map, then

K(1) := Ker(red) C I(1) :=red” "(U(F,)) C I :=red” *(B(F,)) C K.

If M is a free F-module with a smooth action of K, then T'(F,) acts on the pro p Iwahori fixed
subspace M) via I/I(1) = T(F,). We write M!(1):# for the eigenspace with respect to a
character p1: T(F,) — F 5. M) decomposes as

M) ~ @Mf(l)vﬂ

as T'(F,)-representations, where the direct sum runs over the characters p of T'(F),). In the obvious
similar fashion, we define M(1):# when M is a free Og-module or a free E-module.

By [m] for a rational number m € Z[%] C Q we mean the unique integer in [0, e) congruent to
m mod (e) via the natural surjection Z[%] — Z/eZ. By |y| for y € R we mean the floor function
of y, i.e., the biggest integer less than or equal to y. For a set A, we write |A| for the cardinality of
A. If V is a finite-dimensional F-representation of a group H, then we write socyV and cosocy V'
for the socle of V' and the cosocle of V', respectively. If v is a non-zero vector in a free module over
F (resp. over O, resp. over E), then we write F[v] (resp. Og[v], resp. E[v]) for the F-line (resp.
the Og-line, resp. the E-line) generated by v.

We write T for the image of x € O under the natural surjection O — F. We also have a natural
surjection P}(Of) — PY(F) defined by letting [z : y] € P}(F) be the image of [z : y] € P1(Og)
where

— | (%) ifYeOp;
[x'y]_{ (@) 1] ifﬁeoz

We often write £ for [z : y] € P(F) if « # 0.
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2. INTEGRAL p-ADIC HODGE THEORY

In this section, we do a quick review of some (integral) p-adic Hodge theory which will be needed
later. We note that all of the results in this section are already known or easy generalization of
known results. We closely follow [EGH15] as well as [HLM] in this section.
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2.1. Filtered (¢, N)-modules with descent data. In this section, we review potentially semi-
stable representations and their corresponding linear algebra objects, admissible filtered (¢, N)-
modules with descent data.

Let K be a finite extension of Q,, and K the maximal unramified subfield of K, so that
Ko = W(k)®z, Qp where k is the residue field of K. We fix the uniformizer p € Q,, so that we fix
an embedding By < Bgr. We also let K’ be a subextension of K with K/K’ Galois, and write
¢ € Gal(Ky/Q,) for the arithmetic Frobenius.

A p-adic Galois representation p : Gg» — GL,(E) is potentially semi-stable if there is a finite
extension L of K’ such that pl|e, is semi-stable, i.e., ranky, DX (V) = dimg V, where V is an
underlying vector space of p and DX’ (V) := (B ®q, V)9. We often write DX’ (p) for DX (V).
If K is the Galois closure of L over K’, then p|q, is semi-stable, provided that p|¢g, is semi-stable.

Definition 2.1.1. A filtered (¢, N, K/K', E)-module of rank n is a free Ko ® E-module D of rank
n together with

o a ¢ ® l-automorphism ¢ on D;

o a nilpotent Ko @ E-linear endomorphism N on D;

o a decreasing filtration {Filka}iez on Dx = K ®p, D consisting of K ®q, E-submodules
of D, which is exhaustive and separated;
a Ky-semilinear, E-linear action of Gal(K/K') which commutes with ¢ and N and pre-
serves the filtration on Dg.

We say that D is (weakly) admissible if the underlying filtered (¢, N, K/K, E)-module (with
the trivial descent data) is weakly admissible in the sense of [Fon94]. The action of Gal(K/K")
on D is often called descent data action. If V' is potentially semi-stable, then Dg/(V) is a typical
example of an admissible filtered (¢, N, K/K', E)-module of rank n.

o

Theorem 2.1.2 ([CF], Theorem 4.3). There is an equivalence of categories between the category
of weakly admissible filtered (¢, N, K/K', E)-modules of rank n and the category of n-dimensional
potentially semi-stable E-representations of Gk that become semi-stable upon restriction to G .

Note that Theorem 2.1.2 is proved in [CF] in the case K = K’, and that [Sav05] gives a
generalization to the statement with non-trivial descent data.

If V is potentially semi-stable, then so is its dual V. We define D:t’K/(V) .= DK (VV). Then
D:gKl gives an anti-equivalence of categories from the category of n-dimensional potentially semi-
stable E-representations of Gk that become semi-stable upon restriction to G to the category
of weakly admissible filtered (¢, N, K/K', E)-modules of rank n, with quasi-inverse

V:t’K (D) = H0m¢$N(D7 Bst) n Hompﬂ(DK, BdR)~

It will often be convenient to use covariant functors. We define an equivalence of categories: for
eachr € Z , ,

VL "(D)=ViE (D) @<
The functor Dgl’r defined by Dgl’r(V) = DE(V ®e™") is a quasi-inverse of Vslf,’r.

For a given potentially semi-stable representation p : G — GL,(F), one can attach a Weil—
Deligne representation WD(p) to p, as in [CDT99], Appendix B.1. We refer to WD(p)|q, as to the
Galois type associated to p. Note that WD(p) is defined via the filtered (¢, N, K/K', N)-module
DX (p) and that WD(p)|r,., = WD(p®e")|z,, forall r € Z.

Finally, we say that a potentially semi-stable representation p is potentially crystalline if the
monodromy operator N on DX’ (p) is trivial.

2.2. Strongly divisible modules with descent data. In this section, we review strongly di-
visible modules that correspond to Galois stable lattices in potentially semi-stable representations.
We keep the notation of Section 2.1
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From now on, we assume that K/K' is a tamely ramified Galois extension with ramification in-
dex e(K/K"). We fix a uniformizer w € K with @w¢®/EX") € K’. Let e be the absolute ramification
index of K and E(u) € W(k)[u] the minimal polynomial of w over K.

Let S be the p-adic completion of W (k)[u, ;, Jien. The ring S has additional structures:

o a continuous, ¢-semilinear map ¢ : S — S with ¢(u) = u? and (;5(“7,) = “:,,

o a continuous, W (k)-linear derivation of S with N(u) = —u and N(“;,) —iet;

o a decreasing filtration {Fil’S }iezs, of S given by letting Fil'S be the p-adic completion
of the ideal >, E(;?)] S;

o a group action of Gal(K/K’) on S defined for each g € Gal(K/K') by the continuous ring
isomorphism g : S — S with ’g\(wl#;y) = g(wl)h;#;y for w; € W(k), where hy € W (k)
satisfies g(w) = hyw.

Note that ¢ and N satisfies N¢ = ppN and that §(E(u)) = E(u) for all g € Gal(K/K") since we
assume w¢&/K") ¢ K'. We write ¢; for ,¢ on Fil'S. For i < p— 1 we have (b(FiliS) C p's.

Let So, =5 ®z, Of and Sg = SOE ®z,, Q,. We extend the definitions of ¢, N, FiliS7 and
the action of Gal(K/K') to Sp,, (resp. to Sg) Og-linearly (resp. E-linearly).

ie

Definition 2.2.1. Fiz a positive integer r < p — 1. A strongly divisible Og-module with descent
data of weight r is a free So,-module M of finite rank together with

o a So,-submodule Fil"” /\/l

o additive maps ¢, N : M- M

o So,-semilinear bijections g : M — M for each g € Gal(K/K')
such that

o Fil'Se, - M C Fil" M;

o Fil' M N IM = IFil" M for all ideals T in Og;

o @(sx) = ¢(s)p(x) for all s € So, and for all x € M;
¢(F11T.X/I\) is contained in p" M and generates it over Sog;
N(sz) = N(s)x + sN(z) for all s € So,, and for all x € M;
N =poN; N
E(u)N(Fil" M) C Fil" M;
for all g € Gal(K/K') g commutes with ¢ and N, and preserves Filrj\//l\;
g10G2 = g1 - g2 for all g1, 9> € Gal(K/K').

O O O O O O

We write Og-Mod]jj, for the category of strongly C/li\visibl/e\(’)E—modules with descent data of
weight r. It is easy to see that the map ¢, = #qﬁ : FiI" M — M satisfies cN o, (z) = ¢ (E(u)N(z))
for all = € Fil" M where ¢ := W € S*.

For a strongly divisible Og-module M with descent data of weight r, we define a G g/-module
TS5 (M) as follows (cf. [EGH15], Section 3.1.):

TR (-X/l\) = HomFilr,¢,N(M\, Kst)-

Proposition 2.2.2 ([EGH15], Proposition 3.1.4). The functor T:t’K/ provides an anti-equivalence
of categories from the category Og-Mod, to the category of Gk -stable Og-lattices in finite-
dimensional E-representations of G+ which become semi-stable over K with Hodge—Tate weights
lying in [—r,0], when 0 <r <p—1.

Note that the case K = K’ and E = Q,, is proved by Liu [Liu08].
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In this paper, we will be mainly interested in covariant functors Tg/’r from the category
Og-Mod}, to the category Repg;“’[_r’o] G+ of Gg-stable Og-lattices in finite-dimensional F-
representations of G g+ which become semi-stable over K with Hodge—Tate weights lying in [—r, 0]

defined by
Ty (M) =T (M) @&
Let /T/l\ be in Op-Mod}y, and define a free Sg-module D := M\ ®z, Qp. We extend ¢ and N
on D, and define a filtration on D as follows: Fil"D = Filrﬁ/l\[%} and

D if i <0;
Fil'D:={ {zeD|E(w) 'z eFil'D} if0<i<r
Y o(Fil' 7 Sq, )(FiVD)  if i > r, inductively.

We let D := D®SQP,SO Ky and Dk = D®qu,sw K, where s : Sq, — Ko and s : Sq, — K are
defined by u +— 0 and u — @ respectively, which induce ¢ and N on D and the filtration on Dy by
taking s, (Fil'D). The Ky-vector space D also inherits an E-linear action and a semi-linear action
of Gal(K/K'). Then it turns out that D is a weakly admissible filtered (¢, N, K/K’, E)-module
with Fil"™' D = 0. Moreover, there is a compatibility (cf. [EGH15], Proof of Proposition 3.1.4.):

if D corresponds to D = M\[%], then
‘TN 1 ‘o
Ty (M)[] = Vi (D).

2.3. Breuil modules with descent data. In this section, we review Breuil modules with descent
data. We keep the notation of Section 2.2, and assume further that K’ C K.

We let S := S/(wg, Fil’S) = (k @p, F)[u]/u®. It is easy to check that S inherits ¢, N, the
filtration of S, and the action of Gal(K/K').

Definition 2.3.1. Fiz a positive integer r < p — 1. A Breuil modules with descent data of weight
r is a free S-module M of finite rank together with
o a S-submodule Fil" M of M;
o maps ¢, : FiI' M — M and N : M — M;
o additive bijections g : M — M for all g € Gal(K/K")
such that
o Fil"M contains u®" M;
o ¢ is F-linear and ¢-semilinear (where ¢ : klu]/u? — k[u]/u? is the p-th power map)
with image generating M as S-module;
o N is k ®@r, F-linear and satisfies
— N(uz) = uN(z) — ux for allz € M,
— u*N(Fil"M) C Fil"'M, and
— ¢ (ueN(x)) = ¢N(¢r(x)) for all x € Fil" M, where ¢ € (k[u]/u®P)* is the image of
%qﬁ(E(u)) under the natural map S — k[u]/u®?.
o g preserves Fil' M and commutes with the ¢, and N, and the action satisfies g1 © go =
g1 - g2 for all g1,go € Gal(K/K'). Furthermore, if a € k ®r, F and m € M then

glauim) = g(a)(£2)’ @ 1)uig(m).

We write F-BrMod);, for the category of Breuil modules with descent data of weight r. For
M € F-BrMody,, we define a G g-module as follows (cf. [EGH15], Section 3.2):

TZ (M) == Hompmoa(M, A).

This gives an exact faithful contravariant functor from the category F-BrMody, to the category
Repp Gk of finite dimensional F-representations of Gx/. We also define a covariant functor as
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follows: for each r € Z
TH(M) :=T5(M)Y @w',
in which we will be more interested in this paper.
If Mis a strongly divisible module with descent data, then

M = M/(wpg, Fil’S)
is naturally an object in F-BrModjj, (Fil"M is the image of Fil" M in M, the map ¢, is induced
by %¢|Fmﬁ, and N and g are those coming from M). Moreover, there is a compatibility: if
Me Op-Mod}, and we let M = .//\/\l/(wE7FilpS) then
TS (M) ©o, F = T (M).

(See [EGH15], Lemma 3.2.2 for detail.)
There is a notion of duality of Breuil modules, which will be convenient for our computation of
Breuil modules as we will see later.

Definition 2.3.2. Let M € F-BrMod} ;. We define M* as follows:
o) M* = Homk[u]/uep_Mod(./\/l, k:[u]/uep);
o Fil'M* :={f e M* | f(FiI'"'M) C u*"k[u]/u?};
o ¢r(f) is defined by ér(f)(pr(x)) = ¢ (f(2)) for all x € FiI'M and f € Fil"M*, where
Or 1 uTk[u]/u — E[u]/u? is the unique semilinear map sending u®" to c";
o N(f):=Nof— foN, where N : k[u]/u®® — k[u]/u®? is the unique k-linear derivation
such that N(u) = —u;
o (gf)(x) = g(f(g 'x)) for all z € M and g € Gal(K/K’), where Gal(K/K') acts on
k[u] /u? by g(au) = g(a)(@)iui fora € k.
If M is an object of F-BrMody, then so is M*. Moreover, we have M = M** and
T (M™) = TG(M).
(cf. [Carll]), Section 2.1.)

Finally, we review the notion of Breuil submodules developed mainly by [Carll]. See also
[HLM], Section 2.3.

Definition 2.3.3. Let M be an object of F-BrMod};. A Breuil submodule of M is an S-
submodule N of M if N satisfies

o N is a k[u]/uP-direct summand of M;
o NWN)CN and g(N) CN forall g € Gal(K/K');
o ¢ (N NFIl'M) C N,
If NV is a Breuil submodule of M, then N' and M /N are also objects of F-BrMod};. We now
state a crucial result we will use later.

Proposition 2.3.4 ([HLM], Proposition 2.3.5). Let M be an object in F-BrModj,.
Then there is a natural inclusion preserving bijection

© : {Breuil submodules in M} — {G g -subrepresentations of T (M)}
sending N' C M to the image of Tf(N') < Ti (M). Moreover, if My C My are Breuil submodules
of M, then ©(M;)/O(My) = T (M1/Ms).

We will also need classification of Breuil modules of rank 1 as follows. We denote the Breuil
modules in the following lemma by M (a, s, ).

Lemma 2.3.5 ([MP], Lemma 3.1). Let k:=F,r, e := pf =1, @w:= Y=p, and K' = Q,. We also
let M be a rank-one object in F-BrMod},.
Then there exists a generator m € M such that:
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(i) Fil' M = u*®~D M where 0 < s < g

(it)) ¢ (u®P=Ym) = Am for some X € (F,; ®r, F)*;

(iv) g(m) = (wr(9)* @ 1)m for all g € Gal(K/Ky) where a is an integer such that a + ps =0
mod (-%7);

(v) N(m)=0.

Moreover, one has
r __ .a+ps
TSt(/\/l)|1Qp =w;

The following lemma will be used to determine if the Breuil modules violate the maximal non-
splitness.

Lemma 2.3.6 ([MP], Lemma 3.2). Let k:=F,r, e := pf =1, @w:= J=p, and K' = Q,. We also
let My := M(ky, Sz, Az) and My, = M(ky, sy, \y) be rank-one objects in F-BrModgyy. Assume
that the integers kg, ky, Sz, 5y € Z satisfy
(2.3.1) p(Sy — 8z) + [ky — kz]p > 0.
Assume further that f < p and let

0—=My—->M—=M, =0

be an extension in F-BrModgg, with T3 (M) being Fontaine-Laffaille.
If the exact sequence of Sy-modules

0 — Fil"M,; — Fil'M — Fil'"'M, — 0

splits, then the Gq,-representation T} (M) splits as a direct sum of two characters.
In particular, provided that pk, # k; modulo e and that s, (p—1) < re if f > 1, the representation
Tz (M) splits as a direct sum of two characters if the element jo € Z uniquely defined by

joe + [p™ ky — kulp < su(p—1) < (Jo + e+ [pky — kaly
satisfies
(2.3.2) (r+jo)e + [P ky — kuly < (52 +5,)(p = 1).

2.4. Linear algebra with descent data. In this section, we introduce the notion of framed basis
for a Breuil module M and framed system of generators for Fil" M. Throughout this section, we
assume that Ky = K’ and continue to assume that K is a tamely ramified Galois extension of K’.
We also fix a positive integer » < p — 1.

Definition 2.4.1. Let n € N and let (kn—1,kn—2,...,ko) € Z"™ be an n-tuple. A rank n Breuil
module M € F-BrMod}, is of (inertial) type Wity @ wko if M has an S-basis (e,_1,- -+ ,€9)
such that ge; = (wki(g) ® 1)e; for all i and all g € Gal(K/Ky). We call such a basis a framed
basis of M.

We also say that f := (frn-1, fn-2,.-., fo) is a framed system of generators of Fil"'M if f is a

system of S-generators for Fil' M and §f; = (wﬁ;lki (9) ® 1) f; for all i and all g € Gal(K/Ky).

The existence of a framed basis and a framed system of generators for a given Breuil module
M € F-BrMody, is proved in [HLM], Section 2.2.2.

Let M € F-BrMody, be of inertial type @?;01 wkiand let e := (e,_1,...,e0) be a framed
basis for M and f := (fn—1,..., fo) be a framed system of generators for Fil" M. The matriz of

the filtration, with respect to e, f, is the matrix Matg,i(FilrM) € M, (5) such that
f = e-Matg ;(Fil"M).
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Similarly, we define the matriz of the Frobenius with respect to e, f as the matrix Matgi(apT) €
GL,(S) characterized by

(er(fnfl% T 7¢T(f0)) =c- Matg,i(‘pr)‘

As we require e, f to be compatible with the framing, the entries in the matrix of the filtration
satisfy the important additional properties:

Matgi(FﬂrM)iJ es pf =1k —k; -

More precisely, Mat, (Fil"M); ; = u[p‘f_lkj*ki]fsi,j, where s, ; € S0 =k O, F[ ]/ (uP).
We can therefore introduce the subspace M (S) of matrices with framed type 7 = @, tw f' as

M, (S) == {V €M, (S)|V;; € ?wkj—ki forall 0 <4,5 <n-—1
s
Similarly, we define

M/ (S) = {V eM,(S)|V;; €8 b1k, -x, forall 0 <id,j <n— 1}
“5
and
M (S) = {V €M, (S)|Vij €S ,-14-ny forall 0<i,j<n-— 1} :

We also define B - B
GL? (S) := GL,(S) n M7 (S)

for e € {O}U{O, 7} U{O,n}.

As o, (f;) is a w];’i—eigenvector for the action of Gal(K/Ky) we deduce that

Mat,, ;(Fil" M) € M.”(S) and Mate, r (1) € GLY(S).

Note that MY (S) = MY(S) = MY(S) if the framed type T is of niveau 1.
We use similar terminologies for strongly divisible modules M € Og-Mod},.

Definition 2.4.2. Let n € N and let (ky—1,kn—2,...,ko) € Z™ be an n-tuple. A rank n strongly
divisible module M € Og-Mod}, is of (inertial) type Tt @ ko if M has an So,, -basis
€:= (€n_1, - ,€0) such that ge; = (Wki(g) ® 1)e; for all i and all g € Gal(K/Ky). We call such
a basis a framed basis for /T/l: R R

We also say that f := (fn—1, fu—2,..., fo) is a framed system of generators for Fil' M if f
is a system of S-generators for Filr./f/l\/FilrS - M and gfi = (@b 1k"( ) ® )f,» for all i and all
g € Gal(K/Kj).

One can readily check the existence of a framed basis for M and a framed system of generators
for Fil” M by Nakayama Lemma. For instance, the existence of a framed system of generators for
Fil” M can be deduced as follows: if we let M := M /(wg, FiIPS) is the Breuil module correspond-
ing to the mod p reduction of the strongly divisible module M and write f = a1, fn2,-, fo)
for a framed system of generators for Fil" M, then it is obvious that each f; has a lift fZ € FiI' M
such that §f; = (WP, CRi(g) @ 1)]"} for all g € Gal(K/Ko) Since FIITM/FIFS Mis a 1 finitely gen-

erated Og-module, we conclude that the system ( fn 1, fn 2, fo) generates Fil' M JFil"S - M
by Nakayama Lemma.
We also define .
Mat, 7(Fil"M) and Mat; 7(¢r)

each of whose entries satisfies
Matgz(Fﬂr./\//Y)l’,j S Sa,,f—lkj_ki and MatA (¢r)z] € S kj—k;
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in the similar fashion to Breuil modules. In particular,

Matgf(FilT/T/l\) € MJ’(S) and Mat; #(¢r) € GLY(S)

where MP(S) and GLY(S) are defined in the similar way to Breuil modules. We also define
GLE"(S) in the similar way to Breuil modules again.

The inertial types on a Breuil module M and on a strongly divisible modules are closely related
to the Weil-Deligne representation associated to a potentially crystalline lift of TZ, (M).

Proposition 2.4.3 ([LMP], Proposition 2.12). Let M be an object in Op- -Modgy and let M :=
M ®s S/(wE,FllpS) be the Breuil module correspondmg to the mod p reduction of./\/l
IfTKO’ (./\/l)[ | has Galois type EB?_O wf for some integers k;, then M (resp. M) is of inertial

1 ~
type @?zo wfxr (resp. @i:(} ww)‘
Finally, we need a technical result on change of basis of Breuil modules with descent data.

Lemma 2.4.4 ([HLM]|, Lemma 2.2.8). Let M € F-BrMody, be of type @?70 wkiand let e,
f be a framed basis for M and a framed system of generators for Fil"M respectively. Write
V= Mat ;(Fil'M) € MU(S) and A = Mat,, r(¢r) € GLI(S), and assume that there are

wnvertible matrices R € S) an € (S such that
invertibl ices R € GLE(S) and C € GLE"(S) such th
R-V-C =V mod (u"+Y),

for some V' € MEY(S).
Then €' := e- R~ forms another framed basis for M and f :=¢€' - V' forms another framed
system of generators for Fil" M such that

Mat g (Fil'M) = V' € M7”(S) and Maty p/(¢,) = R+ A-¢(C) € GL](S).
In particular, if R™1 = A then Mate f(ér) = ¢(C).

The statement of Lemma 2.4.4 is slightly more general than [HLM], Lemma 2.2.8, but exactly
the same argument works.

2.5. Fontaine—Laffaille modules. In this section, we briefly recall the theory of Fontaine—
Laffaille modules over F, and we continue to assume that Ky = K’ and that K is a tamely
ramified Galois extension of K’.

Definition 2.5.1. A Fontaine-Laffaille module over k @y, F is the datum (M,Fil*M, ¢,) of
o a free k @, F-module M of finite rank;

o a decreasing, exhaustive and separated filtration {File}jez on M by k®FF F-submodules;

Fild M

o a ¢-semilinear isomorphism ¢o : gr®* M — M, where gr*M = @ cZ FTIAT

We write F-FLMod;, for the category of Fontaine-Laffaille modules over k& ®@g, F, which is
abelian. If the field k is clear from the context, we simply write F-FLMod to lighten the notation.

Given a Fontaine-Laffaille module M, the set of its Hodge-Tate weights in the direction of
o € Gal(k/F,) is defined as HT, := {i € Z | e,Fil'M # eUFﬂHlM}. In the remainder of this
paper we will be focused on Fontaine-Laffaille modules with parallel Hodge-Tate weights, i.e. we
will assume that for all ¢ € Z, the submodules Fil'M are free over k @, F.

Definition 2.5.2. Let M be a Fontaine—Laffaille module with parallel Hodge—Tate weights. A
k®g, F basis f = (fo, f1,.-, fu— 1) on M is compatible with the filtration if for all i € Z>g
there exists j; € Z>o such that Fil’ ‘M = Z k®@r, F- f;. In particular, the principal symbols
(gr(fo),-..,gr(fn-1)) provide a k @¢, F baszs for greM.
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Note that if the graded pieces of the Hodge filtration have rank at most one then any two
compatible basis on M are related by a lower-triangular matrix in GLn(k®FP F). Given a Fontaine—
Laffaille module and a compatible basis f, it is convenient to describe the Frobenius action via
a matrix Maty(¢e) € GL,(k ®F, F), defined in the obvious way using the principal symbols

(er(fo),-..,er(fn-1)) as a basis on gr* M.

It is customary to write F-FLMod®?~? to denote the full subcategory of F-FLMod formed
by those modules M verifying Fil°M = M and FilP"'M = 0 (it is again an abelian category).
We have the following description of mod p Galois representations of Gx, via Fontaine-Laffaille
modules:

Proposition 2.5.3 ([FL82], Theorem 6.1). There is an exact fully faithful contravariant functor
* : F-FLMod"”? = Repp(Gr,)

cris, Ko
which is moreover compatible with the restriction over unramified extensions: if Lo/ Ko is unram-

ified with residue field 1/k and if M is an object in F—FLModLO’pQ], then | @ M is naturally

dEO;P*Q]

regarded as an object in F-FLMo and

>ckris,Lo (l Xk M) = >ckris,Ko (M) |GL0 .
for T*

cris, Ko

We will often write T*

s if the base field K is clear from the context.

Definition 2.5.4. We say that p € ReppGrk, is Fontaine-Laffaille if T (M) = p for some
M € F-FLMod!*~.

2.6. Etale ¢-modules. In this section, we review the theory of étale ¢-modules, first introduced
by Fontaine [Fon90], and its connection with Breuil modules and Fontaine-Laffaille modules.
Throughout this section, we continue to assume that Ky = K’ and that K is a tamely rami-
fied Galois extension of K.

Let po := —p, and let p be identified with a sequence (p, ), € (QP)N verifying p? = p,,_1 for all n.

We also fix @ := ¢/—p € K, and let @y = . We fix a sequence (,,), € (QP)N such that @w¢ = p,,
and w? = w,_; for all n € N, and which is compatible with the norm maps K (tw,,+1) = K(wp)
(cf. [Breld], Appendix A). By letting Koo := UpenK (wy,) and (Kp)eo := UnenKo(pn), we have a
canonical isomorphism Gal(K s /(Ko)eo) — Gal(K/Kp) and we will identify w,, as a character of
Gal(Koo/(K0)oo). The field of norms k((w)) associated to (K, w) is then endowed with a residual
action of Gal(K o /(Ko)eo), which is completely determined by g(w) = wx(9)=.

We define the category (¢, F @r, k((p))) -90d of étale (¢, F®r, k((p)))-modules as the category
of free F @, k((p))-modules of finite rank 9t endowed with a semilinear map ¢ : M — M with re-
spect to the Frobenius on k((p)) and inducing an isomorphism ¢*9t — 91 (with obvious morphisms
between objects). We also define the category (¢, F ®r, k((@)))-Modqq of étale (¢, For, k((w)))-
modules with descent data: an object 9 is defined as for the category (¢, F ®@r, k((p)))-2Mod
but we moreover require that 9t is endowed with a semilinear action of Gal(K s /(Ko)oo) (semi-
linear with respect to the residual action on F ®r, k((=)) where F is endowed with the trivial
Gal(K o /(Kp)oo)-action) commuting with ¢.

By work of Fontaine [Fon90], there are anti-equivalences

(¢, F QF, k((ﬂ))) Mod - RepF(G(Ko)w)

and
(¢, F @r, k((@))) -Modaa — Repp(G(x,)..)
given by
M — Hom (M, k((p))**P)
and

M — Hom (M, k(())*P)
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respectively. See also [HLM], Appendix A.2.
The following proposition summarizes the relation between the various categories and functors
we introduced above.

Proposition 2.6.1 ([HLM], Proposition 2.2.1). There exist faithful functors
My (=) : F-BrModyy — (¢, F ®F, k((@))) -Modaq

and
F : F-FLMod?~2 5 (6, F @r, k((p))) -Mod

fitting in the following commutative diagram:

M ((=))
F-BrMod}},

(¢7F QF, k((@))) -Modyq

T, Hom(—,k((=))*
Repp (G ry) ———=—> Repr (G(x)o.) ~ k(@) k(@)
Tlris
F-FLMod*»~? = (¢,F @, k((p))) -Dod

where the descent data is relative to Ky and the functor Reso T? . s fully faithful.

cris

Note that the functors My (z)) and F are defined in [BD14]. (See also [HLM], Appendix A).
The following is an immediate consequence of Proposition 2.6.1, which is also stated in [LMP],
Corollary 2.14.

Corollary 2.6.2. Let 0 <r <p—2, and let M (resp. M) be an object in F-BrModyy (resp. in
F-FLMod*?=2). Assume that T* (M) is FontaineLaffaille. If

My((z)) (M) = F(M) @ ((py) k((z))
then one has an isomorphism of Gk, -representations
T (M) = To(M).

The following two lemmas are very crucial in this paper, as we will see later, which describe the
functors My, () and F respectively.

Lemma 2.6.3 ([HLM], Lemma 2.2.6). Let M be a Breuil module of inertial type @;:01 wki with
a framed basis e for M and a framed system of generators f for Fil" M, and write M* for its dual

as defined in Definition 2.3.2. Let V = Mat, ;(Fil" M) € M (S) and A = Mat, r(¢r) € GLY(S).

Then there exists a basis ¢ for Mz (M*) with g - e¢; = (wzP *i(g) @ 1)e; for all i €
{0,1,--- ,n— 1} and g € Gal(K/Ky), such that the Frobenius ¢ on Mj((zy)(M*) is described by

Mat,(¢) = V* (X—l)t € M,,(F @r, k[[@]))

where V., A are lifts of V, A in M, (F ®r, kl[@]]) via the reduction morphism F Qg k[[w]] - S
induced by @ — u and Mat¢(¢); ; € (F ®r, k[[=]]) b=k k-
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Lemma 2.6.4 ([HLM], Lemma 2.2.7). Let M € F-FLMod®?~% be a rank n Fontaine-Laffaille
module with parallel Hodge—Tate weights 0 < mg < -+ < my—1 < p—2 (counted with multiplicity).
Let e = (eg,...,en—1) be a k @, F basis for M, compatible with the Hodge filtration Fil*M and
let F € M,,(k ®r, F) be the associated matriz of the Frobenius ¢o : gr® M — M.

Then there exists a basis ¢ for M := F(M) such that the Frobenius ¢ on 9 is described by

Mat,(¢) = Diag (p™°,---,p™"*) - F € M,,(F @, k[[p]))-
3. LocAL GALOIS SIDE

In this section, we study ordinary Galois representations and their potentially crystalline lifts. In
particular, we prove that the Frobenius eigenvalues of certain potentially crystalline lifts preserve
the information of the wildly ramified part of ordinary representations.

Throughout this section, we let f be a positive integer, K/ = Q,, e = pl —1, and K =
Q,s(/=p). We also fix @ := /=p, and let S = (F,; ®p, F)[u]/u®” and Sy := ?w? = (Fpr ®F,
F)[u¢]/u’? C S. Recall that by [m]; for a rational number m € Z[%] we mean the unique integer
in [0, e) congruent to m mod (e).

We say that a representation p, : Gq, — GL,(F) is ordinary if it is isomorphic to a represen-
tation whose image is contained in the Borel subgroup of upper-triangular matrices. Namely, an

ordinary representation has a basis e := (ep—1,€n—2, - ,€0) that gives rise to a matrix form as
follows:
Uun,lwcn’1+(n_1) Ky 1 - * ”
0 U, ,wen—2tm=2 . * *
(3.0.1) Do = ; : ] : :
0 0 s Uy wertt *1
0 0 0 Uyowe

Here, U, is the unramified character sending the geometric Frobenius to i € F* and ¢; are integers.
By 7y, we always mean an n-dimensional ordinary representation that is written as in (3.0.1). For
n—1>1¢2>7 >0, we write

(3.0.2) Pij

for the (i — j 4 1)-dimensional subquotient of 5, determined by the subset (e;,e;—1,--- ,€;) of the
basis e. For instance, p, ; = Uy, w it and p,,_ 1,0 = Po-

An ordinary representatlon GQp — GL,(F ) is maximally non-split if its socle filtration has
length n. For instance, p, in (3.0.1) is maximally non-split if and only if %; # 0 for all ¢ =
1,2,---,n — 1. In this paper, we are interested in ordinary maximally non-split representations
satisfying a certain genericity condition.

Definition 3.0.5. We say that p, is generic if
Civ1—ci>n—1 forallic{0,1,--- ,n—2} andcp_1 —co < (p—1)— (n—1).
We say that p, is strongly generic if p, is generic and
Ch-1—co < (p—1)—(3n —5).

Note that this strongly generic condition implies p > n? + 2(n — 3).

We describe a rough shape of the Breuil modules with descent data from K to K' = Q,
corresponding to p,. Let r be a positive integer with p —1 > r > n — 1, and let M € F-BrMod},
be a Breuil module of inertial type @?;01 wl; such that TL (M) = p,, for some k; € Z. By
Proposition 2.3.4, we note that M is a successive extension of M;, where M, := M(k;,r;, v;) (cf.
Lemma 2.3.5) is a rank one Breuil module of inertial type w];" such that

ki+pri ~v 1 ~  Citi
(3.0.3) Wy P :Tst(Mi)|IQp = Wt
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for each i € {0,1,--- ,n — 1}. More precisely, there exist a framed basis e = (e,—1,€n-2, - ,€0)
for M and a framed system of generators f = (fn—1, fn—2,---, fo) for Fil" M such that
um-1(p—1) u[p_lk”*sz"*ﬂfl)n,l g e u[p_lk‘]*knfl]fvn,l 0
0 ym—2(=1) ooyl TRo—kn 2]y, o
(3.0.4) Mate s (Fil"'M) = ) ) _ ) 1,
6 0 - u’“o(;’?—l)
Vp—1 u[kniz_knil]fwn—l’n—Q e u[ko_kn—l]fwnil’o
0 Up—o coe ylko—En2lryy oo
(3.0.5) Mate s (¢) = | . . , _ ol
0 0 [0
and
0 wlkn—2—hnalyn o o ylmiEeaalia L ylko—Rnoalrs g
0 0 cooulbimRn2lia o ylko—knalra o g
(3.0.6) Mat.(N)=|: : ) : :
0 0 0 ulko—k1lr~, o
0 0 S 0 0
for some v; € (F,; @p, F)* and for some v; ;,w; ;,7i,; € So-
Fix 0 < j <i<n—1. We define the Breuil submodule
(3.0.7) M ;
that is a subquotient of M determined by the basis (e;,e;—1,--- ,e;). For instance, M, ; = M;

for all 0 <i <n — 1. We note that T (M, ;) =p, ; by Proposition 2.3.4.
We will keep these notation and assumptions for M throughout this paper.

3.1. Elimination of Galois types. In this section, we find out the possible Galois types of niveau
1 for potentially semi-stable lifts of p, with Hodge-Tate weights {—(n — 1), —(n —2),---,0}.
We start this section with the following elementary lemma.

Lemma 3.1.1. Let p : Gq, — GL,(E) be a potentially semi-stable representation with Hodge-
. . n—1 ~k;
Tate weights {—(n —1),...,—2,—1,0} and of Galois type B,—y ;.
Then )
n(n-1) _y -1
det(p)lrq, =€ 7 .wamo

where ¢ is the cyclotomic character.

i

Proof. det(p) is a potentially crystalline character of Gq, with Hodge Tate weight —(ZZZOI i) and
n—1 g, _ s n—=1p.
of Galois type G%i:(’ ki, i.e., det(p) -@f Lizo ki i g crystalline character with Hodge—Tate weight

~(75 1) = =" so that det(p)| 1, - @y == " =™ 0

We will only consider the Breuil modules M corresponding to the mod p reduction of the
strongly divisible modules that correspond to the Galois stable lattices in potentially semi-stable
lifts of p, with Hodge-Tate weights {—(n — 1), —(n — 2),---, —1,0}, so that we may assume that

r=n—1,1e, M€ F—BrModZd_l.

Lemma 3.1.2. Let f =1. Assume that p, is generic, and that M € F—BrModeld_1 corresponds to
the mod p reduction of a strongly divisible module M such that T2 Y (M) = 5, and Tg”’nil(/(/l\)
is a Galois stable lattice in a potentially semi-stable lift of p, with Hodge—Tate weights {—(n —
1),—(n—2),---,0} and Galois type @?:_01 @k for some integers k;.
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Then there exists a framed basis e for M and a framed system of generators f for Fil"~*M
such that Mat, ¢(Fil"~' M), Mate, f(¢n—1), and Mat.(N) are as in (3.0.4), (3.0.5), and (3.0.6)
respectively. Moreover, the (kiy ) satisfy the following properties:

(i) ks =c; +1—1; mod (e) for alli € {0,1,--- ,n—1};
(ii)) 0<r;<n-—1foralie{0,1,--- ,n—1};
(111) Z?:—Ol ry = (71—21)71.
Proof. Note that the inertial type of M is @;:01 w” by Proposition 2.4.3. The first part of the
Lemma is obvious from the discussion at the beginning of Section 3.

We now prove the second part of the Lemma. We may assume that the rank-one Breuil modules
M, are of weight r;, so that 0 < r; < n —1 for i = {0,1,...,n — 1} by Lemma 2.3.5. By the
equation (3.0.3), we have k; = ¢; + ¢ — r; mod (e), as e = p — 1. By looking at the determinant of
Po we deduce the conditions

n(n—1)

n(n—1)
—5—+tkn_1+kn_2+--+ko _ n—1 o — o Cne1tCp_oddcot
w2 =det T (M)l1q, = det pyliq, =w z

from Lemma 3.1.1, and hence we have r,, 1 + 7, o+ -+ +719 = "("271) (as p > n? +2(n — 3) due
to the genericity of 7). a

One can further eliminate Galois types of niveau 1 if p, is maximally non-split.

Proposition 3.1.3. Keep the assumptions and notation of Lemma 3.1.2. If the tuple (k;,r;)
further satisfy one of the following conditions

ori=n—1 for someie€{0,1,2,--- ,n—2};

o r; =0 for someie{1,2,3,--- ,n— 1},
then py is not mazimally non-split.

Proof. The main ingredient is Lemma 2.3.6. Following the notation in Lemma 2.3.6, we fix i €
{0,1,2,--- ,n — 2} and identify x = i+ 1 and y = ¢ so that r, = s, and r, = s,. From the
results in Lemma 3.1.2, it is easy to compute that [k; — k;i1]1 = e — (i1 — ¢ + 1) + (rip1 — 14)-
By the genericity conditions in Definition 3.0.5 and by part (ii) of Lemma 3.1.2, we see that
0 < [k; — kix1]1 < e so that if r; > ;41 then the equation (2.3.1) in Lemma 2.3.6 holds.

If ripre < [k; — kip1]1 and 7; > ri4q, then *;17; = 0 by Lemma 2.3.6. Since 0 < [k; — ki+1]1 < e,
we have r;11e < [k; — k1)1 if and only if 7,41 = 0, in which case p, is not maximally non-split.

We now apply the second part of Lemma 2.3.6. It is easy to check that jo = ;41 — 1. One can
again readily check that the equation (2.3.2) is equivalent to r; = n — 1, in which case ;11 = 0 so
that p is not maximally non-split. |

Note that all of the Galois types that will appear later in this section will satisfy the conditions
in Lemma 3.1.2, and Proposition 3.1.3 as well if we further assume that p, is maximally non-split.

3.2. Fontaine—Laffaille parameters. In this section, we parameterize the wildly ramified part
of generic and maximally non-split ordinary representations using Fontaine—Laffaille theory.

We start this section by recalling that if p, is generic then 7y ® w™ is Fontaine-Laffaille (cf.
[GG10], Lemma 3.1.5), so that there is a Fontaine-Laffaille module M with Hodge-Tate weights
{0,e1 —co+1,--+ ,cn_1 —co + (n — 1)} such that T: (M) = py @ w™ (if we assume that g is
generic).

Lemma 3.2.1. Assume that py is generic, and let M € F—FLMod[&p—Q] be a Fontaine—Laffaille
module such that T (M) = by @ w™ .

cris

Then there exists a basis e = (ep,e1, -+ ,en—1) for M such that
‘ M if j <05
FiPM = F(e¢,~~~ ,en_l) ’l.fCi_1700+’l:*1<j§Ci760+i;

0 ifcno1—co+n—1<j.
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and
N(Tl Qo1 Qo2 0 Qop-—2 Qao,n—1
0 py oa12 -+ Qip-2 Qip-1
0 0 u51 N O D ) a2 p—1
(3.2.1) Mat,(pe) = )
0 0 0 - wly anona
0 0 0 - 0 oul,

where o; ; € F.
Note that the basis e on M in Lemma 3.2.1 is compatible with the filtration.
Proof. This is an immediate generalization of [HLM], Lemma 2.1.7. |

For i > j, the subset (e;,--- ,e;) of ¢ determines a subquotient M; ; of the Fontaine-Laffaille
module M, which is also a Fontaine-Laffaille module with the filtration induced from Fil*M in
the obvious way and with Frobenius described as follows:

pt g e @1 Qg
0 Bitr 0 QGgio1 Qg
age=|
0 0 ol e
0 0 e 0 szl

Note that Tj; (M; ;) @ w® =p, ;. We let A ; be the (i — j) x (i — j)-submatrix of A; ; obtained

by deleting the left-most column and the lowest row of A; ;.
Lemma 3.2.2. Keep the assumptions and notation of Lemma 3.2.1, and let 0 < j < j+1<i <
n — 1. Assume further that p, is mazimally non-split.

If det A} ; # (fl)i*j+luj__il cps Y, then [ag; : det Aj ;] € PY(F) does not depend on the
choice of basis e compatible with the filtration.

Proof. This is an immediate generalization of [HLM], Lemma 2.1.9. |
Definition 3.2.3. Keep the assumptions and notation of Lemma 3.2.2, and assume further that
Do satisfies
(3.2.2) det A ; # (=17 sl - op oy
foralli,jeZ with0<j<j+1<i<n-—1.

The Fontaine-Laffaille parameter associated to p, is defined as

FLn(po) := (FL, (o)), ; € [P'(F)]

(n—2)(n—-1)
2

where N .
FL.7(py) == [aj,i : (1) 7% - det A} ;] € P(F)
foralli,jeZ suchthat 0 <j<j+1<i<n-—1.

We often write £ for [z : y] € P*(F) if 2 # 0. The conditions in (3.2.2) for i, guarantee the
well-definedness of FL%7 (5,) in P*(F). We also point out that FL%/ (5,) # (—l)i_jujj}l cop in
PL(F).

One can define the inverses of the elements in P*(F) in a natural way: for [z, : x2] € PY(F),
[z1: 22] 7t = [2g : 1] € PL(F).

Lemma 3.2.4. Assume that p, is generic. Then

(i) py is generic;
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(ii) if py is strongly generic, then so is py ;
(iii) if py is mazimally non-split, then so is py;
(iv) if py is mazimally non-split, then the conditions in (3.2.2) are stable under py — py -
Assume further that p, is mazimally non-split and satisfies the conditions in (3.2.2).
(v) foralli,j € Z with0<j<j+1<i<n-—1, FL:(5,) :FL;’j(ﬁO ® w?) for any b € Z;
(vi) for alli,j € Z with0<j<j+1<i<n—1 FL(p) =FLJY (5iy);
(vii) foralli,j € Z with0<j<j+1<i<n-—1, FL:(p,)~" = FLI 1915,

Proof. (i), (ii) and (iii) are easy to check. We leave them for the reader.

The only effect on Fontaine-Laffaille module by twisting w? is shifting the jumps of the filtration.
Thus (v) and (vi) are obvious.

For (iv) and (vii), one can check that the Frobenius of the Fontaine-Laffaille module associated
to py is described by

0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
Do : ) [Mat§(¢°)t]_l ) R
o1 - 00 01 -~ 00
10 --- 0 O 10 --- 0 O
where Mat,(¢,) is as in (3.2.1). Now one can check them by direct computation. O

We end this section by defining certain numerical conditions on Fontaine-Laffaille parameters.
We consider the matrix (1,n)wyMat,(¢e)?, where Mat.(¢,) is the upper-triangular matrix in
(3.2.1). Here, wy is the longest element of the Weyl group W associated to T and (1,n) is a
permutation in W. Note that the anti-diagonal matrix displayed in the proof of Lemma 3.2.4 is
wq seen as an element in GL,(F). For 1 <47 <n —1 we let B; be the square matrix of size ¢ that
is the left-bottom corner of (1, n)wo Mat. (s )".

Definition 3.2.5. Keep the notation and assumptions of Definition 3.2.3. We say that p, is
Fontaine-Laffaille generic if moreover det B; # 0 for all 1 <i <n —1 and p, is strongly generic.

We emphasize that by an ordinary representation p, being Fontaine-Laffaille generic, we always
mean that p, satisfies the maximally non-splitness and the conditions in (3.2.2) as well as det B; # 0
for all 1 <7 <n —1 and the strongly generic assumption (cf. Definition 3.0.5).

Although the Frobenius matrix of a Fontaine-Laffaille module depends on the choice of basis,
it is easy to see that the non-vanishing of the determinants above is independent of the choice of
basis compatible with the filtration. Note that the conditions in Definition 3.2.5 are necessary and
sufficient conditions for

(1,n)wo Mat,(¢s)" € B(F)woB(F)

in the Bruhat decomposition, which will significantly reduce the size of the paper (cf. Re-
mark 3.2.6). We also note that

o det By # 0 if and only if FL"~"°(5,) # oo;

o det B,,_; # 0 if and only if FL~"%(5,) # 0.
Finally, we point out that the locus of Fontaine-Laffaille generic ordinary Galois representations
Po forms a (Zariski) open subset in [P!(F)] e
Remark 3.2.6. Definition 3.2.5 comes from the fact that the list of Serre weights of py is then
minimal in the sense of Conjecture 5.53.1. It is very crucial in the proof of Theorem 5.6.2 as it is
more difficult to track the Fontaine—Laffaille parameters on the automorphic side if we have too
many Serre weights. Moreover, these conditions simplify our proof for Theorem 3.7.1.
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3.3. Breuil modules of certain inertial types of niveau 1. In this section, we classify the
Breuil modules with certain inertial types, corresponding to the ordinary Galois representations
Do as in (3.0.1), and we also study their corresponding Fontaine-Laffaille parameters.

Throughout this section, we always assume that p, is strongly generic. Since we are only
interested in inertial types of niveau 1, we let f =1, ¢ = p — 1, and w = /—p. We define the
following integers for 0 < i <mn — 1:

1 ifi=n-—1,
(3.3.1) r@=2 ifo<i<n-—1;
n—2 ifi=0.
We also set
£ = c+i— {0

foralli € {0,1,--- ,n—1}.

We first classify the Breuil modules of inertial types described as above.
Lemma 3.3.1. Assume that py is strongly generic and that M € F-BrModﬁd_1 corresponds to
the mod p reduction of a strongly divisible modules M such that Tgp’"‘l(/\/l) is a Galois stable
lattice in a potentially semi-stable lift of p, with Hodge—Tate weights {—(n —1),—(n —2),---,0}
and Galois type EB?:_Ol k.

Then M € F—BrModZd_1 can be described as follows: there exist a framed basis e for M and a
Jramed system of generators f for Fil" ' M such that

) RORSRO) ©) _p®

u'm—1¢ ﬂnfl,n72u n-1 n-l,n-2 ... ﬁnil’ourn—l n=-1,0
(0) (0) o (O
_ 0 u'm—2¢ Br—o ot n=2¢"n=2,0
Mat, ;(Fil""'M) = ' :
0
0 0 ur(() Ve
and
Mate, ¢ (¢n—1) = Diag (vy—1, Vn—2, -+ , o)

where kl(,oj) = kEO) - k‘g('o), vi € F* and B; ;j € F. Moreover,

where v; 5 =0 if i < j and v, ; € ue[k;‘O)*kEO)hgo ifi>j.

Note that ¢ and f in Lemma 3.3.1 are not necessarily the same as the ones in Lemma 3.1.2.
Proof. We keep the notation in (3.0.4), (3.0.5), and (3.0.6). That is, there exist a framed basis e for
M and a framed system of generators f for Fil"~* M such that Matg,i(FilnflM), Mate, ¢ (1),
Mat, (V) are given as in (3.0.4), (3.0.5), and (3.0.6) respectively. Since k; = k;o) mod (p — 1), we
have r; = 7"2(0) for alli € {0,1,--- ;n— 1} by Lemma 3.1.2, following the notation of Lemma 3.1.2.

We start to prove the following claim: if n —1 >4 > j > 0 then

(3.3.2) e — (kZ(O) _ kj(_O)) > n.
Indeed, by the strongly generic assumption, Definition 3.0.5
e— (K —K") = (- 1) = (ci+i =) + (e +5 — 1)

=== (e —e) = (=) + " =)
> (p=1) = (eamr —co) = (n—=1-0)+ (1~ (n —2)
>3n—4—-2n+4=n.
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Note that this claim will be often used during the proof later.
We now diagonalize Mate f(¢,—1) with some restriction on the powers of the entries of the matrix

Mat, s (Fil" " M). Let Vp = Mat, ;(Fil"'M) € MJ(S) and Ag = Mat, s(¢n-1) € GL;(S).

We also let V; € MY(S) be the matrix obtained from Vj by replacing v; ; by v ; € So, and

By € GLI(S) the matrix obtained from Agy by replacing w; ; by wj ; € Sp. Tt is straightforward
to check that Ay - V) =V, - By if and only if for all ¢ > j

i—1
(0) _1.(0) (0) _1.(0 (0) _1.(0) (0) (0) _1.(0)
/ k.’ —k; 2 : / k) —k; k' —k N k' —k,;
(333) I/Z"Ui’ju[ J v ]1 + wisvsyju[ s g ]1+[ J s ]1 —|—wi7jur.7 e+[ J i ]1
s=j+1
i—1
.(0) .(0) _;.(0) (0) (0) (0) (0) (0) (0)
I ) kY —k; / ks —k; k:’'—k k7 —k;
= wj ju' etk =kl E Ui,sws,ju[ S E e L I g F l/jU@.jU[ ik

s=j+1

Note that the power of u in each term of (3.3.3) is congruent to [k‘§0) - kfo)]l modulo (e). It is

immediate that for all i > j there exist v] ; € So and wj ; € Sy satisfying the equation (3.3.3) with
the following additional properties: for all i > j

(3.3.4) degv; ; < re.
Letting €’ := eAg, we have
Mater g (Fil""'M) =V} and Mate p(¢n—1) = ¢(B1)

where f' = ¢'Vi, by Lemma 2.4.4. Note that ¢(B;) is congruent to a diagonal matrix modulo
(u™) by (3.3.2). We repeat this process one more time. We may assume that w;; € u™®Sy,
i.e., that Ag = B; modulo (u"®) where B; is assumed to be a diagonal matrix. It is obvious

—1,(0) _ (0
that there exists an upper-triangular matrix V; = (v} ul? Tk I

i whose entries have bounded
degrees as in (3.3.4), satisfying the equation AgV; = Vp By modulo (u™¢). By Lemma 2.4.4, we get
Mat: /(¢n—1) is diagonal. Hence, we may assume that Mat, ¢(¢,—1) is diagonal and that degv; ;
in Mat,_¢(Fil" "' M) is bounded as in (3.3.4), and we do so. Moreover, this change of basis do not
change the shape of Mat,(N), so that we also assume that Mat,(N) is still as in (3.0.6).

We now prove that foralln—1>4i> 35 >0

(0) _1.(0) (0)  (1.(0) _,(0)
(3.3.5) /Ui,ju[kj kil = Bijui ¢ (k™ = k57

for some 3; ; € F. Note that this is immediate for i = n —1 and i = 1, since ngo) =1lifi=n—1or

1 = 1. To prove (3.3.5), we induct on i. The case i = 1 is done as above. Fix pg € {2,3,--+ ,n—2},
and assume that (3.3.5) holds for all i € {1,2,---,po — 1} and for all j < i. We consider the
subquotient M, o of M defined in (3.0.7). By abuse of notation, we write ¢ = (ep,, - ,€0)
for the induced framed basis for M, o and f = (fp,, -, fo) for the induced framed system of
generators for Fil" ' M, o.

We claim that for pg > 7 > 0

DPo
T — (0 _ (0
u*N(f;) € Souf; + E Soulks” ki hft-
t=j+1

) )
It is clear that it is true when j = py. For j < pg, consider N(f;) = N(f; — u's ‘ej)+N(u"i “e;).

) © _
It is easy to check that N(f; —u'7 “e;) and N(u'7 “e;) + r§-0)efj are S-linear combinations of

i Sl ‘nati [k =k AREACOEN
€po> " * 1 €j+1, and they are, in fact, So-linear combinations of u'™i ~"roltey, .- utt TR
), . .
k;"_invariant. Since

uN(f;) € Fil" My, 0 D u""YeM,, o

€j+1
since they are w
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and 0) e e (0 e e (0)
N(f) +r; euf; = u[N(f; —u's “ej)] +u[N(u"s “e;) +r; " efjl,

we conclude that

Po
— 0 (0
N(f;) +r7eutfye 3 Soults R,
t=j+1
which completes the claim.
Let

0 _;.(0)
Matiai(NlMpo,o) = (%7]' . u[kj“ & ]1)
where v; ; = 01if ¢ < j and v, ; € Sy if i > j. We also claim that

0) _1.(0)y —
vy € ulhs” —RTIG,

for pg > ¢ > j > 0, which can be readily checked from the equation ¢cN¢p—1(f;) = dn—1(u*N(f;)).
(Note that ¢ =1 € S as E(u) = u® + p.) Indeed, we have

Po
(0) _1.(0)
cNon-1(f;) = N(vje;) = v; Z %‘,ju[kf v,
i=j+1
On the other hand, since Mat,, f(¢n—1] Mpo,o) is diagonal, the previous claim immediately implies
that -

¢n l(u N fj Z Soup k(O) k(o)]l
t=j+1
Hence, we conclude the claim.
(0
We now finish the proof of (3.3.5) by inducting on py — j as well. Write v; ; = > "2, - Et;ute
for m(t) € F. We need to prove x;) =0forte{0,1,--- r,(,oo) — 2}. Assume first j = pp — 1, and

we compute N(f;) as follows:

(0) 1
e(t41)— (k) —k()
N(fro-1) Z 2l gy felt 1) = (D) — k) D Ve,
(0) _ (0) (@
+ Ypo.po— 1u( ro~ e (ko' =Ky e Po _7'(0) 1€U "po-1¢ €po—1-
() ©_
Since fpo—1 = u"r0—1%, 1 + 32,7% x;?,po_lute“'[kpo—l_kl’o]lepo, we get
-
t 0 e(t+1)— (k) —k
(33.6) Nfpo-1) = D a0 ppaferpoly —elt 1)+ () = kL Ju 07000y,
=0

(0) 0 (0)
+ Ypo,po— 1u( po— 1+1)e—(k§)0)—kp071)

ele— (k) —kge1) So and e — (k:](gg) A

epo

modulo Fil" ™' M, o. Since 7y, po_1 € © ) > n by (3.3.2),

po—1
we get
7‘1()%)71
— 0 0 k() — kY
Nfpp1)= D al) o alerfy — et +1) + (kD — k5 )JucHD =00 Hao-se,
t=0

modulo Fil" ' M, o, so that
o

(0) _1,(0)
N(fme) = 3 ol ferl® ) — et +1) + (RO — kO et 00 ke
t=0
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modulo Fil" "' M, o. But if t = r(o) — 1 then e(t +2) — (k:z(,g £ ) > 7“,(,?]), so that we have

po—1
(0) 2

0 0 . KO — k)
(3:3.7)  w"N(fpo-1) Z xl(ﬂto)Po 1[e }(70) 17 (t+1)+(kz(>0) k](ﬂo) )] (2= P~ 1)6170

modulo Fil" ' M, o.
It is easy to check that

(3:38) erely = e(t+1) + (k) — ki) 1) #0

DPo

modulo (p) for all 0 <t < r](g?)) — 2. Indeed, since k(o) =¢; for 0 <i<n—1by (3.3.1), we have
0 0 0
erpyy = et 1)+ (k) = k) 1) = =gy (1) + (e — o)

modulo (p), and so

erSy) = e(t+1) + (k) — ki 1) = (4 1) + (cpy — Cpp1 +1) = 70

pPo—

modulo (p) since r( ) =ifor0<i<n-—1 by (3.3.1).
SlIlCBO<t<’I“() 2,

0< (cpo — Cpo—1 T 2) - TI(z?)) < (t + 1) + (C;Do — Cpg—1 T 1) - T;(;g) < (cpo — Cpo—1 — 1) <p

by the strongly generic conditions, Definition 3.0.5. Hence, we conclude that xz(,?,po_l =0 for all

0<t< r;g) —2 since u*N(fp,—1) € Fil" "' M,, o. This completes the proof of (3.3.5) for j = po—1.
Assume that (3.3.5) holds for ¢ = pg and j € {po — 1,po —2,--- ,s+ 1}. We compute N(f;) for
po— 1> s >0 as follows: using the induction hypothesis on i € {1,2,--+ ,po — 1}

r®_1
Pro
e (50 _ ()
N(fs)=— Z éto)s[ (t+1) - (k[(f())) - kgo))}u (1) = Uy —hs )epo
t=0
= Ve (kL9 k() S — (kO — k() (0) (0 _ 1.(0)
+ Z Bisu”t Z Vot T ey — [ e — (k) — kg )]e;
i=s+1 s=i+1
+ure Z R el PR P S
1=s+1
i ele—(k" —k)]g
Since 7;,; € u i i NSp, we have
(([J)) 1
e (50 _ (O
N(fo) == D wfdlet+1) = (k) = kO™ =8 ey
t=0
ol 1) () g (1,(0) _ 1 (0) ()
_ Z Bi.slr! e— ) _kgo))]un- e— (ki —kg )ei—rgo)eurs e,
1=s+1

modulo Fil" "' M, o. By the same argument as in (3.3.6), we have
r;%) 1

— (k) (0
N(fs) = a® [V —e(t+1) + (kz(:? O (kg =k

Po, Po
t=0

po—1
+ Y BislrVe - e+ (£ — O]y e~ (67 =k,
i=s+1



30 CHOL PARK AND ZICHENG QIAN

modulo Fil"~'M,, . Now, from the induction hypothesis on j € {po — 1,po — 2,--- ,s + 1},

po—1

u® Z ﬂi,s[rgo)e — 7‘50)6 + (kEO) — kgo))]urgme_(kgm_kgm)el- S Fil”flMpo,o
1=s+1
and so we have
rz()?—l
N = Y afl e - elt+ 1)+ (kY — ka0 e
t=0

modulo Fil"~'M,, o. By the same argument as in (3.3.7), we have
o=

Z ) Ve —e(t +1) + (k;g) - kgo))]ue(t+2)_(k;%)_k§0))ep

Po,s
t=0

u“N(fs)

0

modulo Fil”_lMpoyo. By the same argument as in (3.3.8), one can readily check that rgo)e —e(t+
1)+ (k,(,g) - kgo)) # 0 modulo (p) for all 0 <t < rz(,g) — 2. Hence, we conclude that mgo),s = 0 for all
0<t< rz(,g) — 2 as u*N(f,) € Fil" ' M, o, which completes the proof. O

Proposition 3.3.2. Keep the assumptions and notation of Lemma 3.5.1. Assume further that p,
is mazimally non-split and satisfies the conditions in (5.2.2).

Then B;i—1 € F* fori e {1,2,--- ,n— 1} and we have the following identities: for 0 < j <
j+l<i<n-—1

FL%’J (ﬁo) = [/Bi,j’/j+1 RN 773 I (—1)7;7j+1 det A;,j] S P! (F)

where
Bitii  Bi+2i  Bitsy 0 Biciy o Biy
1 Bjr2j+1 Bjwsgrr o Bicigyr Bijer
o 0 1 Bitsg+2 0 Bi—1j+2 Bij+2
i.j : : : ) : :
0 0 0 o Bicti—2 B2
0 0 0 cee 1 Bii—1

Proof. We may assume ¢y = 0 by Lemma 3.2.4. We let V := Matg,i(Filn_lM) and A :=
Matgi(qbn_l) be as in the statement of Lemma 3.3.1. By Lemma 2.6.3, the ¢-module over
F ®r, Fp((@)) defined by 9 := Mg ((w))(M?*) is described as follows:

Mat, (¢) = (Ui )

where
RO e
vy @' if i = 7;
Ui,j = 0 if i > 7;
B O _ 0y
vt By R i <
. . . EEAC) _1.(0) (0)
in a framed basis ¢ = (¢p—1,¢n—2, -, ¢0) with dual type w kot ke pwho
. . . (0) (0) (0) .
By considering the change of basis ¢/ = (@kn—len_l,gk"—2 en_n, @0 eg), Mat, (¢) is de-
scribed as follows:
Mate (¢) = (Vi)
where © . ©
0 0
vttt if i = j;
Vi;j=¢ 0 if i > j;

_ O 40y .
v; LB c ) i< g
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Since kl(o) =c+1— rfo) for each n — 1 >4 > 0, we easily see that the ¢-module 9 is the base

change via F ®@p, F,((p)) = F ®p, F,((@)) of the ¢-module My over F @r, F,,((p)) described by

Vgilpcn,1+(n—1) 0 Ce 0
-1 - e —1 -1 n— -2
l/n_lﬂn_Ln_zBC 1+(n—1) Vn—QBC 2+(n—2) Ce 0
Matg//((ﬁ) = .
-1 o1t (n—1 -1 nat(n—2 —1
Vp—1Bn—1,00° 1+ (n—1) Vp—oBn—2,0p° 2H(n=2) ... vy p°
in an appropriate basis ¢’ = (e}l _;, ¢/ _5,--- ,¢j), which can be rewritten as
vt 0 e 0
-1 —1
v ﬁ _ _ v N 0
n—1Mn—1,n-2 n—2 c
_ . n—1+n—1 c1+1 C
Mat, (¢) = . . ) . -Dlag@ 1 Y 720)'
—1 —1 —1
Vp-1Bn-10  Vp_oBn—20 -~ 1
=:H’

By considering the change of basis ¢/ = ¢” - H' and then reversing the order of the basis ¢/,
the Frobenius ¢ of 9ty with respect to this new basis is described as follows:

vy ! Vf1511,0 ngilﬁnfl,o
O v e V;_ /8 1,1
(33.9)  Mat(g) = Diag (p,p+!, - ,porm FD) | Lo
0 0 0 vt
=H

with respect to the new basis described as above.
The last displayed upper-triangular matrix H is the Frobenius of the Fontaine—Laffaille module
M such that T? (M) = py = TL(M), by Lemma 2.6.4. Hence, we get the desired results (cf.

Definition 3.2.3). 0

Remark 3.3.3. We emphasize that the matriz H is the Frobenius of the Fontaine—Laffaille module
M, with respect to a basis (eg,e1, -+ ,en—1) compatible with the filtration, such that Tk, (M) =

Do = T (M), so that we can now apply the conditions in (3.2.2) as well as Definition 3.2.5 to the
Breuil modules in Lemma 3.3.1. Moreover, H can be written as

1 Bio - PBn-10
0 1 - Buo1a .
H: : : . . 'Dlag(l/oil,yfly".ﬂy'r:fll)ﬂ
0 0 0 1
—H"

so0 that we have (1,n)woH' € B(F)woB(F) if and only if (1,n)we(H")" € B(F)woB(F). Hence,
Do being Fontaine—Laffaille generic is a matter only of the entries of the filtration of the Breuil
modules if the Breuil modules are written as in Lemma 3.3.1.

3.4. Fontaine—Laffaille parameters vs Frobenius eigenvalues. In this section, we study
further the Breuil modules of Lemma 3.3.1. We show that if the filtration is of a certain shape
then a certain product of Frobenius eigenvalues (of the Breuil modules) corresponds to the newest
Fontaine-Laffaille parameter, FLZﬁl’O(ﬁo). To get such a shape of the filtration, we assume further
that p, is Fontaine-Laffaille generic.

Lemma 3.4.1. Keep the assumptions and notation of Lemma 3.3.1. Assume further that p, is
Fontaine—Laffaille generic (cf. Definition 3.2.5).
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Then M € F-BrModﬁJl can be described as follows: there exist a framed basis e for M and a
framed system of generators f for Fil""* M such that

Mate, ¢ (¢n—1) = Diag (ttn—1, pn—2, =+ s fto)
and
Mat, ¢ (Fil" "' M) = (U ;)
where
urntae= O —k(”) ifi=n—1andj=0;
()
u'i € fo<i=j<n-—1;
A R
(3.4.1) Uy ;= Tig w* P ifn—1>1i>j;
-a i,j MONRNORON - :
u'o (:)*1 (00) o ifi=0andj=n—1;
zoj-uo TETTRD =0 <j<n—1;
0 otherwise.

Here, u; € F* and x; ; € F.
Moreover, we have the following identity:

n—2
FL;~%(py) = H pi
=1

Due to the size of the matrix, we decide to describe the matrix Matgi(FilnflM) as (3.4.1).

But for the reader we visualize the matrix Mat,, f(Fﬂ"_l./\/l) below, although it is less accurate:

(© (©
0 0 . 0 urn—)leikn—)l,o
(0) (0) _1.(0) (0) o 1.(0)
0 u'n-2 . xniz’luﬂlfze kpZon l‘n,Q)ouT”*Ze kpZo
0 (0) (0)
0 0 - uT’g ) T Ourl e=kio
(0) (0) (0) (0) (0) (0) (0)
who etkn’io Lo p_ou’® etk, o0 ... 2 u"® etkio xoouo ©

where k‘g}) = kO _ 0,

? J

Proof. Let ¢, be a framed basis for M and [, o @ framed system of generators for Fil" ' M such
that Vo := Mate s (Fil" ' M) and Ap := Mate, s (¢n-1) are given as in Lemma 3.3.1. So, in
particular, V{ is upper-triangular and Ag is diagonal.

By Proposition 3.3.2, the upper-triangular matrix H in (3.3.9) is the Frobenius of the Fontaine—
Laffaille module corresponding to py, as in Definition 3.2.3. Since we assume that p,, is Fontaine—
Laffaille generic, we have (1,n)woH' € B(F)woB(F) as discussed right after Definition 3.2.3, so
that we have woH'wo € (1,n)B(F)woB(F)wy. Equivalently, wo(H')'wy € (1,n)B(F)woB(F)wy
by Remark 3.3.3, where H’ is defined in Remark 3.3.3. Hence, comparing Vy with wo(H’) wyo,
there exists a lower-triangular matrix C' € GLE (S) such that

Vo -C=V:= (Ui,j)ogi,jgn—l

where U, ; is described as in (3.4.1), since any matrix in woB(F)wy is lower-triangular. From the
identity Vo - €' = V1, we have V} = Mat, s (FiI""'M) and A; := Mate, s (pn_1) = Ag - ¢(C) by
Lemma 2.4.4, where ¢, := ¢y and f = e, V1. If i <, then [k§0) - kfo)]l = kﬁo) - kgo) > n as
is strongly generic, so that A; is congruent to a diagonal matrix B} € GL,(F) modulo (u"°) as

[k<0)—k§0)]1 . . . .
C = (¢;j-u™ 7% 1) is a lower-triangular and Ay is diagonal.
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Let V5 be the matrix obtained from V; by replacing z; ; in (3.4.1) by y; j, and By = (b; ;) is the
diagonal matrix defined by taking b;; = b;; if 1 <i <n—2and b;; = b, _;_;, _; otherwise,

where Bj = (b} ;). Then it is obvious that there exist y; ; € F such that
Ay - Vo=V1- By
modulo (u"¢). Letting ey := e,-A;, we have Vo = Mat,,_ ; (Fil"~* M) and Matgz,iQ(qbn—l) = ¢(Bs)

=2

by Lemma 2.4.4. Note that Ay := Mat,, 1 (¢n—1) is diagonal. Hence, there exist a framed basis for

M and a framed system of generators for Fil" ' M such that Mat,, ;(¢,_1) and Mat,_(Fil"~' M)
are described as in the statement. B B

We now prove the second part of the lemma. It is harmless to assume ¢y = 0 by Lemma 3.2.4.
Let V := Mat, ;(Fil" 'M) and A := Mat, ;(é,—1) be as in the first part of the lemma. By
Lemma 2.6.3, the ¢-module over F QF, F,((@)) defined by M := Mg ((w)) (M) is described
as follows: there exists a basis ¢ = (e,—1,¢n—2, - ,¢), compatible with decent data, such that

~

Mat,(¢) = (A=1V)! where V! and (A1)t are computed as follows:

0 0 e 0 fwrf()o>6+k7(zo—)1,0
0 wrfzolz . 0 o ;2wTé0)e+k5LOlz,o
P = - , o
0 Ty_2 127'51?_)28*]“;0—)2,1 . Erﬁo) o 1@T((Jo>e+kg[,)(>)
B e TTTRP R L L
and
A™' =Diag (i, pinto g ) -
By considering the change of basis ¢/ = (gk*(fll en_l,@kfﬂ?—)2 Cn_9," " ,@kgmel,@kém ¢g), we have
Mat, (¢) = (V') - Diag (11,11, i o 5 fig ")
where
0 0 . 0 weko”+75”)
0 P Ui I 0 2ot K747
(V) = : . : :
0 Tnog i Eile e e D) ek )
Ee(kf—)lJrTE?—)l xn_270@e(}€522+7"522) ml,oze(k§0)+rio)) xmoze(kt()m "'T(()O))

Since k'j(p) + T](O) = ¢;j +j for all j, it is immediate that the ¢-module I over F ®p, F,((=))

is the base change via F ®r, F,((p)) — F ®r, F,((@)) of the ¢-module My over F @r, F,((p))
described by

Mat(¢) = F" - Diag (p“r—1+"7 1 pon—2tn=2 ... p&)

where
-1
0 O1 0 ... 0 #0
0 Hp—2 0 T 0 Ko To,n—2
-1 1 21
1 0 Hp—2Tn—2,n—3 Hp—3 T 0 Ho Ton-3
F'" = ) ) . :
-1 -1 -1 -1
01 ,unz2xn—2,1 unzgfn—s,l e ull i 1’1,’071
Hp—1  Hp—2Tn—2,0  HUp_3Tn-30 - H; T10 Ho Z0,0

in an appropriate basis ¢”.
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Now, consider the change of basis ¢/ = ¢ - F”/ and then reverse the order of the basis ¢/’. Then
the matrix of the Frobenius ¢ for 97y with respect to this new basis is given by

Dlag (pco7p61+1a e apcn_l—‘rn_l) -F

where

—1 —1 —1 —1 —1
Ko Too  H1 Z1,0 Ho X200 0 Hp_9Tn—20 Hp—3
~1 - Z1 -1

Mo To,1 I P T2 ctc fy_oTn—21 0
- -1 -1

o To,2 0 12  Hpo®r22 0

F= ) ) .

—1 —1

Mo To,n—2 0 0 Hp—o 0
ot 0 0 0 0

By Lemma 2.6.4, there exists a Fontaine-Laffaille module M such that F(M) = 9, with
Hodge-Tate weights (co,c1 + 1,--+ ,¢p—1 +n — 1) and Mate(¢s) = F for some basis ¢ of M
compatible with the Hodge filtration on M. On the other hand, since T} ;.(M) = 5, there exists
a basis €’ of M compatible with the Hodge filtration on M such that

wo We,1 cct Wop—2  Won—1
0 wi - Wip—2 Win-1
Mat, (o) = :
0 0 T Wnp,—2 Wn—2,n—1
0 0 e 0 Whp—1
=G

where w; j € F and w; € F* by Lemma 3.2.1. Since both e and €’ are compatible with the Hodge
filtration on M, there exists a unipotent lower-triangular n x n-matrix U such that

U-F=0G.

Note that we have wg -1 = u;il by direct computation.

Let U’ be the (n — 1) X (n — 1)-matrix obtained from U by deleting the right-most column and
the lowest row, and F’ (resp. G’) the (n — 1) x (n — 1)-matrix obtained from F' (resp. G) by
deleting the left-most column and the lowest row. Then they still satisfy G’ = U’ - F’ as U is a
lower-triangular unipotent matrix, so that

)

n—2
FL2 M(By) = [won—1: (—1)"det G’} = [pi,;}; : (=1)" det F'] = [1 : H wit
i=1

which completes the proof. O

Proposition 3.4.2. Keep the assumptions and notation of Lemma 3.4.1.
Then M € F—Brl\/[odgd_1 can be described as follows: there exist a framed basis e for M and a
framed system of generators f for Fil" ™' M such that

0 0 0 o0 uem 2=k
0 u(m—2)e 0 e 0 0
0 0 wm=3e .. 0
Mat, ;(Fil" "' M) =
0 0 0 ceeouf 0
wm=2e+ k2 k() 0 0 .0 0

Moreover, if we let

Mate, s (6 1) = (g gul"H0)
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fora;,; € ?; and o j € So if i # j then we have the following identity:

n—2 n—2
FL2 0(50) = [T (@)t = T i
=1 =1

)

© ) ! = a;; modulo (u®).

where o; | € F is determined by o

Note that Mat,, f(¢,—1) always belong to GLY(S) as ¢ and [ are framed.

Proof. We let ¢, (resp. ¢;) be a framed basis for M and f_ (resp. f ) be a framed system of gen-
erators for Fil" ™' M such that Mate, r. (Fil"~' M) and Matgoio(qﬁn_l) (resp. Mat,, s (Fil" "' M)
and Mat, s (¢n—1)) are given as in the statement of Lemma 3.4.1 (resp. in the statement of
Proposition 3.4.2). We also let Vo = Mate (Fll" M) and 4, = Mat, (¢>n—1) as well as
Vi = Mat,, s (Fil""")M and A = Mate, s (¢n 1).

It is obvious that there exist R = (ruu[k(m —k? )]1) and C = (c”u[k(m k(mh) in GLE/(S) such
that

R-Vy-C=V,and ¢; =R}

for r; ; and ¢; j in So. From the first equation above, we immediately get the identities:

Ayl = 1= 0 )l =

for 0 < ¢ < n —1, where r( e F (resp. c( ) € F) is determined by r( ) = = r;; modulo (u®) (resp.
(0) = ¢;,; modulo (u®)). By Lemma 2.4.4, we see that A; = R- A - ¢( ).
Hence7 if we let Ay = (a ]u[’“(0> ks ) then

OB O JENG)

for each 0 < i <n — 1 since R and C' are diagonal modulo (u), so that we have

[~ T1e

which completes its proof. O

Note that the matrix in the statement of Proposition 3.4.2 gives rise to the elementary divisors

of M/Fil"* M.

3.5. Filtration of strongly divisible modules. In this section, we describe the filtration of the
strongly divisible modules lifting the Breuil modules described in Proposition 3.4.2. Throughout
this section, we keep the notation r( ) as in (3.3.1) as well as kgo).

We start to recall the following lemma, which is easy to prove but very useful.

Lemma 3.5.1. Let 0 < f < n be an integer, and let M e (QE-I\/IoleLd_1 be a strongly divisible
module corresponding to a lattice in a potentially semi-stable representation p : Gq, — GLy(E)
with Hodge-Tate weights {—(n — 1), —(n — 2),---,0} and Galois type of niveau f such that
psn—1 /370 ~ =
T " (M) ®o, F = 7.
If we let

, Fil" ' M N Fil'S - M
(i) ._
= ( Fil" 'S M ) oz
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forie{0,1,- —1}, then for any character € : Gal(K/Ky) — K* we have that the &-isotypical
component X of X s a free Ko @ E-module of finite rank

n(n —1) 7i(i-l—1).
2 2

rankK()@QpEX{(’) =

Moreover, multiplication by u € S induces an isomorphism X(O) = X(O)

Proof. We follow the strategy of the proof of [HLM], Lemma 2.4.9. Since p has Hodge—Tate weights
{=(n—-1),—(n—2),---,0}, by the analogue with E-coefficients of [Bre97], Proposition A.4, we
deduce that

Fil" 'D = Fil" 'Spfr1 @ Fil" 2Spfro@® - @ Fil'Spf1 & Spfo
for some Sg-basis fo, - , fn_1 of D, where D := /T/l\[%] = SE®E Dg’”’"fl(V), so that we also have
Fil" 'DNFil'SED = Fil" 'Spfr1 @ Fil" 2Spfn o @ - @ Fil'Spf; & - - - @ Fil'Sg fo.

Since p = Tgp’"fl(ﬁ/l\) ®o, E is a Gq,-representation, Fil'(K @k, Dg’“”fl(p)) = K ®q,

Fil'Dgr(p ® €'~™), so that X () =~ W is a free Ko ®q, E-module. Since Fllffﬂsbﬂ o

d. @] o(Ko ®q, E)uiE(u)?, we have rankK()@QpEX(i) = [% — w} e. We note that
Gal(K /Ko) acts semisimply and that multiplication by u gives rise to a Ky ®q, E-linear isomor-
phism on Sg/Fil’Sg which cyclically permutes the isotypical components, which completes the
proof. O

Note that Lemma 3.5.1 immediately implies that
(3.5.1) rankKO@,QpEX&(i) — rankK()@QpEX{(iH) =i+ 1.

We will use this fact frequently to prove the main result, Proposition 3.5.3, in this subsection.
To describe the filtration of strongly divisible modules, we need to analyze the Fil" ' M of the
Breuil modules M we consider.

Lemma 3.5.2. Keep the notation and assumptions of Lemma 3.5.1.
(i) If u® is an elementary divisor of M/Fil"~' M then

e— (6 — kY <a < (n—2)e+ &, — k).

Moreover, FL'10(5 0o (resp. FL'10(p 0) if and only if u®~ (23 =k(”) resp.
0

©) (0
um=Det (2, =k’ )) is an elementary divisor of M/Fil" ' M.
(ii) If we further assume that p, is Fontaine—Laffaille generic, then

{u(n—2)e+(kfloll—kéo))’u(nf2)e (n—3)e

(0) (0)
) y Tt ue’ ue_(kn—l_k() )}

are the elementary divisors of M/Fil"~' M.

Proof. The first part of (i) is obvious since one can obtain the Smith normal form of Mat f Fil" ™' M

by elementary row and column operations. By Proposition 3.3.2, we know that FL”~1%(5,) # oo
©) 300
if and only if 8,-1,0 # 0. Since u*~ (k2=17%6") has the minimal degree among the entries of

Mat, ¢ Fil" ' M, we conclude the equivalence statement for FLI~*%(5,) # oo holds. The equiva-
lence statement for FL? ™" (5,) # 0 is immediate from the equivalence statement for FL!"~%(75,) #
oo by considering M* and using Lemma 3.2.4, (vi).

Part (ii) is obvious from Proposition 3.4.2. O
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Proposition 3.5.3. Assume that p, is Fontaine-Laffaille generic and keep the notation TZ(O) as
in (3.8.1) as well as k:go). Let M € Og -Modg;1 be a strongly divisible module corresponding to a
lattice in a potentially semi-stable representation p : Gq, — GLn(E) with Galois type D= 01 ok
and Hodge—Tate weights {—(n —1),—(n —2),---,0} such that Tgp’”*l(ﬂ) ®o, F = py.

Then there exists a framed basis (€p—1,€n—2, " ,€0) for M and a framed system of generators
(ﬁb*laﬁtf% e ,J?o) for Fil" ' M modulo Fil" 'S - M such that MatafFilnfl/T/l\ is described as
follows:

_P"a_l 0 0 . 0 ue— k=K
0 Ew)"? 0 0 0
0 0 B3 0 0
0 0 0 - E(u 0
RO _pO o o
un=1"o N S E(u)t 0 0 0 e

where o € O with 0 < vp(a) <n —1.

Proof. Note that we write the elements of M in terms of coordinates with respect to a framed basis
€:=(€p— 1,€n 2, -+ ,€0). We let M := M ®g5 S, which is a Breuil module of weight n — 1 and of

type @ 0 Wkt by Proposition 2.4.3. Note also that M can be described as in Proposition 3.4.2,
and we assume that M has such a framed basis for M and such a framed system of generators for

Fil" ' M. During the proof, we write (Fil"_l/\//T) for the &-isotypical component of Fil" ' M for
any character £ : Gal(K/ KO) — K, and by abuse of notation we often write fl for the image of
f; in Fil"~ M JFil"™ 15 M without mentioning.
Since Fil"~1S - M C Fil"~ ./\/l, we may let
©0) 10y

e~ (Fnma=ho )Zk gwn LeE(u)*

we— ko =) Zk o Tps *E(u)k
fo= € (Filn71ﬂ> OR

w0

ue— K- k“”)zk 2 41k E(u)*

Zk:o zokE(u )

where z; ; € Og. The vector fo can be written as follows:

v Pk 0
’u,(k(O) kw)z) Zk Ol‘n QkE( ) 0
Fo = ue— 2=k n :
A T B 02
B KD S g B e )\ oo+ K wosr!

—. 57
=en_1

(0) _4.(0)
By (ii) of Lemma 3.5.2, we know that u°~(*n-17%o0 ) is an elementary divisor of M/Fil" "' M
and all other elementary divisors have bigger powers, so that we may assume vy, (2,—1,0) = 0. Since

1 © () N N .
Fil" ' M C u¢~®n=17k0 ) M, we must have v,(20,0) > 0. S0 €, := (€,_1,n_2,- -, &) is a framed
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basis for M by Nakayama lemma and we have the following coordinates of fo with respect to ¢€;:

e RO

n—1

fo= : S (Fﬂn_lﬂ)ak(()o)

for a € OE With vp(a) > 0.

Since u*t’ k(O)f € (Fil"_lj\//mwkgo) and Fil"~'S - M c Fil" ' M, 1 can be written as
0
ue™ (ke Zk Zo YUn—2xE(w)*
fi= e (Fi' M) Lo,
Sro i, kE( )k )
W S o B(w)*

where y; ; € Og. By Lemma 3.5.1, we have y; o = 0 for all i: otherwise, both ukio)*kéo)fo and fl
belong to X(O)(O) X(lk)(o) which violates (3.5.1). Since u® is an elementary divisor of M /Fil" ™' M
w1

by (ii) of Lemma 3.5.2, we may also assume y;,; = 1. Hence, by the obvious change of basis we
get f1 as follows:

A=Ew| ¢ | e (Fil”_lﬂ)&kgo) .
1
0

By the same arguments, we get ﬁ € (Fil”flﬂ/l\) o fori=1,2--- n—2asin the statement.
w
Note that the elements in the set

For Euyuh™ im0 oo B(u)n bR

(0) ) _4.(0) ~ 0) _4.(0) ~
U {ufn=1r=R0 i Bu)ufe- R e B () Bk R Y

KO g 2

{u™

kO 2
k2

(0) 0) ~
.U{ukn 1k —2f,_ 2}
(0)

are linearly independent in X () over E, so that the set forms a basis for X( )(0> by Lemma 3.5.1.

wnl

Hence, fn_l is a linear combination of those elements over E. We have

_pnfl
0
E© _g® = n—2—i il 7
ubnm Rl (N E)" ) fo= :
i=0 0

(0) (0)
Oéukwo 1*]@0 ZZL 02pn 2— 7.E( )

Hence, we may let

n—2
~ 1 Lo (0) _o_y AN Sn—
fno1 = auknf —ko (Zp" 2 ZE(u)’) fo€ (Fll 1M) ()

4 o1
=0



ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GL,(Q,) IN THE ORDINARY CASE 39

i, (n—2)e+(k, —k5") 5 - an—1 ..
since u n=1""0 ) jg an elementary divisor for M /Fil""* M by (ii) of Lemma 3.5.2. More-
over, v, <p7:1) > 0 since Fil" "' M C we— k2 =k6") Aq C uM by Proposition 3.4.2.

It is obvious that the ﬁ mod (wg, Fil’S) generate Fil" ' M for M written as in Proposi-
tion 3.3.2, so that they generate Fil"_l/\/l/ue(”*l)M. By Nakayama Lemma, we conclude that

the f; generate Fil" ' M JFil" LS. M\, which completes the proof. O

Corollary 3.5.4. Keep the notation and assumptions of Proposition 3.5.3, and let
()\nfla >\n727 Ty )‘0) S (OE)TL

be the Frobenius eigenvalues on the (@kff)—)l,ak*(f—)% e ,@kém)-isotypic component of Dg‘“nil(p).
Then
vp(a) ifi=n—1
vp(Ni) =¢ (n—1)—1i ifn—1>i>0
(n—1)—vp(a) ifi=0.
Proof. The proof goes parallel to the proof of [HLM], Corollary 2.4.11. O

3.6. Reducibility of certain lifts. In this section, welet 1 < f < n and e = pf —1, and we prove
that every potentially semi-stable lift of p, with Hodge-Tate weights {—(n — 1), —(n —2),---,0}
and certain prescribed Galois types @?;01 &l; is reducible. We emphasize that we only assume

that p, is generic (cf. Definition 3.0.5) for the results in this section.

Proposition 3.6.1. Assume that p, is generic, and let (kn—1,kn—2, -+ ,ko) be an n-tuple of
integers. Assume further that kg = (pf=' + p/ =2 4+ -« + p + 1)cop modulo (e) and that k; are
pairwise distinct modulo (e).

Then every potentially semi-stable lift of p, with Hodge—Tate weights {—(n—1),—(n—2),---,0}

and Galois types @?;01 @l; is an extension of a 1-dimensional potentially semi-stable lift of py o

with Hodge—Tate weight 0 and Galois type @];0 by an (n — 1)-dimensional potentially semi-stable
lift of p,,_1 1 with Hodge-Tate weights {—(n — 1), —(n —2),--- ,1} and Galois types @?:_11 Uu;f

Note that if f = 1 then the assumption that p, is generic implies that k; are pairwise distinct
modulo (e) by Lemma 3.1.2. In fact, we believe that this is true for any 1 < f < n, but this
requires extra works as we did in Lemma 3.1.2. Since we will need the results in this section only
when f = 1, we will add the assumption that k; are pairwise distinct modulo (e) in the proposition.

Proof. Let MeoO e-Modj; ! be a strongly divisible module corresponding to a Galois stable lattice
in a potentially semi-stable representation p : Gq, — GL,(F) with Galois type @?:_01 &’Jﬁ and
Hodge-Tate weights {—(n — 1), —(n — 2),--- ,0} such that Tg”’n_l(ﬂ) ®o, F = py. We also let
M be the Breuil module corresponding to the mod p reduction of M. M (resp. M) is of inertial
type EB;:Ol ki (resp. EB?:_Ol w]]f) by Proposition 2.4.3.

We let f = (fu—1, fa—2,---, fo) (vesp. iA: (fn,l,fn,g, e ,fo)) be a framed system of gen-

erators for Fil" ' M (resp. for Fil”flﬂ/l\). We also let ¢ = (ep—1,en—2, -+ ,€9) (resp. € =
(én—1,€n—2,"--,€p)) be a framed basis for M (resp. for M). If x = a,_1€,—1 + -+ + apeg € M,
we will write [z]., for a; for i € {0,1,--- ,n—1}. We define [z]g, for x € M in the obvious similar

way. We may assume that Mat,_¢(Fil" "' M), Mat,_t(¢n_1), and Mat,(N) are written as in (3.0.4),
(3.0.5), and (3.0.6) respectively, and we do so.

By the equation (3.0.3), we deduce rop = 0 modulo (e) from our assumption on ky. Recall that
p > n? 4 2(n — 3) by the generic condition. Since 0 < 79 < (n — 1)(pf — 1)/(p — 1) by (ii) of
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Lemma 2.3.5, we conclude that rq = 0. Thus, we may let fj satisfy that [fole, =0if0<i<n-—1
and [fole, = 1, so that we can also let

Hence, we can also assume that []’;]go =0for 0 <j<n-—1 WeletVy = Mat, f(FiI"_l/\//Y) €
M (So,) and Ay = Mat, {(én-1) € GL(Soy)-
We construct a sequence of framed bases {E(m)} for M by change of basis, satisfying that
Mat ., zom (Fil"~ M) e MEY(Sp,) and Mat, ) sm (fn-1) € GLY(S0,)

converge to certain desired forms as m goes to co. We let V(™ € ME (S, ) and A(™ e GLE (So,)
for a non-negative integer m. We may write

( ;m—i-l) [kn—1—koly flm‘gl) [kn_2— ko]f ,‘T&L u[km+17k0]f7xém+1))

for the last row of (A(™)~1 where x(()mH) € (55,)o0 and x( m+1) € (Sogz)ofor0<j<n—1. We
define an n x n-matrix R as follows:

1 0 e 0 0

0 1 e 0 0

R(m_H) = : : - : :

0 0 e 1 0

Mt (m+1) (m+1)
Znil)u[k"’lfk‘)]f wsﬁi1)u[k’“27k0]f (7 +1)u[k1 Rols 1
We also define

1 0 0 0
0 1 0 0
o(m+1) — : : . : :
0 0 e 1 0
gDyl skl (M T ke —ko)ly L MAD T —ko))r

by the equation
Rm+1D) [y m) | olm+1) _ 7 (m)

where y(er € (So,)o for 0 < j < n—1. Note that the existence of such a matrix C("*1) is obvi-

ous, since p~ ko = ko modulo (e) by our assumption on ko immediately implies [p~*(k; — ko)]f <
ks — kol 7 + [p~'kj — ki) 7. We also note that R0 € GLY(Sp,,) and Cm+D) ¢ ELE”’(SOE).
Let V1) = V(™) for all m > 0. Assume that V(™) = Mat_(,.) zom (Fil" "' M) and A(™) =

A(m) ~(m)

MatA(,m F (¢n—1), with respect to a framed basis " and a framed system of generators f

If we let e = &™) . (RO™+1))=1 then
Gn_1 ETIVIMED) = g, (@ (ROMHD) 1y (mtD))

— d)n 1(’{"1 V(m C(m+1 )
— glm) A(m)¢(c(m+l))

— glmHD) plm+1) . g(m) - p(CmHD),
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Hence, we get

VD = Mat ., f(mﬂ)(Fil"_l/T/l\)

and

R(m+1) | g(m) d)(C’(erl)) = Matamﬂ) f<m,+1)(¢n_1),

m4+1
where 7 +)::

We compute the matrix product Am+1) .= Rm+1) . A(m) . (C(mH1)) a5 it follows. If we let
Alm) — (al(?)u[kj*ki}f> for aE?) € (Sop)o if i # j and agzL) € (S5, )o, then

gm+ Dy (m+1)

0<i,j<n—1
6.1 Alm+1) :< (m+1) [krki]f) 10
(3.6.1) ;T o<iient € GL,, (So,)
where 017(;?+1)u[kj7ki]f is described as follows:

a§7)u[kf_ki]f + a(n(})u[ko_ki]f ¢(y§m+1))up[p71(ki_k0)]f ifi>0andj>0;

i,

agg)u[ko’ki]f if¢>0and j=0;

oy yurle” (ko)L ifi =0 and j > 0;

w?”}+1> if i=0and j=0.
0

Let V(© = Vj and A© = Ay. We apply the algorithm above to V(?) and A(®). By the algorithm
above, we have two matrices V("™ and A(™ for each m > 0. We claim that

(mt1) _ (M) g y(L4p+4p™eg ) if > 0 and j > 0

«

1,3 )
"t = o™ if i > 0 and j = 0;
" €yttt e g, if i =0and j > 0;
OZEZ»H_I) - ozg??) € uHpt=H+p" " Neg, if i =0 and j = 0.

It is obvious that the case ¢ > 0 and j = 0 from the computation (3.6.1). For the case i = 0 and
j > 0 we induct on m. Note that p[p~'(k; — ko)l s — [k; — kolr = p([p™ k] s — ko) — (kj — ko) > e
if j > 0. From the computation (3.6.1) again, it is obvious that it is true for m = 0. Assume
that it holds for m. This implies that xg.m“) € u(1+p+”'+pm_l)eSoE for 0 < j <n—1 and so
y§m+1) € uHpt=+p" " Ne g Since ¢(yg('m+1))up[p71("”‘j_k‘))]f_[kf_kf’]f) € ytpt+rMleg, by
the computation (3.6.1) we conclude that the case ¢ = 0 and j7 > 0 holds. The case i > 0 and
J > 0 follows easily from the case i = 0 and j > 0, since [p~*(k; — ko) + [ko — kil s — [kj — ki] s =
p(lp~ ki) s — ko) + e+ ko — ki — [kj — kilf > plp~ k] — kj — (p — 1)ko > e. Finally, we check the
case i = 0 and j = 0. We also induct on m for this case. It is obvious that it holds for m = 0.
Note that R(™+1) = I,, modulo u(7+-+2" " Deg,  Since Am+D) = R(m+1) . A(m) . g(C(m+1)),
we conclude that the case ¢ = 0 and j = 0 holds.

The previous claim says the limit of A(™) exists (entrywise), say A(>). By definition, we have

V() = () for all m > 0. In other words, there exist a framed basis éoo) for /\//T and a framed
system of generators foo) for Fil"~' M such that

Mat_ ., fm)(Fﬂ”—Uﬁ) =V e MD(So,)
and

f

Note that (V(*)); ; = 0 if either i = 0 and j > 0 or i > 0 and j = 0, and that (A(>)); ; = 0 if
t=0and j > 0.

Mat/e\(oc) 2(c0) (¢n—1) = Al € GLE(S@E)
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A(OO) is a framed basis for ./\//\l, we may write

Mat ooy (N) = ( i [kj_ki]f> ME
atzoo) (N) = (i, 5u ocijent © n (Sox)

Since e

for the matrix of the monodromy operator of M where vi; € (Sog)o, and let

(00) _ [ A(00), [kj—kils o
A = (ol ulks >0§’jgn_1 € GLY(So,,)-
We claim that v9; = 0 for n —1 > 5 > 0. Recall that oz((f;) = 0 for j > 0, and write foo) =
(f(oo) f,(fo%, e ,fooo)) and e = (é( )1 6( )2 ,a()oo)). We also write

0o — “lp. oo
]?J( ) _ Z@( o0) P ik ]A( )
i=1

where ﬂi(zo) € (Soy)o, for each 0 < j <n — 1. From the equation
[cN%q(f}oo))]ggow = [¢n71(E(u)N(}}OO)))]€§)OO)

for n —1 > j > 0, we have the identity

n—1 n—1
(3.6.2) Z a;j Jylks —kils +li Rols o, = pz 51'(,j Syl ks kil otk ko]f¢(%,¢)aé,o)

i=1 i=1
for each n — 1 > j > 0. Choose an integer s such that ord, (’yo,su[ka‘_ko]f) < ord,, (’yo’iu[ki_ko]f) for
alln —1 > > 0, and consider the identity (3.6.2) for j = s. Then the identity (3.6.2) induces

a(OO)u[ks—ko]f% <=0

modulo (0 du(10.¢)+[ks—kols+1) * Note that agf) € S5, so that we get 70, = 0. Recursively, we

conclude that v ; =0 for all 0 < j <n — 1.
00) o) é<1<>O))

nl’n27

Finally, it is now easy to check that ( determines a strongly divisible mod-

ules of rank n — 1, that is a submodule of M. This completes the proof. O

Corollary 3.6.2. Fiz a pair of integers (ig,jo) with 0 < jo < ig < n — 1. Assume that p, is
generic, and let (ky—1,kn—2,--- , ko) be an n-tuple of integers. Assume further that

ki= @ +p 4 D

fori > iy and for i < jo and that the k; are pairwise distinct modulo (e).

Then every potentially semi-stable lift p of p, with Hodge—Tate weights {—(n—1), —(n—2),--- ,0}

. —1 ~k, - . .
and Galois types @, w’}l s a successive extension

pnfl,nfl e * * * e *
Pio+1,i0+1 * *
~ . .
p= Pio,jo *
Pjo—1,j0—1
£0,0

where
o pii 18 a 1-dimensional potentially semi-stable lift of p; ; with Hodge-Tate weights —i and
Galois type UJ]; forn—12>1i>1iq and for jo > i > 0;
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O Pigjo 15 @ (io — jo + 1)—dimensi0nal potentially semi- stable lift of Piy.j, with Hodge—Tate
weights {—ig, —io + 1, -+ ,—jo} and Galois types EB

1]0

Proof. Proposition 3.6.1 implies this corollary recursively. Let M € F- B1rModgd ' be a Breull
module corresponding to the mod p reduction of a strongly divisible module Me Op-Modjy
corresponding to a Galois stable lattice in a potentially semi-stable representation p : GQp —>
GL,(E) with Galois type @?;01 QI;Z and Hodge-Tate weights {—(n — 1), —(n — 2),- 0} such
that Tg”’nil(/(/l\) ®Ro, F = 7. M (resp. M) is of inertial type € 01 wl; (resp. @ o wf )
by Proposition 2.4.3. We may assume that Mat,_;(Fil"~' M), Mat, (¢, 1), and Mat.(N) are
written as in (3.0.4), (3.0.5), and (3.0.6) respectively, and we do so.

By the equation (3.0.3), it is easy to see that r; = (p/~' + pf=2 + ... 4 p + 1)i for i > iy and
for i < jo, by our assumption on k;. By Proposition 3.6.1, there exists an (n — 1)-dimensional
subrepresentation p;,_; ; of p whose quotient is po,0 which is a potentially semi-stable lift of p
with Hodge—Tate weight 0 and Galois type ok f Now consider p/, _ 1, 1@~ L. Apply Proposition 3.6.1
to pnfl’l ® e~ 1. Recursively, one can readily check that p has subquotients p; ; for 0 <i < jo — 1.
Considering p" ® "', one can also readily check that p has subquotients p;; lifting piq for
n—1>14>id+1. |

The results in Corollary 3.6.2 reduce many of our computations for the main results on the
Galois side.

3.7. Main results on the Galois side. In this section, we state and prove the main local
results on the Galois side, that connects the Fontaine-Laffaille parameters of p, with the Frobenius
eigenvalues of certain potentially semi-stable lifts of p,. Throughout this section, we assume that
Do is Fontaine-Laffaille generic. We also fix f =1 and e =p — 1.

Fix ig,jo € Z with 0 < jg < jo + 1 < i9 < n — 1, and define the n-tuple of integers

%0,J0 %0,J0 20,70
(rn—lv Tplo, iy To! )

as follows:
. i if ig # @ # jos
(3.7.1) rio = jo+1 if i =ip;
io—1 ifi=jg.
We note that if we replace n by ig — jo + 1 in the definition of ngo) in (3.3.1) then we have the
identities:

(3.7.2) r;g_f_‘z’ = jo + r(o)

for all 0 <i < iy — jo. In particular, ]~ Lo _ (O) forall0<i<n-—1.
From the equation k°7° = ¢; +i — TZO’JU mod (e) (cf. Lemma 3.1.2, (i)), this tuple immediately
determines an n-tuple (kloff, ko490 o ki27°) of integers mod (e), which will determine the

Galois types of our representations. We set
k%:o,jo =+ i — 7,10 ,J0
i :
forallie {0,1,--- ,n—1}.

The following is the main result on the Galois side.

Theorem 3.7.1. Let ig, jo be integers with 0 < jg < j()—i—l < 19 < n— 1 Assume that pg is generic
and that p;, ;. is Fontaine-Laffaille generic. Let (N7, N0, -+, A\g7°) € (Og)™ be the Frobenius

n—1°""'n—-2>

eigenvalues on the (o./kno ¥ Gk:lo J20, e ,&kéﬂ'jo)-isotypic components of Dgp’n_l(PO) where pg s a
potentially semi-stable lift ofpo with Hodge—Tate weights {—(n—1), —(n—2),--- ,—1,0} and Galois

1 ~k”0 130

types 691 0w
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Then the Fontaine—Laffaille parameter FLf{”jO associated to py is computed as follows:

) € PY(F).

n—1)— 080 (ip—jo—1)

io—1 %0,J0
Hl Jjo+1 >\

o [(
FLY7°(po) = (p

We first prove Theorem 3.7.1 for the case (i, jo) = (n—1,0) in the following proposition, which
is the key step to prove Theorem 3.7.1.

Proposition 3.7.2. Keep the assumptions and notation of Theorem 3.7.1, and assume further
(40, J0) = (n —1,0). Then Theorem 3.7.1 holds.

O kD) in (3.3.1).
To lighten the notation, we let k; = k?fl’o and \; = /\?71’0 during the proof of Proposition 3.7.2.
We heavily use the results in Sections 3.3, 3.4 and 3.5 to prove this proposition.

Recall that (k"~10 ... k7710) in Proposition 3.7.2 is the same as (k'

Proof. Let MeoO e-Modjj; ! be a strongly divisible module corresponding to a Galois stable lattice
in a potentially semi-stable representation pg : Gq, — GL,(E) with Galois type EB?:_OI Wk and
Hodge-Tate weights {—(n — 1),—(n — 2),--- ,0} such that Tg”’nil(./(/l\) ®o, F = 5. We also let
M be the Breuil module corresponding to the mod p reduction of M. M (resp. M) is of inertial
type @770 ok (resp EBl o wk ) by Proposition 2.4.3.

We let i = (fn 1,fn 2, ,fl,fo) be a framed system of generators for Fil"~ 1./\/1 and € =
(€n—1,€n—2, - ,€1,60) be a framed basis for M. We may assume that Mat; #(Fil"™ 1./\/1) is de-
scribed as in Proposition 3.5.3, and we do so. o

Define «; € F* by the condition qﬁn_l(ﬁ) = a,e; modulo (wg, u) for all ¢ € {0,1,--+ ,n — 1}.
There exists a framed basis ¢ = (e,—1,€n—2, - ,€9) for M and a framed system of generators
f=(fu-1, fu—2, -, fo) for Fil"~' M such that Mat, ;(Fil"~' M) is given as in Proposition 3.4.2
and

Mate, f(¢n—1) = (a aulki— ) e GLY(S)

for some o ; € So with a;; = a; mod (u®).
Recall that f; = E(u)%; for i € {1,2,---,n — 2} by Proposition 3.5.3. Write ¢,,_1(f;) =
2?2—01 a; julks ~Fhg; for some @; ; € Sp. Then we get

. P
S0 (ai,i) = pn—zl

fori € {1,2,--- ,n — 2} since ¢p,—1 = pn%lqb for the Frobenius ¢ on Dg”’n_l(po), so that we have

n—2 n—2 \s
H a; = H ——  (mod wg).
i=1

n—1—1
i:lp

(mod wg)

(Note that pni‘i’lﬂ € O by Corollary 3.5.4.) This completes the proof, by applying the results in
Proposition 3.4.2. (]

We now prove Theorem 3.7.1, which is the main result on the Galois side.

Proof of Theorem 3.7.1. Recall from the identities in (3.7.2) that
(ﬁo:jo piosdo ri'oyjo) = jo + (Ln/ . 271’L/ 3. 71777/ o 2)

g 7 ip—1? > Jo
where n’ := iy — jo+ 1. Recall also that pg has a subquotient p;, ;, that is a potentially semi-stable
lift of p;, ;, with Hodge-Tate weights {—io, —(i9 — 1), ..., —jo} and of Galois type @2, koo by
Corollary 3.6.2.
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It is immediate that p;»mjo I= Piy,jo€ 0@’ is another potentially semi-stable lift of Piojo with
Hodge-Tate weights {—(io — jo), —(io — jo — 1),...,0} and of Galois type ;;, k™70 We
let (Nigs Mig—1 "+ +Mjo) € (Op)° 90T (vesp. (i, 8i9—1," " ,0;) € (Og)0~9oF1) be the Frobenius
. ~EP0:J0 0530 _Ei0:Jo | . Q,.i0—jo
eigenvalues on the (@*o & 0-1 ... "9 )-isotypic component of D"’ (Pig.jo) (resp. on

10+90 &

~ 1090 450 k! j ~ 10090 4 go : sio—j
the (@0 190 GFo1t90 L TR 10 dsotypic component of DS (P%y.4o))- Then we have

P8 =,
for all 4 € {jo,j0 +1,--- ,i0} and, by Proposition 3.7.2,

i(]*l
10—Jo,0 (— _ ] . Gozio)Go—do=D) 1
FLio—jO+1(Pio,j0) = H o | :p 2 e PY(F).
i=jo+1

But we also have that
pn—l—(ig—jo)m _ /\2073'0

for all + € {jo,jo + 1,--- ,i0} by Corollary 3.6.2. Hence, we have §; = p*("*lfio))\z@jﬂ for all
1 € {jo,jo+ 1, ,ip} and we conclude that

i9—1 . .
FL;o,jo (ﬁo) = FL;g:-;gfl (pio,jo) = H )\;07.70 :p[(nfl),m;m](ig*jofl) c P! (F)
i=jo+1
(Note that FL©J0(5,) = FLZJ’:;S_& (Piy,jo) by Lemma 3.2.4.) O

In the following corollary, we prove that the Weil-Deligne representation WD(pg) associated
to po still contains Fontaine-Laffaille parameters. As we will see later, we will transport this
information to the automorphic side via local Langlands correspondence.

Corollary 3.7.3. Keep the assumptions and notation of Theorem 3.7.1.
Then pg 1is, in fact, potentially crystalline and

WD(po)" % = WD(po) = P
i=0
where 2; : Q) — E* is defined by 2; := U/\@O,jo/pn_l N foralli € {0,1,--- ,n—1}. Moreover,
To—1 )
. 0 O
i - (D) e

(ig+io)(ig—do—1)
2

Proof. Notice that ¢ is diagonal on D := Dg” (po) with respect to a framed basis e := (-1, ,€0)
(which satisfies ge; = @*"" (g)e; for all i and for all g € Gal(K/Q,)) since &*:"”" are all distinct.
Hence, we have WD(pg) = WD(pg)¥ =55, Similarly, since the descent data action on D commutes
with the monodromy operator IV, it is immediate that N = 0.

From the definition of WD(pg) (cf. [CDT99]), the action of Wq, on D can be described as

follows: let a(g) € Z be determined by g = $*9) | where ¢ is the arithmetic Frobenius in Gr, and
g is the image under the surjection Wq, — Gal(K/Q,). Then

)\io,jo —a(g) o
WD(ﬂo)(g)-ei=<’ ) M () e

pn— 1
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_ 20,7
for all i € {0,1,--- ,n — 1}. (Recall that Dg"’" Y(po) = Dgp (po ® e~ (1), so that the ﬁ—,f are
the Frobenius eigenvalues of the Frobenius on D.) Write 2; for the eigen-character with respect
to e;.

Recall that we identify the geometric Frobenius with the uniformizers in Q; (by our nor-

malization of class field theory), so that Q;(p) = which completes the proof by applying

p'n,—l
0,30
>\i

Theorem 3.7.1. O

4. LOCAL AUTOMORPHIC SIDE

In this section, we establish several results concerning representation theory of GL,,, that will be
applied to the proof of our main results on mod p local-global compatibility, Theorem 5.6.2. The
main results in this section are the non-vanishing result, Corollary 4.8.3, as well as the intertwining
identity in characteristic 0, Theorem 4.4.9.

We start this section by fixing some notation. Let G := GL,,;z, and T be the maximal split torus
consisting of diagonal matrices. We fix a Borel subgroup B C G consisting of upper-triangular
matrices, and let U C B be the maximal unipotent subgroup. Let ®* denote the set of positive
roots with respect to (B,T), and A = {o }1<k<n—1 the subset of simple positive roots. Let X (T')
and XV (T') denote the abelian group of characters and cocharacters respectively. We often say a
weight for an element in X (7T'), and write X(T)y for the set of dominant weights. The set ®*
induces a partial order on X (T): for A\, u € X(T) wesay that A< pif u— X € > o+ Z>oa. We
will also write A < p if A < g and A # p.

We use the n-tuple of integers A = (dy,ds,- - ,d,) to denote the character associated to the
weight >"7'_ drey, of T where for each 1 <i < n ¢; is a weight of T" defined by

acd

diag(zy, T2, ,xn) = ;.
We will often use the following weight
n:=Mm-1n—2,---,1,0).

We let G, B, --- be the base change to F, of G, B, --- respectively. The Weyl group of G,
denoted by W, has a standard lifting inside G as the group of permutation matrix, likewise with
G. We denote the longest Weyl element by wq which is lifted to the antidiagonal permutation
matrix in G or G. We use the notation s; for the simple reflection corresponding to o; = €; — €it1
for 1 <i<n—1. We define the length ¢(w) of w € W to be its minimal length of decomposition
into product of s; for 1 <i <n—1. Given A € U(F,), we use A, or equivalently A; ; to denote
the (7,j)-entry of A, where o = ¢; — ¢; is the positive root corresponding to the pair (4, j) with
1<i<j<n.

Given a representation m of G(F,), we use the notation 7* for the T'(F,)-eigenspace with the
eigencharacter p. Given an algebraic representation V of G or G, we use the notation Vy for
the weight space of V associated to the weight A. For any representation V of G or G(F,) with
coefficient in F,, we define

VF =V ®Fp F
to be the extension of coefficient of V' from F), to F. Similarly, we write VE for V @, F,.

It is easy to observe that we can identify the character group of T'(F,) with X(T)/(p —1)X (T).
The natural action of the Weyl group W on T and thus on T(F,) induces an action of W on
the character group X (T) and X(T')/(p — 1) X (T'). We carefully distinguish the notation between
them. We use the notation wA (resp. p™) for the action of W on X(T') (resp. X(T')/(p—1)X(T))
satisfying

wA(z) = Mw tzw) forall z € T
and
1 (z) = p(w tzw) for all z € T(F,).
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As a result, without further comments, the notation w is a weight but p* is just a character of
T(F,). There is another dot action of W on X (T) defined by

w-A=wA+n)—nforal e X(T) and w € W.

The affine Weyl group W of G is defined as the semi-direct product of W and X (T') with respect
to the natural action of W on X (7). We denote the image of A € X(T) in W by tx. Then the dot
action of W on X (T) extends to the dot action of W on X (T) through the following formula

w-A=w-(\+pu)

if w = wt,,. We use the notation A 1 p for A\, p € X(T') if X < pand X € w- 1. We define a specific
element of W by

’IEh = ’w()lf,77
following Section 4 of [LLL)].

We usually write K for GL,,(Z,) for brevity. We will also often use the following three open
compact subgroups of GL,(Z,): if we let red : GL,(Z,) - GL,(F,) be the natural mod p
reduction map, then

K(1) := Ker(red) C I(1) :=red” "(U(F,)) C I :=red” '(B(F,)) C K.

For each o € ®7, there exists a subgroup U, of G such that zu,(t)z™! = us(a(z)t) where
xz €T and u, : G, — U, is an isomorphism sending 1 to 1 in the entry corresponding to «. For
each o € @, we have the following equalities by [Jan03] II 1.19 (5) and (6):

(4.0.3) ua(t) = Y t™(X2%).
m>0

where X gl§n is an element in the algebra of distributions on G supported at the origin 1 € G. The
equation (4.0.3) is actually just the Taylor expansion with respect to ¢ of the operation u,(t) at
the origin 1. We use the same notation X 21% if G is replaced by G.

We define the set of p-restricted weights as

Xi(T)={AeX(T)|0<(\a")<p—1foralacA}
and the set of central weights as
Xo(T) :=={\ € X(T) | (\,a") =0 for all a € A}.
We also define the set of p-regular weights as
X)) ={AeX(T)|1<{\a)<p-—2foral ac A},

and in particular we have X{°*(T) C X;(T). We say that A\ € X(T) lies in the lowest p-restricted
alcove if

(4.0.4) 0<(A+mn,a")<pforall a€dt.
We define a subset W of W as
Wt :={@weW|@-\eX(T), for cach A in the lowest p-restricted alcove}.
We define another subset W' of W as
(4.0.5) W' .= {@ e W |@&-\e X;(T) for each X in the lowest p-restricted alcove}.

In particular, we have the inclusion
e i,
For any weight A € X(T'), we let
alg

HO() = (TndGuwo) )

/Fyp
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be the associated dual Weyl module. Note by [Jan03], Proposition II 2.6 that H°()\) # 0 if and
only if A € X(T)4. Assume that A € X(T)4, we write F(\) := socg(H (X)) for its irreducible
socle as an algebraic representation (cf. [Jan03] part II, section 2). When A is running through
X1(T), the F(X) exhaust all the irreducible representations of G(F,). On the other hand, two
weights A, X' € X1 (T') satisfies
FO\) =2 F(\)
as G(F)p)-representation if and only if
A=XNe€e(p—-1)Xo(T).

If A € X]°¥(T), then the structure of F(\) as a G(F)-representation depends only on the image
of Ain X(T)/(p — 1)X(T), namely as a character of T'(F,). Conversely, given a character u of
T'(F,) which lies in the image of

Xi®(T) = X(T)/(p — 1)X(T),

its inverse image in X]°®(7') is uniquely determined up to a translation of (p—1) X (7). In this case,
we say that p is p-regular. Whenever it is necessary for us to lift an element in X(7")/(p — 1) X (T)
back into X7 (T') (or maybe X[°(T')), we will clarify the choice of the lift.

Consider the standard Bruhat decomposition

G= || BuB= || UywB= || BuwlU,-.
weW weW weW
where U, is the unique subgroup of U satisfying BwB = U, wB as schemes over Z,. The group U,
has a unique form of [], g+ Uq for the subset @7 of @ defined by @, = {a € &¥,w(a) € —®*}.
(If w =1, we understand [, ca+ Ua to be the trivial group 1.) We also have the following Bruhat
decomposition:

(106)  GF,) = || BEJWBE,) = || Uu®)wBE,) = | | BE)wU, (F,).
weW weWw weW
Given any integer x, recall that we use the notation [z]; to denote the only integer satisfying
0<|[z]s <p—2and [z]; =2 mod (p—1). Given two non-negative integers m and k with m > k,
we use the notation ¢, ; for the binomial number #k'),k, We use the notation e for composition
of maps and, in particular, composition of elements in the group algebra F,[G(F,)].

4.1. Jacobi sums in characteristic p. In this section we establish several fundamental properties
of Jacobi sum operators on mod p principal series representations.

Definition 4.1.1. A weight A € X (T) is called k-generic for k € Zwq if for each o € ®T there
exists my € Z such that

map+k < (N oY) < (ma+1)p—k.
In particular, the n-tuple of integers (an—1,--- ,a1,aq) is called k-generic in the lowest alcove if

a; —a;—1 >k V1i<i<n—-—1anda,_1—ag<p-—k.

Note that (a,—1, - ,ag)—n lies the lowest p-restricted alcove in the sense of (4.0.4) if (an—1,- -+ ,ap)
is k-generic in the lowest alcove for some k£ > 0. Note also that the existence of an n-tuple of integers
satisfying k-generic in the lowest alcove implies p > n(k + 1) — 1.

We use the notation m for a principal series representation:

G(F
7= IndG i = {f - G(Fy) = Fy | (bg) = (D) (9) ¥(b,g) € B(F,) x G(F,)}
where (i is a mod p character of T(F,). The action of GL,,(F,) on 7 is given by (g- f)(¢') = f(¢'9).
We will assume throughout this article that u, is p-regular. By definition we have

cosocq(r, (™) = F(pr) and socgq,)(r) = F(120).
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By Bruhat decomposition we can deduce that
dimp, 7V Fr)ix = 1

for each w € W. We denote by v, a non-zero fixed vector in 7V (F»)#=  We also consider the
natural lift 7° of 7 defined as

(411) 7 =g e = {f : G(F,) = Zy | f(bg) = fix(b)f(g) V(b.g) € B(F,) x G(F,)}

where i, is the Teichmiiller lift of pi.
Given w € W with w # 1 and k = (ka),cqr € {0,1,-+ ,p — 1}1?41) we define the Jacobi sum
operators

Skw = Y I Ak | A-w e F[G(F,)].

A€Uw (Fp) \aedf

These Jacobi sum operators play a main role on the local automorphic side as a crucial computation
tool. These operators already appeared in [CL76] for example.
For each o € ® and each integer m satisfying 0 < m < p — 2, we define the operator

(4.1.2) Xom = Y P71 Mug(t) € Fy[U(F,)] C Fy[G(F,)].
teF,

The transition matrix between {uq(t) | t € F)'} and {Xqm | 0 < m < p — 2} is a Vandermonde
matrix

k
(t )teF;,lgkgp—1
which has a non-zero determinant. Hence, we also have a converse formula
p—2
(4.1.3) U (t) = — Z 1" Xam for allt € F,.

m=0

By the equation (4.0.3), we note that we have the equality

al
(4.1.4) Xom ==Y X
k>0

Lemma 4.1.2. Fiz w € W and ag = (io,jo) € ®f. Given a tuple of integers k = (k; ;) €
{0,1,--- ,p— 1}"%' satisfying

(4.1.5) kiy.; =0 for all (i, j) € ®F with j > jo +1,

we have

—1)mtic St w if m<k
Xagm ® Sk = { E) " kg § m> ke
ap

where k' = (k) acs, satisfies

B kay —m  if @ = ap;
a ko otherwise.
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Proof. We prove this lemma by direct computation.

(4.1.6) Xom®Skw= »_ "7 > IT Ak | o (1) Aw

teF, A€UL(Fp) \acdy
= Z p—1-m Z H A(Iia (Aao _ t)kao Aw
teFy AU (Fp) \aedd,atao
= 2> [T Ak | XA 0 | Aw
A€UL(Fp) \acdd,azag teF,

where the second equality follows from the change of variable A <> uq,(t)A and the assump-
tion (4.1.5).
Notice that

kag
2T ey — )0 = S S (D e s Ay
teF, ieF, =0
kag ‘
= Z(—l)%kuo,jA’,ijg’J ST pmtemi )
J=0 teF,
which can be easily seen to be
_ +1 kan—m .
(417) ( ]‘)m CkQO’mAkaz if m S kOéO
0 if m > kq,.

The last computation (4.1.7) follows from the fact that
Z tZ:{ (11 Ii g:?\(ﬁ;aﬂdf#o.
tEF,
Applying (4.1.7) back to (4.1.6) gives us the result. O
Lemma 4.1.3. Fiz w € W and ag = (io,jo) € ®. Given a tuple of integers k = (k; ;) €
{0,1,--- ,p— 1}"1)$| satisfying

kiy.j = 0 for all (io,j) € 3, with j > jo,
we have

Ua () ® S = Sk,

Proof. By Lemma 4.1.2 we deduce that

—Sﬁ’w if m=0
0 if 1<m<p-—2

Therefore we conclude this lemma from (4.1.3). O

ono,m L4 Sk,w = {

By the definition of principal series representations, we have the decomposition
(4.1.8) T = Bwew Tw
where 7, C 7| B(F,) consists of the functions supported on a non-empty subset of the Bruhat cell

B(Fp)wilB(Fp) = B(Fp)wilUw(F;v)-
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Proposition 4.1.4. Fiz a non-zero vector vy € 7V Fr)htix - For each w € W with w # 1, the set
(4.1.9) {S@,wvw k= (ka)ucas € 0,1, ,p— 1}\<1>:|}
forms a T'(Fp)-eigenbasis of m,,.

Proof. We have a decomposition m, = ®acv,, (F,)Tw,A Where 7y, 4 is the subspace of 7, consisting
of functions supported on B(F,)w 'A~!. It is easy to observe by the definition of parabolic
induction that dimg, 7,y 4 =1 and 7y 4 is generated by Awv,.

We claim that, for a fixed w € W, the set of vectors (4.1.9) can be linearly represented by the
set of vectors {Awvr, A € Uy, (F,)} through the matrix (mg,4) where

k= (ka)aeqﬁ; € {0717"’ ,p71}|<1>1'}|’ A€ Uw(Fp)

and mp 4 = [[,cqr Aka Note that this matrix is the |®;|-times tensor of the Vandermonde
matrix
k
(A ))\EFP,OSkSpfl’

and therefore has a non-zero determinant. As a result, the matrix (my, 1) is invertible and { Sk, v |
0<ky,<p-1 Vaedl} forms a basis of m,,.

The fact that this is a T'(F,)-eigenbasis is immediate by the following calculation: if we let
x = diag(zy, x2, -+ , &)

T ®SpUs = T® Z H A’;‘* Aw| vy

AeUy (Fp) \acdi

= Z H Af;f Az w (wilxw) Vg

A€Uw (Fp) \(4,§)€dd

Z H (Bijzja; ) | Bw | (wlaw) v,

B=zAz=1€U,(Fp) (i,j)€¢$

,u,r(w_lxw) H (xjxfl)k’*" Z H Algj’Aw Vg

(i) €@ A€UL(Fp) acd,
= (ux A) (@) Sk,wor,
where A(z) = H1<i<j<n(acjx;1)kiff and B; j = Aiijl-xjfl for1<i<j<n. O

We can further describe the action of T(F,) on Siwv-. By |y] for y € R we mean the floor
function of y, i.e., the biggest integer less than or equal to y.

Lemma 4.1.5. Let pr = (di,da, -+ ,dn_1,dn). If we write ({1,4y--- ,ln_1,¢y) for the T(Fp)-
eigencharacter of Si ., Ux, then we have

be=dyrgy+ > kir— Y kej (modp—1)
1<i<r r<j<n

for all1 <r <n, where k; j = ko if @ € ®F, and (i,7) corresponds to o, and k; ; = 0 otherwise.
In particular,

(i) if ko =0 for any a € ®F \ A, then for all1 <r <n
l. = dwfl(r) +(1— U/TJ)kr—l,r -(1=[1/(n+1~ T)J)kr,H-l (mod p — 1);
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(ii) if w=wo and k; ; =0 for any 2 <i < j <n, then

0 = dp =5 oki; (modp—1) ifr=1;
"7 duy1—r+ k1, (modp-—1) if2<r<n.

Proof. The first part of the Lemma is a direct calculation as shown at the end of the proof of
Proposition 4.1.4. The second part follows trivially from the first part. ([l

Given any w € W, we write Sp ., for Sk, with ko, = 0 for all a € ®F.

Lemma 4.1.6. We have
F,[S0.wvx] = nV Frdiz

Proof. Pick an arbitrary positive root a. If a € @}, then we have (since u,(t) € Uy, (F,))

@ [ > A= > A4

A€U (Fp) A€U, (Fp)

and therefore u, (t)Sp.wvr = So,wvx for any ¢ € Fp,. On the other hand, if o ¢ @, then

@) | Y A= S Al

A€U, (F,) A€U,, (Fp)
and

ul, () wor = wull ()vy = woy
where ug, (1) € [[,¢a: U, (F,) and v/ (t) € U(F,) are elements depending on x, w and a. Hence,
U (t)S0,wVr = So,wvx for any t € Fp, and any a € ®T. So we conclude that Sp,v. is U(F,)-
invariant as {ua(t)}aco+ ter, generate U(F,).

Finally, we check that x - Sp ,vr = p¥ (2)Sp,wvx for x € T(F,). But this is immediate from the

following two easy computations:

xe Z Al = Z A ex € F,[G(F))]

A€U, (Fp) A€eU (Fp)

and

1

zwor = w (W zw) v = wpg (W zw)v, = P (T)woy.

This completes the proof. O
Note that Proposition 4.1.4, Lemma 4.1.5, and Lemma 4.1.6 are very elementary and have

essentially appeared in [CL76]. In this article, we formulate them and give quick proofs of them
for the convenience.

Definition 4.1.7. Given o, o’ € &, we say that « is strongly smaller than o' with the notation

a=<ao

if there exist 1 <1 < j <k <n—1 such that

J k
a:E aTando/:E Q.
r=4 r=t

A subset ® of ® is said to be good if it satisfies the following:
i) ifa,0 € ® and a+ o’ € T, then a+ o € @';
( ) f ) ) )
(ii) if a € ' and a </, then o/ € ¥'.
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We associate a subgroup of U to ®' by
(4.1.10) Up = (Uy | € D)

and denote its reduction mod p by Ug:. We define U; to be the subgroup scheme of U generated
by Uy, for 2 <r <mn —1, and denote its reduction mod p by U;.

Example 4.1.8. The following are two exzamples of good subsets of ®T, that will be important for

us: ) )
J J
{Za,,1<i<j<n—1} and {Zar|2<i<j<n—1}.

r=i r=t

The subgroups of U associated with the two good subsets via (4.1.10) are [U, U] and Uy respectively.
We recall that we have defined 7, C 7 in (4.1.8) for each w € W.

=

Proposition 4.1.9. Let ® C & be good. Pick an element w € W with w # 1. The following set
of vectors

(4.1.11) {vaﬁ |k = (ka)ucos € 10,1, .p — 1% with k, = 0 Va € @' N @;}

forms a basis of the subspace wg@(F") of Ty

Proof. By Proposition 4.1.4, the set of vectors (4.1.9) forms a T'(F,)-eigenbasis of m,,. Hence we
fix a Ugp: (F))-invariant vector v in m,, and can write it as a unique linear combination of vectors
of the form Sk, v, namely
v = Z Cl,wSk,wvr for some Cy \ € Fp.
k{0, p—1}1+E]
We define
Supp(v)a = {k = (ko) peqpt | Ckw # 0 and ko > 0}

for each o € @, and then consider

(D/w,v,>0 = {a € ®' Ny | Supp(v)a # 7}
We have a natural partial order on @, , - induced from the partial order < on ®*. Assume that
(4112) (p;u,v,>0 7£ )

which means that Supp(v), # @ for some a € & N @, and thus we can choose one maximal

element ag € @, , - with respect to the order <. We may write v as

(4.1.13) v = Z CE,wSE,wa + Z CE,wS&,wa-
kE{0, p—1}17%] kE{0, p—1}17%]
Kag=0 kag >0

By the maximality assumption on « we know that if Cj ., # 0 and ag Za, then ko, = 0. As a
result, we deduce from Lemma 4.1.3 that

(4.1.14) Ugy (1) > CrorwSkwtnr = > Cler Sk Ur
ke{0, p—1}17%] ke{0,+ p—1}I7E]
ag=0 kag=

for all t € F.
‘We define
P20t = {a € ®f |ap<a} and P07 = &\ dLOT
and we use the notation B
l:= (ga)aecbao'* € {0’ B 1}|<DwOY !
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for a tuple of integers indexed by ®°~. Given a tuple ¢, we can define
L] ha=0 if € ®20F\ {ap};
Al ao) =S k= (ka)gepr €0, . p— %ol | ko >0 if a = a;
cko =4y faedf0T
Now we can define a polynomial
ftoy @) =Y Crua™o € Fyla]
keA(L,a0)

for each tuple of integers £. By the maximality assumption on ag and the notation introduced
above, we have

Z Ck,wsﬁ,wvw = Z Z H Af;a f({,ao)(Aao)A Wor .

ke{0,- p—1}/7%] £€{0,- p—1}1200 71 \A€Uw(Fp) \acap? ™
kag>0

By the assumption on v we know that e, (t)v = v for all ¢ € F,,. Using (4.1.14) and (4.1.13) we
have

tao (t) Z CE,wSE,w'U‘/r = Z C&ws&wvﬂ
EE{0,,p—1}1%0] EE{0, p—1}1 %]
ka0>0 kao >0
and so
2 > [T A% ) fwan(4a)A | wor
240, ’pfl}\qxﬂ‘lo’*\ AeU, (Fp) Q€0
= Yao (t) Z Z H Aﬁla f(Lao)(AOéo)A WU
240, ,pfl}\qﬁo’ﬂ A€U(Fp) \acalo ™
- Z Z H Af!a f@,ao)(Aao - t)A WUx
£6{0,- p—1}1#00 71 \AEVw(Fp) \aecapo ™

where the last equality follows from a change of variable A < u,, (t)A.
By the linear independence of Jacobi sums from Proposition 4.1.4, we deduce an equality

Z H Af;a f@vao) (AQO)A Wor

A€U(Fp) \aed20 ™

= Z H Al | fieao) (Aag — 1A | wor

AeU, (Fp) aedo0

for each fixed tuple £.
Therefore, again by the linear independence of Jacobi sum operators in Proposition 4.1.4 we
deduce that

fte.ao)(Aag =1) = f(.a0)(Aao)
for each t € F), and each (£, ag). We know that if f € F[z] satisfies degf <p—1, f(0) = 0 and
flx —1t) = f(x) for each t € F,, then f = 0. Thus we deduce that

fta0) =0
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for each tuple of integers ¢, which is a contradiction to (4.1.12) and so we have k, = 0 for any
a € ' N & for each tuple of integers k such that Cy ., # 0.

As a result, we have shown that each vector in m’i@’(F“ can be written as certain linear com-
bination of vectors in (4.1.11). On the other hand, by Proposition 4.1.4 we know that vectors in

(4.1.11) are linear independent, and therefore they actually form a basis of ﬂg‘l”(F”). |

Corollary 4.1.10. Let iy = (dy,--- ,d,) and fix a non-zero vector v, € wVFrlbix  Given a
weight u = (l1,--- ,4y) € X1(T) the space

7Tl[ul{)(Fp)»U(Fp)]w
has a basis whose elements are of the form
Sk,woUn
where k = (ko) satisfies
b =dppr—r + (1= |1/r)kp_rp — (1= [1/(n+1—=7)])kp 1 mod (p—1)
forall1<r <mn and ko, =0 ifa € ®T\ A.
Proof. By a special case of Proposition 4.1.9 when ® = {ZZ:Z. ar |1 <i<j<n-—1}, we know
that
{SkwoVr | ka =0if a € @7\ A}
(U(Fy),U(Fp

forms a basis of Ty, 1. On the other hand, we know from Proposition 4.1.4 that the above

basis is actually an T'(F))-eigenbasis. Therefore the vectors in this basis with a fixed eigencharacter

u form a basis of the eigensubspace m[UUO(F”)’U(FP)]’“ . Finally, using (i) of the second part of Lemma

4.1.5 we conclude this lemma. O

Corollary 4.1.11. Let i, = (dy,da,--- ,dy) and fit a non-zero vector vy € wVFr)tx  Given a
weight p = (1,--- ,4n) € X1(T'), the space

Ul(FP)uUf

T

has a basis whose elements are of the form
Sk wo U

where k = (k; ;)i ; satisfies
k1, =4; —dpt1—; mod (p—1)
for2<j<mnandk;; =0 forall2<i<j<n.
Proof. By a special case of Proposition 4.1.9 when ¢’ = {EZ:Z. ar|2<i<j<n-—1}, we know
that
{Skwotn | kij =012 <i<j<n}
Uy (F

forms a basis of my, ») On the other hand, we know from Proposition 4.1.4 that the above basis
is actually an T'(F))-eigenbasis. Therefore the vectors in this basis with a fixed eigencharacter p

form a basis of the eigensubspace ﬂgé(F’”)’“. Finally, using (ii) of the second part of Lemma 4.1.5
we conclude this lemma. |
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4.2. Summary of results on Deligne—Lusztig representations. In this section, we recall
some standard facts on Deligne-Lusztig representations and fix the notation that will be used
throughout this paper. We closely follow [Her09]. Throughout this article we will only focus the
group G(F,) = GL, (F,), which is the fixed point set of the standard (p-power) Frobenius F inside
GL,(F,). We will identify a variety over F,, with the set of its F,-rational points for simplicity.
Then our fixed maximal torus T is F-stable and split.

To each pair (T,6) consisting of an F-stable maximal torus T and a homomorphism 6 : T —

Q: , Deligne-Lusztig [DL76] associate a virtual representation RS of GL,,(F,). (We restrict ourself
to GL,,(F,) although the result in [DL76] is much more general.) On the other hand, given a pair
(w, ) € W x X(T), one can construct a pair (T, 6 ,) by the method in the third paragraph of

[Her09], Section 4.1. Then we denote by R, (u) the representation corresponding to R%z’“ after
multiplying a sign. This is the so-called Jantzen parametrization in [Jan81] 3.1.

The representations RS (resp. R, (1)) can be isomorphic for different pairs (T, ) (resp. (w, 1)),
and the explicit relation between is summarized in [Her09], Lemma 4.2. As each p-regular character
pw e X(T)/(p—1)X(T) of T(F,) can be lift to an element in X]°®(7") which is unique up to
(p — 1)Xo(T), the representation R,,(p) is well defined for each w € W and such a p.

We recall the notation ©(6) for a cuspidal representation for GL,,(F) from [Her06], Section 2.1
where 6 is a primitive character of F);. defined in [Her09], Section 4.2. We refer further discussion
about the basic properties and references of ©(6) to [Her06], Section 2.1. The relation between the
notation R, (x) and the notation ©(0) is summarized in [Her09], Lemma 4.7. In this paper, we
will use the notation ©,,(6,,) for a cuspidal representation for GL,,(F,) where 6,, is a primitive
character of F ..

We emphasize that, as a special case of [Her09], Lemma 4.7, we have the natural isomorphism

~ 1 g G (Fp) ~
Ry (:u) - IndBEFP;N

for a p-regular character p of T'(F)), where [ is the Teichmiiller lift of .

4.3. A multiplicity one theorem. The main target of this section is to prove Corollary 4.3.7,
which immediately implies our main multiplicity one theorem, Theorem 4.8.2. In fact, Theo-
rem 4.8.2 is a special case of Corollary 4.3.7.

We recall some notation from [Jan03]. We use the notation G, for the r-th Frobenius kernel
defined in [Jan03] Chapter I 9 as kernel of r-th iteration of Frobenius morphism on the group

Z\(\) = indS-% X
AT()\) = coind%rg)\

where ind and coind are defined in I 3.3 and I 8.20 of [Jan03] respectively. By [Jan03] Proposition
IT 9.6 we know that there exists a simple G, T-module L,()\) satisfying

socg. (Zﬁ(A)) =~ T, (\) €osocy (2}@)) :

The properties of 2;()\) and Z,()\) are systematically summarized in [Jan03] II 9, and therefore
we will frequently refer to results over there.

From now on we assume r = 1 in this section.

Now we recall several well-known results from [Jan81], [Jan84] and [Jan03]. We recall the

definition of W from (4.0.5).
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Theorem 4.3.1 ([Jan81], Satz 4.3). Assume that u+ n is in the lowest p-restricted alcove and
2n-generic (Definition 4.1.1). Then we have

Ru(p+m) =Y [Zi(p—pv+pn): L@ w]F@ - (n+wv)).

iD/eWres
veX(T)

Proposition 4.3.2 ([Jan03], Corollary II 6.24). Let A € X(T)4. Suppose u € X(T) is mazimal
forutXand p# N If pe X(T)y and if p # X — pa for all « € &, then

[HO(\) : F(u)] = 1.

If M is an arbitrary G-module, we use the notation M1 for the Frobenius twist of M as defined
in [Jan03], I 9.10.

Proposition 4.3.3 ([Jan03], Proposition II 9.14). Let A € X(T)4. Suppose each composition
factor of Z{(X) has the form Li(po + pp1) with po € X1(T) and py € X(T) such that

(1 +n,8") >0

for all B € A. Then H(\) has a filtration with factors of the form F(uo) ® HO(u1)M. Each such
module occurs as often as Ly (po + pu1) occurs in a composition series of Z1(X).

Remark 4.3.4. Note that if yu; is in the lowest p-restricted alcove, then F(pg)® HO ()M = F(p)
by Steinberg tensor product theorem.

Lemma 4.3.5 ([Jan03], Lemma II 9.18 (a)). Let Ly(u) be a composition factor of Z|(X), and
write

A+1n=p\ + Ao and p = pu1 + pio

with )\o,uo € Xl(T) and )\1,#1 S X(T)
If

(4.3.1) NaY)y>n-—2
for all o € T, then

(w1 +n,8") =0
for all B € ®T.

Proof. We only need to mention that h, = n for all @ € ®* and for our group G = GL,, JF,» where
hq is defined in [Jan03], Lemma IT 9.18. O

We define an element s, ,, € W by
Saym - A= S - A+ mpa
for each a € @+ and m € Z.
Theorem 4.3.6. Let A\, u € X(T) such that
(4.3.2) W= Sam A and mp < (A+mn,a") < (m+1)p.

Assume further that there exists v € X(T) such that A+ pv satisfies the condition (4.3.1) and that
v and py + v are in the lowest p-restricted alcove.
Then we have

220 : D) = 1.
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Proof. The condition (4.3.2) ensures that for any fixed v € X(T'), p + pv is maximal for pu + pv 1
A+ pr and p+ prv # A+ prv. Notice that we have

[Z1(A) = La(w)] = [Z1(A) = La(p)]
by I19.2(3) in [Jan03], as the character of a G, T-module determine its Jordan-Hélder factors with

multiplicities (or equivalently, determine the semisimplification of the G, T-module).
By II 9.2(5) and II 9.6(6) in [Jan03] we have

[Z1(N) : Lu(w)] = [Z5(N) @ pv = Li(p) @ pr] = [Zi A+ pv) : Lo+ o),
and thus we may assume that
NaYy>n—2

for all & € ®T by choosing appropriate v (which exists by our assumption) and replacing A by
A+ pr and p by p+ pr. Then by Lemma 4.3.5 we know that

(Wy +n,8Y)>0

for any g/ = puf + uf such that Ly(i) is a factor of Z{()).
Thus by Proposition 4.3.3, Proposition 4.3.2 and Remark 4.3.4 we know that

[Z{(A) : Lo ()] = [HO(N) = F(po) ® H*(un)M] = [HO(N) : F(p)] =
which finishes the proof. |

—_

We pick an arbitrary principal series m and write

Hr = (dla"' 7dn)
For each pair of integers (i1, j1) satisfying 0 < i; <i; +1 < j3 <n — 1, we define
Mihh = (dilyjl L. dil’jl)

'

where
o dy; if k#n—j; and k #n — iy;
d?’]l = An—iy +71—101—1 iftk=n—1;
dn_j17j1+ll1+l 1fk:nfj1
Corollary 4.3.7. Assume that p, is 2n-generic in the lowest alcove (cf. Definition 4.1.1). Then

F(ui9v) has multiplicity one in 7, or equivalently in Indggp;uﬁ for any w e W.
P

Proof. We notice at first that each Indggg 12 has the same Jordan-Holder factor as = with the

same multiplicity as each of them is a mod p reduction of certain lattice of the same characteristic
0 representation of G(F,). We are going to apply Theorem 4.3.6 and Theorem 4.3.1 to determine
the multiplicity of F(ut+J1) in 7. We use the shortened notation

n—l—il

aghjl = Z Q.

r=n—ji

We choose w = 1 in Theorem 4.3.1 and take
P = e = T+ (=i = 1)ag,

We would like to consider the multiplicity of F'(ué+71) in m = Ry (u+n). We will follow the notation
of Theorem 4.3.1 except that we will replace the notation v in Theorem 4.3.1 with the notation
vg. We take @' := 1 € W' as well as

vo:=n—(j1 —i1 — l)a;hjl
and then note that
u;«rlvjl — M+V0~
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We deduce from II 9.16 (5) in [Jan03] the following equality
(4.3.3)
2 (4= pro) + (p = 1)n) : L)) = [Zy (0 = jryn = i) (u+ 0 = pro) + (p = 1)) : La(w)]-
We set
A= (n—ju,n—i)(p+n—prw)+ (-1

and observe that

(4.3.4) A= (n—ji,n—1i1)-(u—pro)+pn
= (n—jl,n—il)-,u—i—p(n— (n—jhﬂ—il)ﬁ— (.71 —i1 = 1)0&;17]-1)
= (n—jl,n—h) 'lu’—i_pa;hjl'

Therefore we have
!

p<{Nap )<2p

> 1,01
and that
= Sagl,jﬂp '

Moreover, it is easy to see that

Atpn=(n—ji,n—i1) p+pa ; +pn
satisfies (4.3.1).

We take v := X and then apply Theorem 4.3.6, (4.3.3) as well as the obvious equality

(1 —pvo) +pn = (n+n—pro) +(p—1)n

and conclude that
[Z1 (1 = pro) +pn) « Li(p)] = [Z1(N) : La(p)] =1

which implies that F(ui91) = F(u + 1) has multiplicity one in Ry(u+n) = Indggguﬂ by
Theorem 4.3.1. O

4.4. Jacobi sums in characteristic 0. In this section, we establish an intertwining identity for
lifts of Jacobi sums in characteristic 0 in Theorem 4.4.9, which is one of the main ingredients of
the proof of Theorem 5.6.2. All of our calculations here are in the setting of G(Q,) = GL,,(Q,).
We first fix some notation.

Let A € G(Fp). By [A] we mean the matrix in G(Q,) whose entries are the classical Teichmiiller
lifts of the entries of A. The map A — [A] is obviously not a group homomorphism but only a
map between sets. On the other hand, we use the notation g for the Teichmiiller lift of a character
wof T(F,).

We denote the standard lifts of simple reflections in G(Q,) by

Id;—1
S; =
Idn—i—l

for 1 <i<mn—1. We also use the following notation
t— pld;
Idn—i
for 1 <7 <n. Let

(4.4.1) En = wiy,
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where w* := s,,_1 ®... 0 57. We recall the Iwahori subgroup I and the pro-p Iwahori subgroup (1)
from the beginning of Section 4. Note that the operator =,, and the group I actually generate the
normalizer of I inside G(Q,). One easily sees that =, is nothing else than the following matrix:

010 - 000

001 - 000

000 - 000
En=1: ¢ 0 ot T EG(Qy).

000 - 010

000 - 00 1

p 00 - 00 0

For each 1 < i < m — 1, we consider the maximal parabolic subgroup P,” of G containing
lower-triangular Borel subgroup B~ such that its Levi subgroup can be chosen to be GL; x GL,,_;
which embeds into G in the standard way. We denote the unipotent radical of P, by N, . Then
we introduce
(4.4.2) Ul = Z t71[A] foreach 1 <i<n—1.

AeN; (Fp)

Note that each A € N, has the form

Id; On—iyxi
*ix(nfi) Idnfz
foreach 1 <i<n-—1.

For each w € W and each tuple k = (ko) cqr € {0,...,p— 1}"1’:5', we consider the following
Jacobi sum

So=| S [ [T | 141 ) wezic@)
Aer(FP) Q€q>$

In particular, we consider

Su = > Al | we Z,[G(Z,)]
A€U,,(Fp)

which is a characteristic 0 lift of Sp ,,.
Recall the notation 7° from (4.1.1).

Lemma 4.4.1. Assume that p, is n-generic (Definition 4.1.1). We have the equality

~ -~ L(w)+e(w’)—t(ww’) ~
Su) [ ] Sw' =D 2 ww’

on (7)1 for all w,w' € W.

Proof. One can quickly reduce the general case to the following two elementary equalities on
(%o)](l):

(4.4.3) Sy 0 Sy = Sy if L{ww') = L(w) + L(w')
and
(4.4.4) S, o8, =pforalll<r<n-—1.

The equality (4.4.3) follows directly from the definition of the Jacobi sum operators. The equality
(4.4.4) follows from a simple Bruhat decomposition. In fact, we have for each t # 0

Srla,. (t)sr = Ua, (til)srdiag(l, EEI Py —tily 1 1)“% (til)
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where the diagonal matrix has ¢ at (r,r)-entry and —t~! at (r + 1,7 + 1)-entry. Therefore for each
v € (7)1 there exists an integer n < £ < p — n such that

diag(1,---,1,¢t,—t= 11, ,1)o = £[t]D

and thus
So, 08 0= | > ua, ()] [T D[] Tua, (¢t 1)]s0
t'€Fp teFy,
=po+ > T8 Tta, (F + )]s, | ©
t'€F, teF,
= po.
This finishes the proof. (]

Lemma 4.4.2. We have the equality
(En)k L Uj,f = S(w*)k
Proof. This is immediate by definition. ]

We quickly recall some standard facts about Jacobi sums and Gauss sums. We fix a primitive
p-th root of unity £ € F and set € := £ — 1. For each pair of integers (a,b) with 0 < a,b <p—1,

we set
J(a,b) =Y [A]*[1 = A"
A€F,
We also set

AEF,

for each integers a with 0 < a < p — 1. For example, we have G(p — 1) = —1.
It is known by section 1.1, GS3 of [Lang] that if a + b # 0 mod (p — 1), we have

G(a)G(b)
Gla+b)’
It is also obvious from the definition that if a,b,a + b #Z 0 mod (p — 1) then
J(b,a) = J(a,b) = (=1)°J(b,[—a — b];) = (=1)*J(a, [—a — b];).
By Stickelberger’s theorem ([Lang], Section 1.2, Theorem 2.1), we know that
a4 G(a)
p—1 ep—1l-a
Let r € Z with 1 <r <n-—1and w € W. Given the data pu, = (dy,ds, -+ ,d,) and tuple
ke{0,...,p— 1}@:5‘, we define a tuple
i e {0,...,p— 1%L if f(ws,) < (w):;
- {0,...,p— 1}|q>:55r‘ if L(ws,) > l(w)

J(a,b) =

(4.4.5) ord,(G(a)) =1—

=a! (mod p).

by
K =

(e

ko ifaedt;
0 if a=wa,

in the first case and

kK = Fwa, —dr +dria1]1 if @ = way;
“ ka if « € @) and o # wa,

in the second case.
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Proposition 4.4.3. Assume that p, = (d1,da, -+ ,dy) is n-generic and that
ko =0 for all a € ‘I’,I with wa,. < a.
Assume further that if £(ws,) < (w) then kya, ¢ {0, p—1, [dr — dps1]1}-
Then for each 1 <r <n —1 we have

Sined = Skt ws, i tws,) > ((w);
R,w Sr (—l)dr+1 J(k‘war, [dT-l—l — dr]l)SE’,w Zf E(wsr) < é(w)

on (%O)I(l)ﬂw‘

Proof. By definition we have

SeweSs, = Y. [T FAa1™ ) [ATwlua, (8)]s,-

A€U(Fp),teF, \acd

We divide it into two cases:

(i) L(wsy) > L(w);
(i) L(wsy) < L(w).

In case (i), we have the Bruhat decomposition
Awug, (1), = Ay, (£)ws,
and thus
Sk,w @ Ss, = Si'ws, -
In case (ii), we have the Bruhat decompositions: if ¢t =0
Awug, (0)s, = A(ws,) = A"ws,ta, (Awa, )
where A” is the unipotent matrix that has the same entries as A except a zero at wa,.-entry;
ift£0
Awug, (t)s, = Auya, (til)wdiag(l, cee b=t Dug, (til).

1(1)

We fix a vector v, € (7°)*H-# whose mod p reduction is non-zero. Therefore, we have

g@,w ° :S\sri)\w = (*Udrﬂ Z H [A(ﬂk“ [t] dr=dri1 [Aluwa, (til)w@r

AEUW(Fp),tGF;; a€<1>1+v
n }: H [A)F | [Aws, Ty
AGUU)(FP) aeq’:}

The summation ZAer(Fp) (Haeqﬁ (Aa]ka) Aws,U; can be rewritten as

> IT r4a1 > [Auwa, Feer | Alws, iy

A" E€Uws, (Fp) \acdis,, Awa, €Fp

which is 0 as we assume 0 < ko, < p — 1. Hence, we have

Sy ® S5 Uy = (—1)%r+1 > IT rAars | 114 =4 [Aua, (1) Jwbs.

AcU,, (Fp) teF) \acdy
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On the other hand, after setting A’ = Auyq, (t~1) we have

(4.4.6) > [T TAa1ke | T4 =4 [ A, () JwTn

ACU, (Fp) teF)S \acdf

= > [T rAa1®e | T(AL,, =t D1k [e1 5=+ [A w,

A’€U,, (Fp) teFX \acdi,,

since k, = 0 for all wa, < a.
One can easily check that if Aj,, =0 then

3 (A, = £ [0t = (oo 30 [ =dess—beer —o,

teF) teF,

and if A7, # 0 then
D (Ao, =7 hemr [

teFy
= [, T eten (ST (A, 1) [(A, 1))~
teF,
= J(kwa,, [drr1 — dr]l)[Aiuaﬁ[kum—dwwdr]l.
Combining these computations with (4.4.6) finishes the proof. O

Remark 4.4.4. Proposition 4.4.3 is the technical heart of this section. It roughly says that
[U(F,),U(F,)]-invariant vectors behave well under intertwining of principal series, which is es-
sentially why the identities in Theorem 4.4.9 and Proposition 5.5.1 exist. On the other hand, it is
crucial that the vector vy is invariant under [u,, (t)] fort € Fp.

From now on we fix an n-tuple of integers (a,—1, - ,ap) which is assumed to be n-generic in
the lowest alcove (cf. Definition 4.1.1). We let

= (a1 =N+ 2,an 2,053, ,02,01,00 + 1 — 2);
H1 = (a17a27' e 7an73>an727an717a0);
/o .
My = (an—h ap, a1,Aa2,** ,An—3, an—?)a
Ho = (an—h a1,G02 -+ ,0n-3,0n—-2, aO)
and
G(Fp)
my 1= IndB(F:)uo;
(4.4.7) SO0
Ty = IndB(Fp)“O

where fig is the Teichmiiller lift of pug. Then we recursively define sequences of elements in the
Weyl group W by
{ w1 = 13 W = Spn—mWm—1;
wy =1, w, = spwl,_4
for all 2 < m < n—1, where s,, are the reflection of the simple roots «,,. We define the sequences
of characters of T'(F,)

f = pi™ and g, o= (pg)
for all 1 < m <n — 1. In particular, we have p,_1 = po = u,,_;.
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We let k' = (k};), &' = (k;77) and £ = (k?), where

k‘%ﬂ-ﬂ = Jag— Gp—i]1 +n—2;
(4.4.8) kilyy = lan—ic1 —an—1i +n—2;
k?,i—&-l = [ao—an,1]1+n—2

for1<i<mn-—1and k}j = kllj' = k?,j = 0 otherwise.
We also define several families of Jacobi sums:
gkm’w[) and S\Evn,/’wo
for all integers m with 1 < m < n — 1, where k™ = (klmj) satisfies
n—2+ay—an—1)1 fl<i=j5—-1<m;
ki = n—2+Jay—apn—i}1 fm+1<i=j—-1<n-1;
0 otherwise
and k™' = (kznjl) satisfies
n—24ap—i—1—ap_11 fl1<i=j—1<n—-m-1;
k=< n—2+[ag — an—1]1 ifn-m<i=j—1<n-—1;
0 otherwise.

We keep the notation in (4.4.7) and recall that k° is defined in (4.4.8) and satisfies

(4.4.9) =gt =g,

We also define

(4.4.10) { li%;; = (—1)2%;21 am 1;[;2;21 J(n—2+[ap — an—m-1]1, [@n—m—-1 — An_1]1);
b = (—=1) D0 T2 (0 — 2 + [am — an—11, [ao — am)1).

Proposition 4.4.5. Assume that (ap—1,- -+ ,ap) is n-generic.

Then we have

Sklﬂuo [ ] Sw;il = “511)8@0,1:;0 and Skl‘/,w

© Sty =108

0 »Wo

on the 1-dimensional space (7)1 (1)Fo,
Proof. By the case w = wq of Proposition 4.4.3 and the fact that

kit =1 =2+ [a0 = apoma]r and kg =0 =24 [am —an—1]y
we have

§Em7wO ° §s = (—1)an_m_1J(’l’L -2+ [ao — an_m_l]l, [an—m—l — an_l]l)ghnwrl’wo

n—m-—1
and R R N
SEM”,U)U ] Sstrl = (—1)“0J(n -2+ [am — an_l]l, [ao - am]l)SEerl,/’w
on the 1-dimensional space (7§)/():#0 for all 1 < m < n — 2. Using the equality (4.4.9) together
with Lemma 4.4.1 one can write

0

S\w;il e §3n—2 ®---0 S\SI’ and ‘é\‘(“’;71)71 = §52 ®---0 S\Sn—l'
Hence, we finish the proof by induction on m. O

Lemma 4.4.6. We have
/i%l) = (—1) "2 am (HH*Q ("_2"1‘[‘10_?n—wnfl]l)!([anfm—l_(Im,fl]l)!) (mod p);

m=1 n—2+[ap—an—1]1)!
2 n—2)a n—2 (n— am—an—1]1)([ao—am]1)!
hi) = (—1)tn=2)eo (Hm:l ( 2+([7L—2+[aoJ;iE[1]i)1 = ) (mod p).

In particular,

ord, (kM) = ord, (k) = 0.
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Proof. This follows directly from (4.4.5), the definition of f-cﬁ}), KJSA?), and the fact that (an—1,- - ,a0)
is n-generic. O

Corollary 4.4.7. Assume that (ap—1,-- ,ag) is n-generic.
Then we have

ggl,wo = p”*%;l)gﬁo}wo . S\wn_l and 3\&1,/““)0 = p"*2n%2)§ko’w0 oS,
on the 1-dimensional space (75)!(1)Fo,
Proof. It follows from Lemma 4.4.1 that

S wl, oSwn L, =p" = (é\‘(,w:]'il)—l .gw;z—17
so that this follows from Proposition 4.4.5 and Lemma 4.4.1. |
We define two important Jacobi sum operators (in characteristic p) S,, and S/, to be
(4.4.11) Sn = Skt o, and S, = Skt g
Corollary 4.4.8. We have the equality
S, (Wéf(Fp)vm) - (Wéf(Fp)»u’l) = S0, (W(T)J(Fp)mo) .
Proof. Tt follows from Lemma 4.1.6 that
Sg,wgil (Wéj(FP)’MC)) _ Wéf(Fp),m and Sy (w1 (ﬁg(Fp)wo) _ 7T(IJJ(on),ui_

Hence we finish the proof by the reduction modulo p of identities in Proposition 4.4.5 and the fact
that the reduction modulo p of S, is Sg,. for each w € W. O

As in (4.4.11), we use the shortened notation
g’n = S\El;wo and <§7IL = S\El”ﬂuo

and note that S, (resp. &) is the reduction modulo p of S, (resp. S.).
To state the main result in this section, we also define

n—2n—3

T 17T [0k — an-1]1 + 7 ag —ap—1+7 x
4.4.12 = Bk On1l 7 € Zx,
( ) UU [ao — ak]i +j kl_Ill_IO ap —ag +Jj P
=1j= J
n—2
(4.4.13) e =[] (=1)eem,
m=1
and
(4.4.14) fin = K (D)L

The main result of this section is the following theorem, which is a generalization of the case
n =3 in [HLM], (3.2.1).

Theorem 4.4.9. Let

II, = IndG(gpgx

be a tamely ramified principal series representation where the x = x1 @ -+ ® xn : T(Qp) = E* is
a smooth character satisfying X|r(z,) = fi1-

On the 1-dimensional subspace Hfl(l)’ﬁl

n—2
S e (E,)" 2 =p" 2k, (H Xk(p)) S
k=1

we have the identity:
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for K, € OF (defined in (4.4.14)) such that
Kn = g*Pn(afn—la e ,0,0) (mOd wE)

where e* = £1 is the sign function defined in (4.4.13) and P, is the rational function defined in
(4.4.12).

The following is a direct generalization of Lemma 3.2.5 in [HLM].
Lemma 4.4.10. We have the equality

. -1
Uy = (H Xk(p)>
k=1

on the 1-dimensional space Hf,,(l)’ﬁl foreach1 <r<n-—1.

Proof. The proof of this lemma is an immediate calculation which is parallel to that of [HLM],
Lemma 3.2.5. 0

Proof of Theorem 4.4.9. Notice that
L w2 =w, . and  L(w!,_ ) +L(w*)") =3(n —2) = L(w,_1) +2(n — 2),

Wp—1

so that by Lemma 4.4.1 we have

~

(4.4.15) S

n—1

° S(w*)n72 = pn72$wn71 .

By composing S\Eo on both sides of (4.4.15), we deduce from Proposition 4.4.5 that

sWo
(5$2) 718, @ S(upeyn—a = p" (kM) 1S,

and thus
3\, L] gé\(w*)n—Q = pniQKZnSn
on the 1-dimensional subspace Hl(l) ¥ Now Lemma 4.4.2 together with Lemma 4.4.10 gives rise

to the identity in the statement of this theorem.
Finally, one can readily check from Lemma 4.4.6 that

o = KD 1)

— (_1 m— 10«0 A ﬁ n—2 + ap — Gp— mfl] ) ([an m—1 — anfl]l)!
B (n =2+ [am — an—1]1)!([ao — am]1)!
—2n-—2
= (C1)ThT a0 £+ [ao — anly
m=1 =1 E am — Qp— 1}1
=¢c"P, (mod wg).

Note that ord,(k,) = 0. This completes the proof. O

4.5. Special vectors in a dual Weyl module. We fix a tuple of integers h := (hq,- -+ , hy) for
some 1 < s <n — 1 such that

1<h.<n-—1foralll<r<s

and

ZS:hT:nfl.
r=1
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Then we can define n — 1 positive roots f8;; for 1 < ¢ < n — 1 as follows. Given an integer
1 <i < n—1, there exists a unique integer 0 < ry < s — 1 such that

70 ro+1
D ohe<i< Y hy,
r=1 r=1

and we use the notation

[in = Do
r=1

Then we define

%
ﬁﬁﬂ' = Z Q.

k=1+[i]n
Note in particular that we always have
Br1 = ai.
Then we define
@z ::{a€<b+|a7éﬁ@7i forall1<i<n-—1}
and notice that this set gives an unipotent group U, C U by setting

UQ = H Ua.

+
a€<1>i

We emphasize that all Uj, constructed here are good in the sense of Definition 4.1.7. In particular,
ifs=n—1and h, =1for 1 <r <n-—1werecover [U,U], and if s =1 and h; = n — 1 we recover
Uy (cf. Example 4.1.8). We define U}, as the reduction of Uy mod p. If we mark the positive roots
Bh,i by a e on their corresponding upper-triangular entry, we get the following matrix looking like
a ladder with s steps

1 e ¢ 0 O 0 0 O 0
1 0 0 0O 0 0 O 0
10 0 0 0 0 - 0

1 ) e 0 O - 0

1 0 0o 0 0 - 0

1 0 0 0 - 0

—
o
® ---
=}

1 0 0
1 0
1

Let R be a Fp-algebra, and A € G(R) a matrix. For Ji,Jo C {1,2,---,n — 1,n}, we write
Ay, .J, for the submatrix of A consisting of the entries of A at the (4, j)-position for i € Jy, j € Jo.
We define

Ji={1,2,--+ i} C{1,--- ,n}
for each 1 < ¢ < n. Given a tuple h as above, we define the subsets Jé C{l,---,n}for1 <i<n-1
as
Jpo={1,2,-+ i+ 13\ {[i + 1] + 1}.
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It is easy to see that \J}l| =ifor1<i<n—1. We define

Dy, i := det ((woA)Jg,Jé)

for all 1 <i <n—1. We also set D; := det(woA) j; j; for 1 <4 <n. Hence, Dp; (1 <i<n—1)
and D; (1 < i < n) are polynomials over the entries of A.

Given a weight A € X (T), we now introduce an explicit model for the representation H°(\),
and then start some explicit calculation. Consider the space of polynomials on é/p , which is
denoted by O(G). The space O(G) has both a left action and a right action of B induced by right
translation and left translation by B on G respectively. The fraction field of O(G) is denoted by
M(G).

Consider the subspace

O\ :={f €O(G)| f-b=woA(b)f Vbe B},
which has a natural left G—thlOIl by right translation. As the right action of T on 9(6) is
semisimple (and normalizes U), we have a decomposition of algebraic representations of G-
OG) ={f€O@) | f-u=f YueU}=,xqON.

It follows from the definition of the dual Weyl module as an algebraic induction that we have a
natural isomorphism

(4.5.1) HO(\) = O(N).
Note by [Jan03], Proposition IT 2.6 that H°()\) # 0 if and only if A € X (7).
We often write the weight A\ explicitly as (d1,ds,- - ,d,) where d; € Z for 1 < i < n. We will

restrict our attention to a p-restricted and dominant A, i.e., dy > ds > ... > d, and d;_1 —d; <p
for 2 < i < n. We recall from the beginning of Section 4 the notation () for a weight space with
respect to the weight \'. We define X to be the set of (n — 1)-tuple of integers m = (mq, ..., Mp—1)
satisfying

Ogmifdi—d,q_l fOI‘lS’L'Sn—l.
For each tuple m, we can define a vector

n—1
alg | dy di_di+1_mi my
U = D [T D (D)™
i=1

Proposition 4.5.1. Let A = (dy,ds, - ,dy) € X1(T). The set
(4.5.2) {vpe | me X}

orms a basis of HO(\)Ux. Moreover, the weight o Udlg 18
J f g

A— (Z miﬂh,i)
i=1
and thus each element in (4.5.2) has distinct weight.
Proof. We define

Q@)Y ={fcO@)|ur-f=f-u=f VueU& Vu, € Uy}

and
Ue M@ = {f e M@G) |us-f=f-u=f YuelU& Vu, € Uy}
We consider a matrix A such that its entries A; ; are indefinite variables. Then we can formally
do Bruhat decomposition
A= UAIU()TA,@UA,Q
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such that the entries of U4, T4 p, Ua ) are rational functions of A; ; satisfying
1 iti=y;
(Ua)is = { 0 ifi>j,
D;i(A) if i = j;
(Tan)ij =19 Dnr(A) if (4,5) = Buk;
0 otherwise ,
WUa,=d 1 ili=j
ARJLIT 0 if i > jor (i,5) = B for some 1 < k <n— 1.
For each rational function f € UM (é)ﬁ, we notice that f only depends on T4 j, which means
that f is rational function of D; for 1 <i <n and Dj; for 1 <i <n — 1. In other word, we have

s M(G)Y =F, (D1, Dn. D1+ Din—1) € M(G).
Then we define
UnNO@G)U = {fe UrO@G) |z-f=N(2)f, and f-2=A=z)f VaeT}
and
U MG = {f e M@V |a-f=N()f, and -2 = \Na)f VoeT}

Note that we have and an obvious inclusion

ULL,XO(G)?,)\ C ULL’/\IM(@)U’)\.

We can also identify V=Y O(G)U-* with HO ()\)g,L via the isomorphism (4.5.1). By definition of D;
(resp. Dj,;) we know that they are T-eigenvector with eigencharacter 2221 €k (resp. ( j:;ll €x) —
G[i]'h) for 1 <i < n (resp. for 1 < i < n—1). Therefore we observe that ULL”\/M(G)U’A is one
dimensional for any A, X' € X(T) and is spanned by
n—1
i [ D7
i=1

where A = (dy,- -+ ,d,) and

n—1
)\/ =)\— (Z miﬂh,i> .
i=1

As O(G) is a UFD and D;, Dy, ; are irreducible, we deduce that

n—1

Dy T Df = 7™ (D)™ € 0(@)

i=1

if and only if
0<m; <d;j—dijprp foralll1 <i<n-1
if and only if B
HO(\) 3 #0

which finishes the proof. O
Remark 4.5.2. The groups Uj, we defined have the advantage that the U p-invariant subspace

HO(\)Ur C HO(N) is a direct sum of its one dimensional weight spaces. In other word, one can

easily distinguish vectors in HO()\)UE using the T-action. Note that the weight spaces of H°(\)
have very large dimensions in general.

We consider the special case of Proposition 4.5.1 when s = 1, h; = n—1 and hence h = {n—1}.
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Corollary 4.5.3. Let A = (dy,da, -+ ,dy) € Xq(T). For N € X(T), we have
dimg, HO(O\) Y < 1.

Moreover, the set of X such that the space above is nontrivial is described explicitly as follows:
consider the set ¥y, _1y of (n — 1)-tuple of integers m = (ma, ..., myn_1) satisfying m; < d; — d; 1
for1<i<n-—1, and

n—1
1 di—diy1—m; m;
U?f—l},m = Dy H Dy (Dgn—1y,)™"
i=1
Then the set 1
(Vi 1y, M€ Sy}

forms a basis of the space HO()\)ﬁl, and the weight of the vector Uz{tgq} m 18
n—1
(dr — Z M, do + M,y dn1 + My_2, dn + Min_1).
i=1

Remark 4.5.4. Corollary 4.5.3 essentially describes the decomposition of an irreducible algebraic
representation of GL,, after restricting to a mazimal Levi subgroup which is isomorphic to GL; X
GL,,—1. This classical result is crucial in the proof of Theorem 4.7.17.

4.6. Some technical formula. In this section, we prove a technical formula that will be used in
Section 4.7. The main result of this section is Proposition 4.6.5.

Throughout this section, we assume that (a,—1,--,ap) is n-generic in the lowest alcove (cf.
Definition 4.1.1). We need to do some elementary calculation of Jacobi sums. For this purpose we
need to define the following group operators for 2 <r <n — 1:

X =) 7 Pusa, (1) € F[G(F,)),
teF,

and similarly
X, = P Pwousgna, (Hwg € Fy[G(F,)).
teF,
We notice that by definition we have the identification X ;& = XZ?;l ;.10 Where XZ?:_: a1 18
defined in (4.1.2).
Lemma 4.6.1. For a tuple of integers k = (k; ;) € {0,1,--- ,p— 1}|¢$0‘, we have
Xj' ® Skw, = k/’r,nSyﬁ,wo

where k" = (k;’;") satisfies k' = kpn — 1, and k;'; = ki j if (i,5) # (r,n).

2]

Proof. This is just a special case of Lemma 4.1.2 when a9 = Z;:} a; and m = 1. O
For the following lemma, we set
I:={(i1,i2, -~ ,is) | 1 < iy <idg < --- <ig =n for some 1 < s <n}

to lighten the notation.
Lemma 4.6.2. Let X = (X, ;)i<ij<n be a matriz satisfying
Xij=0if1<j<i<n—1
Then the determinant of X is

(4.6.1) det(X) = Z (—1)5_1Xn,i1 H Xj,j (SI_[ Xikyik+1> .

(i1, ,is)€L J#ik, 1<k<s k=1
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Proof. By definition of the determinant we know that

det(X) = Y (=)™ [T Xe,wew-
k=1

weW

From the assumption on X, we know that each w that appears in the sum satisfies
(4.6.2) w(k) < k
forall2<k<n-—1.

Assume that w has the decomposition into disjoint cycles

w = (Z%,Z%, 71}11)(11717231’ ,anm)

where m is the number of disjoint cycles and ny > 2 is the length for the k-th cycle appearing in
the decomposition.

We observe that the largest integer in {lf | 1 < j < ng} must be n for each 1 < k < m by
condition (4.6.2). Therefore we must have m = 1 and we can assume without loss of generality
that i), = n. It follows from the condition (4.6.2) that

i <ijy
for all 1 < j <nj; — 1. Hence we can set
Si=mny, Gy =iy, is =1, .
We observe that {(w) = s — 1 and the formula (4.6.1) follows. O

Recall from the beginning of Section 4.6 that we use the notation Aj, j;, for the submatrix of
A consisting of the entries at the (4, j)-position with ¢ € Jy,j € Jo, where Jy, Jo are two subsets of
{1,2,--- ,n} with the same cardinality. For a pair of integers (m,r) with 1 <m <r—-1<n-—2,
we let

JoT =12, ;r,n—m+1}.

For a matrix A € U(F)), an element ¢t € F,,, and a triple of integers (m, r, ) satisfying 1 <m <
r—1<n-—2and1</<n—1, we define some polynomials as follows:
Dunr(A,t) := det (uz?:_rl o (t)wkoO) when 1 <m <r—1;

m,r n—r41
Jo s dg

Dﬁf)(A,t) = det (uz?;l o (t)wkoo) 7.1 when1</<n—r.

We define the following subsets of I: for each 1 </ <n—1

(4.6.3)

Lo :={(i1,40, - ,is) ET|n—L+1<i; <izg<---<is=n for some 1 < s < (}
Note that we have natural inclusions
I,CIy C1I
if 1 </ <{¢ <n-—1. In particular, I; has a unique element (n). Similarly, for each 1 < ¢ <n—1
we define

L {(i1,i2, -+ ,is) |1 <y <dg < -+ <idg_1 <n—{ <ig=mnfor some 1 <s </}
and we set
I, =1,nT"
forall 1 < ¢ <¢—1<n—2. We often write ¢ = (i1,--- ,i5) for an arbitrary element of I, and

define the sign of ¢ by
e(d) == (—1)°.

We emphasize that all the matrices (wouzt_l » (t)wkoo) for1<m <r—1, and

m,r n—r+1
1 ’J2

all the matrices (onZn—l a_(t)wkoo) . for 1 < ¢ < n — r, after multiplying a permutation
p=r JisJ3
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matrix, satisfy the conditions on the matrix X in Lemma 4.6.2. Hence, by Lemma 4.6.2 we notice
that

(4.6.4) { D r(At) =Amr +tfmr(A) when1l<m<r—1,

DY (At) =1~ tfrmi31(A) wehn1<0<n—7
where forall 1 <m <r—1

S

(465) fm,T(A) = Z E(Z)Am,h H Aijflyij

[AS) P j=2

Let (m,r) be a tuple of integers with 1 < m < r—1 < n — 2. Given a tuple of integers
ke{0,1,--- ,p— 1}|¢$0‘, i = (i1,42, -+ ,is) € In_+r+1, and an integer 7’ satisfying 1 <1’ < r, we
define four tuples of integers in {0,1,--- ,p — 1}‘4)1“0|

Lot (kbmm-i-) Ebmr (k,Lm,T) kz,m,r,r/,+ _ (ki7m,r,rl7+) kg,m,r,r’ _ (kmeT/)
LA y = y = y =

1,9 1,9 % 1,7
as follows:
ki, +1 if (4,5) = (m,i1) and i1 > 73
k;l_"m’TrF o km,r lf (laj) = (mﬂ T’);
] ’ kij+1 if (4,5) = (in,ing1) for 1 <h <s-—1;
ki j otherwise,
e . k%j}n7r’+ —1 if (i,5) = (m,r) and iy > 75
b kf:;-"’r"k otherwise,
and
k@a@,h?’”,* — k%’ir;,rv* -1 lf (7’73) = (T/77’L);
J ' f;nr* otherwise
where * € {+, @}. Finally, we define one more tuple of integers k" = (k;;‘) € {0,1,--- ,p—1}|@$o|
by
Ert = krpn +1 if (Z’j) = (’I“, n);
v ki j otherwise.
Remark 4.6.3. If we use the shortened notation o j = fc;i ay, then we clearly have the equality
(4.6.6) Qmn = Qm iy + Z Qi i1 = Cm,r + O

1<h<s—1

as we always have iy = n by definition of the tuple i. The equality (4.6.6) would imply by Lem-
ma 4.1.5 that Syim.r Vo and Sgr.+ 0 v0 have the same T(F),)-eigencharacter, which differs from
the one for Sk w,vo by v n = € — €. Very roughly speaking, Syim.r V0 and Syr.+ 4, v0 erhaust
minimal modifications of Sk Vo that modify the correspondingiT(Fp)-eigenchamcter by oy, if
we vary m and i.

Lemma 4.6.4. Fix two integers r and m such that 1 <m <r—-1<n—2, and let k = (ki,j) S
{0,1,--- ,p— 1}@%'. Assume that ki j =0 forr+1<j<n—1 and that k;, =0 for i #m, and
assume further that
n—1
Ap—yr — a1 + [al — Qp—1 — Z ki,n]l + km,r <Pp.
i=1
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Then we have

X; [ ] SE,’U}()/UO = km,r E E(Z)Sﬁi*7”*7‘7wovo

i€ln_r
n—1
+ ([an—r —ap—1 — Z ki,n]l + km7r)SEr,+,w01}0
i=1
n—r
_ Z(an,r —ay_1 + km’r) Z 5(1')SE1,7-,n74+1,+’w01)0
£=2 i€l \Ip—1
Proof. By the definition of X, we have
_ - ki,j
X, Sk Vo = Z tP—2 H AP Wolsn—1 o (t)woAwg | vo.
AcU(F,),teF, 1<i<j<n

For an element w € W, we use E,, to denote the subset of U(F,) x F,, consisting of all (A,t) such
that

Wolgn—1,, (t)woAwg € B(F,)wB(F,).
We consider the standard parabolic subgroup P O U of G with standard Levi subgroup isomorphic
to GI1 x GL,,_,+1 which induces an embedding GL,,_,41 < G. We consider the longest element

in the Weyl group of GL,_,+1 and denote its image under the embedding GL,,_,+1 — G by wp.
We notice that

wottgn-1 , (H)woAwy € GLy—r1(Fy) - U(Fp)wo = P(Fy)wy C | | B(F,)wiwoB(F,),
w1 <wp

and deduce that if E,, # @ then wwy < wp and in particular wwg(i) =4 forall 1 <i <r—1.
We define M, to be

o p—2 ki
M, = E t H AP wouzz;iah(t)wkoo vp.
(At)EE, 1<i<j<n

By the definition of E,,, we deduce that there exist A’ € U, (F,), A” € U(F,), and T € T'(F,,) for
each given (A,t) € E,, such that

(4.6.7) Wolsn—1 o (H)woAwg = A'wT A”.

Here, the entries of A’, T and A” are rational functions of ¢ and the entries of A. We can rewrite
the identity (4.6.7) as

(4.6.8) Wolgn—1 ah(—t)woA’w = Aon_l(T(A”)—lT_1).

Note that the right side of (4.6.8) can also be viewed as the Bruhat decomposition of the left side.
In fact, if we define E/, as the set of elements (4’,t) € U, (F,) x F, satisfying

(4.6.9) Wolgn—1,, (—t)woA'w € B(F,)woB(F,),
then (4.6.7) and (4.6.8) imply that we have a natural bijection
E, = El, (At)— (A1)

w?

induced from isomorphism of schemes by considering F,-points. Therefore the entries of A, T', A”
can also be expressed as rational functions of the entries of A’.
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For each A’ € U,,(F,) and w € W, we define

DY (A1) == det ((Uzp—lai (t)wOA’w) o n—r+1> when 1 <m <r —1;
(4.6.10) ” ol

w,(£) -
Dy (A1) := det ((UEZ‘:,.I o (t)woA’w) Jng) when 1 <{<n-—r.

Note that if w = wp, then the definition in (4.6.10) specializes to (4.6.3). We notice that for a
given matrix A’ € U, (F,), the inclusion (4.6.9) holds if and only if

(4.6.11) DUOA —t)y#0forall 1 <l <n—r
On the other hand, using the bijection E, — E’, we deduce that (4.6.11) holds for (A’,t) €

w
Uw(Fp) x F), if and only if there exists a unique determined pair (A,¢) € E,, such that (4.6.7) (or
equivalently (4.6.8)) holds for some T' € T'(F,), A” € U(F,) uniquely determined by (A’,t).

By the Bruhat decomposition in (4.6.8), we have

Dw,(Z) Dw,(nfr)
(4.6.12) T =diag | DYV, = — ... —T , 1,001
DT'L“U( ) D:“”(n*lfr) D;“D:(nfr)
in which we write D;f}’(i) for Df”(i) (A, —t) for brevity. We also have
Ag_’j ifl<i<j<mandj<r-—1;
(4.6.13) Ay =4 Do (A=) i (i) = (m,r);
A jf1<i<n—1landj=n.
D,V (A,—t)

We apply (4.6.7), (4.6.13) and (4.6.12) to M, and get

M, = Z F(A/, w, t) H (A;’j)k)ri,j A'w | vo
(A)EE, 1<i<j<n
j<r—1or j=n

where
F(A" w,t) = "> ((Dzm)kmw(D;Ml))alamZ?‘f i H(Dg,(s))asaH)
s=2

in which we let D%, . := Dy (A, —t) and DY) .= DY) (A7 —#) for brevity. We have discussed
in (4.6.11) that (A,t) € E, is equivalent to (4’,t) € Uy,(F,) x F, satisfying the conditions in
(4.6.11). Aseach D) (A’, —t) appears in F(A’, w,t) with a positive power, we can automatically
drop the condition (4.6.11) and get

(4.6.14) M, = > F(A' w,t) IT @ik | Awo | vo.

(At)EUW (Fp) xFp 1<i<j<n
j<r—1or j=n

If w # wp, then there exist a unique integer ig satisfying r < ip < n such that wwg(ig) < ig but
wwp(i) =4 for all ig+1 < i <n.
By applying Lemma 4.6.2 to D" 170 (A" —¢) (as (ussn-1, (H)woA'w) je s satisty the con-
dition of Lemma 4.6.2 after multiplying a permutation matrix), we deduce that
Dy (A —t) = tf(A))

where f(A’) is certain polynomial of entries of A’.
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Now we consider F(A’,w,t) as a polynomial of ¢t. The minimal degree of monomials of ¢
appearing in F(A’,w,t) is at least

D=2+ npi1—ip — Gn—i, > D — 1,

and the maximal degree of monomials of ¢ appearing in F(A',w,t) is

n—1 n—r
p—2+ km,r + [al — Qp—1 — Z ki,n]l + Z s — As—1
i=1 s=2
n—1
=p— 2+ km,'r‘ + [a1 — Ap—1 — Z ki,n]l + ap—r — a1
1=1

<2(p-1).

As a result, the degree of each monomials of ¢ in F(A’,w,t) is not divisible by p — 1. Hence, we
conclude that

M, = 0 for all w # wy

as we know that >, g tF £ 0 if and only if p— 1 | k and k # 0.
Finally, we compute M,,, explicitly using (4.6.14). Indeed, by applying (4.6.4), the monomials
of t appearing in F(A’, wo,t) is nothing else than

n—1

tp_l(A;n,r)km’T <_km7Tfm7T(A/)(A;n,r)_l + [al I Z ki»n]lfnn(A/)

=1

+ Z(as - as—1>fr,n+1—s(A/>> .

s=2

As Zter tP~1 = —1, we conclude that

(46.15) X7 eSpuro=Mu = Y. |[R@) [ T (AR | Awo | v
A'€U(Fp) 1<i<j<n
j<r O j=n
where

n—1
FO(A/) = (A;n,r)knw (km,Tfm,r(A/)(A:n,r)_l - [a1 —an-1— Z ki’n]lfr,n(Al)

i=1

- Z(as - a’sl)f’r,n+1s(A/)> .
s=2

Recalling the explicit formula of f,, , and f; 41— for 1 < s < n—r from (4.6.5) and then rewriting
(4.6.15) as a sum of distinct monomials of entries of A’ finishes the proof. O

Proposition 4.6.5. Keep the assumptions and the notation of Lemma 4.6.4.
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Then we have

X, 0 X, @ Skawg0 = kmokrn Y (1) Skimrr i vo

i€I7L7T

n—1
+ (kr,n + 1) ([anr —Qp-1 — Z ki,n]l + km,r) SE,U}OUO

i=1

n—r
_ k,r_’n E (an,r —Qy—1 + km’r) E E(Z)SELT,7L4+1,r,+7w0U0
(=2 LIS VAN VY

Proof. This is just a direct combination of Lemma 4.6.4 and Lemma 4.6.1. ]

Remark 4.6.6. The effect of X;© (resp. X, ) on T(F,)-eigencharacter is essentially x — x+ arp
(resp. X — X — &) where x is the T(Fy)-eigencharacter of Skw,vo. The conditions assumed
in Lemma 4.6.4 are crucial for the formula in Proposition 4.6.5. In fact, the formula in Proposi-
tion 4.6.5 is relatively simple in the sense that all the coefficients are totally explicit when we write
X" o X Sy 0 as a linear combination of Sy .,,vo for various k'

4.7. A non-vanishing theorem. The main target of this section is to prove Theorem 4.7.17.
This theorem together with Corollary 4.4.8 immediately implies Theorem 4.8.1. We start this
section by introducing some notation.

We first define a subset A, of {0, - ,p— 1}@%| consisting of the tuples k = (k; ;);,; such that
foreach1<r<n-1

Z k@j = [aofan_l]l +?’L*2

1<i<r<j<n

Note that the set A,,, embeds into my by sending k to Sk w,vo. Moreover, this family of vectors
{Skwovo | k € Ay, } shares the same eigencharacter by Lemma 4.1.5.

We define k! € Ay, where kb = (kfj) is defined by kgm = [ap — an-1]1 + n — 2 and kjfj =0
otherwise. We set

Vﬁ = <G(Fp) . SE”J»UO,UO> g -

We also need to define some other useful elements of A,,. For each 1 < r < n — 1, we define
K — (kf;}") € Ay, by

n—2+ay—an_1)1 f2<j=i4+1<r;
KT = Q0 n—2+[ag —analy if (i,5) = (r.n);
0 otherwise.

In particular, we have

(4.7.1) Bt = kP and EP = K°

Il
o5
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where k" is defined in (4.4.8). If we represent k by a matrix in U(Z) with (i, j)-entry given by k; ;,
then k%" has the following form

1 % 0 -~ 0 0 0 O --- 0 O
1 k -~ 0 0 00 -~ 0 O

1 0 0 0 O 0 0

1 k 0 O 0 O

1 00 0 ko

1 0 0 0

1 0 0

1 0

1

where kg :=n — 2 + [ag — ap—1]1 and the unique kg appearing on n-th column is on (r,n)-entry.
Foreach1 <r<mn—2and 0 < s <[ag—an_1]1 +n—2, we define ks = (kf]”) € Ay, as follows:

n—2+lag — an—1)1 if2<j=i+1<m
n_2+[a0_an—1]1_8 if(’i,j):(’l“,’r—f—l);
Kpt=q s if (i, ) = (r.n);
n—2+ao—an_1]1 —s if (4,5) = (r +1,n);
0 otherwise.
In particular, we have
(4.7'2) Eﬁmo — Eﬁﬁ-&-l and Eﬁm[ao—anah-ﬁ-n—? _ ELW

for each 1 <7 <n — 2. If we represent k by a matrix in U(Z) with (7, j)-entry given by k; ;, then
k%™ has the following form

1 k% 0O --- 0 O 0 0 0 0 0
1 kg 0 O 0 0 0 0 0
1 --- 0 0 0 0 0 0 0
1 kg 0 0 0 0 0
1 kg—s 0 O 0 s
1 0 0 0 kog—s
1 0 0 0
1 0 0
1 0
1

where the s appearing on n-th column is on (r,n)-entry.
We now introduce the rough idea of the proof of Theorem 4.7.17. We set

(473) Vb = <G(Fp) . SEO’wO’00> Q T0-

The first obstacle to generalize the method of Proposition 3.1.2 in [HLM] is that V; does not
necessarily admit a structure as G-representation in general. Our method to resolve this difficulty
is to replace Syo ,,,v0 by Sy ., v0. We prove in Proposition 4.7.16 that V% admits a structure as
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G-representation and actually can be identified with a dual Weyl module H®(u¢°). (The notation
wo® will be clear in the following.) Now it remains to prove that
(4.7.4) Skt e V0 € Vo

to deduce Theorem 4.7.17. We will prove in Proposition 4.7.8 that

Skmns—l Vo € Vﬁ — Séﬁwﬁ’wOUO € Vb

»Wo
foreach 1 <r <m—-2and 1< s < [ag— an—1]1 +n — 2. As a result, we can thus pass from
S50 wov0 € Vo t0 Sysr o v0 € Vo for r =n —2,n—3,---, 1. The identification k' = k"' thus gives
us (4.7.4).

We firstly state three direct corollaries of Proposition 4.6.5. It is easy to check that each tuple
k appearing in the following corollaries satisfies the assumption in Proposition 4.6.5.

Corollary 4.7.1. For each2<r<n-—1and0< s <[ag— an_1]1 +n — 3, we have

X eX 081,00 = ([ag— an_1]1 +n—2— 5)? Z €(8)Sgtr—1.5)im.mr 150 V0
2617177‘
+ ([an—r — an—1]1 = 5)([ao — an_1]1 +n —1 = 8)Sgr—1.s 4, V0
—([ao —an—1i+n—2—=5) > (an—r —ar—1+[ao—an-1J1 +n—2-5)
=2

|
5

~

E E(Z)S(Eﬁ,rf1,s)i,r,n—£+l,r,+7w0/U0
€T \I—1

Corollary 4.7.2. Fiz two integers r and m such that 1 < m <r—1<n-—2, and let k = (k”)
be a tuple of integers in A, such that

0 ifr+1<j<n-1;
ifiEmandj=r;
ifr+1<i<n-—1andj=n;
if (17]) = (m,r);

if (i,7) = (r,n).

kij =

== O O

Then we have

Xﬂ_ e X o SE,’UJOUO = Z 5(1)Ski,m,r,r7wo’v0 + 2(0%,7« —ag—n-+ 3)5&11,0110

€L,
n—r
_ Z(an,T —ayp—1+ ].) Z E(Z’)Shi,r,n72+l,r,+’wovo
=2 [IS) VAN V)

Corollary 4.7.3. Fiz two integers v and m such that 1 <m <r —1<n—2, and let k = (k; ;)
be a tuple of integers in Ay, such that

b — 0 ifr<ji<n-—1;
10 ifr<i<n—1andj=n.
Then we have
XteX e Skawe¥0 = (An—r — ao — 1+ 2) Sk w,Vo-

We now define the following constants in F,,:

cp = Hf;;ll(ak—aofn+2+k)2z_k_l;
c, = (ax—ap—n+3+0)c
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for all 1 < ¢ < n — 1 where we understand c; to be 1. As the tuple (a,,—1,--- ,ag) is n-generic in
the lowest alcove, we notice that ¢, # 0 # ¢ for all 1 < ¢ < n — 1. By definition of ¢, and ¢}, one
can also easily check that

-1

(4.7.5) [T(ck —ck) = ce

k=1

We also define inductively the constants: for each 1 </ <n—1

4, = { 2lac—a—n+3) if ¢/ = 0;
b= Clgldg,[/_l — (az — ayp + 1)051 I_Ii:_ll(cg€ — Ck) if 1 < v < f—1.

We further define inductively a sequence of group operators 2, as follows:
Zyi=diold— X e X | € F)[G(F),)]
and
Zpi=degld— (210 0Z10 X e X~ ) €F,[G(F,)
for each 2 < /¢ <n—2.

Lemma 4.7.4. For 1 </{ <n—1, we have the identity

—1
df,@—l = (Clg —ap—"n-+ 2) <H C;€> + C%.
k=1
Proof. During the proof of this lemma, we will keep using the following obvious identity with two
variables
(4.7.6) ab=(a+1)(b—1)+a—-b+1
By definition of d;¢—; we know that
-1 -1 -1 =1
dee—1 =2(ar —ap—n+3) H ch — Z (ag — ap + 1)cy H (ci, —ck) ( H c%)
k=1 =1 k=1 k=0'+1

and therefore

-1 -1
deo—1— (ag—ap—n—+2) (Hc%) = (ag —agp —n+4) 1_[c§C
k=1 k=1
-1 -1 -1
— Z (ag — ap + 1)cy H (¢ —ck) < H c;)
=1 k=1 k=711

Now we prove inductively that for each 1 < j</—1

-1 -1 (-1
(4.7.7) dge—1—(ar—ap—n+2) (H C%) =(ae—aop—n+3+j) <H(C;<: - Ck)) H cj,
k=1

k=1 k=j

-1 -1 -1
—Z (ap — ap + 1)cy H(Cﬁc_ck) < H Ck)

Z’:j k=1 k=0"+1



80 CHOL PARK AND ZICHENG QIAN

By the identity (4.7.6), one can easily deduce that
(a¢ —ao —n+3+j)c; — (ar — a; + 1)c;
=[(ar —ao—n+3+j)(aj —ag—n+3+j)— (ar —aj +1)]c,
=(ag—ap—n+4+j)(a; —ap—n+2+j)c;
= (ag —ap —n+4+j)(c; —cj).
Hence, we get the identity:

-1 j—1
(4.7.8)  [(ar —ao —n+ 3+ j)c; — (ag — aj + 1)c;) H . (1_[(c§C — ck)>
k=1

k=j+1

J -1
:(ag—ao—n—l—él—i—j)(H(c;@—ck)) H c,

k=1 k=j+1

Thus, if the equation (4.7.7) holds for j, we can deduce that it also holds for j 4+ 1. By taking
j =¢—1 and using the equation (4.7.8) once more, we can deduce that

-1 -1
deo—1— (ar —ap—n+2) (Hc%) =(ag—ag—n+3+Y) <1_[(c§c —ck)> )
k=1

k=1
Hence, by the equation (4.7.5), one finishes the proof. |

Proposition 4.7.5. Fix two integers r and m such that 1 <m <r—1<n—2.
(1) Let k= (k; ;) be as in Corollary 4.7.2. Then we have

(479) Zn—r [J Sﬁ,wo = Cn—rSE/,wO
where k' = (ki ;) is defined as follows:
[0 ) = () or (i) = ()
ki,j = 1 Zf (Zaj) = (ma n);
ki ; otherwise.
(ii) Let k = (ki ;) be as in Corollary 4.7.3. Then we have
(4710) Zy_r® SE,wo = C;_TSE,U)O-
We prove this proposition by a series of lemmas.

Lemma 4.7.6. Proposition 4.7.5 is true for r =n — 1.

Proof. For part (i) of Proposition 4.7.5, by applying Corollary 4.7.2 to the case r = n—1 we deduce
that

X e X, | @Skuwvo =2(a1 —ag — 14 3)Sk Vo — Sk mm—1.n-1 40 V0
where i, = {n — 1,n}. Hence, part (i) of the proposition follows directly from the definition of Z;
and c;.

For part (ii) of Proposition 4.7.5, again by Corollary 4.7.3 to the case r = n — 1 we deduce that
X eX, | ®Skuwvo= (a1 — ao—n+ 2)Sku,v0-

Then we have
Z1 08 w00 = (a1 — ag — 1+ 4) Sk w V0
and part (ii) of the proposition follows directly from the definition of cj. O

Lemma 4.7.7. Let £ be an integer with 2 < { < n—1. If Proposition 4.7.5 is true forr > n—£{+1,
then it is true forr =n — L.
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Proof. We prove part (ii) first. Assume that (4.7.10) holds for » > n — £ + 1. In fact, for a Jacobi
sum Sy, 4, satisfying the conditions in the Corollary 4.7.3 for r = n — ¢, we have

X:Le ¢ Xrle i SEKLUUUO = (ae —ap—n+ 2)5&%00

by Corollary 4.7.3. Then we can deduce

{—1
Zy_1e---0Z @ )(TJLF_Z ° X;—Z ° Sﬁ,wovo = (az —ag—"n—+ 2) <H Cé) S&wovo
s=1

from the inductive assumption of this lemma. Hence, by definition of Z,, we have

_ + -
Zy @ Spwo0 = drg—1SkweV0 — Zo—10---0Z1 0 X T 0 X ", 05,0

=
= (de,e—l —(ag —ag —n+2) <H CQ)) Sk, wo V0
s=1

!
= CySk,we 0

where the last equality follows from Lemma 4.7.4.
Now we turn to part (i). Assume that (4.7.9) holds for » > n — ¢+ 1. We will prove inductively
that for each ¢ satisfying 0 < ¢’ < ¢ — 1, we have

(4711) Zpe---0Zje X;ig e X, ®Skwto

el
= d@,Z’SE,wo’UO + l_I(Cig — Cs) Z 6(1’)5&1,771,,71,—2,71—27“}01)0
s=1 iEIff/
¢ -1
+ [ [](c —co) S (ar—an+1) Y (i) Spin-tnrint 40
s=1 h=0'+1 1S VAN r

where the case £/ = 0, namely the formula for X;L 19X, _ 95k w,V0, follows directly from Corollary
472 forr=n— /.

We begin with studying some basic properties of the index sets If; which are useful for our
induction on ¢ to prove (4.7.11). First of all, the set IE:H \ I§:+2 has a unique element, which is
precisely i = {n — ¢ — 1,n}. Furthermore, there is a natural map of sets

resy : If; — If;“
for all #/ + 2 < h < { defined by eliminating the element n — ¢’ from ¢ € If: if n — ¢ € 4. In other
words, for each ¢ € If;“, we have

res, ' ({i}) = {i,iU{n— ('}} C T},

We use the shortened notation /

i* =iu{n -0}
for each i € . Note in particular that (i) = —e(i%).

Given an arbitrary i € I‘;:'H for /42 < h < -1, then Syin-t,n-nn-r,, (resp. Skiél'n’72’7L7h’”’7[,wg)

satisfies the conditions in Corollary 4.7.2 (resp. Corollary 4.7.3). As a result, by the assumption
that Proposition 4.7.5 is true for r = n — ¢/ — 1, we deduce that
(4.7.12)

’
ZE’Jrl ° (Sﬁi,nfe,nfh,nfz’woﬂo — Sﬁz’z/,nfl,nfhmfl,wgvo) = (Czl+1 - CZ’+1) S&A',"*lvnfh,"*f}wo'UO~

£ +1
Ih

»Wo

Similarly, we have

(4.7.13) Zgurl o (SE&',T!L,H*Z,H*Z’U)Dv[) — Skiz/=m—zv"—f,wov()> = (CZ/Jrl - Czl+1) SE&,NL,H*Z,H*Z’wov(]
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for each 7 € I?H. We also have
(4714) Zgurl L] Sﬁ,wovo = CZ’+1SE71UOUO
by (4.7.10) for r =n — ¢’ — 1, and
(4.715) Z£’+1 (] SEL'U,n—é,n—['—l,n,—€7w0v0 = Cé’-&-lSE,wOUO
by (4.7.9) for r =n — ¢’ — 1 where iy = {n — ¢/ — 1,n}.
Now we begin our induction and assume that (4.7.11) is true for some 0 < ¢ < ¢ — 2. Then by
combining (4.7.12), (4.7.13), (4.7.14) and (4.7.15), we have

Zpi10-- 021 X:—Z o X~ , 0S5k w0

Z/
/ .
= dg’g/24/+1 ° SE7WOU0 + H(CS — Cs) Zpyq® E 6(;),9&1,7",”4,”72’wovo
s=1 iel?
o -1
+ l_I(C’S —cs) | Zoyq @ E (ap —ap +1) E €(2) Sgim—tm—hin—t 4y Vo
=1 = e\,
which is the same as
Z/
(4.7.16) cpde e Skaevo + | [ (ch —co) | X +Y +2)
s=1
where
X =(ar—apr +1)Zp41 0 Spigm—tn—t/—1.n-t 4 V0,
Y = E E(i)Zgurl ° (SELT,L,”%,THZ,UJO'UO — Skﬁl,m,n—evn—é wov()) y
1S -
and
-1
7 = E (ae —ap + 1) E E(Z)Zgu,_l ° (SEi,n—l/.,n—h,n—l/.vwo’UO — Skielv"*"w“*”vn*@,wovo) .
nere ser

One can also readily check that (4.7.16) is also the same as

e/
cpdee +c (¢ —cs) | (ag—ap +1) ]S
¢ 41deer + Corgn s —Cs) | (ae —ap ke, wo V0
s=1
241
! .
+ (c —cs) E €(8) Spimon—t,n—t 4, V0
s=1 ZEIﬁ/H
£41 -1
! .
+ (c —cs) E (ag —ap +1) E €(2)Sgin—tmn—nn—t 4 o |,
s=1 h=0"42 ielfzurl\lf:fll
which implies that (4.7.11) holds for ¢’ + 1, as we have
Z/
/ !
depq1 = cppadey +cop H(Cs —c5) | (ar —ap +1)
s=1

by definition.
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Hence we have finished the proof of (4.7.11) for each 1 < ¢/ < £ — 1 by induction on ¢'. Note
that the case ¢/ = ¢ — 1 for (4.7.11) is just the following
-1
(4.7.17) Zy_q0-- ~0210X;';Z.X;7405E,w0110 =dg,¢—15k,woV0 — (H(CIS — CS)> Skil,m,,n—é,n—i)wovo
s=1
where i; = {n}.
Finally, (4.7.9) for r = n — ¢ follows from the equation (4.7.17) together with the definition of

Z; and the identity (4.7.5). O
Proof of Proposition 4.7.5. It follows easily from Lemma 4.7.6 and Lemma 4.7.7. O
Proposition 4.7.8. Foreach1 <r <n—-2and1 < s <[ag—an_1]1+n—2, if Sprra-1 00 € Vo,

then Sit.r.s o0 € Vo.

Proof. We deduce from the same argument as (4.7.12), (4.7.13), (4.7.14) and (4.7.15) that the
following equalities

n—2—r
(4.7.18) Zy o r®- - 021 @S, Vo= < H c}) Spetrs—1 1,00,
=1

(4719) Zn_g_r -0 Zl [ ] Z 5(1)S(Eﬁ,r,sfl)i,r,ri»l,r#»l1w0v0

iEI'rzfl—r

n—2—r
== ( II - Ce)> Skires g 00,

{=1

and

(4720) Zn,Q,r ®:---0 Z1 [ ] Z E(Z)S(kn,r,s—1)1,r+1,n—e+1,r+1)wo’l}o

1S VAN VSY
£—1 n—2—r
/ !/
=cy H(ch—ch) H Ch, | Sgtrs—1 4500

h=1 h=(+1

hold for each 1 < ¢ < n — 2 —r. Therefore by replacing (r,s) in Corollary 4.7.1 by (r+1,s — 1)
and then using (4.7.18), (4.7.19) and (4.7.20) respectively, we can deduce that

+ —
Zp o re--c0ZjeXT eX e Skﬁ,r,sfl’wovo
n—2—r
— 2 /
=—([ap —apn-1]1 +n—1—13) H (€h — o) | Sgtre o0 + CSgtrs—1 4 V0
=1

= —([ap —apn—1}1 +n—1-— S)QCn_l_TSEﬁ,r,s’wgvo + CSptrs—1 4,0

for a certain constant C € F,. Note that we use the identity (4.7.5) for the last equality .
By our assumption, we know that Sys.r.s-1 ,, v0 € Vo. Hence, we can deduce

SEum,s Vg € %

»Wo

since ([ap — an_1J1 +n —1—38)%ch_1_ # 0. O

Corollary 4.7.9. We have Sy ,, vo € Vo.
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Proof. By (4.7.2) and Proposition 4.7.8 we deduce that

SEW“UO eVy = Sbu,rﬂvo eV
for each 2 <r <mn — 1. Then by (4.7.1) and the definition of V{, we finish the proof. O
Example 4.7.10. We will give an example to illustrate the technical results in Proposition 4.7.5
and Proposition 4.7.8. Given a tuple k € {0,1,--+ ,p — 1}“1);0‘, we associate a matriz in U(Z)
with (i,7)-entry given by k; ; for all 1 < i < j < n and abuse the notation k for such a matric.

In this example, we are going to use k or the matriz in U(Z) associated with it to represent the
corresponding vector Sy w,vo. We will write

k=K

if Sk wov0 € (G(Fp) - Sk,wevo). We consider the special case n =5 and r =1 from now on, and
our goal here is to illustrate the proof of

(4.7.21)
1 kg—s+1 0 O s—1 1 k—s 0 0 S
1 0 0 kog—s+1 1 0 0 ko+s
Ebbs—l = 1 0 0 = ks = 10 0
1 0 1 0
1 1

intuitively for all 0 < s < kg where ko = 3 + [ag — a4]1. We firstly observe that
11 = {(5)}, Ig \Il = {(4,5)} and I3 \ 12 = {(3,5), (3,4,5)}

The first step towards (4.7.21) is to apply X5 e Xy to kY7L (as a special case of Corollary 4.7.1)
and obtain

(4722) X7 o Xy K01 = (kg — )2V + ([a3 — agly — )(ho + 1 — )k

3
+(k0—5)2(a3—ag_1+k0—5)~Yg

=2
where we have
1 kg—s 0 0 S 1 kg—s 0 1 s—1
1 0 0 ko—s 1 0 0 ky—s
Yy = — 1 0 0 + 1 0 0
1 0 1 1
1 1
1 kp—s 1 0 s-—1 1 kp—s 1 0 s-—1
1 0 0 kog—s 1 0 0 kg—s
+ 10 1 - 1 1 0 ,
1 0 1 1
1 1
1 kg—s+1 0 0 s—1
1 0 1 ko—S
Y; = 10 0 )
1 1
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and
1 k()—8+1 0 0 s—1 1 k0—8+1 0 0 s—1
1 1 0 ]{50—8 1 1 0 k()—S
Vs = 10 1 - 11 0
1 0 1 1
1 1

Note that the terms in Yy (resp. the terms in'Yy) are indexed by I3 (resp. by Ly\Iy_y1 for £ =2,3).
Then we apply 2,1 to each of Yy, kﬁ’l’sfl, Y5 and Y3 and obtain

Zl .Eﬂ,l,s—l — Cllkﬁ,l,s—l, Zl . Y2 — C1Eﬁ71’s_17
1 kg—s+1 0 0 s—1

1 1 0 k()—s
Zl‘Ygi(Cllfcl)' 1 0 1
1 0
1
and
1 kg—s 1 0 s—1
1 0 0 k‘()—S
Z Y= (| —cp) | BP0+ 10 1
1 0
1

where ¢} = a1 —ag— 1 and ¢ = 1. Then we apply Z2 and obtain
(4.7.23) Zo0 21 kM7 = chelkPTY, 2,021V = bk, 250215 = co(ch — e )k
and
(4.7.24) Zy0 2 Yy = —(ch —cy)(c) —cp)khe
where we have ca = a1 — ag — 2 and ¢ = (as — ag)(a1 — ag — 2). By combining (4.7.22), (4.7.23)
and (4.7.24), we deduce that

ZQ .Zl .X; .X; .Eﬁ,l,s—l — Ckﬁ,l,s—l _ (k[) + 1— 8)2(:3&11,1,5

for ez = (a1 —ag — 2)*(az — ap — 1) and a certain constant C € F,, which implies (4.7.21). If we
consider the subspace V' of my spanned by the various k (namely S w,v0) appearing in (4.7.22),
then 21 and Z, ® Zy induce maps in Endg, (V). In fact, the image of Z; is spanned by

1 kg—s+1 0 0 s—1 1 kg—s 1 0 s—1

1 1 0 k/’o—s 1 0 0 k‘o—S
EhLs bl 1 0 1 and 1 0 1
1 0 1 0
1 1

while the image of Z, @ Z1 is simply spanned by k8L gnd EBLSTL
Remark 4.7.11. If we view the procedure of applying a group operator of the form
Cld - X" e X~

(for some 2 <r <mn—1 and a certain constant C € Fp,) as an elementary operation, then Zy is the
composition of 21 such elementary operations by definition. In particular, we need to apply such
elementary operations 2" 2" times in the proof of Proposition 4.7.8. Such complexity is hidden
in the inductive definition of Z; for 1 < { <n — 2.

We write 8 for >-"_! . to lighten the notation.
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Lemma 4.7.12. Given a Jacobi sum Sk ., , we have
XBkyn ® Sk = (_1)kl’n+1SE,wo
where k' = (kj ;) satisfies k' ,, = 0 and kj ; = ki ; otherwise.
Proof. This is a special case of Lemma 4.1.2 when ap = 8 and m = £y 5. O

From now on, whenever we want to view the notation p° as a weight, namely to fix a lift of

e € X(T)/(p—1)X(T) into X;°8(T), we always mean
Mgo = (ao +p_ 1aan72a" ©,0a1,0p-1 _p+ 1) S X(T)
In particular, we have
(1,”) : :u‘g)o +pB = ,U'*~
We recall the operators Xgli from the beginning of Section 4.

Lemma 4.7.13. For 1 <r <n—1, we have the following equalities on H®(p§°),~ :

foralll<k<p-—1.
Proof. Note that we have
we® — (W +kB) = (lap — an—1Ji +n—2—k,0,--- ,0,k — ([ao — an—1]1 +n — 2)).

Therefore pg® — (u* +kB) ¢ 3 co+ Zoa as long as k > [ag — an—1]1 +n—2. As (an_1,"-- ,a0)
is assumed to be n-generic in the lowest alcove throughout this section, we deduce that

(4.7.25) pyo — (0" +kB) ¢ Y Zzpaforallk>p—1.

acdt

Note by the definition (4.0.3) that the image of X;{% lies inside H°(ug"),4+xp, which is zero by
(4.7.25) assuming k > p — 1. Hence we deduce that

Xg{% =0on H(uy°),~ forall k > p— 1.
Then the conclusion of this lemma follows from the equality (4.1.4). O

We have a natural embedding H®(ug°) < mo by the definition of algebraic induction and
parabolic induction. Recall that we have defined U; in Example 4.1.8.

Lemma 4.7.14. We have o
Fp[Skt w,v0] = Ho(u’éuo)g*l.
In particular,
VEC HO(uy).

Proof. 1t follows from Corollary 4.5.3 that
dimp, H(p@)72 = 1,

[
and this space is generated by U?f_l }m where
(4.7.26) mh = (mg7 e ,mi_l) =(0,---,0,[a0 — an—1]1 + n —2).

We now need to identify the vector v?f_l} ¢ With certain linear combination of Jacobi sums.
Note that by Corollary 4.5.3 we have a

n—2
alg _ Pan_1—p+1 pyar—ag—n+2 l[ao—an_1]1+n—2 plao—an—2]1 Ap—i—Qn—i—1
U{n—l},mﬁ - D’ﬂn Dn—l (D{nfl},nfl) " D]_ D,L .
=2
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Given a matrix A € G(F,), then D;(A) # 0 for all 1 <i <n —1 if and only if
A € B(F,)woB(F)),
and thus the support of v?iil} e 18 contained in B(Fj)woB(F,). As a result, according to

Proposition 4.1.4, we know that v? is a linear combination of vectors of the form

lg
n—1},m!#

S&wo’vo.

As U?:zgq} mi 18 U -invariant, and in particular U; (Fp)-invariant, then by Proposition 4.1.11 we

know that it has the form

(4.7.27) Z CrSk,wov0
k
where we sum over tuples k satisfying k1., = [a0 —an—1]1+n—2, kij=0o0rp—1for2<j<n-1
and k; ; =0 for all 2 <14 < j <n, and C}, € F), is a certain constant for each tuple k.
Finally, note that

al
ug(t) U{ng_l}ymn =

n—2
Dglnil7p+1Dglf_lao_n-i_z(D{n—l},n—l + tDn,1)[ao7a"71]1+n72D[1a07a"72]1 H D;lnfi*anfifl
i=2
is a polynomial of ¢ with degree [ag — an—1] + n — 2, we conclude that

alg valg 7valg
Bilao—an—1l1i+n—2 “{n—-1}m# = “{n—-1},0

where 0 is the (n — 1)-tuple with all entries zero.
By Lemma 4.7.13 and the fact that

1 U(Fp)spg©
Fy[v]% 1, o] = FplSouwevo] = mg " 2H0,

we deduce that
1
X/B;[GO*anfl]lJrﬂ*Q U?ng_l}7mﬂ = OISQ,UJOUO
for some constant C’ € F). By Lemma 4.7.12 and the linear independence of Jacobi sums proved

in Proposition 4.1.4, we know that only the vector Cys Sy ., vo can appear in the sum (4.7.27). In
other words, we have shown that

»Wo

1
v?ngfl},m“ = C”SE“,onO
for some constant C” € F 5, and thus we finish the proof. O

Lemma 4.7.15. The dual Weyl module H° () is uniserial of length two with socle F(ug®) and
cosocle F(u*).

Proof. By [Jan03] Proposition II 2.2 we know that socg (H%(pg°)) is irreducible and can be
identified with F(ug°) (which is in fact the definition of F(ug°)). Therefore it suffices to show
that HO(p4°) has only two Jordan—Hélder factor F(ug°) and F(pu*), each of which has multiplicity
one.

By [Jan03] II 2.13 (2) it is harmless for us to replace H(ug°) by the Weyl module V(ug®)
(defined in [Jan03] II 2.13 ) and show that V(u;°) has only two Jordan-Holder factor F'(u®°) and
F(p*) and each of them has multiplicity one. As

—1
po< (e (o a)Y) < 2p;
—2
0 < (p° iy )Y) < m
-1
0 < (ue* (i, ai)Y) < p,
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we deduce that the only dominant alcove lying below the one containing ug° is the lowest p-
restricted alcove. In particular, the only dominant weight which is linked to and strictly smaller
than pg® is p*.
By [Jan03] Proposition II 8.19, we know the existence of a filtration of subrepresentation
V(ug®) 2 Vi(ug®) 2 -+
such that the following equality in Grothendieck group holds
> Viug) = F(u).
i>0
This equality implies that
Vi(uo®) = F(p")
and
Vi(ug®) =0 for all ¢ > 2.
By [Jan03] II 8.19 (2) we also know that

Vi) /Vileg®) = Flug®),
and thus we have shown that
Vipg®) = F(ug®) + F(p")
in the Grothendieck group. |

Proposition 4.7.16. We have
VE=H(up").
Proof. By Lemma 4.7.15, we have the natural surjection
H (1) — F(u")
which induces a morphism
HO(/LSJO)M = F(u") .-
Now we consider H%(p°) as a Lj-representation where Ly & G,;, x GL,,_; is the standard Levi

subgroup of G which contains U; as a maximal unipotent subgroup. We denote the set of A € X (T')
which is dominant while viewed as a weight of Ly by X1, (T')4. Then we use the notation H} ()

for the dual Weyl module of L; which is defined via the same way as the dual Weyl module of G
determined by a weight in X (T")+ ( cf. the beginning of Section 4). The dual Weyl module H®(ug)
is the mod p reduction of a lattice Vz, in the unique irreducible algebraic representation Vq, of
G such that (Vgp) v # 0. As the category of finite dimensional algebraic representations of Ly

Ko
in characteristic 0 is semisimple, Vq, decomposes into a direct sum of characteristic 0 irreducible

representations of L;. More precisely, we have the decomposition

Vol = € mavi,()
AeXr, (T)+
(Va,) 1 #0

where Vr,, (\) is the unique (up to isomorphism) irreducible algebraic representation of Ly such
that (VLI()\)Ul)A # 0 and

my 1= dimq, (V&!) -
Therefore in the Grothendieck group of algebraic representations of L, over F,, we have
(4.7.28) HOug g, = B malHL, )]

AEXL, (T)+
wo\ U
HO(HO 0))\ 1750
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as by Corollary 4.5.3 Ho(ug’o)ﬁl is the mod p reduction of VZUp1 and VZL;1 ®z, Qp = VU;.
We use the notation WXt for the affine Weyl group associated with the group L;. We say that
BT, A
if there exists @ € WXt such that
A=w-p* and p* < A
Assume that there exists a A € X, (T)4 such that p* 17, A and that Ho(ug’o)gl £ 0. We

denote by U?Lg—n,m the vector in Ho(ua“o)gl # 0 given by Corollary 4.5.3. We note that by
Corollary 4.5.3 the vector in Ho(ug’o)g} is ”?:Lg—l},mﬁ (see (4.7.26)). As p* 1, A, we must firstly

have 2?—11 m; = [ag — an—1]1 +n — 2. By the last statement in Corollary 4.5.3, we have

n—1
(4.7.29) A= <ao +p—1- Zmi,anﬂ +my, a1 +My_2,ap_1 —p+1 +mn1>
i=1

= (anfl —n+ 27 An—2 + my, -+ ,a1 + Mmp—2,0pn—-1 — P + 1 + mnfl)'
Recall n = (n — 1,n —2,--- ,1,0). We notice that u* — 7 lies in the lowest p-restricted L;-alcove
in the sense that
(4.7.30) 0< {(u*,a") <pforall ac @zl

where CIJZ1 is the set of positive roots of L naturally viewed as a subset of ®+.
As we assume that (a,—1, - ,ap) is n-generic, it is easy to see the following
an—2+mi—(ap—1 —p+1+mu_1) <p+1l+ans—an1+m <2p;
an—2 +m1 — (a1 +mp-2) < an—2+my —ar < lag — ail1 < p;
an-3+ma — (an-1—p+1+my1) <lan-3—an1]1 +m2 <[an2 —an1]1 <p,
so that we know that A —n lies in either the lowest L-alcove in the sense of (4.7.30) (if we replace
w* by ) or the p-restricted Li-alcove described by the conditions

n—1 v

p < (A (ZZ:Q ai) < 2p
Vv

0 < (A (Z?:_fai) < p
n—1 v

0 < (A (Zi:?) ai) < p

and
0<(\aYy<pforallae A,
where Ay, :={«a; | 2 <i<n—1} is the set of simple positive roots in @zl.
In the first case, if A — 7 lies in the lowest Li-alcove, as we assume that p* Tp A, we must have
A = p*; in the second case, we must have

n—1
>‘: (Q’n)ﬂ*+p (Zal> - (an—l *7’L+2,a0 +paan—3a"' aalaan—2+n727p)
i=2
which means by (4.7.29) that
m=(my, - ,Mp_1) = ([ao — an—2l1 +1,0,--- ,0,ap—2 — ap_1 +n — 3).

This implies a,,—3 —a,—1+n—1 =m,_1 > 0, which is a contradiction to the n-generic assumption
on (ap_1, - ,ap). Therefore we must have A = p*. Hence we deduce by (4.7.28) and the strong
linkage principle [Jan03] IT 2.12 (1) that FL1(u*) (see the beginning of Section 5 for notation) has
multiplicity one in JHf (H O(ug’o)|fl) and is actually a direct summand.
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On the other hand, as F Li(p*) is obviously an Lj-subrepresentation of F(ui), we know that
the surjection of G-representation H°(yuy°) — F(u*) induces an isomorphism of L;-representation
on the direct summand F1(y*) on both sides with multiplicity one, by restriction from G to L;.
In particular, we know that the map

U
HO (55" )yt = F(") e
is a bijection, and therefore the composition
VE e HO (1) — F(p)

is non-zero as

wo\U al
HO(NOO)g*l = Fp[”{ngfl},mu] = Fp[Sk2 ., v0]
by Lemma 4.7.14. Hence we obtain a surjection
(4.7.31) VE— F(u"),

which implies that the injection

VE o HO (o)
must be an isomorphism as it induces surjection on cosocle according to Lemma 4.7.15 and (4.7.31).
The proof is thus finished. O

Theorem 4.7.17. Assume that (ap—1,--- ,a0) is n-generic in the lowest alcove (cf. Defini-
tion 4.1.1). Then H(uy°) C Vy. In particular, we have

F(p®) € JH(V).

Proof. The first inclusion is a direct consequence of Proposition 4.7.16 together with Corollary
4.7.9. The second inclusion follows from the first as we have F(u*) € JH(H®(ug?)). O

Before we end this section, we need several remarks to summarize the proof, and to clarify the
necessity for all the constructions.

Remark 4.7.18. If we assume that for all 2 < k <n —2
(4.7.32) [ap —an—1]1 +n—2 < ap —ar_1,
then we can actually show that
S0 g0 € HO (o))
using Corollary 4.1.10 and the case s =n — 1 of Proposition 4.5.1, and thus
Vo = H®(ug").-

Moreover, under the condition (4.7.32), we can even prove that the set

{Skwovo | £ € Aw,}
forms a basis for HO(pg°) e -

On the other hand, if we have
[ap — an—_1]1+n—2>ap — ar_1

for some 2 < k <n — 2, then we can show that

Fgh) € JH(Vp)

which means that the inclusion

HOug) € Vi
is actually strict.
In fact, through the proof of Proposition 4.7.8, the subrepresentation of mo generated by Sys.r.svo

is shrinking if r is fized and s is growing. Therefore the subrepresentation of mo generated by Sys.»vo
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shrinks as r decreases. Finally, we succeeded in shrinking from Vo to VE which can be identified
with HO(p14°).

Remark 4.7.19. We need to emphasize that the choice of the operators X&' and X for 2 <r <
n — 1 are crucial. For example, the operator

> PP wota, (Hwo € Fy[G(F,)]
teF,

for some 2 < r < n—2 does not work in general. The reason is that, as one can check by explicit
computation, applying such operator to Sk, vo for some k € Ay, will generally give us a huge linear
combination of Jacobi sum operators. From our point of view, it is basically impossible to compute
such a huge linear combination explicitly and systematically. Instead, as stated in Proposition
4.6.5, our operators X;¥ and X~ can be computed systematically, even though the computation is
still complicated.

The motivation of the choice of operators X;F and X, can be roughly explained as follows. First
of all, we need one ‘weight Taising operator’ X+ and one ‘weight lowering operator’ X ~. These
are two operators lying in a subalgebra F,(X T, X7) of Fp|G(F,)| such that

Fp(XT,X7) = Fy[GLa(Fp)).

We start with the vector Sk w,vo for some k € Ay,. We apply the operator X~ once and then X+
once, the result is a vector with the same T(F,)-eigencharacter p*. We observe that Sk u,vo is in
general not an eigenvector of the operator X e X~ because the representation mg, after restricting
from F,[G(F,)] to Fp(X T, X ), is highly non-semisimple. The naive expectation is that we just
take the difference
X 0 X7 @Sk 1000 — ¢Sk.wyv0
for some constant ¢ € Fy,, and then repeat the procedure by applying some other operators similar
to Xt and X~
The case n = 3 is easy. In the case n = 4, the operator

> 2 wgtta, (t)wo € Fy[GL4(F,)]
teF,
s not well behaved as we explained in this remark, and therefore we are forced to use our X5 to
replace Zter P20 U, (1) wo .
Now we consider the general case, and it is possible for us to carry on an induction step. We
have an increasing sequence of subgroups of G
Py S Pinon-13 S - S Plo -1y
and
L{nfl} - L{n72,n71} S L{2,~~~ ,n—1}
where ?{T,... ;n—1} 18 the standard parabolic subgroup corresponding to the simple roots ay, for r <

k<n-—1and Z{T’.._ n—1} 18 its standard Levi subgroup. Technically speaking, constructing the
vector Syirit V0 (for some 1 < r < n —2) from Syo ,, vo should be reduced to Corollary 4.7.9

when we replace G by its Levi subgroup Z{r«%l,---,’nfl}' In other words, to construct Sys.r+1
Jrom Sio ,,vo we only need the operators

XJ»XE € Fp[z{r+2,-~ -1} (Fp)] € Fp[f{r+1,m n—13(Fp)]

forallr+2<k<n-1.
In order to construct Sys.r V0 from Sye.r+1 V0, we only need to prove Proposition 4.7.8. Then
we summarize the proof of Proposition 4.7.8 as the following: for some a € F; and b € F),

+ —
XTJrl [ XTJrl o SEﬁ,'r,sfl

;Wo Yo

V0 = Syt 1 V0 + DSktrs—1 4, V0 + error terms
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and the error terms can be killed by combinations of the operators X,j, X, forr+2<k<n-1

4.8. Main results in characteristic p. In this section, we summary our main results on certain
Jacobi sum operators in characteristic p.

We recall two important Jacobi sum operators S, and S, from (4.4.11) and recall from (4.7.3)
that Vj is the sub-representations of 7y generated by

SkO (,ﬂ.([)](Fp)vlLO)

R7,Wo :

We also define V7 and V7 as the sub-representations of m generated by
Sn (ﬂg(Fp),ul) and S;z (’/Té](Fp)’Mll)

respectively.

The following theorem, which we usually call the non-vanishing theorem, is a technical heart on
the local automorphic side. The proofs of this non-vanishing theorem as well as the next theorem,
which we usually call the multiplicity one theorem, have occupied the previous sections.

Theorem 4.8.1. Assume that (an—1, - ,a0) is n-generic in the lowest alcove.
Then we have
Vi=V/=V
and
F(p") € JH(V).
Proof. This is an immediate consequence of Corollary 4.4.8 and Theorem 4.7.17. |

We also have the following multiplicity one result.

Theorem 4.8.2. Assume that (an—1, -+ ,a0) is 2n-generic in the lowest alcove.
Then F(u*) has multiplicity one in mo.

0,n—1
s

Proof. This is a special case of Corollary 4.3.7: replace p with p*. ]

Corollary 4.8.3. Assume that (ap_1, - ,a0) is 2n-generic in the lowest alcove and that T is an
Og-lattice in 7§ ®o, E such that
socg(r,) (T ®o, F) = F(u*).

Then we have
Sn ((7’ Rogp F)U(Fp),m) #0 and S;L ((7- R0y F)U(Fp)vll/l> £ 0.

Proof. Such a 7 is unique up to homothety by Theorem 4.8.2. By multiplying a suitable power of
wg, we may assume that

7, C 7 and 7y € wr,
and thus we have a non-zero morphism

T — T Qoy F

whose image is the unique quotient of my with socle F(u*). We now finish the proof by applying
Theorem 4.8.1. O

Remark 4.8.4. Theorem 4.8.1 and Corollary 4.8.3 can be generalized to the case when u* is
replaced by any weight lying sufficiently deep in an arbitrary p-restricted alcove except the highest
one. The crucial points here are the [U(F,),U(F,)]-invariance of S,, (resp. S, ) and that T (in
Corollary 4.8.3) is one of the simplest lattices of 7§ ®o E apart from those coming from parabolic
inductions from B(F)).
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5. MOD p LOCAL-GLOBAL COMPATIBILITY

In this section, we state and prove our main results on mod p local-global compatibility, which
is a global application of our local results of Sections 3 and 4. In the first two sections, we recall
some necessary known results on algebraic automorphic forms and Serre weights, for which we
closely follow [EGH15], [HLM], and [BLGG].

We first fix some notation for the whole section. Let P O B be an arbitrary standard parabolic
subgroup and N its unipotent radical. We denote the opposite parabolic by P~ := woPwy with
corresponding unipotent radical N~ := woNwy. We fix a standard choice of Levi subgroup L :=
PN P~ CG. We denote the positive roots of L defined by the pair (BN L,T) by ®F. We use

Xp(T)y ={Ne X(T) | {\aV)>0forall a € f}

to denote the set of dominant weights with respect to the pair (BN L,T). We denote the Weyl
group of L by W¥ and identify it with a subgroup of W. The longest Weyl element in W is
denoted by wg. We define the affine Weyl group WE of L as the semi-direct product of W% and
X (T) with respect to the natural action of WL on X (T'). Therefore WL has a natural embedding

into W. We define the groups G, P, L, - - - to be the base change of G, P, L, - - - to F,,, respectively.
We also need to define several open compact subgroups of L(Q,). We define

Kb = L(Zy),
and via the mod p reduction map
red” : K = L(Z,) - L(F,)
we also define K*(1), I*(1), and I'” as follows:

KE(1) = (red")1(1) € I%(1) := (red®) 1 (U(F,) N L(F}))
C IF := (red®)"Y(B(F,) N L(F,)).

For any dominant weight A € X (T, we let

- alg
HY(\) = (Indf pwfA) -

be the associated dual Weyl module of L. We also write F'(X) := socg (H?(\)) for its irreducible
socle as an algebraic representation of L. Through a similar argument presented at the beginning of
Section 4, the notation F()) is well defined as an irreducible representation of L(F,) if A € T(F,)
is p-regular, namely lies in the image of X;**(T") — X (T")/(p — 1) X (T'). We will sometimes abuse
the notation FZ(X) for F*(\)@g, F or FL(\) for FX(X\)®p, F,, in the literature. We will emphasize
the abuse of the notation FL()) each time we do so.

We introduce some specific standard parabolic subgroups of GG. Fix integers ¢y and jg such that
0<j0<Jjo+1<i<n-—1,andleti; and j; be the integers determined by the equation
(5.0.1) o+t =Jo+j1=n—1.
We let P;, j, D B be the standard parabolic subgroup of G = GL,, corresponding to the subset
{a | jo+1 < k <ig} of A. By specifying the notation for general P to P;, j,, we can define
P ., Li ., Niyj and N, .. We can naturally embed GLj, _;, +1 into G with its image denoted

91,717 1,J1 i1,J1°

by Gy, j, such that L;, ;, = G;, ;, T
GLj,—iy+1 = Giy gy = Liy j, = Py j, = G.

We define T;, ;, to be the maximal tori of G;, ;, that is contained in T', and define X (T5, ;,) to
be the character group of T, j,. If i; and j; are clear from the context (or equivalently iy and jo
are clear) then we often write P, P~ L, N, and N~ for P;, ;,, P ., Li, j,, N and N,

: i1,J17 1,J19 11,J17
respectively.
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5.1. The space of algebraic automorphic forms. Let F//Q be a CM field with maximal totally
real subfield F*. We write ¢ for the generator of Gal(F/F*), and let S} (resp. S,) be the set of
places of F' (resp. F) above p. For v (resp. w) a finite place of F* (resp. F) we write k, (resp.
k) for the residue field of F, (resp. F,).
From now on, we assume that

o F/F* is unramified at all finite places;

o p splits completely in F'.
Note that the first assumption above excludes F'+ = Q. We also note that the second assumption
is not essential in this section, but it is harmless since we are only interested in Gq,-representations
in this paper. Every place v of F't above p further decomposes and we often write v = ww® in F'.
There exists a reductive group G,,/p+ satisfying the following properties (cf. [BLGG], Section
2):

o Gy is an outer form of GL, with G,,/r = GL,,,F,

o G, is a quasi-split at any finite place of F'T;

o Gp(F)) ~ U, (R) for all v|oo.
By [CHTO8], Section 3.3, G, admits an integral model G,, over Op+ such that G, xo,_, OFJ’ is
reductive if v is a finite place of F'* which splits in F. If v is such a place and w is a place of F
above v, then we have an isomorphism

tw : Gn(Opt) = Gu(OF,) = GL,(OF,).
We fix this isomorphism for each such place v of F'*.
Define Ff := F* ®q Qp and Op+ , := Op+ ®z Zy. If W is an Op-module endowed with an
action of G,(Op+ ;) and U C G, (AR) X Gn(Op+ ;) is a compact open subgroup, the space of

algebraic automorphic forms on G,, of level U and coefficients in W, which is also an Og-module,
is defined as follows:

SUW) = {f: Gu(FI\Ga(AF) = W | fgu) =u, ' f(9) V g € Gu(AF,),u e U}

with the usual notation u = uPu, for v € U.
We say that the level U is sufficiently small if

t G (FOtNU

has finite order prime to p for all t € G,,(A$, ). We say that U is unramified at a finite place v of
FT if it has a decomposition
U=Gn(Op+)U"
for some compact open UY C Gp(A%"). If w is a finite place of F', then we say, by abuse of
notation, that w is an unramified place for U or U is unramified at w if U is unramified at w|p+.
For a compact open subgroup U of G,, (A7) X G (Op+ ), we let Py denote the set consisting

of finite places w of F' such that

o w|p+ is split in F,

o w¢ S,

o U is unramified at w.
For a subset P C Py of finite complement and closed with respect to complex conjugation we
write TP = OE[TS), w € P,i € {0,1,--- ,n}| for the universal Hecke algebra on P, where the

Hecke operator T, 75,7:) acts on S(U, W) via the usual double coset operator
_ wwIdl 0
Lwl |:GL7L(OFU,) ( 0 Idnz) GLTL(OFw ):|

where w@,, is a uniformizer of Op, and Id; is the identity matrix of size i. The Hecke algebra T
naturally acts on S(U, W).
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Recall that we assume that p splits completely in F. Following [EGH15], Section 7.1 we consider

the subset (Zi)gp consisting of dominant weights a = (a,,)w Where a,, = (@10, 02w, ", Onw)
satisfying
(511) Qi w + Ap41—i,we = 0

for all w € Sp and 1 <4 <n. We let
Wa, =M, (OF,) ®o, O

where M, (OF, ) is the Op,-specialization of the dual Weyl module associated to a,, (cf. [EGH15],
Section 4.1.1); by condition (5.1.1), one deduces an isomorphism of G, (Op+ )-representations W, o
tw = Wy, . ©tye. Therefore, by letting W, := W, o, for any place w|v, the Op-representation

Of gn(OFJr,p)
Wy = Q) Wa,
vlp

is well-defined.

For a weight a € (Zﬁ)g”, let us write 5,(Q,) to denote the inductive limit of the spaces
S(U,W,) @0, Q, over the compact open subgroups U C G (A7) X Gn(Op+ ;). (Note that the
transition maps are induced, in a natural way, from the inclusions between levels U.) Then 5,(Q,))
has a natural left action of G,,(A%; ) induced by right translation of functions.

We briefly recall the relation between the space A of classical automorphic forms and the
previous spaces of algebraic automorphic forms in the particular case which is relevant to us. Fix
an isomorphism ¢ : Q, = C for the rest of the paper. As we did for the O, -specialization of the

dual Weyl modules, we define a finite dimensional G, (F* ®q R)-representation o, = @ 0, with
v|oco

C-coefficients. (We refer to [EGH15], Section 7.1.4 for the precise definition of o,.)

Lemma 5.1.1 ([EGH15], Lemma 7.1.6). The isomorphism 1 : Q, = C induces an isomorphism
of smooth Gy, (A¥,)-representations

5.(Q,) ®q,.C — Homg, (p+aqr) (04, A)

for any a € (Z’_f_)g”.

The following theorem guarantees the existence of Galois representations attached to automor-
phic forms on the unitary group G,,. We let | |1an P — Q: denote the unique square root of

| [1=" whose composite with ¢ : Qp 5 C takes positive values.

Theorem 5.1.2 ([EGH15], Theorem 7.2.1). Let II be an irreducible G, (A%, )-subrepresentation

Of SQ(Qp)‘
Then there exists a continuous semisimple representation

oo GF — GLn(Qp)
such that
() et =
(ii) for each place w above p, the representation ri|c,, is de Rham with Hodge-Tate weights
HT(rnler,) = {a1w + (0 = 1), a2, + (0 = 2), -+ anw};
(iii) if w|p is a place of F and v := w|p+ splits in F, then
WD(rnla, ) 2 recu(Myo i) @ |77,

We note that the fact that (iii) holds without semi-simplification on the automorphic side is one
of the main results of [Carald]. We also note that property (iii) says that the restriction to G,
is compatible with the local Langlands correspondence at w, which is denoted by rec,,.
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5.2. Serre weights and potentially crystalline lifts. In this section, we recall the relation of
Serre weights and potentially crystalline lifts via (inertial) local Langlands correspondence.

Definition 5.2.1. A Serre weight for G, is an isomorphism class of an irreducible smooth F,-
representation V. of Gn(Op+ ). If v is a place of F* above p, then a Serre weight at v is an
isomorphism class of an irreducible Fp-smooth representation V, of gn(OF;r). Finally, if w is

a place of F above p, a Serre weight at w is an isomorphism class of an irreducible F,-smooth
representation Vi, of GL,(Op, ).

We will often say a Serre weight for a Serre weight for G, if G,, is clear from the context. A
smooth representation defined over a finite extension of F,, is often called a Serre weight if it is
absolutely irreducible. Note that if V,, is a Serre weight at v, there is an associated Serre weight
at w above v defined by V, o 1,1

As explained in [EGH15], Section 7.3, a Serre weight V' admits an explicit description in terms
of GL,,(k)-representations. More precisely, let w be a place of F above p and write v := w|p+.
For any n-tuple of integers a,, := (@1,uw, 42w, , Gn,w) € Z7, that is p-restricted (i.e., 0 < a4, —
Qig1,0 < p—1lfori=1,2,--- ,n—1), we consider the Serre weight F'(a,,) := F(@1,w, 2w, ", Gnw),
as defined in [EGH15], Section 4.1.2. It is an irreducible F-representation of GLy, (k) and of
Gn(ky) via the isomorphism ¢,,. Note that F(a1,u, 2.5, »Gnw)" 0lwe = F(A1 10, 02,00, 5 Anaw)©
tw as Gy (ky)-representations, i.e. F(@,c)0tye = F(a,,)oty if a; 4 +ant1—iwe = 0foralll <i<mn.
Hence, if a = (a,,)w € (Zi)g” that is p-restricted, then we can set F,, = F(a,,) oty for w|v. We
also set

vlp
which is a Serre weight for G,(Op+ ;). From [EGH15], Lemma 7.3.4 if V is a Serre weight for G,,
there exists a p-restricted weight a = (a,,)w € (Zi)gp such that V has a decomposition V' = @V,
vlp
where the V, are Serre weights at v satisfying V, o 1! & F(a,,)-
Recall that we write F for the residue field of E.

Definition 5.2.2. Let 7 : Gp — GL,(F) be an absolutely irreducible continuous Galois represen-
tation and let V' be a Serre weight for G,. We say that T is automorphic of weight V' (or that
V is a Serre weight of T) if there exists a compact open subgroup U in Gn(AR") % Go(Op+ )
unramified above p and a cofinite subset P C Py such that T is unramified at each place of P and

S(U,V ), #0

where mx is the kernel of the system of Hecke eigenvalues @ : TP — F associated to T, i.e.

det (1 — 7 (Froby) X) = Y (~1) (Npyq(w) Da(T$)) X7

j=0
for allw e P.

We write W(T) for the set of automorphic Serre weights of 7. Let w be a place of F' above p
and v = w|p+. We also write W,,(7) for the set of Serre weights F'(a,,) such that

(Flay)ow)® | Q) V| eWT)
v'esy \{v}
where Vi, are Serre weights of G, (Op+) for all v € S\ {v}. We often write W(7|g,,, ) and

Wu(Tlgy, ) for W(7) and W, (7) respectively, when the given 7|q,, is clearly a restriction of an
automorphic representation ¥ to G, .
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Fix a place w of F above p and let v = w|p+. We also fix a compact open subgroup U of
Gn(AT?) x G (Op+ ,) which is sufficiently small and unramified at all places above p. We may
write U = Gn(Op+) x U, If W' is an Op-module with an action of Hu/esj\{u} Gn(Op+), we
define '

S, W' :=1lim S(U" - U,, W")

T

where the limit runs over all compact open subgroups U, of G,,(O Fj)> endowing W' with a trivial

Gn(Op+)-action. Note that S(U”,W’) has a smooth action of G, (F,") (given by right translation)

and hence of GL,,(F,,) via t,,. We also note that S(U?, W') has an action of T commuting with
the smooth action of G, (F.\), where P is a cofinite subset of Py .

Lemma 5.2.3 ([EGH15], Lemma 7.4.3). Let U be a compact open subgroup of Gn(AZT) x
Gn(OFp+ ) which is sufficiently small and unramified at all places above p, and P a cofinite subset
of Py. Fiz a place w of F above p and let v = w|p+. Let V = ®U’GS;' Vi be a Serre weight for

Gn. Then there is a natural isomorphism of TP -modules
Homgn(@F+) (Vvv, S(UU, V/)) :> S(l]7 V)
where V' := Qe (v Vor-

We now recall some formalism related to Deligne-Lusztig representations from Section 4.2. Let
w be a place of F' above p. For a positive integer m, let ky m/ky be an extension satisfying
[Kwm : kw] = m, and let T be an F-stable maximal torus in GL,,,, where F is the Frobenius
morphism. We have an identification from [Her09], Lemma 4.7

T(kw) L> H kqi,nj
J

where n > n; > 0 and Zj n; = n; the isomorphism is unique up to Hj Gal(ky,n, /kw)-conjugacy.

In particular, any character 0 : T(k,,) — 6; can be written as ¢ = ®;6; where 0; : kj ,,  — Q:
is a character.

Given an F-stable maximal torus T and a primitive character 6, we consider the Deligne-Lusztig
representation R% of GLy, (k) over Q, defined in Section 4.2. Recall from Section 4.2 that ©(6;)
is a cuspidal representation of GLy; (k) associated to the primitive character 6;, we have

o 1 AGLn(ky
Rf = (-1)" " Indg 5 (2;0(0)))

where P, is the standard parabolic subgroup containing the Levi [] j GLp; and r denotes the
number of its Levi factors.
Let Fym = W(kw,m)[%] for a positive integer m. We consider 6; as a character on O by
wn
inflation and we define the following Galois type rec(f) : I, — GLn(Q,,) as follows:

r

rec(f) := @ @ o (Hj o Art}ulmj)

Jj=1 ”EG&l(kw,nj/kw)

where §; is a primitive character on k;j , of niveau n; for each j = 1,---,7. Recall that
Art Fum; Fin, — WI‘}ZM is the isomorphism of local class field theory, normalized by send-
ing the uniformizers to the geometric Frobenii.

We quickly review the inertial local Langlands correspondence. Recall that we write recq, for

the local Langlands correspondence for GL,(Q,) (cf. Theorem 5.1.2).
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Theorem 5.2.4 ([CEGGPS], Theorem 3.7 and [LLL], Proposition 2.3.4). Let 7 : Iq, — GL,(Q,)
be a Galois type. Then there exists a finite dimensional irreducible smooth Qp-representation o(r)
of GLy(Zy) such that if 7 is any irreducible smooth Q,,-representation of GL,(Q,) then 7|gL, (z,)
contains a unique copy of o(T) as a subrepresentation if and only if recq, () 27 and N=0

on recq, (7).
Moreover, if T = ®_;7; and the 7; are pairwise distinct, then o(7) = RS and T = rec(0) for a

‘IQ,{7

mazimal torus T in GL,, ), and a primitive character 6 : T(F,) — Q;

The following theorem provides a connection between Serre weights and potentially crystalline
lifts, which will be useful for the main result, Theorem 5.6.2.

Theorem 5.2.5 ([LLL], Proposition 4.2.5). Let w be a place of F above p, T a mazimal torus in
GLy /g, , 0 = ®;:1 0; : T(ky) — 6; a primitive character such that 0; are pairwise distinct, and
Vw a Serre weight at w for a Galois representation 7 : Gp — GL,(F).

Assume that Vi, is a Jordan-Hélder constituent in the mod p reduction of the Deligne—Lusztig
representation Ry of GLy(kw). Then Tlg, —has a potentially crystalline lift with Hodge—Tate
weights {—(n — 1), —(n — 2),---,0} and Galois type rec(d).

For a given automorphic Galois representation 7 : Gr — GL,(F), it is quite difficult to deter-
mine if a given Serre weight is a Serre weight of 7. Thanks to the work of [BLGG], we have the
following theorem, in which we refer the reader to [BLGG] for the unfamiliar terminology.

Theorem 5.2.6 ([BLGG], Theorem 4.1.9). Assume that if n is even then so is "[F;Q] , that ¢, &
F, and that 7 : Gp — GL,(F) is an absolutely irreducible representation with split ramification.
Assume further that there is a RACSDC' automorphic representation I of GL,,(Ar) such that

o T T N

o For each place wlp of I, rni|ay,, is potentially diagonalizable;

o T(GF,)) s adequate.

Ifa= (ay)w € (Z'ﬁﬁ)g” and for each w € Sy, T|a,, has a potentially diagonalizable crystalline lift
with Hodge—Tate weights {a1 w+(n—1),a2 4w+ (n—2), -+ ,an—1,0+1,anw}, then a Jordan-Hélder
factor of W, ®z, F is a Serre weight of T.

5.3. Weight elimination and automorphy of a Serre weight. In this section, we state our
main Conjecture for weight elimination (Conjecture 5.3.1) which will be a crucial assumption in
the proof of Theorem 5.6.2. We also prove the automorphy of a certain obvious Serre weight under
the assumptions of Taylor—Wiles type.

Throughout this section, we assume that p, is always a restriction of an automorphic representa-
tion 7 : Gp — GL,(F) to G, for a fixed place w above p and is generic (cf. Definition 3.0.5). Re-
call that for 0 < jg < jo+1 < 79 < n—1 we have defined a tuple of integers (rif;jf, e 77,11'0,1'0’ ré“’jo)
in (3.7.1), which determines the Galois types as in (1.1.2). In many cases, we will consider the
dual of our Serre weights, so that we define a pair of integers (i1, j1) by the equation (5.0.1). We
also let

br == —Cn_1—k
for all 0 < k <n — 1. We will keep the notation (i1, 1) and by for the rest of the paper.
For the rest of this section, we are mainly interested in the following characters of T'(F,): let

MD = (b’n717 e 7b0)

and

P = (Y1, Yn2, Y1, Y0)
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where
b; it j & {j1,i1};
yj=9q bi, —pt+i+1 ifj=ji;
bj, +i1—i1—1 ifj=r4.
As p, is generic, each of the characters above is p-regular and thus uniquely determines a p-
restricted weight up to a twist in (p — 1)Xo(7)), and, by abuse of notation, we write p-, p:i7
for those corresponding p-restricted weights, respectively. We will clarify the twist in (p—1)Xo(T)
whenever necessary. We also define a principal series representation
(5.3.1) minI = Indipr) (u2 e,
We now state necessary results of weight elimination to our proof of the main results, Theo-
rem 5.6.2, in this paper.

Conjecture 5.3.1. Let 7 : Gp — GL,(F) be a continuous automorphic Galois representation
with T|q,, = Py as in (3.0.1). Fiz a pair of integers (io, jo) such that 0 < jo < jo+1 <ip <n—1,
and assume that p;, ;. is Fontaine-Laffaille generic and that phindt s 9n-generic.
Then we have
W () N IJH((xl9)Y) € {F(u7)Y, F(um91)V),

In an earlier version of this paper, we prove Conjecture 5.3.1 for n < 5. But our method is
rather elaborate to execute for general n. But Bao V. Le Hung pointed out that one can prove
Conjecture 5.3.1 by constructing certain potentially crystalline deformation rings, and a proof of
the conjecture will appear in our forthcoming paper [LHMPQ)].

Finally, we prove the automorphy of the Serre weight F(u™)V.

Proposition 5.3.2. Keep the assumptions and notation of Conjecture 5.8.1. Assume further that
if n is even then so is MFTW, that ¢, € F, that7 : Ggp — GL,,(F) is an irreducible representation
with split ramification, and that there is a RACSDC' automorphic representation I of GL,(AFr)
such that

o T ~Try,

o for each place w'|p of F, rH|GF’ , s potentially diagonalizable;

o T(GF,)) s adequate. :

Then
{F(u7)"} € Wy (F) NJH((x271)Y).

Proof. We prove that F(uP)Y = F(cn_1,¢n_2, - ,co) € Wy (F) as well as F(uP)Y e JH((xi7)V).
Note that (c¢,—1,--- ,¢) is in the lowest alcove as p, is generic, so that by Theorem 5.2.6 it is
enough to show that p, has a potentially diagonalizable crystalline lift with Hodge-Tate weights
{¢n-1+ (n—1), - ,c1 +1,c0}. Since p, is generic, by [BLGGT], Lemma 1.4.3 it is enough to
show that p, has an ordinary crystalline lift with those Hodge-Tate weights. The existence of
such a crystalline lift is immediate by [GHLS], Proposition 2.1.10. On the other hand, we have
F(uP)Y e JH((#7")Y which is a direct corollary of Theorem 5.5.2. Therefore, we conclude that
F(uP)Y € Wy (F) N JH((zi)V). O

5.4. Some application of Morita theory. In this section, we will recall standard results from
Morita theory to prove Corollary 5.4.3. We fix here an arbitrary finite group H and a finite
dimensional irreducible E-representation V' of H. By Proposition 16.16 in [CR90], we know that
for any Op-lattice V° C V, the set JHg(z)(V° ®0, F) depends only on V' and is independent of the
choice of V°, and thus we will use the notation JHp(z)(V) from now on where V =V° ®¢,, F for
a randomly chosen V°. We may assume that E is sufficiently large such that E (resp. its residual

field F) is a splitting field of V' (resp. JHp(z](V)). Let C be the category of all finitely generated
Op-modules with an H-action which are isomorphic to subquotients of Og-lattices in V&* for
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some k > 1. Then the irreducible objects of C are just elements of JHg (V). If o € JHpg(V)
has multiplicity one in V, then there is an Opg-lattice V (unique up to homothety by following
the proof of Lemma 4.4.1 of [EGS15] as it actually requires only the multiplicity one of ¢ in our
notation) such that

cosocy (V7 ®o, F) =o0.

By considering an Og-lattice in the E-dual of V' with the F-dual of o as cosocle and then taking
Opg-dual of this lattice, we reach another Og-lattice V,, in V', which is the unique (up to homethety),
such that

socy (Vo ®0, F) = 0.
By repeating the proof of Lemma 2.3.1, Lemma 2.3.2 and Proposition 2.3.3 in [Lel5], we deduce
the following.
Proposition 5.4.1. If 0 has multiplicity one in V., then the lattice V° is a projective object in C.

Note that the proof of Proposition 2.3.3 in [Lel5] requires only that the multiplicity of o in V'
is one, rather than the much stronger condition that each constituent of V' has multiplicity one.

Corollary 5.4.2. Let X be a subset of JHg [ (V') such that each o € ¥ has multiplicity one in V.
If an Og-lattice V° C 'V satisfies

(5.4.1) cosocy (V° ®p, F) = @ o
oEX

then we have a surjection
(5.4.2) Pve—-ve.

oED
Proof. By (5.4.1) we have a surjection

Ve — @ o.

gEY

By Proposition 5.4.1 we know that @y, V7 is a projective object in C. By the definition of V7
we know that there is a surjection
Dv Do

o€EY ocy
which can be lifted by projectivity to (5.4.2). |

Note in particular that (5.4.2) implies automatically the surjection

(5.4.3) PV’ eo, F—~V°®o, F.
oex

Corollary 5.4.3. Let ¥ be a subset of JHy(p (V') such that each o € ¥ has multiplicity one in V.
If an Og-lattice Vo, C 'V satisfies

socy (Vo ®o, F) = @ o
ceXD
then we have an injection

Vo ®0, F = @V, o, F.
oey

Proof. This is simply the F-dual of (5.4.3). |
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5.5. Generalization of Section 4. In this section, we fix a pair of integers (ig,jo) satisfying
0<ijo<jo+1<ip<mn-—1, and determine (i1,51) by the equation (5.0.1). We will use the
shortened notation P (vesp. N, L, P~ ---) for P, j, (vesp. Ni, j,, Li, j,, P;, ;,, -+ ) as introduced
at the beginning of Section 5. Proposition 5.5.5 is crucial for the proof of Theorem 5.6.2. We
assume throughout this section that p™1+71 is 2n-generic (cf. Definition 4.1.1).

We start this section by defining some weights and Jacobi sum operators which will play a

crucial role for our main results, Theorem 5.6.2. Let

i1,J1 . _ 1,01, . (L 1, 1, 1,
’u’lll = (x7174*17x711*27. o ,CE},.’I}(%) and Mlll ! i (xni17xni27' RS /va ,)
where
bptiy—j ifn—ji+i+1<j<n-1
Djtjr—in—1 if i +2<j<n—ji+in
ap=1q by +i—ii—1 ifj=ii+1;
bi, —j1+in+1 if j=iy;
b; f0<j<i;—1
and
bji—1-j if0<j<ji—i1—2
. bj—ji+ir+1 ifj1—n—-1<j<j—2
x;t =9 b+ —ii—1 ifj=j;
bil—j1+i1+1 lszjl—l,
b; fjpn+1<j<n—-1
We also fix certain two elements in the Weyl group W:
w11'17j1 — (Sn—3—i1 . 81)j1—i1—1 cW and w'ilmjl,/ — (Sn—j1+2 . Sn_l)h—h—l ew,
and further define two more weights
Mi1,j1 = (ughjl)w;lﬂl and Mil,jl,/ — (M?,jl,/)w?»h»/
More precisely, %191 and p*71' can be written as follow:
'u’il)jl = (Tn-1,Tn-2, -+ ,21,7p) and /u'il)jhl = (‘rszlaxngb' " ax/lvxé))
where
b if j > j1or i > j;
go = Vit if j1 > > i1+ 1
J bjy +j1—i1—1 ifj=i1+1;
bil—j1+i1+1 ifj:il
and
b if j > j1 or 11 > j;
A it —1>j >
! bj, +j1—i1—1 ifj=ji;
by, —j1+i1+1 ifj=7j -1

Note that if we let
Wt =5, s, o € WE and wtIY =5, 5 18,0 € WE

then we have o o
(Mihjl)w”’“ — (HD,ilvjl)w(If — (uilajly/)w”’“’l.

Recall that w{ is defined at the beginning of Section 5 and that pHi:01 is defined in Section 5.3.
We now define certain mod p Jacobi sum operators:
Sy =8y e and SPPV =S, .
We further define
St = Sﬁildl,wé‘ and S“’Jhl = SEil.jl,/’wg



102 CHOL PARK AND ZICHENG QIAN

here K9 — (K9), € {0, p—1} o and K197 = (K9, € 40, p—1) "0k satist
e s _( bJ )ZJ 6{ ’ P } ¢ and g ( (2¥) )Za] 6{ ) P } 0 Satisty

. [biy — bn—il1 ifn—j1+1<i=j—1<n—i;—1;

k=0 i — i 14 by, — by ifi=j—1=n—j;
0 if j >i+2

and

kg}jﬂl’/:: il_jl+1+[bi1—bjl]1 1fz:]_1:n_ll_17

0 it >i+2.

We now consider characteristic 0 lifts of the mod p Jacobi sum operators above.

n,i171

S S IT TAeer1bés | 147 | wé

AEU,, 1 (Fy) l=n—j,
and

~ . 1,91,/
SESAS DY [T TAeent® e | 147 | wi.

Aeré‘ (Fp) £=n—j1

We also let
n—i;—1 o
Spra= | S | T TAwer ™07 | 147 | wf
A€U,r (Fy) \t=n—j1

i i |oF | .
where k1710 = (k1:900), € {0,--- ,p—1} “& satisfies
1,7 5] ) P

kl-l-’jl’o': Z'l_jl"'_l—"_[bil_bjl]l ifn_jlgi:j_lgn_il_l;
% : 0 if j >i+2.

Note that S¥+J1, Sh.d1/ S'J1 are Teichmiiller lifts of S¥+J1, S¥-d1/ S, . 5o . o, respectively. We
) » €0 ) » Mk ,wy'? P Y

will also consider the Teichmiiller lifts of S?7' and &9 as follows:
1 1
S}‘h]& — Z [A] w7i.17j1 and gil,jl,/ — Z [A] wlil,jl,/’
Aerilvjl (Fp) Aerilvh:/(Fp)

We recall the operator =, € G(Qp) from (4.4.1). Note that pr s T(F,) — Op is the
Teichmiiller lift of 127", We also recall KD kP (cf. (4.4.10)), Ky (cf. (4.4.14)), e* (cf. (4.4.13)),
and P, (cf. (4.4.12)), whose definitions are completely determined by fixing the data n and
(an_1, -+ ,a0). We define ngll?jl, Iigf?jl, Kivg € Zy, €' = +1 and Py, j, € Z) by replacing
n and (an,1,~- ,al,ao) by j1 — i1 + 1 and (bjl + 71—t — 1,bj1,17~-~ 7b,‘1+17bi1 — g1+ + 1)
respectively with by as at the beginning of Section 5.3.

Proposition 5.5.1. Assume that p="71 is 2n-generic. Let

. 7. L G(Q ) . -’.
It .= IndB(Qz)X“ J1
11,41

be a tamely ramified principal series where Y91 = /Il @ ® xél I T(Qp) — E* is a smooth
character satisfying X |r(z,)= pi?t. Then we have the identity

n—1
~ N o ~ ~
St .Sil"h’ ° (:n)Jl i1—1 :p(j1 i1 1)(11+1)K/i17j1 I | lecl,]l (p) St .Sih]l
k=n—ji+i1+1
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on the 1-dimensional space (H“*jl)l(l)’ﬁiml.
Proof. By Lemma 4.4.2 we know that
(En)jl—il—l ° UTJl'1—i1—1 _ c§(w*)j1—i1—1.
Then by Lemma 4.4.1 and the fact
E(w“’]l’ ) +€(( )jl—il—l) _ e(wilvjl’/(w*)jl—il—l(w’ihjl) ) _’_g( 11,j1) + 2(j1 iy — 1)’i1
we deduce that

~

~ . N
- —it1—1)i o o o
Sw?,jl,/ L4 S(w*)h*n*l = p(h 1=1) ISwil’“’/('w*)fl*ilfl(wil’“)*l ° Sw;y,n-

Therefore it remains to show that
Ji1,j1, o © _ Ji—ii—1 Gi1,d
St .Swil’jl’/ —pjl ! Iiil,jls 171

(w*)ir=ir=1 (w171 =1
on the 1-dimensional space
i1,7 agY ~ 41,51
(thl)f(l)# I Swjl’jl ((Hzml)l(l) T > .

We observe by Lemma 4.4.1 that

~ ~ 1A
Sypiroin @ Swilvjlv’(w*)jl711—1(70;1’]1)71 =p' T T S
and therefore by composing S;'’" it remains to show that
Qi1,J1 o & o gi—ii—17,.(2) \—1Gi1, 1./
(551) 801 i Sw’i‘jl” = pjl ! (Hil’jl) St

on (I ) A anq

(5.5.2) §517j1 ’S\wirh _ pjlfhfl(‘Li 15,1

le]l)

on (IT#:d1) I, A7 But these can be checked by the same argument as in Corollary 4.4.7. O

We state here a generalization of the Theorem 4.8.2. Recall the definition of 72" from (5.3.1).

Theorem 5.5.2. The constituent F(u") has multiplicity one in wi7*.
Proof. This is Corollary 4.3.7 if we replace pi9t by u=. O
We define a characteristic 0 principal series
(i) = IndG0e7) (001
which is an Op-lattice in (7271)° @0, E.
Lemma 5.5.3. (i) For p e {pin, pivdns dn yiuinvy e have

dimg, (YU 1.
(ii) We have the following non-vanishing results:
ivin (i) EHE ) = ivint (iU ERAY 2
(iii) We also have the following non-vanishing results:
Silvjl <(ﬂ-ihj1)U(Fp),u§1’jl) — (Wihjl)U(Fp),uil’“

and
i1,J J1\U(Fp),uit 71 i1,j1\U (Fp),u'191
S ()T E ) = ()OI
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Proof. The statement (i) is immediate by Bruhat decomposition (4.0.6).
Now we prove (ii). According to Lemma 4.4.1, (5.5.1) and (5.5.2) and Lemma 4.4.6, we deduce

by mod p reduction with respect to the lattice (727*)° that
St ((Tril,]’l)U(Fp)J‘ilel) — St/ ((ﬂ-il’jl)U(Fp)uuil‘le)

o O,y .51 yw
i1, U(F,), 221571 0
= SEil'jl'O,wé‘ <(ﬂ-*1 Jl) (Fp),(p ) > .

If we abuse the notation k*'* for the tuple in {0,--- ,p— 1}"%0| satisfying
k10 = 0 for all o ¢ @Ig
then by mod p reduction of first possibility of Proposition 4.4.3 we deduce that
Spitdn0 L S0 wkwe = Oki191.0 w,
on the 1-dimensional subspace (%! ’jl)U(Ff’)’(“D'il’jl)wO. Thus we finish the proof of (ii) by

Sﬁi1vj1,07wo ((Wilyjl)U(Fp)ﬁ(#my”’jl)wo) 7& O

which follows from Proposition 4.1.4.
Finally we prove (iii). We only prove the first equality in (iii) as the same proof works for the
second equality. By Lemma 4.1.6 we know that
S (€ e ) B G D R
and

- O,iq .51 \w .. i1,41
o i1, 71 \U(Fp), (=" 71)0\ ¢ i1,51\U(Fp),p
SO,(wil’jlwil’]l)—lw&wo ((7(* ) - (W* ) ! N

Therefore it remains to show that
11,J1 o — o
Sy e SQ,(w"'bjl wi ) " lwlwe T SQ’(W”’“)’IWOL“’O

g O,iq,51 \w
on the 1-dimensional subspace (i7" )U(Fp), (= "171)"0

Lemma 4.4.1 and the fact that

f(wll'h]d) +€((wil’jlwlihjl)_lwé‘wo> _ E((wil’jl)_lwéwo).

, which follows from the mod p reduction of

This completes the proof. O

We define V¥1+J1 and V#1917 to be the subrepresentations of it generated by
Sitt ((ﬂil,jl)U(Fp),u”*“) and Sitdt ((Wuyjl)U(Fp),u“*“*’)

respectively. Similarly, we define Voil’j ! as the subrepresentation of . generated by

Skilel,O (('/Til’jl)U(FP)’(”DYil’jl)w()) .
Lemma 5.5.4. We have
(5.5.3) Vv = yinin! = yina
and

(5.5.4) F(u®) e JH(V).
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Proof. The equality (5.5.3) follows directly from the proof of (ii) of Lemma 5.5.3.
We define a new tuple k7% = (kf:};jl’ﬁ)i,j €{0,---,p— 1}@;" defined by
pivnt . i — i A (b = b i (4,) = (n = ji,n — i)
i 10 otherwise.

We also define V?1:71:f to be the subrepresentation of it generated by

. O,i1,51 \w
s U(F, , 521571 0
vt ((ﬂl J1 YU (Fp), (= 11:71) )

By Proposition 4.6.5 and the same method in the proof of Proposition 4.7.8 we deduce that
(5.5.5) Vinint C gt

By abuse of notation we view p2%71 as a fixed weight in X, (7'), and then there exists =’ €
X (T) such that

n—i;—1

1 =P (mod (p - DX(T)) and p = (n—irn—ji) - g2 4p 3 a

r=n—ji

We define Uill 71 t6 be the unipotent subgroup of L generated by U, forn—j;+1 <r <mn—i;—1
and then define o o
F7i1,] 7Ll 5=
vt =U,""-N.
By a direct generalization of proof of Lemma 4.7.14, we can show that
2J1

. O,iq,51 \w AN
, U(F,), 521571 0 _ 0 D) s U
Skttt g ((w}: U ER) () )7H (s,

2J1

We define V17! to be the G-subrepresentation of H° (uH#1:91) generated by H° (,u‘:"“’jl)gély, and

alg
by definition we have
(5.5.6) (Vi)Y s BN and (VT = HO (B TE "

We have natural identification (cf the beginning of Section 5 for definition of HY (y=1:91))
(5.5.7) HO(MD:ille)ﬁg H(l)/(ﬂlj7i1:jl) and HO(‘LLD,ihjl)ﬁil’jl o~ Hg(luﬂ,iuﬁ)ﬁil’jl.

By applying Lemma 4.7.15 and the proof of Proposition 4.7.16 to the Levi L, we deduce that
HY (pH7:91) is uniserial of length two with socle F*(u™11) and cosocle F¥(u"') and that

O,r.

i1.d Tl
(5.5.8) Hg(’um, I’Jl)ué,/ o~ FL(HEI,/)#

Combine (5.5.6), (5.5.7) and (5.5.8) we deduce the surjection of representations of L

(Vi) = FE () = HY (u™) = HO (PN
and thus a non-zero morphism

(Vil’jl) — HO(pD”) and (Vil’jl)

alg alg

Uit o~ 7

O ~ O,nT
pak; —>HO(M ’/)gu,/ — F(u ’/)ZD,/

by coinduction for algebraic representation from P to G. In particular we know that

F(u2) € JHS (VJ) .

alg
Now we restrict the action of G to G(F,) and observe the injections
1,01, i1,] U 4,
Visik o Vit g,y and F(u™) < F(u™)|a,)

which induces
. O.dq .51 \w . 01,7 (] - FTE1,01
G\U(F,),(uD 7131 yw0 1\ UTI1L(F,), i1,j1\U
((Wil I UFE)(n ) ) = (Viduh) (Fp) (ViU

Sﬁil’jl’n,wo alg b
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and
O,r.

[m] O
F(p=)7E D = (F (™) g,)) " F 0 = F()

Hence, we deduce that

m

F(p) € JHew,) (Vi7HF)
which together with (5.5.5) finishes the proof of (5.5.4). O

Proposition 5.5.5. Let 7 be an Og-lattice in (ﬂil’jl)o ®o, E satisfying
socq(r,) (T ®o,, F) < F(u™) @ F(u27m).
(i) For u € {/,Lil’jl,u“*jl”,/,sz’jl,ulf’jl’/}, we have
dimp (7 ®p,, F)VFr)# = 1,
(i) We have the non-vanishing results for S+ and S/ :
S ((T R0y F)U(Ff’)’“i”1> = S ((T R0 F)U(FP)’“il’jl’/) # 0.
(iii) We also have the non-vanishing results for Si™7* and Si*7*':

Sil’jl ((T ®0, F)U(Fp)aﬂ’il«jl) _ (7_ R0, F)U(Fp)ﬁﬁ'l’jl

and
Ji./

Sil’jl’/ ((T Rog F)U(FP)’N?Y ) = (T ®0, F)U(Fp)7ﬂi17j1"/.

Proof. We can easily deduce (i) from
dlmE((ﬁ:il 1j1)o ®0p E)U(Fp)vﬁil’jl = dimE«%’ihjl)O ®0p E‘)U(Fp)vﬁil'jl’/ =1

and Frobenius reciprocity as F(pit71), F(ut7v'), F(u'7") and F(u'"7*") all have multiplicity
one in 7 ®o, F. o

We define 77" as the mod p reduction of (7,'”*)° ®o, E with respect to the unique (up to
homothety) Og-lattice such that

SOCG(F,) (wgl’jl) = F(u").
Then we deduce from Corollary 5.4.3 that there exists an injection
T Ro, F s mitit @ﬂgl’jl
Note that we have

(559) (ﬂ'il’jl D 7T§17j1)U(F")’u’

= (ﬂilvjl)U(FP)vp‘ D (ﬂ-;l’jl)U(FZD)’N
for = {Mil,j17’uil,jl,/’/&h]d"ulihjh/}.
The equality of two spaces in (ii) is true because both of them can be identified with

((T ®og F)U(FP)7(MD’ilvj1 )wo)

by the same argument as in the proof of (ii) of Lemma 5.5.3. Therefore we only need to show
)U(Fp)vuil’“

Sgir1.0,u,

that S“J1 (resp. S%+1) gives rise to a bijection from (wil’jl o mh (resp. from

. L U(F,),uii
(ﬂiml ® Wﬁl’jl) ! ) to its image. According to (ii) of Lemma 5.5.3 and (5.5.9) we only

need to show that
s ((Wﬁl’jl)U(Fp)’”ilvjl) £0 and S ((wﬁl’jl)U(FpW”’jl’/) £0

which follows from Lemma 5.5.4 by definition of wil’j L.
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We have a unique (up to scalar) non-zero morphism

i1,J 11,J

(5.5.10) Tt —
which by Lemma 5.5.4 induces isomorphisms

(ﬁil,jl)U(Fp),u A (W;hjl)U(Fp)»u

for € {p*J1, 131"} and hence (iii) follows from (iii) of Lemma 5.5.3 by considering the image

of (iii) of Lemma 5.5.3 under (5.5.10) inside ﬁgl’jl. O

Corollary 5.5.6. Let 7 be an Og-lattice in (%il’jl)o ®oy E satisfying

socg(r,) (T @0, F) < F(u™) @ F(u=mm).

Then we have

NG

Si .Sil’jl ((7_ ®05 F)U(Fp)nu‘ilnjl) = St .Sihjl’/ ((T ®0, F)U(FP)V”?'H ) £0.

5.6. Main results. In this section, we state and prove our main results on mod p local-global
compatibility. Throughout this section, p, is always assumed to be a restriction of a global repre-
sentation 7 : Gp — GL,(F) to G, for a fixed place w of F' above p. Let v := w|p+, and assume
further that 7 is automorphic of a Serre weight V' = @),, V,y with V,, :=V, o Pl F(,u‘j)v. We
may write Vi o L;,l =~ F(a,,)" for a dominant weight a,, € Z’ where w’ is a place of F' above v/,
and define

(5.6.1) V' i= ® Vy and V' = ® W,
v #v v #v
From now on, we also assume that a,, is in the lowest alcove for each place w' of F above p, so
that
V' >V @0, F.

Let U be a compact open subgroup of G,(A%X") x G,(Op+ ,), which is sufficiently small and
unramified at all places above p, such that S(U, V)[mz] # 0 where mr is the maximal ideal of T
attached to 7 for a cofinite subset P of Py .

We fix a pair of integers (ig, jo) such that 0 < jyo < jo+1 < ip < n—1, and determine a pair of
integers (i1, 1) by the equation (5.0.1). We also define

M = SWU" Ve
Mivit = S, TR

Note that M%7t is a free Og-module of finite rank as M is a smooth admissible representation of
G(Q,) which is wp-torsion free. For any Og-algebra A, we write My 7" for M3t @, A. We
similarly define M4.

Let T%J1 be the Op-module that is the image of T” in Endp, (M%), Then T+ is a local
Op-algebra with the maximal ideal my, where, by abuse of notation, we write mz C T?+/! for the
image of mz of T7. As the level U is sufficiently small, by passing to a sufficiently large E as in
the proof of Theorem 4.5.2 of [HLM], we may assume that T%’j ' = E" for some r > 0. For any
Op-algebra A we write Tii J1 for Tt ®o, A.

We have M7t = D, M7 [pg], where the sum runs over the minimal primes p of T?/* and

pp = pTibl’jl. Note that Tibl’jl/pE >~ F for any such p. By abuse of notation, we also write p
(resp. pg) for its inverse image in T” (resp. TE).

Definition 5.6.1. A non-zero vector vi+ it € M]?’jl is said to be primitive if there exists a vector
vt e MIp] that lifts v"71 ) for certain minimal prime p of T*J1,
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Note that the G(Q,)-subrepresentation of My generated by a lift 717! of a primitive element
v is irreducible and actually lies in Mg[pg].

Now we can state our main results in this paper. Recall that by p, we always mean an n-
dimensional ordinary representation of Gq, as described in (3.0.1).

Theorem 5.6.2. Fiz a pair of integers (ig,jo) satisfying 0 < jo < jo+1 < ig <n—1, and let
(i1,71) be a pair of integers such that ig + i1 = jo +j1 =n— 1. We also let 7 : Gp — GL,,(F) be
an irreducible automorphic representation with |G, = py. Assume that

o ,uD’il’jl s 2n-generic;

© Diy.jo 5 Fontaine-Laffaille generic.
Assume further that

(5.6.2) {F(u9)Y} C W) N IH((m9)Y) C{F ()Y, F (2.

Then there exists a primitive vector in S(U”,V’)[my]f(l)#il’h Moreover, for each primitive

vector v 91 € S(U, V') [mz]Mm' " we have S+t o SIHI1yindt £ 0 and

8117]1,/ ° 811,]1,/ ° (En)h—u—lvu,]l — Ezn]l’pihjl (bnfly - 7b0) . FL}(;),JO (ﬂGFU,) . S“’]l ° Silv]lvllﬂl
where
ji—1
gt — H (71)bi1*bk*jl+il+1
k=i1+1
and
Jji—1 ji—i1—1 .
bk —b; — J
— J1 X
Pihjl(bn*l?"' ybo) = H H WGZP.
v — Uk — ]

k=ii+1 j=1

Remark 5.6.3. The right inclusion of (5.6.2) is just Conjecture 5.3.1, which becomes a theorem
in [LHMPQ)] (¢f. Remark 1.3.2). We also give an evidence for the left inclusion of (5.6.2) in
Proposition 5.3.2 under some assumption of Taylor—Wiles type. As a result, the condition (5.6.2)
can be removed under some standard Taylor—Wiles conditions.

Remark 5.6.4. If M1 is free as T91 -module, then all vectors in S(UY, V') [mz]IM1""" gre
primitive. As a result, one needs such a freeness result to remove the “primitive” condition. Under
a stronger generic condition (compared to our Fontaine-Laffaille generic conditions), it should be
possible to use results from [LHMPQ)] to improve (5.6.2) to be an equality

W (F) N JH((m9)Y) = {F ()"}

in which case one is able to prove the freeness result mentioned above through the technique in
Section 5 of [HLM] under some standard global assumption. It is also possible to prove a freeness
result over some enlarged Hecke algebra as in Section 5 of [HLM], at least if (i1,71) = (0,n —1).

Proof. We firstly point out that M7t # 0, as S(U, (F(uP)Y 0 ty) @ V'), # 0 and F(uD) is a

factor of Indf i7" = Indggzg/ﬂf I,

Picking an embedding F — Qp, as well as an isomorphism ¢ : Qp = C, we see that

(5.6.3) M = @) - O ey,
II

where the sum runs over irreducible representations IT = I, ® I, @ TI°*Y of G, (Ap+) over @p such
that T ®, C is a cuspidal automorphic representation of multiplicity m(Il) € Zsq with I, ®, C
being determined by the algebraic representation (‘7’ )Y and with associated Galois representation
rp lifting 7V (cf. Lemma 5.1.1).
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We write d for the modulus character of B(Q,):
= "el "0 |l

where | | is the (unramified) norm character sending p to p~!. For any II contributing to (5.6.3),
we have

(i) 11, = IndG(Q”)(w ® 0) for some smooth character

B(Qy)
V=1 1@ ¢Yn2® - @91 @to
of T(Q,) such that ¥|r(z,) = ﬁ’f’jl |7(z,), where 9. are the smooth characters of Q.
(ii) rlap, is a potentially crystalline lift of 7 with Hodge Tate weights {—(n — 1), —(n —
2),--+,—1,0} and WD(riflay, )% 2 @p 50
Here, part (i) follows from [EGH15], Propositions 2.4.1 and 7.4.4, and part (ii) follows from classical
local-global compatibility (cf. Theorem 5.1.2). Moreover, by Corollary 3.7.3, we have

io—1
;go:joJrl Vi, +1+k(p)

(ig+ig)(ig—do—1)
2

(5.6.4) FLy % (pg) =

(Note that we may identify t;, 4141 with Q;l for jo < k < ig, where y is defined in Corol-
lary 3.7.3.) o

Now we pick an arbitrary primitive vector v/t € Mg7! [mz] with a lift 771 € Mt [p]. We
set

7g = (K0") p C Mg[pg| and 7 := (K9"7') C M[p],

and thus 7 is an Op-lattice in 75. Note that My 7' [pp] ®g Q, is a direct summand of (5.6.3)
where IT runs over a subset of automorphic representations in (5.6.3). The same argument as
in the paragraph above (4.5.7) of [HLM] using Cebotarev density theorem shows that the local
component I, of each IT occurring in this direct summand does not depend on II.

By the definition of 7, we obtain non-zero morphisms

(5.6.5) T ®oy F = Mlp] ®0, F — Mp[m7]

as p + wpT? = my. We denote the image of T ®o, F under the composition (5.6.5) by V and
note that it can be naturally identified with (Kv®+1)g according to the definition of 7. By the
assumption (5.6.2) (cf. Conjecture 5.3.1), we deduce that

TH (socqe,) (Me[m])) © {F(u2), F(uPn)}
and therefore by (5.6.5) we have
JH (socar,)(V)) € {F(u"), F(u™ )},
We know that there exists an Og-lattice 7/ C 75 such that
socgr,) (V) = socgr,) (7" ®o, F).
Moreover, we have a saturated inclusion 7 < 7’ which induces a morphism
TR0y, F =17 @0, F

whose image is isomorphic to V. It follows from Proposition 5.5.5 that we necessarily have iso-
morphisms of F-lines

(T @0, F)EHT 2y yUED a0 2 (1 g F)
Hence, by Corollary 5.5.6 and the fact that
VU(FP)altil’jl — F[vil,jl] g MF [m?],

U(Fp)vltil 1

we deduce that
(5.6.6) Sivit ¢ Siityinit £ (),
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On the other hand, we have the following equality by Proposition 5.5.1

io—1
~ . i d - s . k=1 11/)1'1+1+k(p) ~ . ~
(5.6.7) S @8I 0 (2, TG :thl( s Sivit o Sivdigini,

(770+.70)(;0—J'0—1)
By taking mod p reduction of (5.6.7) we deduce from (5.6.4) that
St o S{lﬁjla’ ° (En)jl_il_lville
_ Eil»jl Pi1,j1 (bni17 L 7bo) . FLi{J’jO (?lGFw) . Sil,jl ° Sil’jl’l}il’jl.
This equation together with (5.6.6) finishes the proof. |

Corollary 5.6.5. Keep the notation of Theorem 5.6.2 and assume that each assumption in Theo-
rem 5.6.2 holds for all (ig, jo) such that 0 < jo < jo + 1 <ig <n— 1. Assume further that M-
is free over TWI for all pair (i1, j1) (cf. Remark 5.6.4).

Then the structure of S(UY,V')[mz] as a smooth admissible F-representation of G(Q,) deter-
mines py up to isomorphism.

Proof. We follow the notation in Section 3.4 of [BH15]. As p, is ordinary, we can view it as a
morphism
7o : Ga, — B(F) C G(F)

where B (resp. é) is the dual group of B (resp. G). The local class field theory gives us a
bijection between smooth characters of Q, and the smooth characters of the Weil group of Q,
in characteristic 0. This bijection restricts to a bijection between smooth characters of Q. and
smooth characters of Gq, both with values in Of. Taking mod p reduction and then taking

products we reach a bijection between smooth F-characters of 7(Q,,) and Hom(Gq,, T(F)). We
can therefore define x5, as the character of T'(Q,) corresponding to the composition

Xz, : Gq, = B(F) = T(F).
In [BH15], a closed subgroup Cp, C B (at the beginning of Section 3.2) and a subset W5 ((2)
before Lemma 2.3.6) of W is defined.

As we are assuming that p, is maximally non-split, we observe that C; = B and W5, = {1} in
our case. Therefore by the definition of I1°7(p,) in [BH15] before Definition 3.4.3, we know that
it is indecomposable with socle

G(Qp —
IndB(,(Q)p)Xﬁ0 (wtod)
where § € X (T) is a twist character defined after Conjecture 3.1.2 in [BH15] which can be chosen to
be 7 in our notation. Then as a Corollary of Theorem 4.4.7 in [BH15], we deduce that S(U", V') [m#]
determines xp, and hence X5, .
Now, we know that p, is determined by the Fontaine-Laffaille parameters

{FL299(5,) € PYF) | 0 < jo < jo+1<ig<n—1}

and Xp,, up to isomorphism. Our conclusion thus follows from Theorem 5.6.2 together with
Remark 5.6.4. ]
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