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Abstract. Let p be a prime number, n > 2 an integer, and F a CM field in which p splits
completely. Assume that a continuous automorphic Galois representation r : Gal(Q/F ) →
GLn(Fp) is upper-triangular and satisfies certain genericity conditions at a place w above p, and

that every subquotient of r|Gal(Qp/Fw) of dimension > 2 is Fontaine–Laffaille generic. In this

paper, we show that the isomorphism class of r|Gal(Qp/Fw) is determined by GLn(Fw)-action

on a space of mod p algebraic automorphic forms cut out by the maximal ideal of a Hecke
algebra associated to r. In particular, we show that the wildly ramified part of r|Gal(Qp/Fw)

is determined by the action of Jacobi sum operators (seen as elements of Fp[GLn(Fp)]) on this

space.
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1. Introduction

It is believed that one can attach a smooth Fp-representation of GLn(K) (or a packet of such

representations) to a continuous Galois representation Gal(Qp/K) → GLn(Fp) in a natural way,
that is called mod p Langlands program for GLn(K), where K is a finite extension of Qp. This
conjecture is well-understood for GL2(Qp) ([BL94], [Ber10], [Bre03a], [Bre03b], [Col10], [Pas13],
[CDP], [Eme]). Beyond the GL2(Qp)-case, for instance GLn(Qp) for n > 2 or even GL2(Qpf ) for
an unramified extension Qpf of Qp of degree f > 1, the situation is still quite far from being under-
stood. One of the main difficulties is that there is no classification of such smooth representations
of GLn(K) unless K = Qp and n = 2: in particular, we barely understand the supercuspidal rep-
resentations. Some of the difficulties in classifying the supercuspidal representations are illustrated
in [BP12], [Hu10] and [Schr15].

Let F be a CM field in which p is unramified, and r : Gal(Q/F ) → GLn(Fp) an automorphic
Galois representation. Although there is no precise statement of mod p Langlands correspondence
for GLn(K) unless K = Qp and n = 2, one can define smooth representations Π(r) of GLn(Fw)
in the spaces of mod p automorphic forms on a definite unitary group cut out by the maximal
ideal of a Hecke algebra associated to r, where w is a place of F above p. A precise definition
of Π(r) when p splits completely in F , which is our context, will be given in Section 1.4. (See
also Section 5.6.) One wishes that Π(r) is a candidate on the automorphic side corresponding
to r|Gal(Qp/Fw) for a mod p Langlands correspondence in the spirit of Emerton [Eme]. However,

we barely understand the structure of Π(r) as a representation of GLn(Fw), though the ordinary
part of Π(r) is described in [BH15] when p splits completely in F and r|Gal(Qp/Fw) is ordinary. In

particular, it is not known whether Π(r) and r|Gal(Qp/Fw) determine each other. But we have the

following conjecture:

Conjecture 1.0.1. The local Galois representation r|Gal(Qp/Fw) is determined by Π(r).

This conjecture is widely expected to be true by experts but not explicitly written down before.
The case GL2(Qpf ) was treated by Breuil–Diamond [BD14]. Herzig–Le–Morra [HLM] considered
the case GL3(Qp) when r|Gal(Qp/Fw) is upper-triangular, while the case GL3(Qp) when r|Gal(Qp/Fw)

is an extension of a two dimensional irreducible representation by a character was considered by
Le–Morra–Park [LMP]. We are informed that John Enns from the University of Toronto has
worked on this conjecture for the group GL3(Qpf ). All of the results above are under certain
generic assumptions on the tamely ramified part of r|Gal(Qp/Fw).

From another point of view, to a smooth admissible Fp-representation Π of GLn(K) for a finite

extension K of Qp, Scholze [Sch15] attaches a smooth admissible Fp-representation S(Π) of D×
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for a division algebra D over K with center K and invariant 1
n , which also has a continuous action

of Gal(Qp/K), via the mod p cohomology of the Lubin–Tate tower. Using this construction,
it was possible for Scholze to prove Conjecture 1.0.1 in full generality for GL2(K) (cf. [Sch15],
Theorem 1.5). On the other hand, the proof of Theorem 1.5 of [Sch15] does not tell us where the
invariants that determine S(Π) lie. We do not know if there is any relation between these two
different methods.

The weight part of Serre’s conjecture already gives part of the information of Π(r): the local
Serre weights of r at w determine the socle of Π(r)|GLn(OFw ) at least up to possible multiplicities,
where OFw is the ring of integers of Fw. If r|Gal(Qp/Fw) is semisimple, then it is believed that the

Serre weights of r at w determine r|Gal(Qp/Fw) up to twisting by unramified characters, but this is

no longer the case if it is not semisimple: the Serre weights are not enough to determine the wildly
ramified part of r|Gal(Qp/Fw), so that we need to understand a deeper structure of Π(r) than just

its GLn(OFw)-socle.
In this paper, we show that Conjecture 1.0.1 is true when p splits completely in F and r|Gal(Qp/Fw)

is upper-triangular and sufficiently generic in a precise sense. Moreover, we describe the invari-
ants in Π(r) that determine the wildly ramified part of r|Gal(Qp/Fw). The generic assumptions

on r|Gal(Qp/Fw) ensure that very few Serre weights of r at w will occur, which we call the weight

elimination conjecture, Conjecture 1.3.1. The weight elimination results are significant for our
method to prove Conjecture 1.0.1. But Bao V. Le Hung pointed out that this weight elimination
conjecture can be proved by constructing certain deformation rings, and the results will appear
in the forthcoming paper [LHMPQ]. We follow the basic strategy in [BD14, HLM]: we define
Fontaine–Laffaille parameters on the Galois side using Fontaine–Laffaille modules as well as au-
tomorphic parameters on the automorphic side using the actions of Jacobi sum operators, and
then identify them via the classical local Langlands correspondence. However, there are many new
difficulties that didn’t occur in [BD14] or in [HLM]. For instance, the classification of semi-linear
algebraic objects of rank n > 3 on the Galois side is much more complicated. Moreover, failing of
the multiplicity one property of the Jordan–Hölder factors of mod p reduction of Deligne–Lusztig
representations of GLn(Zp) for n > 3 implies that new ideas are required to show crucial non-
vanishing of the automorphic parameters. In the rest of the introduction, we explain our ideas and
results in more detail.

1.1. Local Galois side. Let E be a (sufficiently large) finite extension of Qp with ring of integers

OE , a uniformizer $E , and residue field F, and let IQp
be the inertia subgroup of Gal(Qp/Qp)

and ω the fundamental character of niveau 1. We also let ρ0 : Gal(Qp/Qp) → GLn(F) be a
continuous (Fontaine-Laffaille) ordinary generic Galois representation. Namely, there exists a
basis e := (en−1, en−2, · · · , e0) for ρ0 such that with respect to e the matrix form of ρ0 is written
as follows:

(1.1.1) ρ0|IQp ∼=



ωcn−1+(n−1) ∗n−1 ∗ · · · ∗ ∗
0 ωcn−2+(n−2) ∗n−2 · · · ∗ ∗
0 0 ωcn−3+(n−3) · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · ωc1+1 ∗1
0 0 0 · · · 0 ωc0


for some integers ci satisfying some genericity conditions (cf. Definition 3.0.5). We also assume
that ρ0 is maximally non-split, i.e., ∗i 6= 0 for all i ∈ {1, 2, · · · , n− 1}.

Our goal on the Galois side is to show that the Frobenius eigenvalues of certain potentially
crystalline lifts of ρ0 determine the Fontaine–Laffaille parameters of ρ0, which parameterize the
wildly ramified part of ρ0. When the unramified part and the tamely ramified part of ρ0 are
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fixed, we define the Fontaine–Laffaille parameters via the Fontaine–Laffaille modules corresponding

to ρ0 (cf. Definition 3.2.3). These parameters vary over the space of (n−1)(n−2)
2 copies of the

projective line P1(F), and we write FLi0,j0n (ρ0) ∈ P1(F) for each pair of integers (i0, j0) with
0 ≤ j0 < j0+1 < i0 ≤ n−1. For each such pair (i0, j0), the Fontaine–Laffaille parameter FLi0,j0n (ρ0)
is determined by the subquotient ρi0,j0 of ρ0 which is determined by the subset (ei0 , ei0−1, · · · , ej0)

of e (cf. (3.0.2)): in fact, we have the identity FLi0,j0n (ρ0) = FLi0−j0,0i0−j0+1(ρi0,j0) (cf. Lemma 3.2.4).
Since potentially crystalline lifts of ρ0 are not Fontaine–Laffaille in general, we are no longer

able to use Fontaine–Laffaille theory to study such lifts of ρ0; we use Breuil modules and strongly
divisible modules for their lifts. It is obvious that any lift of ρ0 determines the Fontaine–Laffaille
parameters, but it is not obvious how one can explicitly visualize the information that determines
ρ0 in those lifts. Motivated by the automorphic side, we believe that for each pair (i0, j0) as
above the Fontaine–Laffaille parameter FLi0,j0n (ρ0) is determined by a certain product of Frobenius
eigenvalues of the potentially crystalline lifts of ρ0 with Hodge–Tate weights {−(n−1), · · · ,−1, 0}
and Galois type

⊕n−1
i=0 ω̃

k
i0,j0
i where ω̃ is the Teichmüller lift of the fundamental character ω of

niveau 1 and

(1.1.2) ki0,j0i ≡

 ci0 + i0 − j0 − 1 for i = i0;
cj0 − (i0 − j0 − 1) for i = j0;
ci otherwise

modulo (p− 1). Here, ci are the integers determining the tamely ramified part of ρ0 in (1.1.1) and
our normalization of the Hodge–Tate weight of the cyclotomic character ε is −1.

Our main result on the Galois side is the following:

Theorem 1.1.1 (Theorem 3.7.1). Fix i0, j0 ∈ Z with 0 ≤ j0 < j0 + 1 < i0 ≤ n − 1. As-
sume that ρ0 is generic (cf. Definition 3.0.5) and that ρi0,j0 is Fontaine–Laffaille generic (cf.

Definition 3.2.5), and let (λi0,j0n−1 , λ
i0,j0
n−2 , · · · , λ

i0,j0
0 ) ∈ (OE)n be the Frobenius eigenvalues on the

(ω̃k
i0,j0
n−1 , ω̃k

i0,j0
n−2 , · · · , ω̃k

i0,j0
0 )-isotypic components of D

Qp,n−1
st (ρ0) where ρ0 is a potentially crys-

talline lift of ρ0 with Hodge–Tate weights {−(n−1),−(n−2), · · · ,−1, 0} and Galois type
⊕n−1

i=0 ω̃
k
i0,j0
i .

Then the Fontaine–Laffaille parameter FLi0,j0n associated to ρ0 is computed as follows:

FLi0,j0n (ρ0) =

1 :

(
p[(n−1)− i0+j0

2 ](i0−j0−1)∏i0−1
i=j0+1 λ

i0,j0
i

) ∈ P1(F).

Note that by • ∈ F in the theorem above we mean the image of • ∈ OE under the natural
surjection OE � F. We also note that ρi0,j0 being Fontaine–Laffaille generic implies FLi0,j0n (ρ0) 6=
0,∞ for all i0, j0 as in Theorem 1.1.1, but is a strictly stronger assumption if i0 − j0 ≥ 3.

Let us briefly discuss our strategy for the proof of Theorem 1.1.1. Recall that the Fontaine–
Laffaille parameter FLi0,j0n (ρ0) is defined in terms of the Fontaine–Laffaille module corresponding
to ρ0. Thus we need to describe FLi0,j0n (ρ0) by the data of the Breuil modules of inertial type⊕n−1

i=0 ω
k
i0,j0
i corresponding to ρ0, and we do this via étale φ-modules, which requires classification

of such Breuil modules. If the filtration of the Breuil modules is of a certain shape, then a
certain product of the Frobenius eigenvalues of the Breuil modules determines a Fontaine–Laffaille
parameter (cf. Proposition 3.4.2). In order to get such a filtration, we need to assume that ρi0,j0 is
Fontaine–Laffaille generic (cf. Definition 3.2.5). Then we determine the structure of the filtration of
the strongly divisible modules lifting the Breuil modules by direct computation, which immediately
gives enough properties of Frobenius eigenvalues of the potentially crystalline representations we
consider. But this whole process is subtle for general i0, j0. To resolve this issue we prove that
any potentially crystalline lift of ρ0 with Hodge–Tate weights {−(n − 1),−(n − 2), · · · , 0} and

Galois type
⊕n−1

i=0 ω̃
k
i0,j0
i has a potentially crystalline subquotient ρi0,j0 of Hodge–Tate weights

{−i0, · · · ,−j0} and of Galois type
⊕i0

i=j0
ω̃k

i0,j0
i lifting ρi0,j0 . More precisely,
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Theorem 1.1.2 (Corollary 3.6.2). Every potentially crystalline lift ρ0 of ρ0 with Hodge–Tate

weights {−(n− 1),−(n− 2), · · · , 0} and Galois type
⊕n−1

i=0 ω̃
k
i0,j0
i is a successive extension

ρ0
∼=



ρn−1,n−1 · · · ∗ ∗ ∗ · · · ∗
. . .

...
...

...
. . .

...
ρi0+1,i0+1 ∗ ∗ · · · ∗

ρi0,j0 ∗ · · · ∗
ρj0−1,j0−1 · · · ∗

. . .
...
ρ0,0


where

◦ for n− 1 ≥ i > i0 and j0 > i ≥ 0, ρi,i is a 1-dimensional potentially crystalline lift of ρi,i

with Hodge–Tate weight −i and Galois type ω̃k
i0,j0
i ;

◦ ρi0,j0 is a (i0 − j0 + 1)-dimensional potentially crystalline lift of ρi0,j0 with Hodge–Tate

weights {−i0,−i0 + 1, · · · ,−j0} and Galois type
⊕i0

i=j0
ω̃k

i0,j0
i .

Note that we actually prove the niveau f version of Theorem 1.1.2 since it adds only little more
extra work (cf. Corollary 3.6.2).

The representation ρi0,j0 ⊗ ε−j0 is a (i0− j0 + 1)-dimensional potentially crystalline lift of ρi0,j0
with Hodge–Tate weights {−(i0− j0),−(i0− j0−1), · · · , 0} and Galois type

⊕i0
i=j0

ω̃k
i0,j0
i , so that,

by Theorem 1.1.2, Theorem 1.1.1 reduces to the case (i0, j0) = (n− 1, 0): we prove Theorem 1.1.1

when (i0, j0) = (n − 1, 0), and then use the fact FLi0,j0n (ρ0) = FLi0−j0,0i0−j0+1(ρi0,j0) to get the result
for general i0, j0.

The Weil–Deligne representation WD(ρ0) associated to ρ0 (as in Theorem 1.1.1) contains those
Frobenius eigenvalues of ρ0. We then use the classical local Langlands correspondence for GLn to
transport the Frobenius eigenvalues of ρ0 (and so the Fontaine–Laffaille parameters of ρ0 as well
by Theorem 1.1.1) to the automorphic side (cf. Corollary 3.7.3).

1.2. Local automorphic side. We start by introducing the Jacobi sum operators in character-
istic p. Let T (resp. B) be the maximal torus (resp. the maximal Borel subgroup) consisting
of diagonal matrices (resp. of upper-triangular matrices) of GLn. We let X(T ) := Hom(T,Gm)
be the group of characters of T and Φ+ be the set of positive roots with respect to (B, T ).
We define εi ∈ X(T ) as the projection of T ∼= Gn

m onto the i-th factor. Then the elements
{εi | 1 ≤ i ≤ n} forms a Z-basis for the free abelian group X(T ). We will use the notation
(d1, d2, · · · , dn) ∈ Zn for the element

∑n
k=1 dkεk ∈ X(T ). Note that the group of character-

s of the finite group T (Fp) ∼= (F×p )n can be identified with X(T )/(p − 1)X(T ), and therefore
we sometimes abuse the notation (d1, d2, · · · , dn) for its image in X(T )/(p − 1)X(T ). We define
∆ := {αk := εk − εk+1 | 1 ≤ k ≤ n − 1} ⊂ Φ+ as the set of simple positive roots. Note that we
write sk for the reflection of the simple root αk. For an element w in the Weyl group W , we define
Φ+
w = {α ∈ Φ+ | w(α) ∈ −Φ+} ⊆ Φ+ and Uw =

∏
α∈Φ+

w
Uα, where Uα is a subgroup of U whose on-

ly non-zero off-diagonal entry corresponds to α. Note in particular that Φ+ = Φ+
w0

, where w0 is the

longest element in W . For w ∈W and for a tuple of integers k = (kα)α∈Φ+
w
∈ {0, 1, · · · , p− 1}|Φ+

w|,
we define the Jacobi sum operator

Sk,w :=
∑

A∈Uw(Fp)

 ∏
α∈Φ+

w

Akαα

A · w ∈ Fp[GLn(Fp)]

where Aα is the entry of A corresponding to α ∈ Φ+
w . In Section 4, we establish many technical

results, both conceptual and computational, around these Jacobi sum operators. The use of these
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Jacobi sum operators can be traced back to at least [CL76], and are widely used for GL2 in [BP12]
and [Hu10] for instance. But systematic computation with these operators seems to be limited to
GL2 or GL3. In this paper, we need to do some specific but technical computation on some special
Jacobi sum operators for GLn(Fp), which is enough for our application to Theorem 1.4.1 below.

By the discussion on the local Galois side, our target on the local automorphic side is to capture
the Frobenius eigenvalues coming from the local Galois side. By the classical local Langlands
correspondence, the Frobenius eigenvalues of ρ0 are transported to the unramified part of χ in

the tamely ramified principal series Ind
GLn(Qp)

B(Qp) χ corresponding to the Weil–Deligne representation

WD(ρ0) attached to ρ0 in Theorem 1.1.1, and it is standard to use Up-operators to capture the
information in the unramified part of χ.

The normalizer of the Iwahori subgroup I in GLn(Qp) is cyclic modulo I, and this cyclic
quotient group is generated by an element Ξn ∈ GLn(Qp) that is explicitly defined in (4.4.1).
One of our goals is to translate the eigenvalue of Up-operators into the action of Ξn on the space

(Ind
GLn(Qp)

B(Qp) χ)|GLn(Zp). This is firstly done for GL2(Qpf ) in [BD14], and then the method is

generalized to GL3(Qp) in the ordinary case by [HLM]. Both [BD14] and [HLM] need a pair of

group algebra operators: for instance, group algebra operators Ŝ, Ŝ′ ∈ Qp[GL3(Qp)] are defined

in [HLM] and the authors prove an intertwining identity of the form Ŝ′ · Ξ3 = cŜ on a certain

I(1)-fixed subspace of Ind
GL3(Qp)

B(Qp) χ with χ assumed to be tamely ramified, where I(1) is the pro-p

Sylow subgroup of I. Here, the constant c ∈ O×E captures the eigenvalues of Up-operators. This
is the first technical point on the local automorphic side, and we generalize the results in [BD14]
and [HLM] by the following theorem.

For an n-tuple of integers (an−1, an−2, · · · , a0) ∈ Zn, we write Sn and S ′n for Sk1,w0
with

k1 = (k1
i,j) and Sk1,′,w0

with k1,′ = (k1,′
i,j) respectively, where k1

i,i+1 = [a0 − an−i]1 + n − 2,

k1,′
i,i+1 = [an−i−1−an−1]1 +n−2 for 1 ≤ i ≤ n−1, and k1

i,j = k1,′
i,j = 0 otherwise. Here, (i, j) is the

entry corresponding to α if α = εi− εj ∈ Φ+ and by [x]1 for x ∈ Z we mean the integer in [0, p−1)

such that x ≡ [x]1 modulo (p − 1). We define Ŝn ∈ Zp[GLn(Zp)] (resp. Ŝ ′n ∈ Zp[GLn(Zp)]) by
taking the Teichmüller lifts of the coefficients and the entries of the matrices of Sn ∈ Fp[GLn(Fp)]
(resp. of S ′n ∈ Fp[GLn(Fp)]).

We use the notation • for the composition of maps or group operators to distinguish from the
notation ◦ for an OE-lattice inside a representation.

Theorem 1.2.1 (Theorem 4.4.9). Assume that the n-tuple of integers (an−1, an−2, · · · , a0) is
n-generic in the lowest alcove (cf. Definition 4.1.1), and let

Πn = Ind
GLn(Qp)

B(Qp) (χ1 ⊗ χ2 ⊗ χ3 ⊗ ...⊗ χn−2 ⊗ χn−1 ⊗ χ0)

be a tamely ramified principal series representation with the smooth characters χk : Q×p → E×

satisfying χk|Z×p = ω̃ak for 0 ≤ k ≤ n− 1.

On the 1-dimensional subspace Π
I(1),(a1,a2,...,an−1,a0)
n we have the identity:

(1.2.1) Ŝ ′n • (Ξn)n−2 = pn−2κn

(
n−2∏
k=1

χk(p)

)
Ŝn

for κn ∈ Z×p satisfying κn ≡ ε∗ · Pn(an−1, · · · , a0) mod ($E) where

ε∗ =

n−2∏
k=1

(−1)a0−ak
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and

Pn(an−1, · · · , a0) =

n−2∏
k=1

n−3∏
j=0

ak − an−1 + j

a0 − ak + j
∈ Z×p .

In fact, there are many identities similar to the one in (1.2.1) for each operator U in for 1 ≤
i ≤ n − 1 (defined in (4.4.2)) which can be technically always reduced to Proposition 4.4.3, but
it is clear from the proof of Theorem 1.2.1 in Section 4.4 that we need to choose Un−2

n for the

Up-operator acting on Π
I(1),(a1,a2,...,an−1,a0)
n , motivated from the local Galois side via Theorem

1.1.1. The crucial point here is that the constant pn−2κn

(∏n−2
k=1 χk(p)

)
, which is closely related

to FLn−1,0
n (ρ0) via Theorem 1.1.1 and classical local Langlands correspondence, should lie in O×E

for each Πn appearing in our application of Theorem 1.2.1 to Theorem 1.4.1.
The next step is to consider the mod p reduction of the identity (1.2.1), which is effective to

capture pn−2
∏n−2
k=1 χk(p) modulo ($E) only if Ŝnv̂ 6≡ 0 modulo ($E) for v̂ ∈ Π

I(1),(a1,a2,...,an−1,a0)
n .

It turns out that this non-vanishing property is very technical to prove for general GLn(Qp). Before
we state our non-vanishing result, we fix a little more notation: let

µ∗ := (an−1 − n+ 2, an−2, · · · , a1, a0 + n− 2);
µ0 := (an−1, a1, a2, · · · , an−3, an−2, a0);
µ1 := (a1, a2, · · · , an−3, an−2, an−1, a0);
µ′1 := (an−1, a0, a1, a2, · · · , an−3, an−2)

be four characters of T (Fp), and write π0 (resp. π̃◦0) for the characteristic p principal series
(resp. the characteristic 0 principal series) induced by the characters µ0 (resp. by its Teichmüller
lift µ̃0). Note that we can attach an irreducible representation F (λ) of GLn(Fp) to each λ ∈
X(T )/(p − 1)X(T ) satisfying some regular conditions (cf. the beginning of Section 4). If we
assume that (an−1, · · · , a0) ∈ Zn is n-generic in the lowest alcove, the characters µ∗, µ0, µ1 and µ′1
do satisfy the regular condition and thus we have four irreducible representations F (µ∗), F (µ0),
F (µ1) and F (µ′1) of GLn(Fp). There is a unique (up to homothety) OE-lattice τ in π̃◦0⊗OE E such
that

socGLn(Fp)(τ ⊗OE F) = F (µ∗).

We are now ready to state the non-vanishing theorem.

Theorem 1.2.2 (Corollary 4.8.3). Assume that the n-tuple of integers (an−1, an−2, · · · , a0) is
2n-generic in the lowest alcove (cf. Definition 4.1.1).

Then we have

Sn
(

(τ ⊗OE F)U(Fp),µ1

)
6= 0 and S ′n

(
(τ ⊗OE F)U(Fp),µ′1

)
6= 0.

The definition of µ1, µ
′
1, µ0 and µ∗ is motivated by our application of Theorem 1.2.2 to Theorem

1.4.1 and is closely related to the Galois types we choose in Theorem 1.1.1. We emphasize that,
technically speaking, it is crucial that F (µ∗) has multiplicity one in π0. The proof of Theorem 1.2.2
is technical and makes full use of the results in Sections 4.1, 4.6, and 4.7.

1.3. Weight elimination and automorphy of a Serre weight. The weight part of Serre’s
conjecture is considered as a first step towards mod p Langlands program, since it gives a description
of the socle of Π(r)|GLn(Zp) up to possible multiplicities. Substantial progress has been made for
the groups GL2(OK), where OK is the ring of integers of a finite extension K of Qp ([BDJ10],
[Gee11], [GK14], [GLS14], [GLS15]). For groups in higher semisimple rank, we also have a detailed
description. (See [EGH15], [HLM], [LMP], [MP], [LLHLM] for GL3; [Her09], [GG10], [BLGG],
[LLL], [GHS] for general n.)

Weight elimination results are significant for the proof of our main global application, Theo-
rem 1.4.1. For the purpose of this introduction, we quickly review some notation. Let F+ be the
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maximal totally real subfield of a CM field F , and assume that p splits completely in F . Fix a
place w of F above p and set v := w|F+ . We assume that r is automorphic: this means that there
exist a totally definite unitary group Gn defined over F+ that is an outer form of GLn/F+ and split
at places above p, an integral model Gn of Gn such that Gn×OF+

v′
is reductive if v′ is a finite place

of F+ that splits in F , a compact open subgroup U = Gn(OF+
v

)×Uv ⊆ Gn(OF+
v

)×Gn(A∞,vF+ ) that

is sufficiently small and unramified above p, a Serre weight V =
⊗

v′|p Vv′ that is an irreducible

smooth Fp-representation of Gn(OF+,p), and a maximal ideal mr associated to r in the Hecke
algebra acting on the space S(U, V ) of mod p algebraic automorphic forms such that

(1.3.1) S(U, V )[mr] 6= 0.

We write W (r) for the set of Serre weights V satisfying (1.3.1) for some U , and Ww(r) for the set
of local Serre weights Vv, that is irreducible smooth representations of Gn(OF+

v
) ∼= GLn(OFw) ∼=

GLn(Zp), such that Vv ⊗ (
⊗

v′ 6=v Vv′) ∈W (r) for an irreducible smooth representation
⊗

v′ 6=v Vv′

of
∏
v′ 6=v Gn(OF+

v′
). The local Serre weights Vv have an explicit description as representations of

GLn(Fp): there exists a p-restricted (i.e. 0 ≤ ai − ai−1 ≤ p − 1 for all 1 ≤ i ≤ n − 1) weight
a := (an−1, an−2, · · · , a0) ∈ X(T ) such that F (a) ∼= Vv where F (a) is the irreducible socle of the
dual Weyl module associated to a (cf. Section 5.2 as well as the beginning of Section 4).

Assume that r|Gal(Qp/Fw)
∼= ρ0, where ρ0 is defined as in (1.1.1). We define certain characters

µ� and µ�,i1,j1 of T (Fp) and a principal series

πi1,j1∗ = Ind
GLn(Fp)

B(Fp) (µ�,i1,j1)w0

at the beginning of Section 5.3. Our main conjecture for weight elimination is

Conjecture 1.3.1 (Conjecture 5.3.1). Assume that ρi0,j0 is Fontaine–Laffaille generic and that

µ�,i1,j1 is 2n-generic. Then we have an inclusion

Ww(r) ∩ JH((πi1,j1∗ )∨) ⊆ {F (µ�)∨, F (µ�,i1,j1)∨}.

We emphasize that the condition ρi0,j0 is Fontaine–Laffaille generic is crucial in Conjecture 1.3.1.

For example, if n = 4 and (i0, j0) = (3, 0) and we assume merely FL3,0
4 (ρ0) 6= 0,∞ (which is strictly

weaker than Fontaine–Laffaille generic), then we expect that an extra Serre weight can possibly

appear in Ww(r) ∩ JH((πi1,j1∗ )∨).
The Conjecture 1.3.1 is motivated by the proof of Theorem 1.1.1 and the theory of shape in

[LLHLM]. The special case n = 3 of Conjecture 1.3.1 was firstly proven in [HLM] and can also be
deduced from the computations of Galois deformation rings in [LLHLM].

Remark 1.3.2. In an earlier version of this paper, we prove Conjecture 1.3.1 for n ≤ 5. But our
method is rather elaborate to execute for general n. Bao V. Le Hung pointed out that one can prove
Conjecture 1.3.1 completely by constructing certain potentially crystalline deformation rings. A
proof of Conjecture 1.3.1 will appear in [LHMPQ].

Finally, we also show the automorphy of the Serre weight F (µ�)∨. In other words,

(1.3.2) F (µ�)∨ ∈Ww(r) ∩ JH((πi1,j1∗ )∨).

Showing the automorphy of a Serre weight, in general, is very subtle. But thanks to the work
of [BLGG] we are able to show the automorphy of F (µ�)∨ by checking the existence of certain
potentially diagonalizable crystalline lifts of ρ0 (cf. Proposition 5.3.2).

1.4. Mod p local-global compatibility. We now state our main results on mod p local-global
compatibility. As discussed at the beginning of this introduction, we prove that Π(r) determines
the ordinary representation ρ0. Moreover, we also describe the invariants in Π(r) that determine
the wildly ramified parts of ρ0. We first recall the definition of Π(r).
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Keep the notation of the previous sections, and write bi = −cn−1−i for all 0 ≤ i ≤ n−1, with ci
as in (1.1.1). We fix a place w of F above p and write v := w|F+ , and we let r : GF → GLn(F) be
an irreducible automorphic representation, of a Serre weight V ∼=

⊗
v′ Vv′ (cf. Section 1.3), with

r|GFw ∼= ρ0.
Let V ′ :=

⊗
v′ 6=v Vv′ and set S(Uv, V ′) := lim

−→
S(Uv · Uv, V ′) where the direct limit runs over

compact open subgroups Uv ⊆ Gn(OF+
v

). This space S(Uv, V ′) has a natural smooth action of

Gn(F+
v ) ∼= GLn(Fw) ∼= GLn(Qp) by right translation as well as an action of a Hecke algebra that

commutes with the action of Gn(F+
v ). We define

Π(r) := S(Uv, V ′)[mr]

where mr is the maximal ideal of the Hecke algebra associated to r. In the spirit of [Eme], this is
a candidate on the automorphic side for a mod p Langlands correspondence corresponding to ρ0.
Note that the definition of Π(r) relies on Uv and V ′ as well as choice of a Hecke algebra, but we
suppress them in the notation.

Fix n− 1 ≥ i0 > j0 + 1 > j0 ≥ 0, and define i1 and j1 by the equation i1 + i0 = j1 + j0 = n− 1.
Note that the following Jacobi sum operators

Si1,j1 , Si1,j1,′, Si1,j11 , Si1,j1,′1 ∈ Fp[GLj1−i1+1(Fp)]

are defined at the beginning of Section 5.5.
Now we can state the main results in this paper.

Theorem 1.4.1 (Theorem 5.6.2). Fix a pair of integers (i0, j0) satisfying 0 ≤ j0 < j0 + 1 < i0 ≤
n − 1, and let r : GF → GLn(F) be an irreducible automorphic representation with r|GFw ∼= ρ0.
Assume that

◦ µ�,i1,j1 is 2n-generic;
◦ ρi0,j0 is Fontaine–Laffaille generic.

Assume further that

(1.4.1) {F (µ�)∨} ⊆Ww(r) ∩ JH((πi1,j1∗ )∨) ⊆ {F (µ�)∨, F (µ�,i1,j1)∨}.

Then there exists a primitive vector (cf. Definition 5.6.1) in Π(r)I(1),µ
i1,j1
1 . Moreover, for each

primitive vector vi1,j1 ∈ Π(r)I(1),µ
i1,j1
1 , we have Si1,j1 • Si1,j11 vi1,j1 6= 0 and

Si1,j1,′ • Si1,j1,′1 • (Ξn)j1−i1−1vi1,j1 = εi1,j1Pi1,j1(bn−1, · · · , b0) · FLi0,j0n (r|GFw ) · Si1,j1 • Si1,j11 vi1,j1

where

εi1,j1 =

j1−1∏
k=i1+1

(−1)bi1−bk−j1+i1+1

and

Pi1,j1(bn−1, · · · , b0) =

j1−1∏
k=i1+1

j1−i1−1∏
j=1

bk − bj1 − j
bi1 − bk − j

∈ Z×p .

Note that the conditions in (1.4.1) can be removed under some standard Taylor–Wiles conditions
(cf. Remark 1.3.2 and (1.3.2)).

Theorem 1.4.1 relies on the choice of a principal series type (the niveau 1 Galois type
⊕n−1

i=0 ω̃
k
i0,j0
i ).

But this choice is somehow the unique one that could possibly make our strategy of the proof of
Theorem 1.4.1 work.

Be careful that we cannot apply Theorem 1.2.1 and Theorem 1.2.2 directly to our local global-
compatibility for general (i1, j1). Instead, we need to generalize Theorem 1.2.2 (resp. Theo-
rem 1.2.1) to Proposition 5.5.5 (resp. Proposition 5.5.1) .
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Corollary 1.4.2. Keep the notation of Theorem 1.4.1 and assume that each assumption in The-
orem 1.4.1 holds for all (i0, j0) such that 0 ≤ j0 < j0 + 1 < i0 ≤ n − 1. Assume further that a
freeness result mentioned in Remark 5.6.4 is true.

Then the structure of Π(r) as a smooth admissible F-representation of GLn(Qp) determines the
Galois representation ρ0 up to isomorphism.

1.5. Notation. Much of the notation introduced in this section will also be (or have already been)
introduced in the text, but we try to collect together various definitions here for ease of reading.

We let E be a (sufficiently large) extension of Qp with ring of integers OE , a uniformizer $E ,
and residue field F. We will use these rings E, OE , and F for the coefficients of our representations.
We also let K be a finite extension of Qp with ring of integers OK , a uniformizer $, and residue
field k. Let W (k) be the ring of Witt vectors over k and write K0 for W (k)[ 1

p ]. (K0 is the maximal

absolutely unramified subextension of K.) In this paper, by K we always mean a tamely ramified
extension of Qp with e := [K : K0] = pf − 1 where f = [k : Fp].

For a field F , we write GF for Gal(F/F ) where F is a separable closure of F . For instance, we
are mainly interested in GQp

as well as GK0
in this paper. The choice of a uniformizer $ ∈ K

provides us with a map:

ω̃$ : GQp
−→W (k) : g 7−→ g($)

$
whose reduction mod ($) will be denoted as ω$. This map factors through Gal(K/Qp) and
ω̃$|GK0

becomes a homomorphism. Note that the choice of the embedding σ0 : k ↪→ F provides

us with a fundamental character of niveau f , namely ωf := σ0 ◦ ω$|Gal(K/K0), and we fix the
embedding in this paper.

For a ∈ k, we write ã for its Teichmüller lift in W (k). We also use the notation dae for ã, in
particular, in Section 4.4. When the notation for an element • in k is quite long, we prefer d•e to
•̃. For instance, if a, b, c, d ∈ k then we write

d(a− b)(a− c)(a− d)(b− c)(b− d)e for ˜(a− b)(a− c)(a− d)(b− c)(b− d).

Note that ω̃$ is the Teichmüller lift of ω$.
We normalize the Hodge–Tate weight of the cyclotomic character ε to be −1. Our normalization

on class field theory sends the geometric Frobenius to the uniformizers. If a ∈ F× or a ∈ O×E then
we write Ua for the unramified character sending the geometric Frobenius to a. We may regard a
character of GQp

as a character of Q×p via our normalization of class field theory.

As usual, we write S for the p-adic completion of W (k)[u, u
ie

i! ]i∈N, and let SOE := S ⊗Zp OE
and SE := SOE ⊗Zp Qp. We also let SF := SOE/($E ,FilpSOE ) ∼= (k ⊗Fp F)[u]/uep. Choose a
uniformizer $ of K and let E(u) ∈ W (k)[u] be the monic minimal polynomial of $. The group
Gal(K/K0) acts on S via the character ω̃$, and we write (SOE )ω̃m$ for the ω̃m$ -isotypical component

of S for m ∈ Z. We define (SF)ωm$ in a similar fashion. If OE or F are clear, we often omit them,

i.e., we write Sω̃m$ and Sωm$ for (SOE )ω̃m$ and (SF)ωm$ respectively. In particular,

S0 := Sω0
$

∼= (k ⊗Fp F)[ue]/uep

and

S0 := Sω̃0
$

=

{ ∞∑
i=0

ai
E(u)i

i!
| ai ∈W (k)⊗Zp OE and ai → 0 p-adically

}
.

The association a ⊗ b 7→ (σ(a)b)σ gives rise to an isomorphism k ⊗Fp F ∼=
∐
σ:k↪→F F, and we

write eσ for the idempotent element in k ⊗Fp F that corresponds to the idempotent element in∐
σ:k↪→F F whose only non-zero entry is 1 at the position of σ.
To lighten the notation, we often write G for GLn/Zp . (By Gn, we mean an outer form of

GLn defined in Section 5.1.) We let B be the Borel subgroup of G consisting of upper-triangular
matrices of G, U the unipotent subgroup of B, and T the torus of diagonal matrices of GLn. We
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also write B− and U− for the opposite Borel of B and the unipotent subgroup of B−, respectively.
Let Φ+ denote the set of positive roots with respect to (B, T ), and ∆ = {αk}1≤k≤n−1 the subset
of simple positive roots. We also let W be the Weyl group of GLn, which is often considered as
a subgroup of GLn, and let sk be the simple reflection corresponding to αk. We write w0 for the
longest Weyl element in W , and we hope that the reader is not confused with places w or w′ of F .

We often write K for GLn(Zp) for brevity. (Note that we use K for a tamely ramified extension
of Qp as well, and we hope that it does not confuse the reader.) We will often use the following
three open compact subgroups of GLn(Zp): if we let red : GLn(Zp) � GLn(Fp) be the natural
mod p reduction map, then

K(1) := Ker(red) ⊂ I(1) := red−1(U(Fp)) ⊂ I := red−1(B(Fp)) ⊂ K.

If M is a free F-module with a smooth action of K, then T (Fp) acts on the pro p Iwahori fixed

subspace M I(1) via I/I(1) ∼= T (Fp). We write M I(1),µ for the eigenspace with respect to a

character µ : T (Fp)→ F×p . M I(1) decomposes as

M I(1) ∼=
⊕

M I(1),µ

as T (Fp)-representations, where the direct sum runs over the characters µ of T (Fp). In the obvious

similar fashion, we define M I(1),µ when M is a free OE-module or a free E-module.
By [m]f for a rational number m ∈ Z[ 1

p ] ⊂ Q we mean the unique integer in [0, e) congruent to

m mod (e) via the natural surjection Z[ 1
p ] � Z/eZ. By byc for y ∈ R we mean the floor function

of y, i.e., the biggest integer less than or equal to y. For a set A, we write |A| for the cardinality of
A. If V is a finite-dimensional F-representation of a group H, then we write socHV and cosocHV
for the socle of V and the cosocle of V , respectively. If v is a non-zero vector in a free module over
F (resp. over OE , resp. over E), then we write F[v] (resp. OE [v], resp. E[v]) for the F-line (resp.
the OE-line, resp. the E-line) generated by v.

We write x for the image of x ∈ OE under the natural surjectionOE � F. We also have a natural
surjection P1(OE) � P1(F) defined by letting [x : y] ∈ P1(F) be the image of [x : y] ∈ P1(OE)
where

[x : y] =

{
[1 : ( yx )] if y

x ∈ OE ;

[(xy ) : 1] if x
y ∈ OE .

We often write y
x for [x : y] ∈ P1(F) if x 6= 0.
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2. Integral p-adic Hodge theory

In this section, we do a quick review of some (integral) p-adic Hodge theory which will be needed
later. We note that all of the results in this section are already known or easy generalization of
known results. We closely follow [EGH15] as well as [HLM] in this section.
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2.1. Filtered (φ,N)-modules with descent data. In this section, we review potentially semi-
stable representations and their corresponding linear algebra objects, admissible filtered (φ,N)-
modules with descent data.

Let K be a finite extension of Qp, and K0 the maximal unramified subfield of K, so that
K0 = W (k)⊗Zp Qp where k is the residue field of K. We fix the uniformizer p ∈ Qp, so that we fix
an embedding Bst ↪→ BdR. We also let K ′ be a subextension of K with K/K ′ Galois, and write
φ ∈ Gal(K0/Qp) for the arithmetic Frobenius.

A p-adic Galois representation ρ : GK′ → GLn(E) is potentially semi-stable if there is a finite

extension L of K ′ such that ρ|GL is semi-stable, i.e., rankL0⊗EDK′

st (V ) = dimE V , where V is an

underlying vector space of ρ and DK′

st (V ) := (Bst ⊗Qp
V )GL . We often write DK′

st (ρ) for DK′

st (V ).
If K is the Galois closure of L over K ′, then ρ|GK is semi-stable, provided that ρ|GL is semi-stable.

Definition 2.1.1. A filtered (φ,N,K/K ′, E)-module of rank n is a free K0⊗E-module D of rank
n together with

◦ a φ⊗ 1-automorphism φ on D;
◦ a nilpotent K0 ⊗ E-linear endomorphism N on D;
◦ a decreasing filtration {FiliDk}i∈Z on DK = K⊗K0

D consisting of K⊗Qp
E-submodules

of DK , which is exhaustive and separated;
◦ a K0-semilinear, E-linear action of Gal(K/K ′) which commutes with φ and N and pre-

serves the filtration on DK .

We say that D is (weakly) admissible if the underlying filtered (φ,N,K/K,E)-module (with
the trivial descent data) is weakly admissible in the sense of [Fon94]. The action of Gal(K/K ′)

on D is often called descent data action. If V is potentially semi-stable, then DK′

st (V ) is a typical
example of an admissible filtered (φ,N,K/K ′, E)-module of rank n.

Theorem 2.1.2 ([CF], Theorem 4.3). There is an equivalence of categories between the category
of weakly admissible filtered (φ,N,K/K ′, E)-modules of rank n and the category of n-dimensional
potentially semi-stable E-representations of GK′ that become semi-stable upon restriction to GK .

Note that Theorem 2.1.2 is proved in [CF] in the case K = K ′, and that [Sav05] gives a
generalization to the statement with non-trivial descent data.

If V is potentially semi-stable, then so is its dual V ∨. We define D∗,K
′

st (V ) := DK′

st (V ∨). Then

D∗,K
′

st gives an anti-equivalence of categories from the category of n-dimensional potentially semi-
stable E-representations of GK′ that become semi-stable upon restriction to GK to the category
of weakly admissible filtered (φ,N,K/K ′, E)-modules of rank n, with quasi-inverse

V∗,K
′

st (D) := Homφ,N (D,Bst) ∩HomFil(DK ,BdR).

It will often be convenient to use covariant functors. We define an equivalence of categories: for
each r ∈ Z

VK′,r
st (D) := V∗,K

′

st (D)∨ ⊗ εr.
The functor DK′,r

st defined by DK′,r
st (V ) := DK′

st (V ⊗ ε−r) is a quasi-inverse of VK′,r
st .

For a given potentially semi-stable representation ρ : GK′ → GLn(E), one can attach a Weil–
Deligne representation WD(ρ) to ρ, as in [CDT99], Appendix B.1. We refer to WD(ρ)|IQp as to the

Galois type associated to ρ. Note that WD(ρ) is defined via the filtered (φ,N,K/K ′, N)-module

DK′

st (ρ) and that WD(ρ)|IK′ ∼= WD(ρ⊗ εr)|IK′ for all r ∈ Z.
Finally, we say that a potentially semi-stable representation ρ is potentially crystalline if the

monodromy operator N on DK′

st (ρ) is trivial.

2.2. Strongly divisible modules with descent data. In this section, we review strongly di-
visible modules that correspond to Galois stable lattices in potentially semi-stable representations.
We keep the notation of Section 2.1



ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GLn(Qp) IN THE ORDINARY CASE 13

From now on, we assume that K/K ′ is a tamely ramified Galois extension with ramification in-

dex e(K/K ′). We fix a uniformizer $ ∈ K with $e(K/K′) ∈ K ′. Let e be the absolute ramification
index of K and E(u) ∈W (k)[u] the minimal polynomial of $ over K0.

Let S be the p-adic completion of W (k)[u, u
ie

i! ]i∈N. The ring S has additional structures:

◦ a continuous, φ-semilinear map φ : S → S with φ(u) = up and φ(u
ie

i! ) = upie

i! ;

◦ a continuous, W (k)-linear derivation of S with N(u) = −u and N(u
ie

i! ) = −ieu
ie

i! ;

◦ a decreasing filtration {FiliS}i∈Z≥0
of S given by letting FiliS be the p-adic completion

of the ideal
∑
j≥i

E(u)j

j! S;

◦ a group action of Gal(K/K ′) on S defined for each g ∈ Gal(K/K ′) by the continuous ring

isomorphism ĝ : S → S with ĝ(wi
ui

bi/ec! ) = g(wi)h
i
g

ui

bi/ec! for wi ∈W (k), where hg ∈W (k)

satisfies g($) = hg$.

Note that φ and N satisfies Nφ = pφN and that ĝ(E(u)) = E(u) for all g ∈ Gal(K/K ′) since we

assume $e(K/K′) ∈ K ′. We write φi for 1
piφ on FiliS. For i ≤ p− 1 we have φ(FiliS) ⊆ piS.

Let SOE := S ⊗Zp OE and SE := SOE ⊗Zp Qp. We extend the definitions of φ, N , FiliS, and
the action of Gal(K/K ′) to SOE (resp. to SE) OE-linearly (resp. E-linearly).

Definition 2.2.1. Fix a positive integer r < p − 1. A strongly divisible OE-module with descent

data of weight r is a free SOE -module M̂ of finite rank together with

◦ a SOE -submodule FilrM̂;

◦ additive maps φ,N : M̂ → M̂;

◦ SOE -semilinear bijections ĝ : M̂ → M̂ for each g ∈ Gal(K/K ′)

such that

◦ FilrSOE · M̂ ⊆ FilrM̂;

◦ FilrM̂ ∩ IM̂ = IFilrM̂ for all ideals I in OE;

◦ φ(sx) = φ(s)φ(x) for all s ∈ SOE and for all x ∈ M̂;

◦ φ(FilrM̂) is contained in prM̂ and generates it over SOE ;

◦ N(sx) = N(s)x+ sN(x) for all s ∈ SOE and for all x ∈ M̂;
◦ Nφ = pφN ;

◦ E(u)N(FilrM̂) ⊆ FilrM̂;

◦ for all g ∈ Gal(K/K ′) ĝ commutes with φ and N , and preserves FilrM̂;
◦ ĝ1 ◦ ĝ2 = ĝ1 · g2 for all g1, g2 ∈ Gal(K/K ′).

We write OE-Modrdd for the category of strongly divisible OE-modules with descent data of

weight r. It is easy to see that the map φr = 1
pr φ : FilrM̂ → M̂ satisfies cNφr(x) = φr(E(u)N(x))

for all x ∈ FilrM̂ where c := φ(E(u))
p ∈ S×.

For a strongly divisible OE-module M̂ with descent data of weight r, we define a GK′ -module

T∗,K
′

st (M̂) as follows (cf. [EGH15], Section 3.1.):

T∗,K
′

st (M̂) := HomFilr,φ,N (M̂, Âst).

Proposition 2.2.2 ([EGH15], Proposition 3.1.4). The functor T∗,K
′

st provides an anti-equivalence
of categories from the category OE-Modrdd to the category of GK′-stable OE-lattices in finite-
dimensional E-representations of GK′ which become semi-stable over K with Hodge–Tate weights
lying in [−r, 0], when 0 < r < p− 1.

Note that the case K = K ′ and E = Qp is proved by Liu [Liu08].
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In this paper, we will be mainly interested in covariant functors TK
′,r

st from the category

OE-Modrdd to the category Rep
K−st,[−r,0]
OE GK′ of GK′ -stable OE-lattices in finite-dimensional E-

representations of GK′ which become semi-stable over K with Hodge–Tate weights lying in [−r, 0]
defined by

TK
′,r

st (M̂) := T∗,K
′

st (M̂)∨ ⊗ εr.
Let M̂ be in OE-Modrdd, and define a free SE-module D := M̂ ⊗Zp Qp. We extend φ and N

on D, and define a filtration on D as follows: FilrD = FilrM̂[ 1
p ] and

FiliD :=


D if i ≤ 0;
{x ∈ D | E(u)r−ix ∈ FilrD} if 0 ≤ i ≤ r;∑i−1
j=0(Fili−jSQp)(FiljD) if i > r, inductively.

We let D := D⊗SQp ,s0
K0 and DK := D⊗SQp ,s$

K, where s0 : SQp
→ K0 and s$ : SQp

→ K are
defined by u 7→ 0 and u 7→ $ respectively, which induce φ and N on D and the filtration on DK by
taking s$(FiliD). The K0-vector space D also inherits an E-linear action and a semi-linear action
of Gal(K/K ′). Then it turns out that D is a weakly admissible filtered (φ,N,K/K ′, E)-module
with Filr+1D = 0. Moreover, there is a compatibility (cf. [EGH15], Proof of Proposition 3.1.4.):

if D corresponds to D = M̂[ 1
p ], then

TK
′,r

st (M̂)[
1

p
] ∼= VK′,r

st (D).

2.3. Breuil modules with descent data. In this section, we review Breuil modules with descent
data. We keep the notation of Section 2.2, and assume further that K ′ ⊆ K0.

We let S := S/($E ,FilpS) ∼= (k ⊗Fp F)[u]/uep. It is easy to check that S inherits φ, N , the
filtration of S, and the action of Gal(K/K ′).

Definition 2.3.1. Fix a positive integer r < p− 1. A Breuil modules with descent data of weight
r is a free S-module M of finite rank together with

◦ a S-submodule FilrM of M;
◦ maps φr : FilrM→M and N :M→M;
◦ additive bijections ĝ :M→M for all g ∈ Gal(K/K ′)

such that

◦ FilrM contains uerM;
◦ φr is F-linear and φ-semilinear (where φ : k[u]/uep → k[u]/uep is the p-th power map)

with image generating M as S-module;
◦ N is k ⊗Fp F-linear and satisfies

– N(ux) = uN(x)− ux for all x ∈M,
– ueN(FilrM) ⊆ FilrM, and
– φr(u

eN(x)) = cN(φr(x)) for all x ∈ FilrM, where c ∈ (k[u]/uep)× is the image of
1
pφ(E(u)) under the natural map S → k[u]/uep.

◦ ĝ preserves FilrM and commutes with the φr and N , and the action satisfies ĝ1 ◦ ĝ2 =
ĝ1 · g2 for all g1, g2 ∈ Gal(K/K ′). Furthermore, if a ∈ k ⊗Fp F and m ∈ M then

ĝ(auim) = g(a)(( g($)
$ )i ⊗ 1)uiĝ(m).

We write F-BrModrdd for the category of Breuil modules with descent data of weight r. For
M∈ F-BrModrdd, we define a GK′ -module as follows (cf. [EGH15], Section 3.2):

T∗st(M) := HomBrMod(M, Â).

This gives an exact faithful contravariant functor from the category F-BrModrdd to the category
RepFGK′ of finite dimensional F-representations of GK′ . We also define a covariant functor as
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follows: for each r ∈ Z
Trst(M) := T∗st(M)∨ ⊗ ωr,

in which we will be more interested in this paper.

If M̂ is a strongly divisible module with descent data, then

M := M̂/($E ,FilpS)

is naturally an object in F-BrModrdd (FilrM is the image of FilrM̂ in M, the map φr is induced

by 1
pr φ|FilrM̂, and N and ĝ are those coming from M̂). Moreover, there is a compatibility: if

M̂ ∈ OE-Modrdd and we let M = M̂/($E ,FilpS) then

TK
′,r

st (M̂)⊗OE F ∼= Trst(M).

(See [EGH15], Lemma 3.2.2 for detail.)
There is a notion of duality of Breuil modules, which will be convenient for our computation of

Breuil modules as we will see later.

Definition 2.3.2. Let M∈ F-BrModrdd. We define M∗ as follows:

◦ M∗ := Homk[u]/uep−Mod(M, k[u]/uep);
◦ FilrM∗ := {f ∈M∗ | f(FilrM) ⊆ uerk[u]/uep};
◦ φr(f) is defined by φr(f)(φr(x)) = φr(f(x)) for all x ∈ FilrM and f ∈ FilrM∗, where
φr : uerk[u]/uep → k[u]/uep is the unique semilinear map sending uer to cr;

◦ N(f) := N ◦ f − f ◦N , where N : k[u]/uep → k[u]/uep is the unique k-linear derivation
such that N(u) = −u;

◦ (ĝf)(x) = g(f(ĝ−1x)) for all x ∈ M and g ∈ Gal(K/K ′), where Gal(K/K ′) acts on

k[u]/uep by g(aui) = g(a)( g($)
$ )iui for a ∈ k.

If M is an object of F-BrModrdd then so is M∗. Moreover, we have M∼=M∗∗ and

T∗st(M∗) ∼= Trst(M).

(cf. [Car11]), Section 2.1.)
Finally, we review the notion of Breuil submodules developed mainly by [Car11]. See also

[HLM], Section 2.3.

Definition 2.3.3. Let M be an object of F-BrModrdd. A Breuil submodule of M is an S-
submodule N of M if N satisfies

◦ N is a k[u]/uep-direct summand of M;
◦ N(N ) ⊆ N and ĝ(N ) ⊆ N for all g ∈ Gal(K/K ′);
◦ φr(N ∩ FilrM) ⊆ N .

If N is a Breuil submodule of M, then N and M/N are also objects of F-BrModrdd. We now
state a crucial result we will use later.

Proposition 2.3.4 ([HLM], Proposition 2.3.5). Let M be an object in F-BrModrdd.
Then there is a natural inclusion preserving bijection

Θ : {Breuil submodules in M} → {GK′-subrepresentations of Trst(M)}
sending N ⊆M to the image of Trst(N ) ↪→ Trst(M). Moreover, ifM2 ⊆M1 are Breuil submodules
of M, then Θ(M1)/Θ(M2) ∼= Trst(M1/M2).

We will also need classification of Breuil modules of rank 1 as follows. We denote the Breuil
modules in the following lemma by M(a, s, λ).

Lemma 2.3.5 ([MP], Lemma 3.1). Let k := Fpf , e := pf − 1, $ := e
√
−p, and K ′ = Qp. We also

let M be a rank-one object in F-BrModrdd.
Then there exists a generator m ∈M such that:
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(i) M = SF ·m;
(ii) FilrM = us(p−1)M where 0 ≤ s ≤ re

p−1 ;

(iii) ϕr(u
s(p−1)m) = λm for some λ ∈ (Fpf ⊗Fp F)×;

(iv) ĝ(m) = (ωf (g)a ⊗ 1)m for all g ∈ Gal(K/K0) where a is an integer such that a+ ps ≡ 0
mod ( e

p−1 );

(v) N(m) = 0.

Moreover, one has

Trst(M)|IQp = ωa+ps
f .

The following lemma will be used to determine if the Breuil modules violate the maximal non-
splitness.

Lemma 2.3.6 ([MP], Lemma 3.2). Let k := Fpf , e := pf − 1, $ := e
√
−p, and K ′ = Qp. We also

let Mx := M(kx, sx, λx) and My := M(ky, sy, λy) be rank-one objects in F-BrModrdd. Assume
that the integers kx, ky, sx, sy ∈ Z satisfy

(2.3.1) p(sy − sx) + [ky − kx]f > 0.

Assume further that f < p and let

0→Mx →M→My → 0

be an extension in F-BrModrdd, with T∗st(M) being Fontaine–Laffaille.
If the exact sequence of SF-modules

0→ FilrMx → FilrM→ FilrMy → 0

splits, then the GQp-representation T∗st(M) splits as a direct sum of two characters.
In particular, provided that pky 6≡ kx modulo e and that sy(p−1) < re if f > 1, the representation

T∗st(M) splits as a direct sum of two characters if the element j0 ∈ Z uniquely defined by

j0e+ [p−1ky − kx]f < sx(p− 1) ≤ (j0 + 1)e+ [p−1ky − kx]f

satisfies

(2.3.2) (r + j0)e+ [p−1ky − kx]f < (sx + sy)(p− 1).

2.4. Linear algebra with descent data. In this section, we introduce the notion of framed basis
for a Breuil module M and framed system of generators for FilrM. Throughout this section, we
assume that K0 = K ′ and continue to assume that K is a tamely ramified Galois extension of K ′.
We also fix a positive integer r < p− 1.

Definition 2.4.1. Let n ∈ N and let (kn−1, kn−2, . . . , k0) ∈ Zn be an n-tuple. A rank n Breuil

module M∈ F-BrModrdd is of (inertial) type ω
kn−1
$ ⊕ · · ·⊕ωk0

$ if M has an S-basis (en−1, · · · , e0)
such that ĝei = (ωki$ (g) ⊗ 1)ei for all i and all g ∈ Gal(K/K0). We call such a basis a framed
basis of M.

We also say that f := (fn−1, fn−2, . . . , f0) is a framed system of generators of FilrM if f is a

system of S-generators for FilrM and ĝfi = (ωp
−1ki
$ (g)⊗ 1)fi for all i and all g ∈ Gal(K/K0).

The existence of a framed basis and a framed system of generators for a given Breuil module
M∈ F-BrModrdd is proved in [HLM], Section 2.2.2.

Let M ∈ F-BrModrdd be of inertial type
⊕n−1

i=0 ω
ki
$ , and let e := (en−1, . . . , e0) be a framed

basis for M and f := (fn−1, . . . , f0) be a framed system of generators for FilrM. The matrix of

the filtration, with respect to e, f , is the matrix Mate,f (FilrM) ∈ Mn(S) such that

f = e ·Mate,f (FilrM).
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Similarly, we define the matrix of the Frobenius with respect to e, f as the matrix Mate,f (ϕr) ∈
GLn(S) characterized by

(φr(fn−1), · · · , φr(f0)) = e ·Mate,f (ϕr).

As we require e, f to be compatible with the framing, the entries in the matrix of the filtration
satisfy the important additional properties:

Mate,f (FilrM)i,j ∈ S
ω
pf−1kj−ki
$

.

More precisely, Mate,f (FilrM)i,j = u[pf−1kj−ki]f si,j , where si,j ∈ Sω0
$

= k ⊗Fp F[ue]/(uep).

We can therefore introduce the subspace M2
n (S) of matrices with framed type τ =

⊕n−1
i=0 ω

ki
f as

M2
n (S) :=

{
V ∈ Mn(S) | Vi,j ∈ S

ω
kj−ki
f

for all 0 ≤ i, j ≤ n− 1

}
.

Similarly, we define

M2,′
n (S) :=

{
V ∈ Mn(S) | Vi,j ∈ S

ω
p−1kj−ki
f

for all 0 ≤ i, j ≤ n− 1

}
and

M2,′′
n (S) :=

{
V ∈ Mn(S) | Vi,j ∈ S

ω
p−1(kj−ki)
f

for all 0 ≤ i, j ≤ n− 1

}
.

We also define
GL•n(S) := GLn(S) ∩M•n(S)

for • ∈ {�} ∪ {�, ′} ∪ {�, ′′}.
As ϕr(fi) is a ωkif -eigenvector for the action of Gal(K/K0) we deduce that

Mate,f (FilrM) ∈ M2,′
n (S) and Mate,f (ϕr) ∈ GL2

n (S).

Note that M2
n (S) = M2,′

n (S) = M2,′′
n (S) if the framed type τ is of niveau 1.

We use similar terminologies for strongly divisible modules M̂ ∈ OE-Modrdd.

Definition 2.4.2. Let n ∈ N and let (kn−1, kn−2, . . . , k0) ∈ Zn be an n-tuple. A rank n strongly

divisible module M̂ ∈ OE-Modrdd is of (inertial) type ω̃
kn−1
$ ⊕ · · · ⊕ ω̃k0

$ if M̂ has an SOE -basis
ê := (ên−1, · · · , ê0) such that ĝêi = (ω̃ki$ (g) ⊗ 1)êi for all i and all g ∈ Gal(K/K0). We call such

a basis a framed basis for M̂.
We also say that f̂ := (f̂n−1, f̂n−2, . . . , f̂0) is a framed system of generators for FilrM̂ if f̂

is a system of S-generators for FilrM̂/FilrS · M̂ and ĝf̂i = (ω̃p
−1ki
$ (g) ⊗ 1)f̂i for all i and all

g ∈ Gal(K/K0).

One can readily check the existence of a framed basis for M̂ and a framed system of generators

for FilrM̂ by Nakayama Lemma. For instance, the existence of a framed system of generators for

FilrM̂ can be deduced as follows: if we letM := M̂/($E ,FilpS) is the Breuil module correspond-

ing to the mod p reduction of the strongly divisible module M̂ and write f = (fn−1, fn−2, · · · , f0)

for a framed system of generators for FilrM, then it is obvious that each fi has a lift f̂i ∈ FilrM̂
such that ĝf̂i = (ω̃p

−1ki
$ (g)⊗ 1)f̂i for all g ∈ Gal(K/K0). Since FilrM̂/FilrS · M̂ is a finitely gen-

erated OE-module, we conclude that the system (f̂n−1, f̂n−2, · · · , f̂0) generates FilrM̂/FilrS · M̂
by Nakayama Lemma.

We also define
Matê,f̂ (FilrM̂) and Matê,f̂ (φr)

each of whose entries satisfies

Matê,f̂ (FilrM̂)i,j ∈ S
ω̃
pf−1kj−ki
$

and Matê,f̂ (φr)i,j ∈ S
ω̃
kj−ki
$

,
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in the similar fashion to Breuil modules. In particular,

Matê,f̂ (FilrM̂) ∈ M2,′
n (S) and Matê,f̂ (ϕr) ∈ GL2

n (S)

where M�,′
n (S) and GL�

n (S) are defined in the similar way to Breuil modules. We also define

GL�,′′
n (S) in the similar way to Breuil modules again.
The inertial types on a Breuil moduleM and on a strongly divisible modules are closely related

to the Weil–Deligne representation associated to a potentially crystalline lift of Trst(M).

Proposition 2.4.3 ([LMP], Proposition 2.12). Let M̂ be an object in OE-Modrdd and let M :=

M̂ ⊗S S/($E ,FilpS) be the Breuil module corresponding to the mod p reduction of M̂.

If TK0,r
st (M̂)[ 1

p ] has Galois type
⊕n−1

i=0 ω̃
ki
f for some integers ki, then M̂ (resp. M) is of inertial

type
⊕n−1

i=0 ω̃
ki
$ (resp.

⊕n−1
i=0 ω

ki
$ ).

Finally, we need a technical result on change of basis of Breuil modules with descent data.

Lemma 2.4.4 ([HLM], Lemma 2.2.8). Let M ∈ F-BrModrdd be of type
⊕n−1

i=0 ω
ki
$ , and let e,

f be a framed basis for M and a framed system of generators for FilrM respectively. Write

V := Mate,f (FilrM) ∈ M�,′
n (S) and A := Mate,f (ϕr) ∈ GL�

n (S), and assume that there are

invertible matrices R ∈ GL�
n (S) and C ∈ GL�,′′

n (S) such that

R · V · C ≡ V ′ mod (ue(r+1)),

for some V ′ ∈ M�,′
n (S).

Then e′ := e · R−1 forms another framed basis for M and f ′ := e′ · V ′ forms another framed
system of generators for FilrM such that

Mate′,f ′(FilrM) = V ′ ∈ M�,′
n (S) and Mate′,f ′(φr) = R ·A · φ(C) ∈ GL�

n (S).

In particular, if R−1 = A then Mate′,f ′(φr) = φ(C).

The statement of Lemma 2.4.4 is slightly more general than [HLM], Lemma 2.2.8, but exactly
the same argument works.

2.5. Fontaine–Laffaille modules. In this section, we briefly recall the theory of Fontaine–
Laffaille modules over F, and we continue to assume that K0 = K ′ and that K is a tamely
ramified Galois extension of K ′.

Definition 2.5.1. A Fontaine–Laffaille module over k ⊗Fp F is the datum (M,Fil•M,φ•) of

◦ a free k ⊗Fp F-module M of finite rank;

◦ a decreasing, exhaustive and separated filtration {FiljM}j∈Z on M by k⊗FpF-submodules;

◦ a φ-semilinear isomorphism φ• : gr•M →M , where gr•M :=
⊕

j∈Z
FiljM

Filj+1M
.

We write F-FLModk for the category of Fontaine–Laffaille modules over k ⊗Fp F, which is
abelian. If the field k is clear from the context, we simply write F-FLMod to lighten the notation.

Given a Fontaine–Laffaille module M , the set of its Hodge–Tate weights in the direction of
σ ∈ Gal(k/Fp) is defined as HTσ :=

{
i ∈ Z | eσFiliM 6= eσFili+1M

}
. In the remainder of this

paper we will be focused on Fontaine–Laffaille modules with parallel Hodge–Tate weights, i.e. we
will assume that for all i ∈ Z, the submodules FiliM are free over k ⊗Fp F.

Definition 2.5.2. Let M be a Fontaine–Laffaille module with parallel Hodge–Tate weights. A
k ⊗Fp F basis f = (f0, f1, . . . , fn−1) on M is compatible with the filtration if for all i ∈ Z≥0

there exists ji ∈ Z≥0 such that FiliM =
∑n
j=ji

k ⊗Fp F · fj. In particular, the principal symbols

(gr(f0), . . . , gr(fn−1)) provide a k ⊗Fp F basis for gr•M .
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Note that if the graded pieces of the Hodge filtration have rank at most one then any two
compatible basis on M are related by a lower-triangular matrix in GLn(k⊗FpF). Given a Fontaine–
Laffaille module and a compatible basis f , it is convenient to describe the Frobenius action via
a matrix Matf (φ•) ∈ GLn(k ⊗Fp F), defined in the obvious way using the principal symbols

(gr(f0), . . . , gr(fn−1)) as a basis on gr•M .

It is customary to write F-FLMod[0,p−2] to denote the full subcategory of F-FLMod formed
by those modules M verifying Fil0M = M and Filp−1M = 0 (it is again an abelian category).
We have the following description of mod p Galois representations of GK0

via Fontaine–Laffaille
modules:

Proposition 2.5.3 ([FL82], Theorem 6.1). There is an exact fully faithful contravariant functor

T∗cris,K0
: F-FLMod

[0,p−2]
k → RepF(GK0

)

which is moreover compatible with the restriction over unramified extensions: if L0/K0 is unram-

ified with residue field l/k and if M is an object in F-FLMod
[0,p−2]
k , then l ⊗k M is naturally

regarded as an object in F-FLMod
[0,p−2]
l and

T∗cris,L0
(l ⊗kM) ∼= T∗cris,K0

(M)|GL0
.

We will often write T∗cris for T∗cris,K0
if the base field K0 is clear from the context.

Definition 2.5.4. We say that ρ ∈ RepFGK0
is Fontaine–Laffaille if T∗cris(M) ∼= ρ for some

M ∈ F-FLMod[0,p−2].

2.6. Étale φ-modules. In this section, we review the theory of étale φ-modules, first introduced
by Fontaine [Fon90], and its connection with Breuil modules and Fontaine–Laffaille modules.
Throughout this section, we continue to assume that K0 = K ′ and that K is a tamely rami-
fied Galois extension of K ′.

Let p0 := −p, and let p be identified with a sequence (pn)n ∈
(
Qp

)N
verifying ppn = pn−1 for all n.

We also fix $ := e
√
−p ∈ K, and let $0 = $. We fix a sequence ($n)n ∈

(
Qp

)N
such that $e

n = pn
and $p

n = $n−1 for all n ∈ N, and which is compatible with the norm maps K($n+1)→ K($n)
(cf. [Bre14], Appendix A). By letting K∞ := ∪n∈NK($n) and (K0)∞ := ∪n∈NK0(pn), we have a

canonical isomorphism Gal(K∞/(K0)∞)
∼−→ Gal(K/K0) and we will identify ω$ as a character of

Gal(K∞/(K0)∞). The field of norms k(($)) associated to (K,$) is then endowed with a residual
action of Gal(K∞/(K0)∞), which is completely determined by ĝ($) = ω$(g)$.

We define the category
(
φ,F⊗Fp k((p))

)
-Mod of étale (φ,F⊗Fp k((p)))-modules as the category

of free F⊗Fp k((p))-modules of finite rank M endowed with a semilinear map φ : M→M with re-
spect to the Frobenius on k((p)) and inducing an isomorphism φ∗M→M (with obvious morphisms
between objects). We also define the category (φ,F⊗Fp k(($)))-Moddd of étale (φ,F⊗Fp k(($)))-
modules with descent data: an object M is defined as for the category (φ,F ⊗Fp k((p)))-Mod
but we moreover require that M is endowed with a semilinear action of Gal(K∞/(K0)∞) (semi-
linear with respect to the residual action on F ⊗Fp k(($)) where F is endowed with the trivial
Gal(K∞/(K0)∞)-action) commuting with φ.

By work of Fontaine [Fon90], there are anti-equivalences(
φ,F⊗Fp k((p))

)
-Mod

∼−→ RepF(G(K0)∞)

and (
φ,F⊗Fp k(($))

)
-Moddd

∼−→ RepF(G(K0)∞)

given by
M 7−→ Hom

(
M, k((p))sep

)
and

M 7→ Hom (M, k(($))sep)
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respectively. See also [HLM], Appendix A.2.
The following proposition summarizes the relation between the various categories and functors

we introduced above.

Proposition 2.6.1 ([HLM], Proposition 2.2.1). There exist faithful functors

Mk(($)) : F-BrModrdd →
(
φ,F⊗Fp k(($))

)
-Moddd

and

F : F-FLMod[0,p−2] →
(
φ,F⊗Fp k((p))

)
-Mod

fitting in the following commutative diagram:

F-BrModrdd

T∗st

��

Mk(($)) //
(
φ,F⊗Fp k(($))

)
-Moddd

Hom(−,k(($))sep)

yy
RepF(GK0

)
Res // RepF(G(K0)∞)

F-FLMod[0,p−2]

T∗cris

OO

F
//
(
φ,F⊗Fp k((p))

)
-Mod

−⊗k((p))k(($))

OO

Hom(−,k((p))sep)

ee

where the descent data is relative to K0 and the functor Res ◦ T∗cris is fully faithful.

Note that the functors Mk(($)) and F are defined in [BD14]. (See also [HLM], Appendix A).
The following is an immediate consequence of Proposition 2.6.1, which is also stated in [LMP],
Corollary 2.14.

Corollary 2.6.2. Let 0 ≤ r ≤ p− 2, and let M (resp. M) be an object in F-BrModrdd (resp. in

F-FLMod[0,p−2]). Assume that T∗st(M) is Fontaine–Laffaille. If

Mk(($))(M) ∼= F(M)⊗k((p)) k(($))

then one has an isomorphism of GK0-representations

T∗st(M) ∼= T∗cris(M).

The following two lemmas are very crucial in this paper, as we will see later, which describe the
functors Mk(($)) and F respectively.

Lemma 2.6.3 ([HLM], Lemma 2.2.6). Let M be a Breuil module of inertial type
⊕n−1

i=0 ω
ki
$ with

a framed basis e for M and a framed system of generators f for FilrM, and write M∗ for its dual

as defined in Definition 2.3.2. Let V = Mate,f (FilrM) ∈ M�,′
n (S) and A = Mate,f (φr) ∈ GL�

n (S).

Then there exists a basis e for Mk(($))(M∗) with ĝ · ei = (ω−p
−1ki

$ (g) ⊗ 1)ei for all i ∈
{0, 1, · · · , n− 1} and g ∈ Gal(K/K0), such that the Frobenius φ on Mk(($))(M∗) is described by

Mate(φ) = V̂ t
(
Â−1

)t
∈ Mn(F⊗Fp k[[$]])

where V̂ , Â are lifts of V, A in Mn(F ⊗Fp k[[$]]) via the reduction morphism F ⊗Fp k[[$]] � S

induced by $ 7→ u and Mate(φ)i,j ∈
(
F⊗Fp k[[$]]

)
ω
p−1ki−kj
$

.
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Lemma 2.6.4 ([HLM], Lemma 2.2.7). Let M ∈ F-FLMod[0,p−2] be a rank n Fontaine–Laffaille
module with parallel Hodge–Tate weights 0 ≤ m0 ≤ · · · ≤ mn−1 ≤ p−2 (counted with multiplicity).
Let e = (e0, . . . , en−1) be a k ⊗Fp F basis for M , compatible with the Hodge filtration Fil•M and
let F ∈ Mn(k ⊗Fp F) be the associated matrix of the Frobenius φ• : gr•M →M .

Then there exists a basis e for M := F(M) such that the Frobenius φ on M is described by

Mate(φ) = Diag
(
pm0 , · · · , pmn−1

)
· F ∈ Mn(F⊗Fp k[[p]]).

3. Local Galois side

In this section, we study ordinary Galois representations and their potentially crystalline lifts. In
particular, we prove that the Frobenius eigenvalues of certain potentially crystalline lifts preserve
the information of the wildly ramified part of ordinary representations.

Throughout this section, we let f be a positive integer, K ′ = Qp, e = pf − 1, and K =

Qpf ( e
√
−p). We also fix $ := e

√
−p, and let S = (Fpf ⊗Fp F)[u]/uep and S0 := Sω0

f
= (Fpf ⊗Fp

F)[ue]/uep ⊆ S. Recall that by [m]f for a rational number m ∈ Z[ 1
p ] we mean the unique integer

in [0, e) congruent to m mod (e).
We say that a representation ρ0 : GQp → GLn(F) is ordinary if it is isomorphic to a represen-

tation whose image is contained in the Borel subgroup of upper-triangular matrices. Namely, an
ordinary representation has a basis e := (en−1, en−2, · · · , e0) that gives rise to a matrix form as
follows:

(3.0.1) ρ0
∼=


Uµn−1

ωcn−1+(n−1) ∗n−1 · · · ∗ ∗
0 Uµn−2ω

cn−2+(n−2) · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · Uµ1
ωc1+1 ∗1

0 0 · · · 0 Uµ0
ωc0


Here, Uµ is the unramified character sending the geometric Frobenius to µ ∈ F× and ci are integers.
By ρ0, we always mean an n-dimensional ordinary representation that is written as in (3.0.1). For
n− 1 ≥ i ≥ j ≥ 0, we write

(3.0.2) ρi,j

for the (i− j + 1)-dimensional subquotient of ρ0 determined by the subset (ei, ei−1, · · · , ej) of the
basis e. For instance, ρi,i = Uµiω

ci+i and ρn−1,0 = ρ0.
An ordinary representation GQp

→ GLn(F) is maximally non-split if its socle filtration has
length n. For instance, ρ0 in (3.0.1) is maximally non-split if and only if ∗i 6= 0 for all i =
1, 2, · · · , n − 1. In this paper, we are interested in ordinary maximally non-split representations
satisfying a certain genericity condition.

Definition 3.0.5. We say that ρ0 is generic if

ci+1 − ci > n− 1 for all i ∈ {0, 1, · · · , n− 2} and cn−1 − c0 < (p− 1)− (n− 1).

We say that ρ0 is strongly generic if ρ0 is generic and

cn−1 − c0 < (p− 1)− (3n− 5).

Note that this strongly generic condition implies p > n2 + 2(n− 3).
We describe a rough shape of the Breuil modules with descent data from K to K ′ = Qp

corresponding to ρ0. Let r be a positive integer with p− 1 > r ≥ n− 1, and let M∈ F-BrModrdd

be a Breuil module of inertial type
⊕n−1

i=0 ω
ki
f such that Trst(M) ∼= ρ0, for some ki ∈ Z. By

Proposition 2.3.4, we note that M is a successive extension of Mi, where Mi :=M(ki, ri, νi) (cf.

Lemma 2.3.5) is a rank one Breuil module of inertial type ωkif such that

(3.0.3) ωki+prif
∼= Trst(Mi)|IQp ∼= ωci+i
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for each i ∈ {0, 1, · · · , n − 1}. More precisely, there exist a framed basis e = (en−1, en−2, · · · , e0)
for M and a framed system of generators f = (fn−1, fn−2, · · · , f0) for FilrM such that

(3.0.4) Mate,f (FilrM) =


urn−1(p−1) u[p−1kn−2−kn−1]f vn−1,n−2 · · · u[p−1k0−kn−1]f vn−1,0

0 urn−2(p−1) · · · u[p−1k0−kn−2]f vn−2,0

...
...

. . .
...

0 0 · · · ur0(p−1)

 ,

(3.0.5) Mate,f (φr) =


νn−1 u[kn−2−kn−1]fwn−1,n−2 · · · u[k0−kn−1]fwn−1,0

0 νn−2 · · · u[k0−kn−2]fwn−2,0

...
...

. . .
...

0 0 · · · ν0

 ,

and

(3.0.6) Mate(N) =


0 u[kn−2−kn−1]f γn−1,n−2 · · · u[k1−kn−1]f γn−1,1 u[k0−kn−1]f γn−1,0

0 0 · · · u[k1−kn−2]f γn−2,1 u[k0−kn−2]f γn−2,0

...
...

. . .
...

...
0 0 · · · 0 u[k0−k1]f γ1,0

0 0 · · · 0 0


for some νi ∈ (Fpf ⊗Fp F)× and for some vi,j , wi,j , γi,j ∈ S0.

Fix 0 ≤ j ≤ i ≤ n− 1. We define the Breuil submodule

(3.0.7) Mi,j

that is a subquotient of M determined by the basis (ei, ei−1, · · · , ej). For instance, Mi,i
∼= Mi

for all 0 ≤ i ≤ n− 1. We note that Trst(Mi,j) ∼= ρi,j by Proposition 2.3.4.
We will keep these notation and assumptions for M throughout this paper.

3.1. Elimination of Galois types. In this section, we find out the possible Galois types of niveau
1 for potentially semi-stable lifts of ρ0 with Hodge–Tate weights {−(n− 1),−(n− 2), · · · , 0}.

We start this section with the following elementary lemma.

Lemma 3.1.1. Let ρ : GQp
→ GLn(E) be a potentially semi-stable representation with Hodge–

Tate weights {−(n− 1), ...,−2,−1, 0} and of Galois type
⊕n−1

i=0 ω̃
ki
f .

Then

det(ρ)|IQp = ε
n(n−1)

2 · ω̃
∑n−1
i=0 ki

f ,

where ε is the cyclotomic character.

Proof. det(ρ) is a potentially crystalline character of GQp
with Hodge–Tate weight −(

∑n−1
i=0 i) and

of Galois type ω̃
∑n−1
i=0 ki

f , i.e., det(ρ) · ω̃−
∑n−1
i=0 ki

f is a crystalline character with Hodge–Tate weight

−(
∑n−1
i=0 i) = −n(n−1)

2 so that det(ρ)|IQp · ω̃
−

∑n−1
i=0 ki

f
∼= ε

n(n−1)
2 . �

We will only consider the Breuil modules M corresponding to the mod p reduction of the
strongly divisible modules that correspond to the Galois stable lattices in potentially semi-stable
lifts of ρ0 with Hodge–Tate weights {−(n− 1),−(n− 2), · · · ,−1, 0}, so that we may assume that
r = n− 1, i.e., M∈ F-BrModn−1

dd .

Lemma 3.1.2. Let f = 1. Assume that ρ0 is generic, and that M∈ F-BrModn−1
dd corresponds to

the mod p reduction of a strongly divisible module M̂ such that Tn−1
st (M) ∼= ρ0 and T

Qp,n−1
st (M̂)

is a Galois stable lattice in a potentially semi-stable lift of ρ0 with Hodge–Tate weights {−(n −
1),−(n− 2), · · · , 0} and Galois type

⊕n−1
i=0 ω̃

ki for some integers ki.
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Then there exists a framed basis e for M and a framed system of generators f for Filn−1M
such that Mate,f (Filn−1M), Mate,f (φn−1), and Mate(N) are as in (3.0.4), (3.0.5), and (3.0.6)

respectively. Moreover, the (ki, ri) satisfy the following properties:

(i) ki ≡ ci + i− ri mod (e) for all i ∈ {0, 1, · · · , n− 1};
(ii) 0 ≤ ri ≤ n− 1 for all i ∈ {0, 1, · · · , n− 1};
(iii)

∑n−1
i=0 ri = (n−1)n

2 .

Proof. Note that the inertial type of M is
⊕n−1

i=0 ω
ki by Proposition 2.4.3. The first part of the

Lemma is obvious from the discussion at the beginning of Section 3.
We now prove the second part of the Lemma. We may assume that the rank-one Breuil modules

Mi are of weight ri, so that 0 ≤ ri ≤ n − 1 for i = {0, 1, ..., n − 1} by Lemma 2.3.5. By the
equation (3.0.3), we have ki ≡ ci + i− ri mod (e), as e = p− 1. By looking at the determinant of
ρ0 we deduce the conditions

ω
n(n−1)

2 +kn−1+kn−2+···+k0 = det Tn−1
st (M)|IQp = det ρ0|IQp = ωcn−1+cn−2+···+c0+

n(n−1)
2

from Lemma 3.1.1, and hence we have rn−1 + rn−2 + · · ·+ r0 = n(n−1)
2 (as p > n2 + 2(n− 3) due

to the genericity of ρ0). �

One can further eliminate Galois types of niveau 1 if ρ0 is maximally non-split.

Proposition 3.1.3. Keep the assumptions and notation of Lemma 3.1.2. If the tuple (ki, ri)
further satisfy one of the following conditions

◦ ri = n− 1 for some i ∈ {0, 1, 2, · · · , n− 2};
◦ ri = 0 for some i ∈ {1, 2, 3, · · · , n− 1},

then ρ0 is not maximally non-split.

Proof. The main ingredient is Lemma 2.3.6. Following the notation in Lemma 2.3.6, we fix i ∈
{0, 1, 2, · · · , n − 2} and identify x = i+ 1 and y = i so that rx = sx and ry = sy. From the
results in Lemma 3.1.2, it is easy to compute that [ki − ki+1]1 = e− (ci+1 − ci + 1) + (ri+1 − ri).
By the genericity conditions in Definition 3.0.5 and by part (ii) of Lemma 3.1.2, we see that
0 < [ki − ki+1]1 < e so that if ri ≥ ri+1 then the equation (2.3.1) in Lemma 2.3.6 holds.

If ri+1e ≤ [ki− ki+1]1 and ri ≥ ri+1, then ∗i+1 = 0 by Lemma 2.3.6. Since 0 < [ki− ki+1]1 < e,
we have ri+1e ≤ [ki − ki+1]1 if and only if ri+1 = 0, in which case ρ0 is not maximally non-split.

We now apply the second part of Lemma 2.3.6. It is easy to check that j0 = ri+1 − 1. One can
again readily check that the equation (2.3.2) is equivalent to ri = n− 1, in which case ∗i+1 = 0 so
that ρ0 is not maximally non-split. �

Note that all of the Galois types that will appear later in this section will satisfy the conditions
in Lemma 3.1.2, and Proposition 3.1.3 as well if we further assume that ρ0 is maximally non-split.

3.2. Fontaine–Laffaille parameters. In this section, we parameterize the wildly ramified part
of generic and maximally non-split ordinary representations using Fontaine–Laffaille theory.

We start this section by recalling that if ρ0 is generic then ρ0 ⊗ ω−c0 is Fontaine–Laffaille (cf.
[GG10], Lemma 3.1.5), so that there is a Fontaine–Laffaille module M with Hodge–Tate weights
{0, c1 − c0 + 1, · · · , cn−1 − c0 + (n− 1)} such that T∗cris(M) ∼= ρ0 ⊗ ω−c0 (if we assume that ρ0 is
generic).

Lemma 3.2.1. Assume that ρ0 is generic, and let M ∈ F-FLMod
[0,p−2]
Fp

be a Fontaine–Laffaille

module such that T∗cris(M) ∼= ρ0 ⊗ ω−c0 .
Then there exists a basis e = (e0, e1, · · · , en−1) for M such that

FiljM =

 M if j ≤ 0;
F(ei, · · · , en−1) if ci−1 − c0 + i− 1 < j ≤ ci − c0 + i;
0 if cn−1 − c0 + n− 1 < j.
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and

(3.2.1) Mate(φ•) =



µ−1
0 α0,1 α0,2 · · · α0,n−2 α0,n−1

0 µ−1
1 α1,2 · · · α1,n−2 α1,n−1

0 0 µ−1
2 · · · α2,n−2 α2,n−1

...
...

...
. . .

...
...

0 0 0 · · · µ−1
n−2 αn−2,n−1

0 0 0 · · · 0 µ−1
n−1


where αi,j ∈ F.

Note that the basis e on M in Lemma 3.2.1 is compatible with the filtration.

Proof. This is an immediate generalization of [HLM], Lemma 2.1.7. �

For i ≥ j, the subset (ej , · · · , ei) of e determines a subquotient Mi,j of the Fontaine–Laffaille
module M , which is also a Fontaine–Laffaille module with the filtration induced from FilsM in
the obvious way and with Frobenius described as follows:

Ai,j :=


µ−1
j αj,j+1 · · · αj,i−1 αj,i
0 µ−1

j+1 · · · αj+1,i−1 αj+1,i

...
...

. . .
...

...
0 0 · · · µ−1

i−1 αi−1,i

0 0 · · · 0 µ−1
i

 .

Note that T∗cris(Mi,j)⊗ ωc0 ∼= ρi,j . We let A′i,j be the (i− j)× (i− j)-submatrix of Ai,j obtained
by deleting the left-most column and the lowest row of Ai,j .

Lemma 3.2.2. Keep the assumptions and notation of Lemma 3.2.1, and let 0 ≤ j < j + 1 < i ≤
n− 1. Assume further that ρ0 is maximally non-split.

If detA′i,j 6= (−1)i−j+1µ−1
j+1 · · ·µ

−1
i−1αj,i, then [αj,i : detA′i,j ] ∈ P1(F) does not depend on the

choice of basis e compatible with the filtration.

Proof. This is an immediate generalization of [HLM], Lemma 2.1.9. �

Definition 3.2.3. Keep the assumptions and notation of Lemma 3.2.2, and assume further that
ρ0 satisfies

(3.2.2) detA′i,j 6= (−1)i−j+1µ−1
j+1 · · ·µ

−1
i−1αj,i

for all i, j ∈ Z with 0 ≤ j < j + 1 < i ≤ n− 1.
The Fontaine–Laffaille parameter associated to ρ0 is defined as

FLn(ρ0) :=
(
FLi,jn (ρ0)

)
i,j
∈ [P1(F)]

(n−2)(n−1)
2

where

FLi,jn (ρ0) :=
[
αj,i : (−1)i−j+1 · detA′i,j

]
∈ P1(F)

for all i, j ∈ Z such that 0 ≤ j < j + 1 < i ≤ n− 1.

We often write y
x for [x : y] ∈ P1(F) if x 6= 0. The conditions in (3.2.2) for i, j guarantee the

well-definedness of FLi,jn (ρ0) in P1(F). We also point out that FLi,jn (ρ0) 6= (−1)i−jµ−1
j+1 · · ·µ

−1
i−1 in

P1(F).
One can define the inverses of the elements in P1(F) in a natural way: for [x1 : x2] ∈ P1(F),

[x1 : x2]−1 := [x2 : x1] ∈ P1(F).

Lemma 3.2.4. Assume that ρ0 is generic. Then

(i) ρ∨0 is generic;
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(ii) if ρ0 is strongly generic, then so is ρ∨0 ;
(iii) if ρ0 is maximally non-split, then so is ρ∨0 ;
(iv) if ρ0 is maximally non-split, then the conditions in (3.2.2) are stable under ρ0 7→ ρ∨0 .

Assume further that ρ0 is maximally non-split and satisfies the conditions in (3.2.2).

(v) for all i, j ∈ Z with 0 ≤ j < j + 1 < i ≤ n− 1, FLi,jn (ρ0) = FLi,jn (ρ0 ⊗ ωb) for any b ∈ Z;

(vi) for all i, j ∈ Z with 0 ≤ j < j + 1 < i ≤ n− 1, FLi,jn (ρ0) = FLi−j,0i−j+1(ρi,j);

(vii) for all i, j ∈ Z with 0 ≤ j < j + 1 < i ≤ n− 1, FLi,jn (ρ0)−1 = FLn−1−j,n−1−i
n (ρ∨0 ).

Proof. (i), (ii) and (iii) are easy to check. We leave them for the reader.
The only effect on Fontaine–Laffaille module by twisting ωb is shifting the jumps of the filtration.

Thus (v) and (vi) are obvious.
For (iv) and (vii), one can check that the Frobenius of the Fontaine–Laffaille module associated

to ρ∨0 is described by
0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

 · [Mate(φ•)
t]−1 ·


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0


where Mate(φ•) is as in (3.2.1). Now one can check them by direct computation. �

We end this section by defining certain numerical conditions on Fontaine–Laffaille parameters.
We consider the matrix (1, n)w0 Mate(φ•)

t, where Mate(φ•) is the upper-triangular matrix in
(3.2.1). Here, w0 is the longest element of the Weyl group W associated to T and (1, n) is a
permutation in W . Note that the anti-diagonal matrix displayed in the proof of Lemma 3.2.4 is
w0 seen as an element in GLn(F). For 1 ≤ i ≤ n− 1 we let Bi be the square matrix of size i that
is the left-bottom corner of (1, n)w0 Mate(φ•)

t.

Definition 3.2.5. Keep the notation and assumptions of Definition 3.2.3. We say that ρ0 is
Fontaine–Laffaille generic if moreover detBi 6= 0 for all 1 ≤ i ≤ n− 1 and ρ0 is strongly generic.

We emphasize that by an ordinary representation ρ0 being Fontaine–Laffaille generic, we always
mean that ρ0 satisfies the maximally non-splitness and the conditions in (3.2.2) as well as detBi 6= 0
for all 1 ≤ i ≤ n− 1 and the strongly generic assumption (cf. Definition 3.0.5).

Although the Frobenius matrix of a Fontaine–Laffaille module depends on the choice of basis,
it is easy to see that the non-vanishing of the determinants above is independent of the choice of
basis compatible with the filtration. Note that the conditions in Definition 3.2.5 are necessary and
sufficient conditions for

(1, n)w0 Mate(φ•)
t ∈ B(F)w0B(F)

in the Bruhat decomposition, which will significantly reduce the size of the paper (cf. Re-
mark 3.2.6). We also note that

◦ detB1 6= 0 if and only if FLn−1,0
n (ρ0) 6=∞;

◦ detBn−1 6= 0 if and only if FLn−1,0
n (ρ0) 6= 0.

Finally, we point out that the locus of Fontaine–Laffaille generic ordinary Galois representations

ρ0 forms a (Zariski) open subset in [P1(F)]
(n−1)(n−2)

2 .

Remark 3.2.6. Definition 3.2.5 comes from the fact that the list of Serre weights of ρ0 is then
minimal in the sense of Conjecture 5.3.1. It is very crucial in the proof of Theorem 5.6.2 as it is
more difficult to track the Fontaine–Laffaille parameters on the automorphic side if we have too
many Serre weights. Moreover, these conditions simplify our proof for Theorem 3.7.1.
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3.3. Breuil modules of certain inertial types of niveau 1. In this section, we classify the
Breuil modules with certain inertial types, corresponding to the ordinary Galois representations
ρ0 as in (3.0.1), and we also study their corresponding Fontaine–Laffaille parameters.

Throughout this section, we always assume that ρ0 is strongly generic. Since we are only
interested in inertial types of niveau 1, we let f = 1, e = p − 1, and $ = e

√
−p. We define the

following integers for 0 ≤ i ≤ n− 1:

(3.3.1) r
(0)
i :=

 1 if i = n− 1;
i if 0 < i < n− 1;
n− 2 if i = 0.

We also set
k

(0)
i := ci + i− r(0)

i

for all i ∈ {0, 1, · · · , n− 1}.
We first classify the Breuil modules of inertial types described as above.

Lemma 3.3.1. Assume that ρ0 is strongly generic and that M ∈ F-BrModn−1
dd corresponds to

the mod p reduction of a strongly divisible modules M̂ such that T
Qp,n−1
st (M̂) is a Galois stable

lattice in a potentially semi-stable lift of ρ0 with Hodge–Tate weights {−(n − 1),−(n − 2), · · · , 0}
and Galois type

⊕n−1
i=0 ω̃

k
(0)
i .

Then M ∈ F-BrModn−1
dd can be described as follows: there exist a framed basis e for M and a

framed system of generators f for Filn−1M such that

Mate,f (Filn−1M) =


ur

(0)
n−1e βn−1,n−2u

r
(0)
n−1e−k

(0)
n−1,n−2 · · · βn−1,0u

r
(0)
n−1e−k

(0)
n−1,0

0 ur
(0)
n−2e · · · βn−2,0u

r
(0)
n−2e−k

(0)
n−2,0

...
...

. . .
...

0 0 · · · ur
(0)
0 e


and

Mate,f (φn−1) = Diag (νn−1, νn−2, · · · , ν0)

where k
(0)
i,j := k

(0)
i − k

(0)
j , νi ∈ F× and βi,j ∈ F. Moreover,

Mate(N) =
(
γi,j · u[k

(0)
j −k

(0)
i ]1

)
where γi,j = 0 if i ≤ j and γi,j ∈ ue[k

(0)
j −k

(0)
i ]1S0 if i > j.

Note that e and f in Lemma 3.3.1 are not necessarily the same as the ones in Lemma 3.1.2.

Proof. We keep the notation in (3.0.4), (3.0.5), and (3.0.6). That is, there exist a framed basis e for
M and a framed system of generators f for Filn−1M such that Mate,f (Filn−1M), Mate,f (φn−1),

Mate(N) are given as in (3.0.4), (3.0.5), and (3.0.6) respectively. Since ki ≡ k
(0)
i mod (p− 1), we

have ri = r
(0)
i for all i ∈ {0, 1, · · · , n− 1} by Lemma 3.1.2, following the notation of Lemma 3.1.2.

We start to prove the following claim: if n− 1 ≥ i > j ≥ 0 then

(3.3.2) e− (k
(0)
i − k

(0)
j ) ≥ n.

Indeed, by the strongly generic assumption, Definition 3.0.5

e− (k
(0)
i − k

(0)
j ) = (p− 1)− (ci + i− r(0)

i ) + (cj + j − r(0)
j )

= (p− 1)− (ci − cj)− (i− j) + (r
(0)
i − r

(0)
j )

≥ (p− 1)− (cn−1 − c0)− (n− 1− 0) + (1− (n− 2))

≥ 3n− 4− 2n+ 4 = n.
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Note that this claim will be often used during the proof later.
We now diagonalize Mate,f (φn−1) with some restriction on the powers of the entries of the matrix

Mate,f (Filn−1M). Let V0 = Mate,f (Filn−1M) ∈ M�
n (S) and A0 = Mate,f (φn−1) ∈ GL�

n (S).

We also let V1 ∈ M�
n (S) be the matrix obtained from V0 by replacing vi,j by v′i,j ∈ S0, and

B1 ∈ GL�
n (S) the matrix obtained from A0 by replacing wi,j by w′i,j ∈ S0. It is straightforward

to check that A0 · V1 = V0 ·B1 if and only if for all i > j

(3.3.3) νiv
′
i,ju

[k
(0)
j −k

(0)
i ]1 +

i−1∑
s=j+1

wisv
′
s,ju

[k(0)
s −k

(0)
i ]1+[k

(0)
j −k

(0)
s ]1 + wi,ju

r
(0)
j e+[k

(0)
j −k

(0)
i ]1

= w′i,ju
r
(0)
i e+[k

(0)
j −k

(0)
i ]1 +

i−1∑
s=j+1

vi,sw
′
s,ju

[k(0)
s −k

(0)
i ]1+[k

(0)
j −k

(0)
s ]1 + νjvi,ju

[k
(0)
j −k

(0)
i ]1 .

Note that the power of u in each term of (3.3.3) is congruent to [k
(0)
j − k

(0)
i ]1 modulo (e). It is

immediate that for all i > j there exist v′i,j ∈ S0 and w′i,j ∈ S0 satisfying the equation (3.3.3) with
the following additional properties: for all i > j

(3.3.4) deg v′i,j < r
(0)
i e.

Letting e′ := eA0, we have

Mate′,f ′(Filn−1M) = V1 and Mate′,f ′(φn−1) = φ(B1)

where f ′ = e′V1, by Lemma 2.4.4. Note that φ(B1) is congruent to a diagonal matrix modulo

(une) by (3.3.2). We repeat this process one more time. We may assume that wi,j ∈ uneS0,
i.e., that A0 ≡ B1 modulo (une) where B1 is assumed to be a diagonal matrix. It is obvious

that there exists an upper-triangular matrix V1 = (v′i,ju
[p−1k

(0)
j −k

(0)
i ]1) whose entries have bounded

degrees as in (3.3.4), satisfying the equation A0V1 ≡ V0B1 modulo (une). By Lemma 2.4.4, we get
Mate′,f ′(φn−1) is diagonal. Hence, we may assume that Mate,f (φn−1) is diagonal and that deg vi,j

in Mate,f (Filn−1M) is bounded as in (3.3.4), and we do so. Moreover, this change of basis do not

change the shape of Mate(N), so that we also assume that Mate(N) is still as in (3.0.6).
We now prove that for all n− 1 ≥ i > j ≥ 0

(3.3.5) vi,ju
[k

(0)
j −k

(0)
i ]1 = βi,ju

r
(0)
i e−(k

(0)
i −k

(0)
j )

for some βi,j ∈ F. Note that this is immediate for i = n−1 and i = 1, since r
(0)
i = 1 if i = n−1 or

i = 1. To prove (3.3.5), we induct on i. The case i = 1 is done as above. Fix p0 ∈ {2, 3, · · · , n−2},
and assume that (3.3.5) holds for all i ∈ {1, 2, · · · , p0 − 1} and for all j < i. We consider the
subquotient Mp0,0 of M defined in (3.0.7). By abuse of notation, we write e = (ep0 , · · · , e0)
for the induced framed basis for Mp0,0 and f = (fp0 , · · · , f0) for the induced framed system of

generators for Filn−1Mp0,0.
We claim that for p0 ≥ j ≥ 0

ueN(fj) ∈ S0u
efj +

p0∑
t=j+1

S0u
[k

(0)
j −k

(0)
t ]1ft.

It is clear that it is true when j = p0. For j < p0, consider N(fj) = N(fj −ur
(0)
j eej) +N(ur

(0)
j eej).

It is easy to check that N(fj − ur
(0)
j eej) and N(ur

(0)
j eej) + r

(0)
j efj are S-linear combinations of

ep0 , · · · , ej+1, and they are, in fact, S0-linear combinations of u[k
(0)
j −k

(0)
p0

]1ep0 , · · · , u
[k

(0)
j −k

(0)
j+1]1ej+1

since they are ωk
(0)
j -invariant. Since

ueN(fj) ∈ Filn−1Mp0,0 ⊃ u(n−1)eMp0,0
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and

ueN(fj) + r
(0)
j euefj = ue[N(fj − ur

(0)
j eej)] + ue[N(ur

(0)
j eej) + r

(0)
j efj ],

we conclude that

ueN(fj) + r
(0)
j euefj ∈

p0∑
t=j+1

S0u
[k

(0)
j −k

(0)
t ]1ft,

which completes the claim.
Let

Mate,f (N |Mp0,0
) =

(
γi,j · u[k

(0)
j −k

(0)
i ]1

)
where γi,j = 0 if i ≤ j and γi,j ∈ S0 if i > j. We also claim that

γi,j ∈ ue[k
(0)
j −k

(0)
i ]1S0

for p0 ≥ i > j ≥ 0, which can be readily checked from the equation cNφn−1(fj) = φn−1(ueN(fj)).

(Note that c = 1 ∈ S as E(u) = ue + p.) Indeed, we have

cNφn−1(fj) = N(νjej) = νj

p0∑
i=j+1

γi,ju
[k

(0)
j −k

(0)
i ]1ei.

On the other hand, since Mate,f (φn−1|Mp0,0
) is diagonal, the previous claim immediately implies

that

φn−1(ueN(fj)) ∈
p0∑

t=j+1

S0u
p[k

(0)
j −k

(0)
t ]1et.

Hence, we conclude the claim.

We now finish the proof of (3.3.5) by inducting on p0 − j as well. Write vi,j =
∑r

(0)
i −1
t=0 x

(t)
i,ju

te

for x
(t)
i,j ∈ F. We need to prove x

(t)
p0,j

= 0 for t ∈ {0, 1, · · · , r(0)
p0 − 2}. Assume first j = p0 − 1, and

we compute N(fj) as follows:

N(fp0−1) = −
r(0)
p0
−1∑

t=0

x
(t)
p0,p0−1[e(t+ 1)− (k(0)

p0
− k(0)

p0−1)]ue(t+1)−(k(0)
p0
−k(0)

p0−1)ep0

+ γp0,p0−1u
(r

(0)
p0−1+1)e−(k(0)

p0
−k(0)

p0−1)ep0
− r(0)

p0−1eu
r
(0)
p0−1eep0−1.

Since fp0−1 = ur
(0)
p0−1eep0−1 +

∑r(0)
p0
−1

t=0 x
(t)
p0,p0−1u

te+[kp0−1−kp0 ]1ep0
, we get

(3.3.6) N(fp0−1) ≡
r(0)
p0
−1∑

t=0

x
(t)
p0,p0−1[er

(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1)]ue(t+1)−(k(0)
p0
−k(0)

p0−1)ep0

+ γp0,p0−1u
(r

(0)
p0−1+1)e−(k(0)

p0
−k(0)

p0−1)ep0

modulo Filn−1Mp0,0. Since γp0,p0−1 ∈ ue[e−(k(0)
p0
−k(0)

p0−1)]S0 and e − (k
(0)
p0 − k

(0)
p0−1) ≥ n by (3.3.2),

we get

N(fp0−1) ≡
r(0)
p0
−1∑

t=0

x
(t)
p0,p0−1[er

(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1)]ue(t+1)−(k(0)
p0
−k(0)

p0−1)ep0

modulo Filn−1Mp0,0, so that

ueN(fp0−1) ≡
r(0)
p0
−1∑

t=0

x
(t)
p0,p0−1[er

(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1)]ue(t+2)−(k(0)
p0
−k(0)

p0−1)ep0
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modulo Filn−1Mp0,0. But if t = r
(0)
p0 − 1 then e(t+ 2)− (k

(0)
p0 − k

(0)
p0−1) ≥ r(0)

p0 , so that we have

(3.3.7) ueN(fp0−1) ≡
r(0)
p0
−2∑

t=0

x
(t)
p0,p0−1[er

(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1)]ue(t+2)−(k(0)
p0
−k(0)

p0−1)ep0

modulo Filn−1Mp0,0.
It is easy to check that

(3.3.8) er
(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1) 6≡ 0

modulo (p) for all 0 ≤ t ≤ r(0)
p0 − 2. Indeed, since k

(0)
i = ci for 0 < i < n− 1 by (3.3.1), we have

er
(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1) ≡ −r(0)
p0−1 + (t+ 1) + (cp0 − cp0−1)

modulo (p), and so

er
(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1) ≡ (t+ 1) + (cp0
− cp0−1 + 1)− r(0)

p0

modulo (p) since r
(0)
i = i for 0 < i < n− 1 by (3.3.1).

Since 0 ≤ t ≤ r(0)
p0 − 2,

0 < (cp0 − cp0−1 + 2)− r(0)
p0
≤ (t+ 1) + (cp0 − cp0−1 + 1)− r(0)

p0
≤ (cp0 − cp0−1 − 1) < p

by the strongly generic conditions, Definition 3.0.5. Hence, we conclude that x
(t)
p0,p0−1 = 0 for all

0 ≤ t ≤ r(0)
p0 −2 since ueN(fp0−1) ∈ Filn−1Mp0,0. This completes the proof of (3.3.5) for j = p0−1.

Assume that (3.3.5) holds for i = p0 and j ∈ {p0 − 1, p0 − 2, · · · , s+ 1}. We compute N(fs) for
p0 − 1 > s ≥ 0 as follows: using the induction hypothesis on i ∈ {1, 2, · · · , p0 − 1}

N(fs) = −
r(0)
p0
−1∑

t=0

x(t)
p0,s[e(t+ 1)− (k(0)

p0
− k(0)

s )]ue(t+1)−(k(0)
p0
−k(0)

s )ep0

+

p0−1∑
i=s+1

βi,su
r
(0)
i e−(k

(0)
i −k

(0)
s )

(
p0∑

s=i+1

γs,iu
e−(k(0)

s −k
(0)
i )es − [r

(0)
i e− (k

(0)
i − k

(0)
s )]ei

)

+ ur
(0)
s e

p0∑
i=s+1

γi,su
e−(k

(0)
i −k

(0)
s )ei − r(0)

s eur
(0)
s ees.

Since γi,j ∈ ue[e−(k
(0)
i −k

(0)
j )]S0, we have

N(fs) ≡ −
r(0)
p0
−1∑

t=0

x(t)
p0,s[e(t+ 1)− (k(0)

p0
− k(0)

s )]ue(t+1)−(k(0)
p0
−k(0)

s )ep0

−
p0−1∑
i=s+1

βi,s[r
(0)
i e− (k

(0)
i − k

(0)
s )]ur

(0)
i e−(k

(0)
i −k

(0)
s )ei − r(0)

s eur
(0)
s ees

modulo Filn−1Mp0,0. By the same argument as in (3.3.6), we have

N(fs) ≡
r(0)
p0
−1∑

t=0

x(t)
p0,s[r

(0)
s e− e(t+ 1) + (k(0)

p0
− k(0)

s )]ue(t+1)−(k(0)
p0
−k(0)

s )ep0

+

p0−1∑
i=s+1

βi,s[r
(0)
s e− r(0)

i e+ (k
(0)
i − k

(0)
s )]ur

(0)
i e−(k

(0)
i −k

(0)
s )ei
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modulo Filn−1Mp0,0. Now, from the induction hypothesis on j ∈ {p0 − 1, p0 − 2, · · · , s+ 1},

ue
p0−1∑
i=s+1

βi,s[r
(0)
s e− r(0)

i e+ (k
(0)
i − k

(0)
s )]ur

(0)
i e−(k

(0)
i −k

(0)
s )ei ∈ Filn−1Mp0,0

and so we have

ueN(fs) ≡
r(0)
p0
−1∑

t=0

x(t)
p0,s[r

(0)
s e− e(t+ 1) + (k(0)

p0
− k(0)

s )]ue(t+2)−(k(0)
p0
−k(0)

s )ep0

modulo Filn−1Mp0,0. By the same argument as in (3.3.7), we have

ueN(fs) ≡
r(0)
p0
−2∑

t=0

x(t)
p0,s[r

(0)
s e− e(t+ 1) + (k(0)

p0
− k(0)

s )]ue(t+2)−(k(0)
p0
−k(0)

s )ep0

modulo Filn−1Mp0,0. By the same argument as in (3.3.8), one can readily check that r
(0)
s e− e(t+

1) + (k
(0)
p0 − k

(0)
s ) 6≡ 0 modulo (p) for all 0 ≤ t ≤ r(0)

p0 − 2. Hence, we conclude that x
(t)
p0,s = 0 for all

0 ≤ t ≤ r(0)
p0 − 2 as ueN(fs) ∈ Filn−1Mp0,0, which completes the proof. �

Proposition 3.3.2. Keep the assumptions and notation of Lemma 3.3.1. Assume further that ρ0

is maximally non-split and satisfies the conditions in (3.2.2).
Then βi,i−1 ∈ F× for i ∈ {1, 2, · · · , n − 1} and we have the following identities: for 0 ≤ j <

j + 1 < i ≤ n− 1

FLi,jn (ρ0) =
[
βi,jνj+1 · · · νi−1 : (−1)i−j+1 detA′i,j

]
∈ P1(F)

where

A′i,j =



βj+1,j βj+2,j βj+3,j · · · βi−1,j βi,j
1 βj+2,j+1 βj+3,j+1 · · · βi−1,j+1 βi,j+1

0 1 βj+3,j+2 · · · βi−1,j+2 βi,j+2

...
...

...
. . .

...
...

0 0 0 · · · βi−1,i−2 βi,i−2

0 0 0 · · · 1 βi,i−1


.

Proof. We may assume c0 = 0 by Lemma 3.2.4. We let V := Mate,f (Filn−1M) and A :=

Mate,f (φn−1) be as in the statement of Lemma 3.3.1. By Lemma 2.6.3, the φ-module over

F⊗Fp Fp(($)) defined by M := MFp(($))(M∗) is described as follows:

Mate(φ) = (Ui,j)

where

Ui,j =


ν−1
j ·$

r
(0)
j e if i = j;

0 if i > j;

ν−1
j · βj,i ·$

r
(0)
j e−(k

(0)
j −k

(0)
i ) if i < j

in a framed basis e = (en−1, en−2, · · · , e0) with dual type ω−k
(0)
n−1 ⊕ ω−k

(0)
n−2 · · · ⊕ ω−k

(0)
0 .

By considering the change of basis e′ = ($k
(0)
n−1en−1, $

k
(0)
n−2en−2, · · · , $k

(0)
0 e0), Mate′(φ) is de-

scribed as follows:
Mate′(φ) = (Vi,j)

where

Vi,j =


ν−1
j ·$

e(k
(0)
j +r

(0)
j ) if i = j;

0 if i > j;

ν−1
j · βj,i ·$

e(k
(0)
j +r

(0)
j ) if i < j.



ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GLn(Qp) IN THE ORDINARY CASE 31

Since k
(0)
i = ci + i− r(0)

i for each n− 1 ≥ i ≥ 0, we easily see that the φ-module M0 is the base
change via F⊗Fp Fp((p))→ F⊗Fp Fp(($)) of the φ-module M0 over F⊗Fp Fp((p)) described by

Mate′′(φ) =


ν−1
n−1p

cn−1+(n−1) 0 · · · 0

ν−1
n−1βn−1,n−2p

cn−1+(n−1) ν−1
n−2p

cn−2+(n−2) · · · 0
...

...
. . .

...
ν−1
n−1βn−1,0p

cn−1+(n−1) ν−1
n−2βn−2,0p

cn−2+(n−2) · · · ν−1
0 pc0


in an appropriate basis e′′ = (e′′n−1, e

′′
n−2, · · · , e′′0), which can be rewritten as

Mate′′(φ) =


ν−1
n−1 0 · · · 0

ν−1
n−1βn−1,n−2 ν−1

n−2 · · · 0
...

...
. . .

...
ν−1
n−1βn−1,0 ν−1

n−2βn−2,0 · · · ν−1
0


︸ ︷︷ ︸

=:H′

·Diag
(
pcn−1+n−1, · · · , pc1+1, pc0

)
.

By considering the change of basis e′′′ = e′′ · H ′ and then reversing the order of the basis e′′′,
the Frobenius φ of M0 with respect to this new basis is described as follows:

(3.3.9) Mat(φ) = Diag
(
pc0 , pc1+1, · · · , pcn−1+(n−1)

)
ν−1

0 ν−1
1 β1,0 · · · ν−1

n−1βn−1,0

0 ν−1
1 · · · ν−1

n−1βn−1,1

...
...

. . .
...

0 0 0 ν−1
n−1


︸ ︷︷ ︸

=:H

with respect to the new basis described as above.
The last displayed upper-triangular matrix H is the Frobenius of the Fontaine–Laffaille module

M such that T∗cris(M) ∼= ρ0
∼= Trst(M), by Lemma 2.6.4. Hence, we get the desired results (cf.

Definition 3.2.3). �

Remark 3.3.3. We emphasize that the matrix H is the Frobenius of the Fontaine–Laffaille module
M , with respect to a basis (e0, e1, · · · , en−1) compatible with the filtration, such that T∗cris(M) ∼=
ρ0
∼= Trst(M), so that we can now apply the conditions in (3.2.2) as well as Definition 3.2.5 to the

Breuil modules in Lemma 3.3.1. Moreover, H can be written as

H =


1 β1,0 · · · βn−1,0

0 1 · · · βn−1,1

...
...

. . .
...

0 0 0 1


︸ ︷︷ ︸

=:H′′

·Diag
(
ν−1

0 , ν−1
1 , · · · , ν−1

n−1

)
,

so that we have (1, n)w0H
t ∈ B(F)w0B(F) if and only if (1, n)w0(H ′′)t ∈ B(F)w0B(F). Hence,

ρ0 being Fontaine–Laffaille generic is a matter only of the entries of the filtration of the Breuil
modules if the Breuil modules are written as in Lemma 3.3.1.

3.4. Fontaine–Laffaille parameters vs Frobenius eigenvalues. In this section, we study
further the Breuil modules of Lemma 3.3.1. We show that if the filtration is of a certain shape
then a certain product of Frobenius eigenvalues (of the Breuil modules) corresponds to the newest
Fontaine–Laffaille parameter, FLn−1,0

n (ρ0). To get such a shape of the filtration, we assume further
that ρ0 is Fontaine–Laffaille generic.

Lemma 3.4.1. Keep the assumptions and notation of Lemma 3.3.1. Assume further that ρ0 is
Fontaine–Laffaille generic (cf. Definition 3.2.5).
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Then M ∈ F-BrModn−1
dd can be described as follows: there exist a framed basis e for M and a

framed system of generators f for Filn−1M such that

Mate,f (φn−1) = Diag (µn−1, µn−2, · · · , µ0)

and

Mate,f (Filn−1M) = (Ui,j)

where

(3.4.1) Ui,j =



ur
(0)
n−1e−(k

(0)
n−1−k

(0)
0 ) if i = n− 1 and j = 0;

ur
(0)
i e if 0 < i = j < n− 1;

xi,j · ur
(0)
i e−(k

(0)
i −k

(0)
j ) if n− 1 > i > j;

ur
(0)
0 e+(k

(0)
n−1−k

(0)
0 ) if i = 0 and j = n− 1;

x0,j · ur
(0)
0 e+(k

(0)
j −k

(0)
0 ) if i = 0 ≤ j < n− 1;

0 otherwise.

Here, µi ∈ F× and xi,j ∈ F.
Moreover, we have the following identity:

FLn−1,0
n (ρ0) =

n−2∏
i=1

µ−1
i .

Due to the size of the matrix, we decide to describe the matrix Mate,f (Filn−1M) as (3.4.1).

But for the reader we visualize the matrix Mate,f (Filn−1M) below, although it is less accurate:

0 0 · · · 0 ur
(0)
n−1e−k

(0)
n−1,0

0 ur
(0)
n−2 · · · xn−2,1u

r
(0)
n−2e−k

(0)
n−2,1 xn−2,0u

r
(0)
n−2e−k

(0)
n−2,0

...
...

. . .
...

...

0 0 · · · ur
(0)
1 x1,0u

r
(0)
1 e−k(0)

1,0

ur
(0)
0 e+k

(0)
n−1,0 x0,n−2u

r
(0)
0 e+k

(0)
n−2,0 · · · x0,1u

r
(0)
0 e+k

(0)
1,0 x0,0u

r
(0)
0 e


where k

(0)
i,j := k

(0)
i − k

(0)
j .

Proof. Let e0 be a framed basis for M and f
0

a framed system of generators for Filn−1M such

that V0 := Mate0,f0
(Filn−1M) and A0 := Mate0,f0

(φn−1) are given as in Lemma 3.3.1. So, in

particular, V0 is upper-triangular and A0 is diagonal.
By Proposition 3.3.2, the upper-triangular matrix H in (3.3.9) is the Frobenius of the Fontaine–

Laffaille module corresponding to ρ0, as in Definition 3.2.3. Since we assume that ρ0 is Fontaine–
Laffaille generic, we have (1, n)w0H

t ∈ B(F)w0B(F) as discussed right after Definition 3.2.3, so
that we have w0H

tw0 ∈ (1, n)B(F)w0B(F)w0. Equivalently, w0(H ′)tw0 ∈ (1, n)B(F)w0B(F)w0

by Remark 3.3.3, where H ′ is defined in Remark 3.3.3. Hence, comparing V0 with w0(H ′)tw0,

there exists a lower-triangular matrix C ∈ GL�
n (S) such that

V0 · C = V1 := (Ui,j)0≤i,j≤n−1

where Ui,j is described as in (3.4.1), since any matrix in w0B(F)w0 is lower-triangular. From the

identity V0 · C = V1, we have V1 = Mate1,f1
(Filn−1M) and A1 := Mate1,f1

(φn−1) = A0 · φ(C) by

Lemma 2.4.4, where e1 := e0 and f
1

:= e1V1. If i < j, then [k
(0)
j − k

(0)
i ]1 = k

(0)
j − k

(0)
i ≥ n as ρ0

is strongly generic, so that A1 is congruent to a diagonal matrix B′2 ∈ GLn(F) modulo (une) as

C = (ci,j · u[k
(0)
j −k

(0)
i ]1) is a lower-triangular and A0 is diagonal.
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Let V2 be the matrix obtained from V1 by replacing xi,j in (3.4.1) by yi,j , and B2 = (bi,j) is the
diagonal matrix defined by taking bi,i = b′i,i if 1 ≤ i ≤ n − 2 and bi,i = b′n−1−i,n−1−i otherwise,
where B′2 = (b′i,j). Then it is obvious that there exist yi,j ∈ F such that

A1 · V2 ≡ V1 ·B2

modulo (une). Letting e2 := e1 ·A1, we have V2 = Mate2,f2
(Filn−1M) and Mate2,f2

(φn−1) = φ(B2)

by Lemma 2.4.4. Note that A2 := Mate2,f2
(φn−1) is diagonal. Hence, there exist a framed basis for

M and a framed system of generators for Filn−1M such that Mate,f (φn−1) and Mate,f (Filn−1M)

are described as in the statement.
We now prove the second part of the lemma. It is harmless to assume c0 = 0 by Lemma 3.2.4.

Let V := Mate,f (Filn−1M) and A := Mate,f (φn−1) be as in the first part of the lemma. By

Lemma 2.6.3, the φ-module over F ⊗Fp Fp(($)) defined by M := MFp(($))(M∗) is described
as follows: there exists a basis e = (en−1, en−2, · · · , e0), compatible with decent data, such that

Mate(φ) = (Â−1V̂ )t where V̂ t and (Â−1)t are computed as follows:

V̂ t =



0 0 · · · 0 $r
(0)
0 e+k

(0)
n−1,0

0 $r
(0)
n−2 · · · 0 x0,n−2$

r
(0)
0 e+k

(0)
n−2,0

...
...

. . .
...

...

0 xn−2,1$
r
(0)
n−2e−k

(0)
n−2,1 · · · $r

(0)
1 x0,1$

r
(0)
0 e+k

(0)
1,0

$r
(0)
n−1e−k

(0)
n−1,0 xn−2,0$

r
(0)
n−2e−k

(0)
n−2,0 · · · x1,0$

r
(0)
1 e−k(0)

1,0 x0,0$
r
(0)
0 e


and

Â−1 = Diag
(
µ−1
n−1, µ

−1
n−2, · · · , µ

−1
0

)
.

By considering the change of basis e′ = ($k
(0)
n−1en−1, $

k
(0)
n−2en−2, · · · , $k

(0)
1 e1, $

k
(0)
0 e0), we have

Mate′(φ) = (V̂ t)′ ·Diag
(
µ−1
n−1, µ

−1
n−2, · · · , µ

−1
0

)
where

(V̂ t)′ =



0 0 · · · 0 $e(k
(0)
0 +r

(0)
0 )

0 $e(k
(0)
n−2+r

(0)
n−2) · · · 0 x0,n−2$

e(k
(0)
0 +r

(0)
0 )

...
...

. . .
...

...

0 xn−2,1$
e(k

(0)
n−2+r

(0)
n−2) · · · $e(k

(0)
1 +r

(0)
1 ) x0,1$

e(k
(0)
0 +r

(0)
0 )

$e(k
(0)
n−1+r

(0)
n−1) xn−2,0$

e(k
(0)
n−2+r

(0)
n−2) · · · x1,0$

e(k
(0)
1 +r

(0)
1 ) x0,0$

e(k
(0)
0 +r

(0)
0 )


.

Since k
(0)
j + r

(0)
j = cj + j for all j, it is immediate that the φ-module M over F ⊗Fp Fp(($))

is the base change via F ⊗Fp Fp((p)) → F ⊗Fp Fp(($)) of the φ-module M0 over F ⊗Fp Fp((p))
described by

Mate′′(φ) = F ′′ ·Diag
(
pcn−1+n−1, pcn−2+n−2, · · · , pc0

)
where

F ′′ =



0 0 0 · · · 0 µ−1
0

0 µ−1
n−2 0 · · · 0 µ−1

0 x0,n−2

0 µ−1
n−2xn−2,n−3 µ−1

n−3 · · · 0 µ−1
0 x0,n−3

...
...

...
. . .

...
...

0 µ−1
n−2xn−2,1 µ−1

n−3xn−3,1 · · · µ−1
1 µ−1

0 x0,1

µ−1
n−1 µ−1

n−2xn−2,0 µ−1
n−3xn−3,0 · · · µ−1

1 x1,0 µ−1
0 x0,0


,

in an appropriate basis e′′.
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Now, consider the change of basis e′′′ = e′′ ·F ′′ and then reverse the order of the basis e′′′. Then
the matrix of the Frobenius φ for M0 with respect to this new basis is given by

Diag
(
pc0 , pc1+1, · · · , pcn−1+n−1

)
· F

where

F =



µ−1
0 x0,0 µ−1

1 x1,0 µ−1
2 x2,0 · · · µ−1

n−2xn−2,0 µ−1
n−1

µ−1
0 x0,1 µ−1

1 µ−1
2 x2,1 · · · µ−1

n−2xn−2,1 0
µ−1

0 x0,2 0 µ−1
2 · · · µ−1

n−2xn−2,2 0
...

...
...

. . .
...

...
µ−1

0 x0,n−2 0 0 · · · µ−1
n−2 0

µ−1
0 0 0 · · · 0 0


.

By Lemma 2.6.4, there exists a Fontaine–Laffaille module M such that F(M) = M0 with
Hodge–Tate weights (c0, c1 + 1, · · · , cn−1 + n − 1) and Mate(φ•) = F for some basis e of M
compatible with the Hodge filtration on M . On the other hand, since T∗cris(M) ∼= ρ0, there exists
a basis e′ of M compatible with the Hodge filtration on M such that

Mate′(φ•) =


w0 w0,1 · · · w0,n−2 w0,n−1

0 w1 · · · w1,n−2 w1,n−1

...
...

. . .
...

...
0 0 · · · wn−2 wn−2,n−1

0 0 · · · 0 wn−1


︸ ︷︷ ︸

=:G

where wi,j ∈ F and wi ∈ F× by Lemma 3.2.1. Since both e and e′ are compatible with the Hodge
filtration on M , there exists a unipotent lower-triangular n× n-matrix U such that

U · F = G.

Note that we have w0,n−1 = µ−1
n−1 by direct computation.

Let U ′ be the (n− 1)× (n− 1)-matrix obtained from U by deleting the right-most column and
the lowest row, and F ′ (resp. G′) the (n − 1) × (n − 1)-matrix obtained from F (resp. G) by
deleting the left-most column and the lowest row. Then they still satisfy G′ = U ′ · F ′ as U is a
lower-triangular unipotent matrix, so that

FLn−1,0
n (ρ0) = [w0,n−1 : (−1)n detG′] =

[
µ−1
n−1 : (−1)n detF ′

]
=

[
1 :

n−2∏
i=1

µ−1
i

]
,

which completes the proof. �

Proposition 3.4.2. Keep the assumptions and notation of Lemma 3.4.1.
Then M ∈ F-BrModn−1

dd can be described as follows: there exist a framed basis e for M and a

framed system of generators f for Filn−1M such that

Mate,f (Filn−1M) =



0 0 0 · · · 0 ue−(k
(0)
n−1−k

(0)
0 )

0 u(n−2)e 0 · · · 0 0
0 0 u(n−3)e · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ue 0

u(n−2)e+(k
(0)
n−1−k

(0)
0 ) 0 0 · · · 0 0


.

Moreover, if we let

Mate,f (φn−1) =
(
αi,ju

[k
(0)
j −k

(0)
i ]1

)
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for αi,i ∈ S
×
0 and αi,j ∈ S0 if i 6= j then we have the following identity:

FLn−1,0
n (ρ0) =

n−2∏
i=1

(α
(0)
i,i )−1 =

n−2∏
i=1

µ−1
i

where α
(0)
i,j ∈ F is determined by α

(0)
i,j ≡ αi,j modulo (ue).

Note that Mate,f (φn−1) always belong to GL�
n (S) as e and f are framed.

Proof. We let e0 (resp. e1) be a framed basis forM and f
0

(resp. f
1
) be a framed system of gen-

erators for Filn−1M such that Mate0,f0
(Filn−1M) and Mate0,f0

(φn−1) (resp. Mate1,f1
(Filn−1M)

and Mate1,f1
(φn−1)) are given as in the statement of Lemma 3.4.1 (resp. in the statement of

Proposition 3.4.2). We also let V0 = Mate0,f0
(Filn−1M) and A0 = Mate0,f0

(φn−1) as well as

V1 = Mate1,f1
(Filn−1)M and A1 = Mate1,f1

(φn−1).

It is obvious that there exist R = (ri,ju
[k

(0)
j −k

(0)
i ]1) and C = (ci,ju

[k
(0)
j −k

(0)
i ]1) in GL�

n (S) such
that

R · V0 · C = V1 and e1 = e0R
−1

for ri,j and ci,j in S0. From the first equation above, we immediately get the identities:

r
(0)
n−1,n−1 · c

(0)
0,0 = 1 = r

(0)
0,0 · c

(0)
n−1,n−1 and r

(0)
i,i · c

(0)
i,i = 1

for 0 < i < n− 1, where r
(0)
i,j ∈ F (resp. c

(0)
i,j ∈ F) is determined by r

(0)
i,j ≡ ri,j modulo (ue) (resp.

c
(0)
i,j ≡ ci,j modulo (ue)). By Lemma 2.4.4, we see that A1 = R ·A0 · φ(C).

Hence, if we let A1 =
(
αi,ju

[k
(0)
j −k

(0)
i ]1

)
then

r
(0)
i,i · µi · c

(0)
i,i = α

(0)
i,i

for each 0 < i < n− 1 since R and C are diagonal modulo (u), so that we have

n−2∏
i=1

µi =

n−2∏
i=1

α
(0)
i,i

which completes its proof. �

Note that the matrix in the statement of Proposition 3.4.2 gives rise to the elementary divisors
of M/Filn−1M.

3.5. Filtration of strongly divisible modules. In this section, we describe the filtration of the
strongly divisible modules lifting the Breuil modules described in Proposition 3.4.2. Throughout

this section, we keep the notation r
(0)
i as in (3.3.1) as well as k

(0)
i .

We start to recall the following lemma, which is easy to prove but very useful.

Lemma 3.5.1. Let 0 < f ≤ n be an integer, and let M̂ ∈ OE-Modn−1
dd be a strongly divisible

module corresponding to a lattice in a potentially semi-stable representation ρ : GQp → GLn(E)
with Hodge–Tate weights {−(n − 1),−(n − 2), · · · , 0} and Galois type of niveau f such that

T
Qp,n−1
st (M̂)⊗OE F ∼= ρ0.
If we let

X(i) :=

(
Filn−1M̂ ∩ FiliS · M̂

Filn−1S · M̂

)
⊗OE E
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for i ∈ {0, 1, · · · , n−1}, then for any character ξ : Gal(K/K0)→ K× we have that the ξ-isotypical

component X
(i)
ξ of X(i) is a free K0 ⊗ E-module of finite rank

rankK0⊗QpE
X

(i)
ξ =

n(n− 1)

2
− i(i+ 1)

2
.

Moreover, multiplication by u ∈ S induces an isomorphism X
(0)
ξ

∼−→ X
(0)
ξω̃ .

Proof. We follow the strategy of the proof of [HLM], Lemma 2.4.9. Since ρ has Hodge–Tate weights
{−(n − 1),−(n − 2), · · · , 0}, by the analogue with E-coefficients of [Bre97], Proposition A.4, we
deduce that

Filn−1D = Filn−1SE f̂n−1 ⊕ Filn−2SE f̂n−2 ⊕ · · · ⊕ Fil1SE f̂1 ⊕ SE f̂0

for some SE-basis f̂0, · · · , f̂n−1 of D, where D := M̂[ 1
p ] ∼= SE⊗E D

Qp,n−1
st (V ), so that we also have

Filn−1D ∩ FiliSED = Filn−1SE f̂n−1 ⊕ Filn−2SE f̂n−2 ⊕ · · · ⊕ FiliSE f̂i ⊕ · · · ⊕ FiliSE f̂0.

Since ρ ∼= T
Qp,n−1
st (M̂) ⊗OE E is a GQp -representation, Fili(K ⊗K0 D

Qp,n−1
st (ρ)) ∼= K ⊗Qp

FiliDdR(ρ ⊗ ε1−n), so that X(i) ∼= Filn−1D∩FiliSED
Filn−1SED

is a free K0 ⊗Qp
E-module. Since SE

Filn−1SE
∼=⊕n−2

i=0

⊕e−1
j=0(K0 ⊗Qp

E)ujE(u)i, we have rankK0⊗QpE
X(i) =

[
n(n−1)

2 − i(i+1)
2

]
e. We note that

Gal(K/K0) acts semisimply and that multiplication by u gives rise to a K0 ⊗Qp
E-linear isomor-

phism on SE/FilpSE which cyclically permutes the isotypical components, which completes the
proof. �

Note that Lemma 3.5.1 immediately implies that

(3.5.1) rankK0⊗QpE
X

(i)
ξ − rankK0⊗QpE

X
(i+1)
ξ = i+ 1.

We will use this fact frequently to prove the main result, Proposition 3.5.3, in this subsection.
To describe the filtration of strongly divisible modules, we need to analyze the Filn−1M of the

Breuil modules M we consider.

Lemma 3.5.2. Keep the notation and assumptions of Lemma 3.3.1.

(i) If ua is an elementary divisor of M/Filn−1M then

e− (k
(0)
n−1 − k

(0)
0 ) ≤ a ≤ (n− 2)e+ (k

(0)
n−1 − k

(0)
0 ).

Moreover, FLn−1,0
n (ρ0) 6= ∞ (resp. FLn−1,0

n (ρ0) 6= 0) if and only if ue−(k
(0)
n−1−k

(0)
0 ) (resp.

u(n−2)e+(k
(0)
n−1−k

(0)
0 )) is an elementary divisor of M/Filn−1M.

(ii) If we further assume that ρ0 is Fontaine–Laffaille generic, then

{u(n−2)e+(k
(0)
n−1−k

(0)
0 ), u(n−2)e, u(n−3)e, · · · , ue, ue−(k

(0)
n−1−k

(0)
0 )}

are the elementary divisors of M/Filn−1M.

Proof. The first part of (i) is obvious since one can obtain the Smith normal form of Mate,f Filn−1M
by elementary row and column operations. By Proposition 3.3.2, we know that FLn−1,0

n (ρ0) 6=∞
if and only if βn−1,0 6= 0. Since ue−(k

(0)
n−1−k

(0)
0 ) has the minimal degree among the entries of

Mate,f Filn−1M, we conclude the equivalence statement for FLn−1,0
n (ρ0) 6=∞ holds. The equiva-

lence statement for FLn−1,0
n (ρ0) 6= 0 is immediate from the equivalence statement for FLn−1,0

n (ρ0) 6=
∞ by considering M∗ and using Lemma 3.2.4, (vi).

Part (ii) is obvious from Proposition 3.4.2. �
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Proposition 3.5.3. Assume that ρ0 is Fontaine–Laffaille generic and keep the notation r
(0)
i as

in (3.3.1) as well as k
(0)
i . Let M̂ ∈ OE-Modn−1

dd be a strongly divisible module corresponding to a

lattice in a potentially semi-stable representation ρ : GQp
→ GLn(E) with Galois type

⊕n−1
i=0 ω̃

k
(0)
i

and Hodge–Tate weights {−(n− 1),−(n− 2), · · · , 0} such that T
Qp,n−1
st (M̂)⊗OE F ∼= ρ0.

Then there exists a framed basis (ên−1, ên−2, · · · , ê0) for M̂ and a framed system of generators

(f̂n−1, f̂n−2, · · · , f̂0) for Filn−1M̂ modulo Filn−1S · M̂ such that Matê,f̂ Filn−1M̂ is described as

follows:

−p
n−1

α 0 0 · · · 0 ue−(k
(0)
n−1−k

(0)
0 )

0 E(u)n−2 0 · · · 0 0
0 0 E(u)n−3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · E(u) 0

uk
(0)
n−1−k

(0)
0
∑n−2
i=0 p

n−2−iE(u)i 0 0 · · · 0 α


where α ∈ OE with 0 < vp(α) < n− 1.

Proof. Note that we write the elements of M̂ in terms of coordinates with respect to a framed basis

ê := (ên−1, ên−2, · · · , ê0). We let M := M̂ ⊗S S, which is a Breuil module of weight n− 1 and of

type
⊕n−1

i=0 ω
k

(0)
i by Proposition 2.4.3. Note also thatM can be described as in Proposition 3.4.2,

and we assume thatM has such a framed basis forM and such a framed system of generators for

Filn−1M. During the proof, we write (Filn−1M̂)ξ for the ξ-isotypical component of Filn−1M̂ for

any character ξ : Gal(K/K0) → K×, and by abuse of notation we often write f̂i for the image of

f̂i in Filn−1M̂/Filn−1S · M̂ without mentioning.

Since Filn−1S · M̂ ⊂ Filn−1M̂, we may let

f̂0 =


ue−(k

(0)
n−1−k

(0)
0 )∑n−2

k=0 xn−1,kE(u)k

ue−(k
(0)
n−2−k

(0)
0 )∑n−2

k=0 xn−2,kE(u)k

...

ue−(k
(0)
1 −k

(0)
0 )
∑n−2
k=0 x1,kE(u)k∑n−2

k=0 x0,kE(u)k

 ∈
(

Filn−1M̂
)
ω̃k

(0)
0
,

where xi,j ∈ OE . The vector f̂0 can be written as follows:

f̂0 = ue−(k
(0)
n−1−k

(0)
0 )



∑n−2
k=0 xn−1,kE(u)k

u(k
(0)
n−1−k

(0)
n−2)∑n−2

k=0 xn−2,kE(u)k

...

u(k
(0)
n−1−k

(0)
1 )∑n−2

k=0 x1,kE(u)k

u(k
(0)
n−1−k

(0)
0 )∑n−2

k=1 x0,k[E(u)k − pk]/ue


︸ ︷︷ ︸

=:ê′n−1

+


0
0
...
0

x0,0 +
∑n−2
k=1 x0,kp

k

 .

By (ii) of Lemma 3.5.2, we know that ue−(k
(0)
n−1−k

(0)
0 ) is an elementary divisor of M/Filn−1M

and all other elementary divisors have bigger powers, so that we may assume vp(xn−1,0) = 0. Since

Filn−1M⊆ ue−(k
(0)
n−1−k

(0)
0 )M, we must have vp(x0,0) > 0. So ê1 := (ê′n−1, ên−2, · · · , ê0) is a framed
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basis for M̂ by Nakayama lemma and we have the following coordinates of f̂0 with respect to ê1:

f̂0 =


ue−(k

(0)
n−1−k

(0)
0 )

0
...
0
α

 ∈
(

Filn−1M̂
)
ω̃k

(0)
0

for α ∈ OE with vp(α) > 0.

Since uk
(0)
1 −k

(0)
0 f̂0 ∈

(
Filn−1M̂

)
ω̃k

(0)
1

and Filn−1S · M̂ ⊂ Filn−1M̂, f̂1 can be written as

f̂1 =



0

ue−(k
(0)
n−2−k

(0)
1 )∑n−2

k=0 yn−2,kE(u)k

...∑n−2
k=0 y1,kE(u)k

uk
(0)
1 −k

(0)
0
∑n−2
k=0 y0,kE(u)k

 ∈
(

Filn−1M̂
)
ω̃k

(0)
1
,

where yi,j ∈ OE . By Lemma 3.5.1, we have yi,0 = 0 for all i: otherwise, both uk
(0)
1 −k

(0)
0 f̂0 and f̂1

belong to X
(0)

ω̃k
(0)
1

−X(1)

ω̃k
(0)
1

which violates (3.5.1). Since ue is an elementary divisor ofM/Filn−1M
by (ii) of Lemma 3.5.2, we may also assume y1,1 = 1. Hence, by the obvious change of basis we

get f̂1 as follows:

f̂1 = E(u)


0
...
0
1
0

 ∈
(

Filn−1M̂
)
ω̃k

(0)
1
.

By the same arguments, we get f̂i ∈
(

Filn−1M̂
)
ω̃k

(0)
i

for i = 1, 2, · · · , n− 2 as in the statement.

Note that the elements in the set

{uk
(0)
n−1−k

(0)
0 f̂0, E(u)uk

(0)
n−1−k

(0)
0 f̂0, · · · , E(u)n−2uk

(0)
n−1−k

(0)
0 f̂0}

∪ {uk
(0)
n−1−k

(0)
1 f̂1, E(u)uk

(0)
n−1−k

(0)
1 f̂1, · · · , E(u)n−3uk

(0)
n−1−k

(0)
1 f̂1}

∪ · · · ∪ {uk
(0)
n−1−k

(0)
n−2 f̂n−2}

are linearly independent in X
(0)

ω̃
k
(0)
n−1

over E, so that the set forms a basis for X
(0)

ω̃
k
(0)
n−1

by Lemma 3.5.1.

Hence, f̂n−1 is a linear combination of those elements over E. We have

uk
(0)
n−1−k

(0)
0

(
n−2∑
i=0

pn−2−iE(u)i

)
f̂0 =


−pn−1

0
...
0

αuk
(0)
n−1−k

(0)
0
∑n−2
i=0 p

n−2−iE(u)i

 .

Hence, we may let

f̂n−1 :=
1

α
uk

(0)
n−1−k

(0)
0

(
n−2∑
i=0

pn−2−iE(u)i

)
f̂0 ∈

(
Filn−1M̂

)
ω̃
k
(0)
n−1
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since u(n−2)e+(k
(0)
n−1−k

(0)
0 ) is an elementary divisor for M/Filn−1M by (ii) of Lemma 3.5.2. More-

over, vp

(
pn−1

α

)
> 0 since Filn−1M⊆ ue−(k

(0)
n−1−k

(0)
0 )M⊆ uM by Proposition 3.4.2.

It is obvious that the f̂i mod ($E ,FilpS) generate Filn−1M for M written as in Proposi-
tion 3.3.2, so that they generate Filn−1M/ue(n−1)M. By Nakayama Lemma, we conclude that

the f̂i generate Filn−1M̂/Filn−1S · M̂, which completes the proof. �

Corollary 3.5.4. Keep the notation and assumptions of Proposition 3.5.3, and let

(λn−1, λn−2, · · · , λ0) ∈ (OE)n

be the Frobenius eigenvalues on the (ω̃k
(0)
n−1 , ω̃k

(0)
n−2 , · · · , ω̃k

(0)
0 )-isotypic component of D

Qp,n−1
st (ρ).

Then

vp(λi) =

 vp(α) if i = n− 1
(n− 1)− i if n− 1 > i > 0
(n− 1)− vp(α) if i = 0.

Proof. The proof goes parallel to the proof of [HLM], Corollary 2.4.11. �

3.6. Reducibility of certain lifts. In this section, we let 1 ≤ f ≤ n and e = pf−1, and we prove
that every potentially semi-stable lift of ρ0 with Hodge–Tate weights {−(n− 1),−(n− 2), · · · , 0}
and certain prescribed Galois types

⊕n−1
i=0 ω̃

ki
f is reducible. We emphasize that we only assume

that ρ0 is generic (cf. Definition 3.0.5) for the results in this section.

Proposition 3.6.1. Assume that ρ0 is generic, and let (kn−1, kn−2, · · · , k0) be an n-tuple of
integers. Assume further that k0 ≡ (pf−1 + pf−2 + · · · + p + 1)c0 modulo (e) and that ki are
pairwise distinct modulo (e).

Then every potentially semi-stable lift of ρ0 with Hodge–Tate weights {−(n−1),−(n−2), · · · , 0}
and Galois types

⊕n−1
i=0 ω̃

ki
f is an extension of a 1-dimensional potentially semi-stable lift of ρ0,0

with Hodge–Tate weight 0 and Galois type ω̃k0

f by an (n − 1)-dimensional potentially semi-stable

lift of ρn−1,1 with Hodge–Tate weights {−(n− 1),−(n− 2), · · · , 1} and Galois types
⊕n−1

i=1 ω̃
ki
f .

Note that if f = 1 then the assumption that ρ0 is generic implies that ki are pairwise distinct
modulo (e) by Lemma 3.1.2. In fact, we believe that this is true for any 1 ≤ f ≤ n, but this
requires extra works as we did in Lemma 3.1.2. Since we will need the results in this section only
when f = 1, we will add the assumption that ki are pairwise distinct modulo (e) in the proposition.

Proof. Let M̂ ∈ OE-Modn−1
dd be a strongly divisible module corresponding to a Galois stable lattice

in a potentially semi-stable representation ρ : GQp
→ GLn(E) with Galois type

⊕n−1
i=0 ω̃

ki
f and

Hodge–Tate weights {−(n− 1),−(n− 2), · · · , 0} such that T
Qp,n−1
st (M̂)⊗OE F ∼= ρ0. We also let

M be the Breuil module corresponding to the mod p reduction of M̂. M̂ (resp. M) is of inertial

type
⊕n−1

i=0 ω̃
ki
f (resp.

⊕n−1
i=0 ω

ki
f ) by Proposition 2.4.3.

We let f = (fn−1, fn−2, · · · , f0) (resp. f̂ = (f̂n−1, f̂n−2, · · · , f̂0)) be a framed system of gen-

erators for Filn−1M (resp. for Filn−1M̂). We also let e = (en−1, en−2, · · · , e0) (resp. ê =

(ên−1, ên−2, · · · , ê0)) be a framed basis for M (resp. for M̂). If x = an−1en−1 + · · ·+ a0e0 ∈ M,

we will write [x]ei for ai for i ∈ {0, 1, · · · , n− 1}. We define [x]êi for x ∈ M̂ in the obvious similar

way. We may assume that Mate,f (Filn−1M), Mate,f (φn−1), and Mate(N) are written as in (3.0.4),

(3.0.5), and (3.0.6) respectively, and we do so.
By the equation (3.0.3), we deduce r0 ≡ 0 modulo (e) from our assumption on k0. Recall that

p > n2 + 2(n − 3) by the generic condition. Since 0 ≤ r0 ≤ (n − 1)(pf − 1)/(p − 1) by (ii) of
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Lemma 2.3.5, we conclude that r0 = 0. Thus, we may let f0 satisfy that [f0]ei = 0 if 0 < i ≤ n− 1
and [f0]e0 = 1, so that we can also let

f̂0 =


0
...
0
1

 .

Hence, we can also assume that [f̂j ]ê0 = 0 for 0 < j ≤ n − 1. We let V0 = Matê,f̂ (Filn−1M̂) ∈

M�,′
n (SOE ) and A0 = Matê,f̂ (φn−1) ∈ GL�

n (SOE ).

We construct a sequence of framed bases {ê(m)} for M̂ by change of basis, satisfying that

Mat
ê(m),f̂

(m)(Filn−1M̂) ∈ M�,′
n (SOE ) and Mat

ê(m),f̂
(m)(φn−1) ∈ GL�

n (SOE )

converge to certain desired forms asm goes to∞. We let V (m) ∈ M�,′
n (SOE ) and A(m) ∈ GL�

n (SOE )
for a non-negative integer m. We may write

(x
(m+1)
n−1 u[kn−1−k0]f , x

(m+1)
n−2 u[kn−2−k0]f , · · · , x(1)

m+1u
[km+1−k0]f , x

(m+1)
0 )

for the last row of (A(m))−1, where x
(m+1)
0 ∈ (S×OE )0 and x

(m+1)
j ∈ (SOE )0 for 0 < j ≤ n− 1. We

define an n× n-matrix R(m+1) as follows:

R(m+1) =



1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
x

(m+1)
n−1

x
(m+1)
0

u[kn−1−k0]f
x

(m+1)
n−2

x
(m+1)
0

u[kn−2−k0]f · · · x
(m+1)
1

x
(m+1)
0

u[k1−k0]f 1

 .

We also define

C(m+1) =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

y
(m+1)
n−1 u[p−1(kn−1−k0)]f y

(m+1)
n−2 u[p−1(kn−2−k0)]f · · · y

(m+1)
1 u[p−1(k1−k0)]f 1


by the equation

R(m+1) · V (m) · C(m+1) = V (m)

where y
(m+1)
j ∈ (SOE )0 for 0 < j ≤ n−1. Note that the existence of such a matrix C(m+1) is obvi-

ous, since p−1k0 ≡ k0 modulo (e) by our assumption on k0 immediately implies [p−1(kj − k0)]f ≤
[ks − k0]f + [p−1kj − ks]f . We also note that R(m+1) ∈ GL�

n (SOE ) and C(m+1) ∈ GL�,′′
n (SOE ).

Let V (m+1) = V (m) for all m ≥ 0. Assume that V (m) = Mat
ê(m),f̂

(m)(Filn−1M̂) and A(m) =

Mat
ê(m),f̂

(m)(φn−1), with respect to a framed basis ê(m) and a framed system of generators f̂
(m)

.

If we let ê(m+1) = ê(m) · (R(m+1))−1, then

φn−1(ê(m+1)V (m+1)) = φn−1(ê(m)(R(m+1))−1V (m+1))

= φn−1(ê(m)V (m)C(m+1))

= ê(m)A(m)φ(C(m+1))

= ê(m+1)R(m+1) ·A(m) · φ(C(m+1)).
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Hence, we get

V (m+1) = Mat
ê(m+1),f̂

(m+1)(Filn−1M̂)

and

R(m+1) ·A(m) · φ(C(m+1)) = Mat
ê(m+1),f̂

(m+1)(φn−1),

where f̂
(m+1)

:= ê(m+1)V (m+1).

We compute the matrix product A(m+1) := R(m+1) · A(m) · φ(C(m+1)) as it follows. If we let

A(m) =
(
α

(m)
i,j u

[kj−ki]f
)

0≤i,j≤n−1
for α

(m)
i,j ∈ (SOE )0 if i 6= j and α

(m)
i,i ∈ (S×OE )0, then

(3.6.1) A(m+1) =
(
α

(m+1)
i,j u[kj−ki]f

)
0≤i,j≤n−1

∈ GL�
n (SOE )

where α
(m+1)
i,j u[kj−ki]f is described as follows:

α
(m)
i,j u

[kj−ki]f + α
(m)
i,0 u

[k0−ki]fφ(y
(m+1)
j )up[p

−1(kj−k0)]f if i > 0 and j > 0;

α
(m)
i,0 u

[k0−ki]f if i > 0 and j = 0;
1

x
(m+1)
0

φ(y
(m+1)
j )up[p

−1(kj−k0)]f if i = 0 and j > 0;
1

x
(m+1)
0

if i = 0 and j = 0.

Let V (0) = V0 and A(0) = A0. We apply the algorithm above to V (0) and A(0). By the algorithm
above, we have two matrices V (m) and A(m) for each m ≥ 0. We claim that

α
(m+1)
i,j − α(m)

i,j ∈ u(1+p+···+pm)eSOE if i > 0 and j > 0;

α
(m+1)
i,j = α

(m)
i,j if i > 0 and j = 0;

α
(m+1)
i,j ∈ u(1+p+···+pm)eSOE if i = 0 and j > 0;

α
(m+1)
i,j − α(m)

i,j ∈ u(1+p+···+pm−1)eSOE if i = 0 and j = 0.

It is obvious that the case i > 0 and j = 0 from the computation (3.6.1). For the case i = 0 and
j > 0 we induct on m. Note that p[p−1(kj − k0)]f − [kj − k0]f = p([p−1kj ]f − k0)− (kj − k0) ≥ e
if j > 0. From the computation (3.6.1) again, it is obvious that it is true for m = 0. Assume

that it holds for m. This implies that x
(m+1)
j ∈ u(1+p+···+pm−1)eSOE for 0 < j ≤ n − 1 and so

y
(m+1)
j ∈ u(1+p+···+pm−1)eSOE . Since φ(y

(m+1)
j )up[p

−1(kj−k0)]f−[kj−k0]f ) ∈ u(1+p+···+pm)eSOE , by

the computation (3.6.1) we conclude that the case i = 0 and j > 0 holds. The case i > 0 and
j > 0 follows easily from the case i = 0 and j > 0, since [p−1(kj − k0)]f + [k0 − ki]f − [kj − ki]f =
p([p−1kj ]f − k0) + e+ k0 − ki − [kj − ki]f ≥ p[p−1kj ]f − kj − (p− 1)k0 ≥ e. Finally, we check the
case i = 0 and j = 0. We also induct on m for this case. It is obvious that it holds for m = 0.

Note that R(m+1) ≡ In modulo u(1+p+···+pm−1)eSOE . Since A(m+1) = R(m+1) · A(m) · φ(C(m+1)),
we conclude that the case i = 0 and j = 0 holds.

The previous claim says the limit of A(m) exists (entrywise), say A(∞). By definition, we have

V (∞) = V (m) for all m ≥ 0. In other words, there exist a framed basis ê(∞) for M̂ and a framed

system of generators f̂
(∞)

for Filn−1M̂ such that

Mat
ê(∞),f̂

(∞)(Filn−1M̂) = V (∞) ∈ M�,′
n (SOE )

and

Mat
ê(∞),f̂

(∞)(φn−1) = A(∞) ∈ GL�
n (SOE ).

Note that (V (∞))i,j = 0 if either i = 0 and j > 0 or i > 0 and j = 0, and that (A(∞))i,j = 0 if
i = 0 and j > 0.
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Since ê(∞) is a framed basis for M̂, we may write

Matê(∞)(N) =
(
γi,ju

[kj−ki]f
)

0≤i,j≤n−1
∈ M�

n (SOE )

for the matrix of the monodromy operator of M̂ where γi,j ∈ (SOE )0, and let

A(∞) =
(
α

(∞)
i,j u[kj−ki]f

)
0≤i,j≤n−1

∈ GL�
n (SOE ).

We claim that γ0,j = 0 for n − 1 ≥ j > 0. Recall that α
(∞)
0,j = 0 for j > 0, and write f̂

(∞)
=

(f̂
(∞)
n−1, f̂

(∞)
n−2, · · · , f̂

(∞)
0 ) and ê(∞) = (ê

(∞)
n−1, ê

(∞)
n−2, · · · , ê

(∞)
0 ). We also write

f̂
(∞)
j =

n−1∑
i=1

β
(∞)
i,j u[p−1kj−ki]ê

(∞)
i

where β
(∞)
i,j ∈ (SOE )0, for each 0 < j ≤ n− 1. From the equation

[cNφn−1(f̂
(∞)
j )]

ê
(∞)
0

= [φn−1(E(u)N(f̂
(∞)
j ))]

ê
(∞)
0

for n− 1 ≥ j > 0, we have the identity

(3.6.2)

n−1∑
i=1

α
(∞)
i,j u[kj−ki]f+[ki−k0]f γ0,i = p

n−1∑
i=1

β
(∞)
i,j up[p

−1kj−ki]f+p[ki−k0]fφ(γ0,i)α
(∞)
0,0

for each n− 1 ≥ j > 0. Choose an integer s such that ordu(γ0,su
[ks−k0]f ) ≤ ordu(γ0,iu

[ki−k0]f ) for
all n− 1 ≥ i > 0, and consider the identity (3.6.2) for j = s. Then the identity (3.6.2) induces

α(∞)
s,s u

[ks−k0]f γ0,s ≡ 0

modulo (uordu(γ0,s)+[ks−k0]f+1). Note that α
(∞)
s,s ∈ S×OE , so that we get γ0,s = 0. Recursively, we

conclude that γ0,j = 0 for all 0 < j ≤ n− 1.

Finally, it is now easy to check that (ê
(∞)
n−1, ê

(∞)
n−2, · · · , ê

(∞)
1 ) determines a strongly divisible mod-

ules of rank n− 1, that is a submodule of M̂. This completes the proof. �

Corollary 3.6.2. Fix a pair of integers (i0, j0) with 0 ≤ j0 ≤ i0 ≤ n − 1. Assume that ρ0 is
generic, and let (kn−1, kn−2, · · · , k0) be an n-tuple of integers. Assume further that

ki = (pf−1 + pf−2 + · · ·+ p+ 1)ci

for i > i0 and for i < j0 and that the ki are pairwise distinct modulo (e).
Then every potentially semi-stable lift ρ of ρ0 with Hodge–Tate weights {−(n−1),−(n−2), · · · , 0}

and Galois types
⊕n−1

i=0 ω̃
ki
f is a successive extension

ρ ∼=



ρn−1,n−1 · · · ∗ ∗ ∗ · · · ∗
. . .

...
...

...
. . .

...
ρi0+1,i0+1 ∗ ∗ · · · ∗

ρi0,j0 ∗ · · · ∗
ρj0−1,j0−1 · · · ∗

. . .
...
ρ0,0


where

◦ ρi,i is a 1-dimensional potentially semi-stable lift of ρi,i with Hodge–Tate weights −i and

Galois type ω̃kif for n− 1 ≥ i > i0 and for j0 > i ≥ 0;



ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GLn(Qp) IN THE ORDINARY CASE 43

◦ ρi0,j0 is a (i0 − j0 + 1)-dimensional potentially semi-stable lift of ρi0,j0 with Hodge–Tate

weights {−i0,−i0 + 1, · · · ,−j0} and Galois types
⊕i0

i=j0
ω̃kif .

Proof. Proposition 3.6.1 implies this corollary recursively. Let M ∈ F-BrModn−1
dd be a Breuil

module corresponding to the mod p reduction of a strongly divisible module M̂ ∈ OE-Modn−1
dd

corresponding to a Galois stable lattice in a potentially semi-stable representation ρ : GQp
→

GLn(E) with Galois type
⊕n−1

i=0 ω̃
ki
f and Hodge–Tate weights {−(n − 1),−(n − 2), · · · , 0} such

that T
Qp,n−1
st (M̂) ⊗OE F ∼= ρ0. M̂ (resp. M) is of inertial type

⊕n−1
i=0 ω̃

ki
f (resp.

⊕n−1
i=0 ω

ki
f )

by Proposition 2.4.3. We may assume that Mate,f (Filn−1M), Mate,f (φn−1), and Mate(N) are

written as in (3.0.4), (3.0.5), and (3.0.6) respectively, and we do so.
By the equation (3.0.3), it is easy to see that ri = (pf−1 + pf−2 + · · · + p + 1)i for i > i0 and

for i < j0, by our assumption on ki. By Proposition 3.6.1, there exists an (n − 1)-dimensional
subrepresentation ρ′n−1,1 of ρ whose quotient is ρ0,0 which is a potentially semi-stable lift of ρ0,0

with Hodge–Tate weight 0 and Galois type ω̃k0

f . Now consider ρ′n−1,1⊗ε−1. Apply Proposition 3.6.1

to ρ′n−1,1 ⊗ ε−1. Recursively, one can readily check that ρ has subquotients ρi,i for 0 ≤ i ≤ j0 − 1.

Considering ρ∨ ⊗ εn−1, one can also readily check that ρ has subquotients ρi,i lifting ρi,i for
n− 1 ≥ i ≥ i0 + 1. �

The results in Corollary 3.6.2 reduce many of our computations for the main results on the
Galois side.

3.7. Main results on the Galois side. In this section, we state and prove the main local
results on the Galois side, that connects the Fontaine–Laffaille parameters of ρ0 with the Frobenius
eigenvalues of certain potentially semi-stable lifts of ρ0. Throughout this section, we assume that
ρ0 is Fontaine–Laffaille generic. We also fix f = 1 and e = p− 1.

Fix i0, j0 ∈ Z with 0 ≤ j0 < j0 + 1 < i0 ≤ n− 1, and define the n-tuple of integers

(ri0,j0n−1 , r
i0,j0
n−2 , · · · , r

i0,j0
0 )

as follows:

(3.7.1) ri0,j0i :=

 i if i0 6= i 6= j0;
j0 + 1 if i = i0;
i0 − 1 if i = j0.

We note that if we replace n by i0 − j0 + 1 in the definition of r
(0)
i in (3.3.1) then we have the

identities:

(3.7.2) ri0,j0j0+i = j0 + r
(0)
i

for all 0 ≤ i ≤ i0 − j0. In particular, rn−1,0
i = r

(0)
i for all 0 ≤ i ≤ n− 1.

From the equation ki0,j0i ≡ ci + i− ri0,j0i mod (e) (cf. Lemma 3.1.2, (i)), this tuple immediately

determines an n-tuple (ki0,j0n−1 , k
i0,j0
n−2 , · · · , k

i0,j0
0 ) of integers mod (e), which will determine the

Galois types of our representations. We set

ki0,j0i := ci + i− ri0,j0i

for all i ∈ {0, 1, · · · , n− 1}.
The following is the main result on the Galois side.

Theorem 3.7.1. Let i0, j0 be integers with 0 ≤ j0 < j0 +1 < i0 ≤ n−1. Assume that ρ0 is generic

and that ρi0,j0 is Fontaine–Laffaille generic. Let (λi0,j0n−1 , λ
i0,j0
n−2 , · · · , λ

i0,j0
0 ) ∈ (OE)n be the Frobenius

eigenvalues on the (ω̃k
i0,j0
n−1 , ω̃k

i0,j0
n−2 , · · · , ω̃k

i0,j0
0 )-isotypic components of D

Qp,n−1
st (ρ0) where ρ0 is a

potentially semi-stable lift of ρ0 with Hodge–Tate weights {−(n−1),−(n−2), · · · ,−1, 0} and Galois

types
⊕n−1

i=0 ω̃
k
i0,j0
i .
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Then the Fontaine–Laffaille parameter FLi0,j0n associated to ρ0 is computed as follows:

FLi0,j0n (ρ0) =

(
p[(n−1)− i0+j0

2 ](i0−j0−1)∏i0−1
i=j0+1 λ

i0,j0
i

)
∈ P1(F).

We first prove Theorem 3.7.1 for the case (i0, j0) = (n−1, 0) in the following proposition, which
is the key step to prove Theorem 3.7.1.

Proposition 3.7.2. Keep the assumptions and notation of Theorem 3.7.1, and assume further
(i0, j0) = (n− 1, 0). Then Theorem 3.7.1 holds.

Recall that (kn−1,0
n−1 , · · · , kn−1,0

0 ) in Proposition 3.7.2 is the same as (k
(0)
n−1, · · · , k

(0)
0 ) in (3.3.1).

To lighten the notation, we let ki = kn−1,0
i and λi = λn−1,0

i during the proof of Proposition 3.7.2.
We heavily use the results in Sections 3.3, 3.4 and 3.5 to prove this proposition.

Proof. Let M̂ ∈ OE-Modn−1
dd be a strongly divisible module corresponding to a Galois stable lattice

in a potentially semi-stable representation ρ0 : GQp
→ GLn(E) with Galois type

⊕n−1
i=0 ω̃

ki and

Hodge–Tate weights {−(n− 1),−(n− 2), · · · , 0} such that T
Qp,n−1
st (M̂)⊗OE F ∼= ρ0. We also let

M be the Breuil module corresponding to the mod p reduction of M̂. M̂ (resp. M) is of inertial

type
⊕n−1

i=0 ω̃
ki (resp.

⊕n−1
i=0 ω

ki) by Proposition 2.4.3.

We let f̂ = (f̂n−1, f̂n−2, · · · , f̂1, f̂0) be a framed system of generators for Filn−1M̂, and ê =

(ên−1, ên−2, · · · , ê1, ê0) be a framed basis for M̂. We may assume that Matê,f̂ (Filn−1M̂) is de-

scribed as in Proposition 3.5.3, and we do so.

Define αi ∈ F× by the condition φn−1(f̂i) ≡ α̃iêi modulo ($E , u) for all i ∈ {0, 1, · · · , n − 1}.
There exists a framed basis e = (en−1, en−2, · · · , e0) for M and a framed system of generators
f = (fn−1, fn−2, · · · , f0) for Filn−1M such that Mate,f (Filn−1M) is given as in Proposition 3.4.2

and

Mate,f (φn−1) =
(
αi,ju

[kj−ki]1
)
∈ GL�

n (S)

for some αi,j ∈ S0 with αi,i ≡ αi mod (ue).

Recall that f̂i = E(u)iêi for i ∈ {1, 2, · · · , n − 2} by Proposition 3.5.3. Write φn−1(f̂j) =∑n−1
i=0 α̂i,ju

[kj−ki]1 êi for some α̂i,j ∈ S0. Then we get

s0(α̂i,i) ≡
piλi
pn−1

(mod $E)

for i ∈ {1, 2, · · · , n− 2} since φn−1 = 1
pn−1φ for the Frobenius φ on D

Qp,n−1
st (ρ0), so that we have

n−2∏
i=1

α̃i ≡
n−2∏
i=1

λi
pn−1−i (mod $E).

(Note that λi
pn−1−i ∈ O×E by Corollary 3.5.4.) This completes the proof, by applying the results in

Proposition 3.4.2. �

We now prove Theorem 3.7.1, which is the main result on the Galois side.

Proof of Theorem 3.7.1. Recall from the identities in (3.7.2) that

(ri0,j0i0
, ri0,j0i0−1, · · · , r

i0,j0
j0

) = j0 + (1, n′ − 2, n′ − 3, · · · , 1, n′ − 2)

where n′ := i0−j0 +1. Recall also that ρ0 has a subquotient ρi0,j0 that is a potentially semi-stable

lift of ρi0,j0 with Hodge–Tate weights {−i0,−(i0 − 1), ...,−j0} and of Galois type
⊕i0

i=j0
ki0,j0i , by

Corollary 3.6.2.
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It is immediate that ρ′i0,j0 := ρi0,j0ε
−j0 ω̃j0 is another potentially semi-stable lift of ρi0,j0 with

Hodge–Tate weights {−(i0 − j0),−(i0 − j0 − 1), ..., 0} and of Galois type
⊕i0

i=j0
ω̃k

i0,j0
i +j0 . We

let (ηi0 , ηi0−1, · · · , ηj0) ∈ (OE)i0−j0+1 (resp. (δi0 , δi0−1, · · · , δj0) ∈ (OE)i0−j0+1) be the Frobenius

eigenvalues on the (ω̃k
i0,j0
i0 , ω̃k

i0,j0
i0−1 , · · · , ω̃k

i0,j0
j0 )-isotypic component of D

Qp,i0−j0
st (ρi0,j0) (resp. on

the (ω̃k
i0,j0
i0

+j0 , ω̃k
i0,j0
i0−1+j0 , · · · , ω̃k

i0,j0
j0

+j0)-isotypic component of D
Qp,i0−j0
st (ρ′i0,j0)). Then we have

p−j0δi = ηi

for all i ∈ {j0, j0 + 1, · · · , i0} and, by Proposition 3.7.2,

FLi0−j0,0i0−j0+1(ρi0,j0) =

 i0−1∏
i=j0+1

δi

 : p
(i0−j0)(i0−j0−1)

2

 ∈ P1(F).

But we also have that

pn−1−(i0−j0)ηi = λi0,j0i

for all i ∈ {j0, j0 + 1, · · · , i0} by Corollary 3.6.2. Hence, we have δi = p−(n−1−i0)λi0,j0i for all
i ∈ {j0, j0 + 1, · · · , i0} and we conclude that

FLi0,j0n (ρ0) = FLi0−j0,0i0−j0+1(ρi0,j0) =

 i0−1∏
i=j0+1

λi0,j0i

 : p[(n−1)− i0+j0
2 ](i0−j0−1)

 ∈ P1(F).

(Note that FLi0,j0n (ρ0) = FLi0−j0,0i0−j0+1(ρi0,j0) by Lemma 3.2.4.) �

In the following corollary, we prove that the Weil–Deligne representation WD(ρ0) associated
to ρ0 still contains Fontaine–Laffaille parameters. As we will see later, we will transport this
information to the automorphic side via local Langlands correspondence.

Corollary 3.7.3. Keep the assumptions and notation of Theorem 3.7.1.
Then ρ0 is, in fact, potentially crystalline and

WD(ρ0)F−ss = WD(ρ0) ∼=
n−1⊕
i=0

Ωi

where Ωi : Q×p → E× is defined by Ωi := U
λ
i0,j0
i /pn−1 ·ω̃k

i0,j0
i for all i ∈ {0, 1, · · · , n−1}. Moreover,

FLi0,j0n (ρ0) =

(∏i0−1
i=j0+1 Ω−1

i (p)

p
(i0+j0)(i0−j0−1)

2

)
∈ P1(F).

Proof. Notice that φ is diagonal onD := D
Qp

st (ρ0) with respect to a framed basis e := (en−1, · · · , e0)

(which satisfies gei = ω̃k
i0,j0
i (g)ei for all i and for all g ∈ Gal(K/Qp)) since ω̃k

i0,j0
i are all distinct.

Hence, we have WD(ρ0) = WD(ρ0)F−ss. Similarly, since the descent data action on D commutes
with the monodromy operator N , it is immediate that N = 0.

From the definition of WD(ρ0) (cf. [CDT99]), the action of WQp on D can be described as

follows: let α(g) ∈ Z be determined by ḡ = φα(g), where φ is the arithmetic Frobenius in GFp and
ḡ is the image under the surjection WQp

� Gal(K/Qp). Then

WD(ρ0)(g) · ei =

(
λi0,j0i

pn−1

)−α(g)

· ω̃k
i0,j0
i (g) · ei
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for all i ∈ {0, 1, · · · , n− 1}. (Recall that D
Qp,n−1
st (ρ0) = D

Qp

st (ρ0 ⊗ ε−(n−1)), so that the
λ
i0,j0
i

pn−1 are

the Frobenius eigenvalues of the Frobenius on D.) Write Ωi for the eigen-character with respect
to ei.

Recall that we identify the geometric Frobenius with the uniformizers in Q×p (by our nor-

malization of class field theory), so that Ωi(p) = pn−1

λ
i0,j0
i

which completes the proof by applying

Theorem 3.7.1. �

4. Local automorphic side

In this section, we establish several results concerning representation theory of GLn, that will be
applied to the proof of our main results on mod p local-global compatibility, Theorem 5.6.2. The
main results in this section are the non-vanishing result, Corollary 4.8.3, as well as the intertwining
identity in characteristic 0, Theorem 4.4.9.

We start this section by fixing some notation. Let G := GLn/Zp and T be the maximal split torus
consisting of diagonal matrices. We fix a Borel subgroup B ⊆ G consisting of upper-triangular
matrices, and let U ⊆ B be the maximal unipotent subgroup. Let Φ+ denote the set of positive
roots with respect to (B, T ), and ∆ = {αk}1≤k≤n−1 the subset of simple positive roots. Let X(T )
and X∨(T ) denote the abelian group of characters and cocharacters respectively. We often say a
weight for an element in X(T ), and write X(T )+ for the set of dominant weights. The set Φ+

induces a partial order on X(T ): for λ, µ ∈ X(T ) we say that λ ≤ µ if µ− λ ∈
∑
α∈Φ+ Z≥0α. We

will also write λ < µ if λ ≤ µ and λ 6= µ.
We use the n-tuple of integers λ = (d1, d2, · · · , dn) to denote the character associated to the

weight
∑n
k=1 dkεk of T where for each 1 ≤ i ≤ n εi is a weight of T defined by

diag(x1, x2, · · · , xn)
εi7→ xi.

We will often use the following weight

η := (n− 1, n− 2, · · · , 1, 0).

We let G, B, · · · be the base change to Fp of G, B, · · · respectively. The Weyl group of G,
denoted by W , has a standard lifting inside G as the group of permutation matrix, likewise with
G. We denote the longest Weyl element by w0 which is lifted to the antidiagonal permutation
matrix in G or G. We use the notation si for the simple reflection corresponding to αi = εi − εi+1

for 1 ≤ i ≤ n− 1. We define the length `(w) of w ∈W to be its minimal length of decomposition
into product of si for 1 ≤ i ≤ n − 1. Given A ∈ U(Fp), we use Aα or equivalently Ai,j to denote
the (i, j)-entry of A, where α = εi − εj is the positive root corresponding to the pair (i, j) with
1 ≤ i < j ≤ n.

Given a representation π of G(Fp), we use the notation πµ for the T (Fp)-eigenspace with the

eigencharacter µ. Given an algebraic representation V of G or G, we use the notation Vλ for
the weight space of V associated to the weight λ. For any representation V of G or G(Fp) with
coefficient in Fp, we define

VF := V ⊗Fp F

to be the extension of coefficient of V from Fp to F. Similarly, we write VFp for V ⊗Fp Fp.

It is easy to observe that we can identify the character group of T (Fp) with X(T )/(p−1)X(T ).
The natural action of the Weyl group W on T and thus on T (Fp) induces an action of W on
the character group X(T ) and X(T )/(p− 1)X(T ). We carefully distinguish the notation between
them. We use the notation wλ (resp. µw) for the action of W on X(T ) (resp. X(T )/(p− 1)X(T ))
satisfying

wλ(x) = λ(w−1xw) for all x ∈ T
and

µw(x) = µ(w−1xw) for all x ∈ T (Fp).
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As a result, without further comments, the notation wλ is a weight but µw is just a character of
T (Fp). There is another dot action of W on X(T ) defined by

w · λ = w(λ+ η)− η for all λ ∈ X(T ) and w ∈W.

The affine Weyl group W̃ of G is defined as the semi-direct product of W and X(T ) with respect

to the natural action of W on X(T ). We denote the image of λ ∈ X(T ) in W̃ by tλ. Then the dot

action of W on X(T ) extends to the dot action of W̃ on X(T ) through the following formula

w̃ · λ = w · (λ+ pµ)

if w̃ = wtµ. We use the notation λ ↑ µ for λ, µ ∈ X(T ) if λ ≤ µ and λ ∈ W̃ ·µ. We define a specific

element of W̃ by
w̃h := w0t−η

following Section 4 of [LLL].
We usually write K for GLn(Zp) for brevity. We will also often use the following three open

compact subgroups of GLn(Zp): if we let red : GLn(Zp) � GLn(Fp) be the natural mod p
reduction map, then

K(1) := Ker(red) ⊂ I(1) := red−1(U(Fp)) ⊂ I := red−1(B(Fp)) ⊂ K.

For each α ∈ Φ+, there exists a subgroup Uα of G such that xuα(t)x−1 = uα(α(x)t) where
x ∈ T and uα : Ga → Uα is an isomorphism sending 1 to 1 in the entry corresponding to α. For
each α ∈ Φ+, we have the following equalities by [Jan03] II 1.19 (5) and (6):

(4.0.3) uα(t) =
∑
m≥0

tm(Xalg
α,m).

where Xalg
α,m is an element in the algebra of distributions on G supported at the origin 1 ∈ G. The

equation (4.0.3) is actually just the Taylor expansion with respect to t of the operation uα(t) at
the origin 1. We use the same notation Xalg

α,m if G is replaced by G.
We define the set of p-restricted weights as

X1(T ) := {λ ∈ X(T ) | 0 ≤ 〈λ, α∨〉 ≤ p− 1 for all α ∈ ∆}
and the set of central weights as

X0(T ) := {λ ∈ X(T ) | 〈λ, α∨〉 = 0 for all α ∈ ∆}.
We also define the set of p-regular weights as

Xreg
1 (T ) := {λ ∈ X(T ) | 1 ≤ 〈λ, α∨〉 ≤ p− 2 for all α ∈ ∆},

and in particular we have Xreg
1 (T ) ( X1(T ). We say that λ ∈ X(T ) lies in the lowest p-restricted

alcove if

(4.0.4) 0 < 〈λ+ η, α∨〉 < p for all α ∈ Φ+.

We define a subset W̃+ of W̃ as

W̃+ := {w̃ ∈ W̃ | w̃ · λ ∈ X(T )+ for each λ in the lowest p-restricted alcove}.

We define another subset W̃ res of W̃ as

(4.0.5) W̃ res := {w̃ ∈ W̃ | w̃ · λ ∈ X1(T ) for each λ in the lowest p-restricted alcove}.
In particular, we have the inclusion

W̃ res ⊆ W̃+.

For any weight λ ∈ X(T ), we let

H0(λ) :=
(

IndG
B
w0λ

)alg

/Fp
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be the associated dual Weyl module. Note by [Jan03], Proposition II 2.6 that H0(λ) 6= 0 if and
only if λ ∈ X(T )+. Assume that λ ∈ X(T )+, we write F (λ) := socG(H0(λ)) for its irreducible
socle as an algebraic representation (cf. [Jan03] part II, section 2). When λ is running through
X1(T ), the F (λ) exhaust all the irreducible representations of G(Fp). On the other hand, two
weights λ, λ′ ∈ X1(T ) satisfies

F (λ) ∼= F (λ′)

as G(Fp)-representation if and only if

λ− λ′ ∈ (p− 1)X0(T ).

If λ ∈ Xreg
1 (T ), then the structure of F (λ) as a G(Fp)-representation depends only on the image

of λ in X(T )/(p − 1)X(T ), namely as a character of T (Fp). Conversely, given a character µ of
T (Fp) which lies in the image of

Xreg
1 (T )→ X(T )/(p− 1)X(T ),

its inverse image in Xreg
1 (T ) is uniquely determined up to a translation of (p−1)X0(T ). In this case,

we say that µ is p-regular. Whenever it is necessary for us to lift an element in X(T )/(p− 1)X(T )
back into X1(T ) (or maybe Xreg

1 (T )), we will clarify the choice of the lift.
Consider the standard Bruhat decomposition

G =
⊔
w∈W

BwB =
⊔
w∈W

UwwB =
⊔
w∈W

BwUw−1 .

where Uw is the unique subgroup of U satisfying BwB = UwwB as schemes over Zp. The group Uw
has a unique form of

∏
α∈Φ+

w
Uα for the subset Φ+

w of Φ+ defined by Φ+
w = {α ∈ Φ+, w(α) ∈ −Φ+}.

(If w = 1, we understand
∏
α∈Φ+

w
Uα to be the trivial group 1.) We also have the following Bruhat

decomposition:

(4.0.6) G(Fp) =
⊔
w∈W

B(Fp)wB(Fp) =
⊔
w∈W

Uw(Fp)wB(Fp) =
⊔
w∈W

B(Fp)wUw−1(Fp).

Given any integer x, recall that we use the notation [x]1 to denote the only integer satisfying
0 ≤ [x]1 ≤ p− 2 and [x]1 ≡ x mod (p− 1). Given two non-negative integers m and k with m ≥ k,
we use the notation cm,k for the binomial number m!

(m−k)!k! . We use the notation • for composition

of maps and, in particular, composition of elements in the group algebra Fp[G(Fp)].

4.1. Jacobi sums in characteristic p. In this section we establish several fundamental properties
of Jacobi sum operators on mod p principal series representations.

Definition 4.1.1. A weight λ ∈ X(T ) is called k-generic for k ∈ Z>0 if for each α ∈ Φ+ there
exists mα ∈ Z such that

mαp+ k < 〈λ, α∨〉 < (mα + 1)p− k.
In particular, the n-tuple of integers (an−1, · · · , a1, a0) is called k-generic in the lowest alcove if

ai − ai−1 > k ∀ 1 ≤ i ≤ n− 1 and an−1 − a0 < p− k.

Note that (an−1, · · · , a0)−η lies the lowest p-restricted alcove in the sense of (4.0.4) if (an−1, · · · , a0)
is k-generic in the lowest alcove for some k > 0. Note also that the existence of an n-tuple of integers
satisfying k-generic in the lowest alcove implies p > n(k + 1)− 1.

We use the notation π for a principal series representation:

π := Ind
G(Fp)

B(Fp)µπ = {f : G(Fp)→ Fp | f(bg) = µπ(b)f(g) ∀(b, g) ∈ B(Fp)×G(Fp)}

where µπ is a mod p character of T (Fp). The action of GLn(Fp) on π is given by (g ·f)(g′) = f(g′g).
We will assume throughout this article that µπ is p-regular. By definition we have

cosocG(Fp)(π) = F (µπ) and socG(Fp)(π) = F (µw0
π ).
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By Bruhat decomposition we can deduce that

dimFpπ
U(Fp),µwπ = 1

for each w ∈ W . We denote by vπ a non-zero fixed vector in πU(Fp),µπ . We also consider the
natural lift π̃◦ of π defined as

(4.1.1) π̃◦ := Ind
G(Fp)

B(Fp)µ̃π = {f : G(Fp)→ Zp | f(bg) = µ̃π(b)f(g) ∀(b, g) ∈ B(Fp)×G(Fp)}

where µ̃π is the Teichmüller lift of µπ.

Given w ∈ W with w 6= 1 and k = (kα)α∈Φ+
w
∈ {0, 1, · · · , p − 1}|Φ+

w|, we define the Jacobi sum
operators

Sk,w :=
∑

A∈Uw(Fp)

 ∏
α∈Φ+

w

Akαα

A · w ∈ Fp[G(Fp)].

These Jacobi sum operators play a main role on the local automorphic side as a crucial computation
tool. These operators already appeared in [CL76] for example.

For each α ∈ Φ+ and each integer m satisfying 0 ≤ m ≤ p− 2, we define the operator

(4.1.2) Xα,m :=
∑
t∈Fp

tp−1−muα(t) ∈ Fp[U(Fp)] ⊆ Fp[G(Fp)].

The transition matrix between {uα(t) | t ∈ F×p } and {Xα,m | 0 ≤ m ≤ p − 2} is a Vandermonde
matrix (

tk
)
t∈F×p ,1≤k≤p−1

which has a non-zero determinant. Hence, we also have a converse formula

(4.1.3) uα(t) = −
p−2∑
m=0

tmXα,m for all t ∈ Fp.

By the equation (4.0.3), we note that we have the equality

(4.1.4) Xα,m = −
∑
k≥0

Xalg
α,m+(p−1)k.

Lemma 4.1.2. Fix w ∈ W and α0 = (i0, j0) ∈ Φ+
w. Given a tuple of integers k = (ki,j) ∈

{0, 1, · · · , p− 1}|Φ+
w| satisfying

(4.1.5) ki0,j = 0 for all (i0, j) ∈ Φ+
w with j ≥ j0 + 1,

we have

Xα0,m • Sk,w =

{
(−1)m+1ckα0

,mSk′,w if m ≤ kα0

0 if m > kα0

where k′ = (k′α)α∈Φw satisfies

k′α =

{
kα0
−m if α = α0;

kα otherwise.
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Proof. We prove this lemma by direct computation.

(4.1.6) Xα,m • Sk,w =
∑
t∈Fp

tp−1−m

 ∑
A∈Uw(Fp)

 ∏
α∈Φ+

w

Akαα

uα0
(t)Aw


=
∑
t∈Fp

tp−1−m

 ∑
A∈Uw(Fp)

 ∏
α∈Φ+

w,α 6=α0

Akαα

 (Aα0 − t)kα0Aw


=

∑
A∈Uw(Fp)

 ∏
α∈Φ+

w,α6=α0

Akαα

∑
t∈Fp

tp−1−m(Aα0
− t)kα0

Aw

where the second equality follows from the change of variable A ↔ uα0
(t)A and the assump-

tion (4.1.5).
Notice that ∑

t∈Fp

tp−1−m(Aα0
− t)kα0 =

∑
t∈Fp

tp−1−m

kα0∑
j=0

(−1)jckα0 ,j
A
kα0
−j

kα0
tj


=

kα0∑
j=0

(−1)jckα0
,jA

kα0
−j

kα0

∑
t∈Fp

tp−1−m+j

 ,

which can be easily seen to be

(4.1.7)

{
(−1)m+1ckα0

,mA
kα0−m
kα0

if m ≤ kα0

0 if m > kα0
.

The last computation (4.1.7) follows from the fact that∑
t∈Fp

t` =

{
0 if p− 1 - `;
−1 if p− 1 | ` and ` 6= 0.

Applying (4.1.7) back to (4.1.6) gives us the result. �

Lemma 4.1.3. Fix w ∈ W and α0 = (i0, j0) ∈ Φ+
w. Given a tuple of integers k = (ki,j) ∈

{0, 1, · · · , p− 1}|Φ+
w| satisfying

ki0,j = 0 for all (i0, j) ∈ Φ+
w with j ≥ j0,

we have
uα0

(t) • Sk,w = Sk,w.

Proof. By Lemma 4.1.2 we deduce that

Xα0,m • Sk,w =

{
−Sk,w if m = 0
0 if 1 ≤ m ≤ p− 2

Therefore we conclude this lemma from (4.1.3). �

By the definition of principal series representations, we have the decomposition

(4.1.8) π = ⊕w∈Wπw
where πw ⊂ π|B(Fp) consists of the functions supported on a non-empty subset of the Bruhat cell

B(Fp)w
−1B(Fp) = B(Fp)w

−1Uw(Fp).
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Proposition 4.1.4. Fix a non-zero vector vπ ∈ πU(Fp),µπ . For each w ∈W with w 6= 1, the set

(4.1.9)
{
Sk,wvπ | k = (kα)α∈Φ+

w
∈ {0, 1, · · · , p− 1}|Φ

+
w|
}

forms a T (Fp)-eigenbasis of πw.

Proof. We have a decomposition πw = ⊕A∈Uw(Fp)πw,A where πw,A is the subspace of πw consisting

of functions supported on B(Fp)w
−1A−1. It is easy to observe by the definition of parabolic

induction that dimFpπw,A = 1 and πw,A is generated by Awvπ.
We claim that, for a fixed w ∈ W , the set of vectors (4.1.9) can be linearly represented by the

set of vectors {Awvπ, A ∈ Uw(Fp)} through the matrix
(
mk,A

)
where

k = (kα)α∈Φ+
w
∈ {0, 1, · · · , p− 1}|Φ

+
w|, A ∈ Uw(Fp)

and mk,A :=
∏
α∈Φ+

w
Akαα . Note that this matrix is the |Φ+

w |-times tensor of the Vandermonde
matrix (

λk
)
λ∈Fp,0≤k≤p−1

,

and therefore has a non-zero determinant. As a result, the matrix
(
mk,A

)
is invertible and {Sk,wvπ |

0 ≤ kα ≤ p− 1 ∀α ∈ Φ+
w} forms a basis of πw.

The fact that this is a T (Fp)-eigenbasis is immediate by the following calculation: if we let
x = diag(x1, x2, · · · , xn)

x • Sk,wvπ = x •

 ∑
A∈Uw(Fp)

 ∏
α∈Φ+

w

Akαα

A w

 vπ

=

 ∑
A∈Uw(Fp)

 ∏
(i,j)∈Φ+

w

A
ki,j
i,j

xAx−1 w

 (
w−1xw

)
vπ

=

 ∑
B=xAx−1∈Uw(Fp)

 ∏
(i,j)∈Φ+

w

(Bi,jxjx
−1
i )ki,j

B w

 (
w−1xw

)
vπ

= µπ(w−1xw)

 ∏
(i,j)∈Φ+

w

(xjx
−1
i )ki,j

 ∑
A∈Uw(Fp)

∏
α∈Φ+

w

Akαα A w

 vπ

= (µwπ λ)(x)Sk,wvπ,

where λ(x) =
∏

1≤i<j≤n(xjx
−1
i )ki,j and Bi,j = Ai,jxix

−1
j for 1 ≤ i < j ≤ n. �

We can further describe the action of T (Fp) on Sk,wvπ. By byc for y ∈ R we mean the floor
function of y, i.e., the biggest integer less than or equal to y.

Lemma 4.1.5. Let µπ = (d1, d2, · · · , dn−1, dn). If we write (`1, `2 · · · , `n−1, `n) for the T (Fp)-
eigencharacter of Sk,wvπ, then we have

`r ≡ dw−1(r) +
∑

1≤i<r

ki,r −
∑

r<j≤n

kr,j (mod p− 1)

for all 1 ≤ r ≤ n, where ki,j = kα if α ∈ Φ+
w and (i, j) corresponds to α, and ki,j = 0 otherwise.

In particular,

(i) if kα = 0 for any α ∈ Φ+
w \∆, then for all 1 ≤ r ≤ n

`r ≡ dw−1(r) + (1− b1/rc)kr−1,r − (1− b1/(n+ 1− r)c)kr,r+1 (mod p− 1);
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(ii) if w = w0 and ki,j = 0 for any 2 ≤ i < j ≤ n, then

`r ≡
{
dn −

∑n
j=2 k1,j (mod p− 1) if r = 1;

dn+1−r + k1,r (mod p− 1) if 2 ≤ r ≤ n.

Proof. The first part of the Lemma is a direct calculation as shown at the end of the proof of
Proposition 4.1.4. The second part follows trivially from the first part. �

Given any w ∈W , we write S0,w for Sk,w with kα = 0 for all α ∈ Φ+
w .

Lemma 4.1.6. We have

Fp[S0,wvπ] = πU(Fp),µwπ .

Proof. Pick an arbitrary positive root α. If α ∈ Φ+
w , then we have (since uα(t) ∈ Uw(Fp))

uα(t)

 ∑
A∈Uw(Fp)

A

 =

 ∑
A∈Uw(Fp)

A


and therefore uα(t)S0,wvπ = S0,wvπ for any t ∈ Fp. On the other hand, if α /∈ Φ+

w , then

uα(t)

 ∑
A∈Uw(Fp)

A

 =

 ∑
A∈Uw(Fp)

A

u′α(t)

and

u′α(t)wvπ = wu′′α(t)vπ = wvπ

where u′α(t) ∈
∏
α/∈Φ+

w
Uα(Fp) and u′′α(t) ∈ U(Fp) are elements depending on x, w and α. Hence,

uα(t)S0,wvπ = S0,wvπ for any t ∈ Fp and any α ∈ Φ+. So we conclude that S0,wvπ is U(Fp)-
invariant as {uα(t)}α∈Φ+,t∈Fp generate U(Fp).

Finally, we check that x · S0,wvπ = µwπ (x)S0,wvπ for x ∈ T (Fp). But this is immediate from the
following two easy computations:

x •

 ∑
A∈Uw(Fp)

A

 =

 ∑
A∈Uw(Fp)

A

 • x ∈ Fp[G(Fp)]

and

xwvπ = w
(
w−1xw

)
vπ = wµπ(w−1xw)vπ = µwπ (x)wvπ.

This completes the proof. �

Note that Proposition 4.1.4, Lemma 4.1.5, and Lemma 4.1.6 are very elementary and have
essentially appeared in [CL76]. In this article, we formulate them and give quick proofs of them
for the convenience.

Definition 4.1.7. Given α, α′ ∈ Φ+, we say that α is strongly smaller than α′ with the notation

α ≺̃α′

if there exist 1 ≤ i ≤ j ≤ k ≤ n− 1 such that

α =

j∑
r=i

αr and α′ =

k∑
r=i

αr.

A subset Φ′ of Φ+ is said to be good if it satisfies the following:

(i) if α, α′ ∈ Φ′ and α+ α′ ∈ Φ+, then α+ α′ ∈ Φ′;
(ii) if α ∈ Φ′ and α ≺̃α′, then α′ ∈ Φ′.
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We associate a subgroup of U to Φ′ by

(4.1.10) UΦ′ := 〈Uα | α ∈ Φ′〉

and denote its reduction mod p by UΦ′ . We define U1 to be the subgroup scheme of U generated
by Uαr for 2 ≤ r ≤ n− 1, and denote its reduction mod p by U1.

Example 4.1.8. The following are two examples of good subsets of Φ+, that will be important for
us: {

j∑
r=i

αr | 1 ≤ i < j ≤ n− 1

}
and

{
j∑
r=i

αr | 2 ≤ i ≤ j ≤ n− 1

}
.

The subgroups of U associated with the two good subsets via (4.1.10) are [U,U ] and U1 respectively.

We recall that we have defined πw ( π in (4.1.8) for each w ∈W .

Proposition 4.1.9. Let Φ′ ⊆ Φ+ be good. Pick an element w ∈W with w 6= 1. The following set
of vectors

(4.1.11)
{
Sk,wvπ | k = (kα)α∈Φ+

w
∈ {0, 1, · · · , p− 1}|Φ

+
w| with kα = 0 ∀α ∈ Φ′ ∩ Φ+

w

}
forms a basis of the subspace π

UΦ′ (Fp)
w of πw.

Proof. By Proposition 4.1.4, the set of vectors (4.1.9) forms a T (Fp)-eigenbasis of πw. Hence we
fix a UΦ′(Fp)-invariant vector v in πw and can write it as a unique linear combination of vectors
of the form Sk,wvπ, namely

v =
∑

k∈{0,··· ,p−1}|Φ+
w|

Ck,wSk,wvπ for some Ck,w ∈ Fp.

We define

Supp(v)α := {k = (kα)α∈Φ+
w
| Ck,w 6= 0 and kα > 0}

for each α ∈ Φ+
w , and then consider

Φ′w,v,>0 := {α ∈ Φ′ ∩ Φ+
w | Supp(v)α 6= ∅}.

We have a natural partial order on Φ′w,v,>0 induced from the partial order ≺̃ on Φ+. Assume that

(4.1.12) Φ′w,v,>0 6= ∅

which means that Supp(v)α 6= ∅ for some α ∈ Φ′ ∩ Φ+
w , and thus we can choose one maximal

element α0 ∈ Φ′w,v,>0 with respect to the order ≺̃. We may write v as

(4.1.13) v =
∑

k∈{0,··· ,p−1}|Φ
+
w|

kα0=0

Ck,wSk,wvπ +
∑

k∈{0,··· ,p−1}|Φ
+
w|

kα0>0

Ck,wSk,wvπ.

By the maximality assumption on α0 we know that if Ck,w 6= 0 and α0 ≺̃α, then kα = 0. As a
result, we deduce from Lemma 4.1.3 that

(4.1.14) uα0(t)
∑

k∈{0,··· ,p−1}|Φ
+
w|

kα0
=0

Ck,wSk,wvπ =
∑

k∈{0,··· ,p−1}|Φ
+
w|

kα0
=0

Ck,wSk,wvπ

for all t ∈ Fp.
We define

Φα0,+
w := {α ∈ Φ+

w | α0 ≺̃α} and Φα0,−
w := Φ+

w \ Φα0,+
w ,

and we use the notation

` := (`α)
α∈Φ

α0,−
w
∈ {0, · · · , p− 1}|Φ

α0,−
w |
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for a tuple of integers indexed by Φα0,−
w . Given a tuple `, we can define

Λ(`, α0) :=

k = (kα)α∈Φ+
w
∈ {0, · · · , p− 1}|Φ

+
w|

∣∣∣∣∣∣
· kα = 0 if α ∈ Φα0,+

w \ {α0};
· kα > 0 if α = α0;
· kα = `α if α ∈ Φα0,−

w

 .

Now we can define a polynomial

f(`,α0)(x) =
∑

k∈Λ(`,α0)

Ck,wx
kα0 ∈ Fp[x]

for each tuple of integers `. By the maximality assumption on α0 and the notation introduced
above, we have

∑
k∈{0,··· ,p−1}|Φ

+
w|

kα0
>0

Ck,wSk,wvπ =
∑

`∈{0,··· ,p−1}|Φ
α0,−
w |

 ∑
A∈Uw(Fp)

 ∏
α∈Φ

α0,−
w

A`αα

 f(`,α0)(Aα0
)A

wvπ.

By the assumption on v we know that uα0(t)v = v for all t ∈ Fp. Using (4.1.14) and (4.1.13) we
have

uα0
(t)

∑
k∈{0,··· ,p−1}|Φ

+
w|

kα0
>0

Ck,wSk,wvπ =
∑

k∈{0,··· ,p−1}|Φ
+
w|

kα0
>0

Ck,wSk,wvπ

and so ∑
`∈{0,··· ,p−1}|Φ

α0,−
w |

 ∑
A∈Uw(Fp)

 ∏
α∈Φ

α0,−
w

A`αα

 f(`,α0)(Aα0
)A

wvπ

= uα0(t)
∑

`∈{0,··· ,p−1}|Φ
α0,−
w |

 ∑
A∈Uw(Fp)

 ∏
α∈Φ

α0,−
w

A`αα

 f(`,α0)(Aα0)A

wvπ

=
∑

`∈{0,··· ,p−1}|Φ
α0,−
w |

 ∑
A∈Uw(Fp)

 ∏
α∈Φ

α0,−
w

A`αα

 f(`,α0)(Aα0
− t)A

wvπ

where the last equality follows from a change of variable A↔ uα0
(t)A.

By the linear independence of Jacobi sums from Proposition 4.1.4, we deduce an equality ∑
A∈Uw(Fp)

 ∏
α∈Φ

α0,−
w

A`αα

 f(`,α0)(Aα0
)A

wvπ

=

 ∑
A∈Uw(Fp)

 ∏
α∈Φ

α0,−
w

A`αα

 f(`,α0)(Aα0 − t)A

wvπ

for each fixed tuple `.
Therefore, again by the linear independence of Jacobi sum operators in Proposition 4.1.4 we

deduce that

f(`,α0)(Aα0
− t) = f(`,α0)(Aα0

)

for each t ∈ Fp and each (`, α0). We know that if f ∈ Fp[x] satisfies degf ≤ p − 1, f(0) = 0 and
f(x− t) = f(x) for each t ∈ Fp then f = 0. Thus we deduce that

f(`,α0) = 0
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for each tuple of integers `, which is a contradiction to (4.1.12) and so we have kα = 0 for any
α ∈ Φ′ ∩ Φ+

w for each tuple of integers k such that Ck,w 6= 0.

As a result, we have shown that each vector in π
UΦ′ (Fp)
w can be written as certain linear com-

bination of vectors in (4.1.11). On the other hand, by Proposition 4.1.4 we know that vectors in

(4.1.11) are linear independent, and therefore they actually form a basis of π
UΦ′ (Fp)
w . �

Corollary 4.1.10. Let µπ = (d1, · · · , dn) and fix a non-zero vector vπ ∈ πU(Fp),µπ . Given a
weight µ = (`1, · · · , `n) ∈ X1(T ) the space

π[U(Fp),U(Fp)],µ
w0

has a basis whose elements are of the form

Sk,w0
vπ

where k = (kα) satisfies

`r ≡ dn+1−r + (1− b1/rc)kr−1,r − (1− b1/(n+ 1− r)c)kr,r+1 mod (p− 1)

for all 1 ≤ r ≤ n and kα = 0 if α ∈ Φ+ \∆.

Proof. By a special case of Proposition 4.1.9 when Φ′ = {
∑j
r=i αr | 1 ≤ i < j ≤ n− 1}, we know

that

{Sk,w0vπ | kα = 0 if α ∈ Φ+ \∆}

forms a basis of π
[U(Fp),U(Fp)]
w0 . On the other hand, we know from Proposition 4.1.4 that the above

basis is actually an T (Fp)-eigenbasis. Therefore the vectors in this basis with a fixed eigencharacter

µ form a basis of the eigensubspace π
[U(Fp),U(Fp)],µ
w0 . Finally, using (i) of the second part of Lemma

4.1.5 we conclude this lemma. �

Corollary 4.1.11. Let µπ = (d1, d2, · · · , dn) and fix a non-zero vector vπ ∈ πU(Fp),µπ . Given a
weight µ = (`1, · · · , `n) ∈ X1(T ), the space

πU1(Fp),µ
w0

has a basis whose elements are of the form

Sk,w0
vπ

where k = (ki,j)i,j satisfies

k1,j ≡ `j − dn+1−j mod (p− 1)

for 2 ≤ j ≤ n and ki,j = 0 for all 2 ≤ i < j ≤ n.

Proof. By a special case of Proposition 4.1.9 when Φ′ = {
∑j
r=i αr | 2 ≤ i ≤ j ≤ n− 1}, we know

that

{Sk,w0
vπ | ki,j = 0 if 2 ≤ i < j ≤ n}

forms a basis of π
U1(Fp)
w0 . On the other hand, we know from Proposition 4.1.4 that the above basis

is actually an T (Fp)-eigenbasis. Therefore the vectors in this basis with a fixed eigencharacter µ

form a basis of the eigensubspace π
U1(Fp),µ
w0 . Finally, using (ii) of the second part of Lemma 4.1.5

we conclude this lemma. �
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4.2. Summary of results on Deligne–Lusztig representations. In this section, we recall
some standard facts on Deligne–Lusztig representations and fix the notation that will be used
throughout this paper. We closely follow [Her09]. Throughout this article we will only focus the
group G(Fp) = GLn(Fp), which is the fixed point set of the standard (p-power) Frobenius F inside

GLn(Fp). We will identify a variety over Fp with the set of its Fp-rational points for simplicity.
Then our fixed maximal torus T is F-stable and split.

To each pair (T, θ) consisting of an F-stable maximal torus T and a homomorphism θ : TF →
Q
×
p , Deligne–Lusztig [DL76] associate a virtual representation RθT of GLn(Fp). (We restrict ourself

to GLn(Fp) although the result in [DL76] is much more general.) On the other hand, given a pair
(w, µ) ∈ W ×X(T ), one can construct a pair (Tw, θw,µ) by the method in the third paragraph of

[Her09], Section 4.1. Then we denote by Rw(µ) the representation corresponding to R
θw,µ
Tw after

multiplying a sign. This is the so-called Jantzen parametrization in [Jan81] 3.1.
The representations RθT (resp. Rw(µ)) can be isomorphic for different pairs (T, θ) (resp. (w, µ)),

and the explicit relation between is summarized in [Her09], Lemma 4.2. As each p-regular character
µ ∈ X(T )/(p − 1)X(T ) of T (Fp) can be lift to an element in Xreg

1 (T ) which is unique up to
(p− 1)X0(T ), the representation Rw(µ) is well defined for each w ∈W and such a µ.

We recall the notation Θ(θ) for a cuspidal representation for GLn(Fp) from [Her06], Section 2.1
where θ is a primitive character of F×pn defined in [Her09], Section 4.2. We refer further discussion
about the basic properties and references of Θ(θ) to [Her06], Section 2.1. The relation between the
notation Rw(µ) and the notation Θ(θ) is summarized in [Her09], Lemma 4.7. In this paper, we
will use the notation Θm(θm) for a cuspidal representation for GLm(Fp) where θm is a primitive
character of F×pm .

We emphasize that, as a special case of [Her09], Lemma 4.7, we have the natural isomorphism

R1(µ) ∼= Ind
G(Fp)

B(Fp)µ̃

for a p-regular character µ of T (Fp), where µ̃ is the Teichmüller lift of µ.

4.3. A multiplicity one theorem. The main target of this section is to prove Corollary 4.3.7,
which immediately implies our main multiplicity one theorem, Theorem 4.8.2. In fact, Theo-
rem 4.8.2 is a special case of Corollary 4.3.7.

We recall some notation from [Jan03]. We use the notation Gr for the r-th Frobenius kernel
defined in [Jan03] Chapter I 9 as kernel of r-th iteration of Frobenius morphism on the group

scheme G over Fp. We will consider the subgroup scheme GrT , GrB, GrB
−

of G in the following.

Note that our B (resp. B
−

) is denoted by B+ (resp. B) in [Jan03] Chapter II 9. We define

Ẑ ′r(λ) := indGrB
−

B
− λ;

Ẑr(λ) := coindGrB
B

λ

where ind and coind are defined in I 3.3 and I 8.20 of [Jan03] respectively. By [Jan03] Proposition

II 9.6 we know that there exists a simple GrT -module L̂r(λ) satisfying

socGr

(
Ẑ ′r(λ)

)
∼= L̂r(λ) ∼= cosocGr

(
Ẑr(λ)

)
.

The properties of Ẑ ′r(λ) and Ẑr(λ) are systematically summarized in [Jan03] II 9, and therefore
we will frequently refer to results over there.

From now on we assume r = 1 in this section.
Now we recall several well-known results from [Jan81], [Jan84] and [Jan03]. We recall the

definition of W̃ res from (4.0.5).
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Theorem 4.3.1 ([Jan81], Satz 4.3). Assume that µ + η is in the lowest p-restricted alcove and
2n-generic (Definition 4.1.1). Then we have

Rw(µ+ η) =
∑

w̃′∈W̃ res

ν∈X(T )

[Ẑ1(µ− pν + pη) : L̂1(w̃′ · µ)]F (w̃′ · (µ+ wν)).

Proposition 4.3.2 ([Jan03], Corollary II 6.24). Let λ ∈ X(T )+. Suppose µ ∈ X(T ) is maximal
for µ ↑ λ and µ 6= λ. If µ ∈ X(T )+ and if µ 6= λ− pα for all α ∈ Φ+, then

[H0(λ) : F (µ)] = 1.

If M is an arbitrary G-module, we use the notation M [1] for the Frobenius twist of M as defined
in [Jan03], I 9.10.

Proposition 4.3.3 ([Jan03], Proposition II 9.14). Let λ ∈ X(T )+. Suppose each composition

factor of Ẑ ′1(λ) has the form L̂1(µ0 + pµ1) with µ0 ∈ X1(T ) and µ1 ∈ X(T ) such that

〈µ1 + η, β∨〉 ≥ 0

for all β ∈ ∆. Then H0(λ) has a filtration with factors of the form F (µ0)⊗H0(µ1)[1]. Each such

module occurs as often as L̂1(µ0 + pµ1) occurs in a composition series of Ẑ ′1(λ).

Remark 4.3.4. Note that if µ1 is in the lowest p-restricted alcove, then F (µ0)⊗H0(µ1)[1] = F (µ)
by Steinberg tensor product theorem.

Lemma 4.3.5 ([Jan03], Lemma II 9.18 (a)). Let L̂1(µ) be a composition factor of Ẑ ′1(λ), and
write

λ+ η = pλ1 + λ0 and µ = pµ1 + µ0

with λ0, µ0 ∈ X1(T ) and λ1, µ1 ∈ X(T ).
If

(4.3.1) 〈λ, α∨〉 ≥ n− 2

for all α ∈ Φ+, then

〈µ1 + η, β∨〉 ≥ 0

for all β ∈ Φ+.

Proof. We only need to mention that hα = n for all α ∈ Φ+ and for our group G = GLn/Fp , where
hα is defined in [Jan03], Lemma II 9.18. �

We define an element sα,m ∈ W̃ by

sα,m · λ = sα · λ+mpα

for each α ∈ Φ+ and m ∈ Z.

Theorem 4.3.6. Let λ, µ ∈ X(T ) such that

(4.3.2) µ = sα,m · λ and mp < 〈λ+ η, α∨〉 < (m+ 1)p.

Assume further that there exists ν ∈ X(T ) such that λ+ pν satisfies the condition (4.3.1) and that
ν and µ1 + ν are in the lowest p-restricted alcove.

Then we have

[Ẑ1(λ) : L̂1(µ)] = 1.
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Proof. The condition (4.3.2) ensures that for any fixed ν ∈ X(T ), µ+ pν is maximal for µ+ pν ↑
λ+ pν and µ+ pν 6= λ+ pν. Notice that we have

[Ẑ1(λ) : L̂1(µ)] = [Ẑ ′1(λ) : L̂1(µ)]

by II 9.2(3) in [Jan03], as the character of a GrT -module determine its Jordan–Hölder factors with
multiplicities (or equivalently, determine the semisimplification of the GrT -module).

By II 9.2(5) and II 9.6(6) in [Jan03] we have

[Ẑ ′1(λ) : L̂1(µ)] = [Ẑ ′1(λ)⊗ pν : L̂1(µ)⊗ pν] = [Ẑ ′1(λ+ pν) : L̂1(µ+ pν)],

and thus we may assume that
〈λ, α∨〉 ≥ n− 2

for all α ∈ Φ+ by choosing appropriate ν (which exists by our assumption) and replacing λ by
λ+ pν and µ by µ+ pν. Then by Lemma 4.3.5 we know that

〈µ′1 + η, β∨〉 ≥ 0

for any µ′ = pµ′1 + µ′0 such that L̂1(µ′) is a factor of Ẑ ′1(λ).
Thus by Proposition 4.3.3, Proposition 4.3.2 and Remark 4.3.4 we know that

[Ẑ ′1(λ) : L̂1(µ)] = [H0(λ) : F (µ0)⊗H0(µ1)[1]] = [H0(λ) : F (µ)] = 1

which finishes the proof. �

We pick an arbitrary principal series π and write

µπ = (d1, · · · , dn)

For each pair of integers (i1, j1) satisfying 0 ≤ i1 < i1 + 1 < j1 ≤ n− 1, we define

µi1,j1π := (di1,j11 , · · · , di1,j1n )

where

di1,j1k =

 dk if k 6= n− j1 and k 6= n− i1;
dn−i1 + j1 − i1 − 1 if k = n− i1;
dn−j1 − j1 + i1 + 1 if k = n− j1.

Corollary 4.3.7. Assume that µπ is 2n-generic in the lowest alcove (cf. Definition 4.1.1). Then

F (µi1,j1π ) has multiplicity one in π, or equivalently in Ind
G(Fp)

B(Fp)µ
w
π for any w ∈W .

Proof. We notice at first that each Ind
G(Fp)

B(Fp)µ
w
π has the same Jordan–Hölder factor as π with the

same multiplicity as each of them is a mod p reduction of certain lattice of the same characteristic
0 representation of G(Fp). We are going to apply Theorem 4.3.6 and Theorem 4.3.1 to determine
the multiplicity of F (µi1,j1π ) in π. We use the shortened notation

α′i1,j1 :=

n−1−i1∑
r=n−j1

αr.

We choose w = 1 in Theorem 4.3.1 and take

µ+ η := µπ = µi1,j1π + (j1 − i1 − 1)α′i1,j1 .

We would like to consider the multiplicity of F (µi1,j1π ) in π = R1(µ+η). We will follow the notation
of Theorem 4.3.1 except that we will replace the notation ν in Theorem 4.3.1 with the notation

ν0. We take w̃′ := 1 ∈ W̃ res as well as

ν0 := η − (j1 − i1 − 1)α′i1,j1

and then note that
µi1,j1π = µ+ ν0.
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We deduce from II 9.16 (5) in [Jan03] the following equality
(4.3.3)

[Ẑ1 ((µ+ η − pν0) + (p− 1)η) : L̂1(µ)] = [Ẑ1 ((n− j1, n− i1)(µ+ η − pν0) + (p− 1)η) : L̂1(µ)].

We set

λ := (n− j1, n− i1)(µ+ η − pν0) + (p− 1)η

and observe that

(4.3.4) λ = (n− j1, n− i1) · (µ− pν0) + pη

= (n− j1, n− i1) · µ+ p
(
η − (n− j1, n− i1)η − (j1 − i1 − 1)α′i1,j1

)
= (n− j1, n− i1) · µ+ pα′i1,j1 .

Therefore we have

p < 〈λ, α′i1,j1〉 < 2p

and that

µ = sα′i1,j1 ,p
· λ.

Moreover, it is easy to see that

λ+ pη = (n− j1, n− i1) · µ+ pα′i1,j1 + pη

satisfies (4.3.1).
We take ν := λ and then apply Theorem 4.3.6, (4.3.3) as well as the obvious equality

(µ− pν0) + pη = (µ+ η − pν0) + (p− 1)η

and conclude that

[Ẑ1 ((µ− pν0) + pη) : L̂1(µ)] = [Ẑ1(λ) : L̂1(µ)] = 1

which implies that F (µi1,j1π ) = F (µ + ν0) has multiplicity one in R1(µ+ η) = Ind
G(Fp)

B(Fp)µπ by

Theorem 4.3.1. �

4.4. Jacobi sums in characteristic 0. In this section, we establish an intertwining identity for
lifts of Jacobi sums in characteristic 0 in Theorem 4.4.9, which is one of the main ingredients of
the proof of Theorem 5.6.2. All of our calculations here are in the setting of G(Qp) = GLn(Qp).
We first fix some notation.

Let A ∈ G(Fp). By dAe we mean the matrix in G(Qp) whose entries are the classical Teichmüller
lifts of the entries of A. The map A 7→ dAe is obviously not a group homomorphism but only a
map between sets. On the other hand, we use the notation µ̃ for the Teichmüller lift of a character
µ of T (Fp).

We denote the standard lifts of simple reflections in G(Qp) by

si =


Idi−1

1
1

Idn−i−1


for 1 ≤ i ≤ n− 1. We also use the following notation

ti =

(
pIdi

Idn−i

)
for 1 ≤ i ≤ n. Let

(4.4.1) Ξn := w∗t1,
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where w∗ := sn−1 • ... • s1. We recall the Iwahori subgroup I and the pro-p Iwahori subgroup I(1)
from the beginning of Section 4. Note that the operator Ξn and the group I actually generate the
normalizer of I inside G(Qp). One easily sees that Ξn is nothing else than the following matrix:

Ξn =



0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1
p 0 0 · · · 0 0 0


∈ G(Qp).

For each 1 ≤ i ≤ n − 1, we consider the maximal parabolic subgroup P−i of G containing
lower-triangular Borel subgroup B− such that its Levi subgroup can be chosen to be GLi×GLn−i
which embeds into G in the standard way. We denote the unipotent radical of P−i by N−i . Then
we introduce

(4.4.2) U in =
∑

A∈N−i (Fp)

t−1
i dAe for each 1 ≤ i ≤ n− 1.

Note that each A ∈ N−i has the form(
Idi 0(n−i)×i

∗i×(n−i) Idn−i

)
for each 1 ≤ i ≤ n− 1.

For each w ∈ W and each tuple k = (kα)α∈Φ+
w
∈ {0, . . . , p − 1}|Φ+

w|, we consider the following
Jacobi sum

Ŝk,w :=

 ∑
A∈Uw(Fp)

 ∏
α∈Φ+

w

dAαekα
 dAe

w ∈ Zp[G(Zp)].

In particular, we consider

Ŝw :=

 ∑
A∈Uw(Fp)

dAe

w ∈ Zp[G(Zp)]

which is a characteristic 0 lift of S0,w.
Recall the notation π̃◦ from (4.1.1).

Lemma 4.4.1. Assume that µπ is n-generic (Definition 4.1.1). We have the equality

Ŝw • Ŝw′ = p
`(w)+`(w′)−`(ww′)

2 Ŝww′

on (π̃◦)I(1) for all w,w′ ∈W .

Proof. One can quickly reduce the general case to the following two elementary equalities on
(π̃◦)I(1):

(4.4.3) Ŝw • Ŝw′ = Ŝww′ if `(ww′) = `(w) + `(w′)

and

(4.4.4) Ŝsr • Ŝsr = p for all 1 ≤ r ≤ n− 1.

The equality (4.4.3) follows directly from the definition of the Jacobi sum operators. The equality
(4.4.4) follows from a simple Bruhat decomposition. In fact, we have for each t 6= 0

sruαr (t)sr = uαr (t
−1)srdiag(1, · · · , 1, t,−t−1, 1, · · · , 1)uαr (t

−1)
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where the diagonal matrix has t at (r, r)-entry and −t−1 at (r+ 1, r+ 1)-entry. Therefore for each
v̂ ∈ (π̃◦)I(1) there exists an integer n ≤ ` ≤ p− n such that

diag(1, · · · , 1, t,−t−1, 1, · · · , 1)v̂ = ±dte`v̂
and thus

Ŝsr • Ŝsr v̂ =

∑
t′∈Fp

uαr (t
′)

v̂ ±∑
t∈F′p

dte`duαr (t−1)esrv̂


= pv̂ ±

 ∑
t′∈Fp,t∈Fp

dte`duαr (t′ + t−1)esr

 v̂

= pv̂.

This finishes the proof. �

Lemma 4.4.2. We have the equality

(Ξn)k • Ukn = Ŝ(w∗)k .

Proof. This is immediate by definition. �

We quickly recall some standard facts about Jacobi sums and Gauss sums. We fix a primitive
p-th root of unity ξ ∈ E and set ε := ξ − 1. For each pair of integers (a, b) with 0 ≤ a, b ≤ p− 1,
we set

J(a, b) :=
∑
λ∈Fp

dλead1− λeb.

We also set
G(a) :=

∑
λ∈Fp

dλeaξλ

for each integers a with 0 ≤ a ≤ p− 1. For example, we have G(p− 1) = −1.
It is known by section 1.1, GS3 of [Lang] that if a+ b 6≡ 0 mod (p− 1), we have

J(a, b) =
G(a)G(b)

G(a+ b)
.

It is also obvious from the definition that if a, b, a+ b 6≡ 0 mod (p− 1) then

J(b, a) = J(a, b) = (−1)bJ(b, [−a− b]1) = (−1)aJ(a, [−a− b]1).

By Stickelberger’s theorem ([Lang], Section 1.2, Theorem 2.1), we know that

(4.4.5) ordp(G(a)) = 1− a

p− 1
and

G(a)

εp−1−a ≡ a! (mod p).

Let r ∈ Z with 1 ≤ r ≤ n − 1 and w ∈ W . Given the data µπ = (d1, d2, · · · , dn) and tuple

k ∈ {0, . . . , p− 1}|Φ+
w|, we define a tuple

k′ ∈

{
{0, . . . , p− 1}|Φ+

w| if `(wsr) < `(w);

{0, . . . , p− 1}|Φ
+
wsr
| if `(wsr) > `(w)

by

k′α =

{
kα if α ∈ Φ+

w ;
0 if α = wαr

in the first case and

k′α =

{
[kwαr − dr + dr+1]1 if α = wαr;

kα if α ∈ Φ+
w and α 6= wαr

in the second case.



62 CHOL PARK AND ZICHENG QIAN

Proposition 4.4.3. Assume that µπ = (d1, d2, · · · , dn) is n-generic and that

kα = 0 for all α ∈ Φ+
w with wαr < α.

Assume further that if `(wsr) < `(w) then kwαr 6∈ {0, p− 1, [dr − dr+1]1}.
Then for each 1 ≤ r ≤ n− 1 we have

Ŝk,w • Ŝsr =

{
Ŝk′,wsr if `(wsr) > `(w);

(−1)dr+1J(kwαr , [dr+1 − dr]1)Ŝk′,w if `(wsr) < `(w)

on (π̃◦)I(1),µ̃π .

Proof. By definition we have

Ŝk,w • Ŝsr =
∑

A∈U(Fp),t∈Fp

 ∏
α∈Φ+

w

dAαekα
 dAewduαr (t)esr.

We divide it into two cases:

(i) `(wsr) > `(w);
(ii) `(wsr) < `(w).

In case (i), we have the Bruhat decomposition

Awuαr (t)sr = Auwαr (t)wsr

and thus

Ŝk,w • Ŝsr = Ŝk′,wsr .
In case (ii), we have the Bruhat decompositions: if t = 0

Awuαr (0)sr = A(wsr) = A′′wsruαr (Awαr )

where A′′ is the unipotent matrix that has the same entries as A except a zero at wαr-entry;
if t 6= 0

Awuαr (t)sr = Auwαr (t
−1)wdiag(1, · · · , t,−t−1, · · · , 1)uαr (t

−1).

We fix a vector v̂π ∈ (π̃◦)I(1),µ̃π whose mod p reduction is non-zero. Therefore, we have

Ŝk,w • Ŝsr v̂π = (−1)dr+1

∑
A∈Uw(Fp),t∈F×p

 ∏
α∈Φ+

w

dAαekα
 dtedr−dr+1dAeuwαr (t−1)wv̂π

+
∑

A∈Uw(Fp)

 ∏
α∈Φ+

w

dAαekα
 dAewsrv̂π.

The summation
∑
A∈Uw(Fp)

(∏
α∈Φ+

w
dAαekα

)
Awsrv̂π can be rewritten as

∑
A′′∈Uwsr (Fp)

 ∏
α∈Φ+

wsr

dAαekα
 ∑

Awαr∈Fp

dAwαrekwαr

A′′wsrv̂π

which is 0 as we assume 0 < kwαr < p− 1. Hence, we have

Ŝk,w0
• Ŝsr v̂π = (−1)dr+1

∑
A∈Uw(Fp),t∈F×p

 ∏
α∈Φ+

w

dAαekα
 dtedr−dr+1dAuwαr (t−1)ewv̂π.
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On the other hand, after setting A′ = Auwαr (t
−1) we have

(4.4.6)
∑

A∈Uw(Fp),t∈F×p

 ∏
α∈Φ+

w

dAαekα
 dtedr−dr+1dAuwαr (t−1)ewv̂π

=
∑

A′∈Uw(Fp),t∈F×p

 ∏
α∈Φ+

wsr

dAαekα
 d(A′wαr − t−1)ekwαr dtedr−dr+1dA′ewv̂π

since kα = 0 for all wαr < α.
One can easily check that if A′wαr = 0 then∑

t∈F×p

d(A′wαr − t
−1)ekwαr dtedr−dr+1 = (−1)kwαr

∑
t∈Fp

dtedr−dr+1−kwαr = 0,

and if A′wαr 6= 0 then∑
t∈F×p

d(A′wαr − t
−1)ekwαr dtedr−dr+1

= dA′wαre
kwαr−dr+dr+1

∑
t∈Fp

d(1− (A′wαr t)
−1)ekwαr d(A′wαr t)

−1)dr+1−dre


= J(kwαr , [dr+1 − dr]1)dA′wαre

[kwαr−dr+1+dr]1 .

Combining these computations with (4.4.6) finishes the proof. �

Remark 4.4.4. Proposition 4.4.3 is the technical heart of this section. It roughly says that
[U(Fp), U(Fp)]-invariant vectors behave well under intertwining of principal series, which is es-
sentially why the identities in Theorem 4.4.9 and Proposition 5.5.1 exist. On the other hand, it is
crucial that the vector v̂π is invariant under duαr (t)e for t ∈ Fp.

From now on we fix an n-tuple of integers (an−1, · · · , a0) which is assumed to be n-generic in
the lowest alcove (cf. Definition 4.1.1). We let

µ∗ := (an−1 − n+ 2, an−2, an−3, · · · , a2, a1, a0 + n− 2);
µ1 := (a1, a2, · · · , an−3, an−2, an−1, a0);
µ′1 := (an−1, a0, a1, a2, · · · , an−3, an−2);
µ0 := (an−1, a1, a2 · · · , an−3, an−2, a0)

and

(4.4.7)

{
π0 := Ind

G(Fp)

B(Fp)µ0;

π̃◦0 := Ind
G(Fp)

B(Fp)µ̃0

where µ̃0 is the Teichmüller lift of µ0. Then we recursively define sequences of elements in the
Weyl group W by {

w1 = 1, wm = sn−mwm−1;
w′1 = 1, w′m = smw

′
m−1

for all 2 ≤ m ≤ n− 1, where sm are the reflection of the simple roots αm. We define the sequences
of characters of T (Fp)

µm := µwm1 and µ′m := (µ′1)w
′
m

for all 1 ≤ m ≤ n− 1. In particular, we have µn−1 = µ0 = µ′n−1.
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We let k1 = (k1
i,j), k

1,′ = (k1,′
i,j) and k0 = (k0

i,j), where

(4.4.8)


k1
i,i+1 = [a0 − an−i]1 + n− 2;

k1,′
i,i+1 = [an−i−1 − an−1]1 + n− 2;

k0
i,i+1 = [a0 − an−1]1 + n− 2

for 1 ≤ i ≤ n− 1 and k1
i,j = k1,′

i,j = k0
i,j = 0 otherwise.

We also define several families of Jacobi sums:

Ŝkm,w0
and Ŝkm,′,w0

for all integers m with 1 ≤ m ≤ n− 1, where km = (kmi,j) satisfies

kmi,j =

 n− 2 + [a0 − an−1]1 if 1 ≤ i = j − 1 ≤ m;
n− 2 + [a0 − an−i]1 if m+ 1 ≤ i = j − 1 ≤ n− 1;
0 otherwise

and km,′ = (km,′i,j ) satisfies

km,′i,j =

 n− 2 + [an−i−1 − an−1]1 if 1 ≤ i = j − 1 ≤ n−m− 1;
n− 2 + [a0 − an−1]1 if n−m ≤ i = j − 1 ≤ n− 1;
0 otherwise.

We keep the notation in (4.4.7) and recall that k0 is defined in (4.4.8) and satisfies

(4.4.9) k0 = kn−1 = kn−1,′.

We also define

(4.4.10)

{
κ

(1)
n := (−1)

∑n−2
m=1 am

∏n−2
m=1 J(n− 2 + [a0 − an−m−1]1, [an−m−1 − an−1]1);

κ
(2)
n := (−1)(n−2)a0

∏n−2
m=1 J(n− 2 + [am − an−1]1, [a0 − am]1).

Proposition 4.4.5. Assume that (an−1, · · · , a0) is n-generic.
Then we have

Ŝk1,w0
• Ŝw−1

n−1
= κ(1)

n Ŝk0,w0
and Ŝk1,′,w0

• Ŝ(w′n−1)−1 = κ(2)
n Ŝk0,w0

on the 1-dimensional space (π̃◦0)I(1),µ̃0 .

Proof. By the case w = w0 of Proposition 4.4.3 and the fact that

kmm+1,m+2 = n− 2 + [a0 − an−m−1]1 and km,′n−m−1,n−m = n− 2 + [am − an−1]1

we have

Ŝkm,w0
• Ŝsn−m−1

= (−1)an−m−1J(n− 2 + [a0 − an−m−1]1, [an−m−1 − an−1]1)Ŝkm+1,w0

and
Ŝkm,′,w0

• Ŝsm+1 = (−1)a0J(n− 2 + [am − an−1]1, [a0 − am]1)Ŝkm+1,′,w0

on the 1-dimensional space (π◦0)I(1),µ̃0 for all 1 ≤ m ≤ n − 2. Using the equality (4.4.9) together
with Lemma 4.4.1 one can write

Ŝw−1
n−1

= Ŝsn−2
• · · · • Ŝs1 , and Ŝ(w′n−1)−1 = Ŝs2 • · · · • Ŝsn−1

.

Hence, we finish the proof by induction on m. �

Lemma 4.4.6. We have κ
(1)
n ≡ (−1)

∑n−2
m=1 am

(∏n−2
m=1

(n−2+[a0−an−m−1]1)!([an−m−1−an−1]1)!
(n−2+[a0−an−1]1)!

)
(mod p);

κ
(2)
n ≡ (−1)(n−2)a0

(∏n−2
m=1

(n−2+[am−an−1]1)!([a0−am]1)!
(n−2+[a0−an−1]1)!

)
(mod p).

In particular,
ordp(κ

(1)
n ) = ordp(κ

(2)
n ) = 0.
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Proof. This follows directly from (4.4.5), the definition of κ
(1)
n , κ

(2)
n , and the fact that (an−1, · · · , a0)

is n-generic. �

Corollary 4.4.7. Assume that (an−1, · · · , a0) is n-generic.
Then we have

Ŝk1,w0
= pn−2κ(1)

n Ŝk0,w0
• Ŝwn−1

and Ŝk1,′,w0
= pn−2κ(2)

n Ŝk0,w0
• Ŝw′n−1

on the 1-dimensional space (π̃◦0)I(1),µ̃0 .

Proof. It follows from Lemma 4.4.1 that

Ŝw−1
n−1
• Ŝwn−1 = pn−2 = Ŝ(w′n−1)−1 • Ŝw′n−1

,

so that this follows from Proposition 4.4.5 and Lemma 4.4.1. �

We define two important Jacobi sum operators (in characteristic p) Sn and S ′n to be

(4.4.11) Sn := Sk1,w0
and S ′n := Sk1,′,w0

.

Corollary 4.4.8. We have the equality

Sn
(
π
U(Fp),µ1

0

)
= S ′n

(
π
U(Fp),µ′1
0

)
= Sk0,w0

(
π
U(Fp),µ0

0

)
.

Proof. It follows from Lemma 4.1.6 that

S0,w−1
n−1

(
π
U(Fp),µ0

0

)
= π

U(Fp),µ1

0 and S0,(w′n−1)−1

(
π
U(Fp),µ0

0

)
= π

U(Fp),µ′1
0 .

Hence we finish the proof by the reduction modulo p of identities in Proposition 4.4.5 and the fact

that the reduction modulo p of Ŝw is S0,w for each w ∈W . �

As in (4.4.11), we use the shortened notation

Ŝn := Ŝk1,w0
and Ŝ ′n := Ŝk1,′,w0

and note that Sn (resp. S ′n) is the reduction modulo p of Ŝn (resp. Ŝ ′n).
To state the main result in this section, we also define

(4.4.12) Pn :=

n−2∏
k=1

n−2∏
j=1

[ak − an−1]1 + j

[a0 − ak]1 + j
=

n−2∏
k=1

n−3∏
j=0

ak − an−1 + j

a0 − ak + j
∈ Z×p ,

(4.4.13) ε∗ :=

n−2∏
m=1

(−1)a0−am ,

and

(4.4.14) κn := κ(2)
n (κ(1)

n )−1.

The main result of this section is the following theorem, which is a generalization of the case
n = 3 in [HLM], (3.2.1).

Theorem 4.4.9. Let

Πn := Ind
G(Qp)

B(Qp)χ

be a tamely ramified principal series representation where the χ = χ1 ⊗ · · · ⊗ χn : T (Qp)→ E× is
a smooth character satisfying χ|T (Zp) = µ̃1.

On the 1-dimensional subspace Π
I(1),µ̃1
n we have the identity:

Ŝ ′n • (Ξn)n−2 = pn−2κn

(
n−2∏
k=1

χk(p)

)
Ŝn
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for κn ∈ O×E (defined in (4.4.14)) such that

κn ≡ ε∗Pn(an−1, · · · , a0) (mod $E)

where ε∗ = ±1 is the sign function defined in (4.4.13) and Pn is the rational function defined in
(4.4.12).

The following is a direct generalization of Lemma 3.2.5 in [HLM].

Lemma 4.4.10. We have the equality

Urn =

(
r∏

k=1

χk(p)

)−1

on the 1-dimensional space Π
I(1),µ̃1
n for each 1 ≤ r ≤ n− 1.

Proof. The proof of this lemma is an immediate calculation which is parallel to that of [HLM],
Lemma 3.2.5. �

Proof of Theorem 4.4.9. Notice that

w′n−1(w∗)n−2 = wn−1 and `(w′n−1) + `((w∗)n−2) = 3(n− 2) = `(wn−1) + 2(n− 2),

so that by Lemma 4.4.1 we have

(4.4.15) Ŝw′n−1
• Ŝ(w∗)n−2 = pn−2Ŝwn−1 .

By composing Ŝk0,w0
on both sides of (4.4.15), we deduce from Proposition 4.4.5 that

(κ(2)
n )−1Ŝ ′n • Ŝ(w∗)n−2 = pn−2(κ(1)

n )−1Ŝn
and thus

Ŝ ′n • Ŝ(w∗)n−2 = pn−2κnŜn

on the 1-dimensional subspace Π
I(1),µ̃1
n . Now Lemma 4.4.2 together with Lemma 4.4.10 gives rise

to the identity in the statement of this theorem.
Finally, one can readily check from Lemma 4.4.6 that

κn = κ(2)
n (κ(1)

n )−1

≡ (−1)
∑n−2
m=1 a0−am

n−2∏
m=1

(n− 2 + [a0 − an−m−1]1)!([an−m−1 − an−1]1)!

(n− 2 + [am − an−1]1)!([a0 − am]1)!

≡ (−1)
∑n−2
m=1 a0−am

n−2∏
m=1

n−2∏
`=1

`+ [a0 − am]1
`+ [am − an−1]1

≡ ε∗Pn (mod $E).

Note that ordp(κn) = 0. This completes the proof. �

4.5. Special vectors in a dual Weyl module. We fix a tuple of integers h := (h1, · · · , hs) for
some 1 ≤ s ≤ n− 1 such that

1 ≤ hr ≤ n− 1 for all 1 ≤ r ≤ s

and
s∑
r=1

hr = n− 1.
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Then we can define n − 1 positive roots βh,i for 1 ≤ i ≤ n − 1 as follows. Given an integer
1 ≤ i ≤ n− 1, there exists a unique integer 0 ≤ r0 ≤ s− 1 such that

r0∑
r=1

hr < i ≤
r0+1∑
r=1

hr,

and we use the notation

[i]h :=

r0∑
r=1

hr.

Then we define

βh,i :=

i∑
k=1+[i]h

αk.

Note in particular that we always have

βh,1 = α1.

Then we define

Φ+
h := {α ∈ Φ+ | α 6= βh,i for all 1 ≤ i ≤ n− 1}

and notice that this set gives an unipotent group Uh ( U by setting

Uh :=
∏
α∈Φ+

h

Uα.

We emphasize that all Uh constructed here are good in the sense of Definition 4.1.7. In particular,
if s = n− 1 and hr = 1 for 1 ≤ r ≤ n− 1 we recover [U,U ], and if s = 1 and h1 = n− 1 we recover
U1 (cf. Example 4.1.8). We define Uh as the reduction of Uh mod p. If we mark the positive roots
βh,i by a • on their corresponding upper-triangular entry, we get the following matrix looking like
a ladder with s steps

1 • · · · • • 0 0 · · · 0 0 0 · · · · · · 0
1 · · · 0 0 0 0 · · · 0 0 0 · · · · · · 0

. . .
...

...
...

...
. . .

...
...

...
. . .

. . .
...

1 0 0 0 · · · 0 0 0 · · · · · · 0
1 • • · · · • 0 0 · · · · · · 0

1 0 · · · 0 0 0 · · · · · · 0
1 · · · 0 0 0 · · · · · · 0

. . .
...

...
...

. . .
. . .

...
1 • • · · · · · · 0

1 0 · · · · · · 0
1 · · · · · · 0

. . .
. . .

...
. . .

...
1


Let R be a Fp-algebra, and A ∈ G(R) a matrix. For J1, J2 ⊆ {1, 2, · · · , n − 1, n}, we write

AJ1,J2
for the submatrix of A consisting of the entries of A at the (i, j)-position for i ∈ J1, j ∈ J2.

We define

J i0 := {1, 2, · · · , i} ⊆ {1, · · · , n}
for each 1 ≤ i ≤ n. Given a tuple h as above, we define the subsets J ih ⊆ {1, · · · , n} for 1 ≤ i ≤ n−1
as

J ih := {1, 2, · · · , i+ 1} \ {[i+ 1]h + 1}.



68 CHOL PARK AND ZICHENG QIAN

It is easy to see that |J ih| = i for 1 ≤ i ≤ n− 1. We define

Dh,i := det
(

(w0A)Ji0,Jih

)
for all 1 ≤ i ≤ n− 1. We also set Di := det(w0A)Ji0,Ji0 for 1 ≤ i ≤ n. Hence, Dh,i (1 ≤ i ≤ n− 1)

and Di (1 ≤ i ≤ n) are polynomials over the entries of A.
Given a weight λ ∈ X+(T ), we now introduce an explicit model for the representation H0(λ),

and then start some explicit calculation. Consider the space of polynomials on G/Fp , which is

denoted by O(G). The space O(G) has both a left action and a right action of B induced by right
translation and left translation by B on G respectively. The fraction field of O(G) is denoted by
M(G).

Consider the subspace

O(λ) := {f ∈ O(G) | f · b = w0λ(b)f ∀b ∈ B},

which has a natural left G-action by right translation. As the right action of T on O(G) is
semisimple (and normalizes U), we have a decomposition of algebraic representations of G:

O(G)U := {f ∈ O(G) | f · u = f ∀u ∈ U} = ⊕λ∈X(T )O(λ).

It follows from the definition of the dual Weyl module as an algebraic induction that we have a
natural isomorphism

(4.5.1) H0(λ) ∼= O(λ).

Note by [Jan03], Proposition II 2.6 that H0(λ) 6= 0 if and only if λ ∈ X(T )+.
We often write the weight λ explicitly as (d1, d2, · · · , dn) where di ∈ Z for 1 ≤ i ≤ n. We will

restrict our attention to a p-restricted and dominant λ, i.e., d1 ≥ d2 ≥ ... ≥ dn and di−1 − di < p
for 2 ≤ i ≤ n. We recall from the beginning of Section 4 the notation (·)λ′ for a weight space with
respect to the weight λ′. We define Σ to be the set of (n− 1)-tuple of integers m = (m1, ...,mn−1)
satisfying

0 ≤ mi ≤ di − di+1 for 1 ≤ i ≤ n− 1.

For each tuple m, we can define a vector

valg
h,m := Ddn

n

n−1∏
i=1

D
di−di+1−mi
i (Dh,i)

mi .

Proposition 4.5.1. Let λ = (d1, d2, · · · , dn) ∈ X1(T ). The set

(4.5.2) {valg
h,m | m ∈ Σ}

forms a basis of H0(λ)Uh . Moreover, the weight of valg
h,m is

λ−

(
n−1∑
i=1

miβh,i

)
and thus each element in (4.5.2) has distinct weight.

Proof. We define

UhO(G)U := {f ∈ O(G) | u1 · f = f · u = f ∀u ∈ U & ∀u1 ∈ Uh}
and

UhM(G)U := {f ∈M(G) | u1 · f = f · u = f ∀u ∈ U & ∀u1 ∈ Uh}.
We consider a matrix A such that its entries Ai,j are indefinite variables. Then we can formally
do Bruhat decomposition

A = UAw0TA,hUA,h
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such that the entries of UA, TA,h, UA,h are rational functions of Ai,j satisfying

(UA)i,j =

{
1 if i = j;
0 if i > j,

(TA,h)i,j =

 Di(A) if i = j;
Dh,k(A) if (i, j) = βh,k;
0 otherwise ,

(UA,h)i,j =

{
1 if i = j;
0 if i > j or (i, j) = βh,k for some 1 ≤ k ≤ n− 1.

For each rational function f ∈ UhM(G)U , we notice that f only depends on TA,h, which means
that f is rational function of Di for 1 ≤ i ≤ n and Dh,i for 1 ≤ i ≤ n− 1. In other word, we have

UhM(G)U = Fp
(
D1, · · · , Dn, Dh,1, · · · , Dh,n−1

)
⊆M(G).

Then we define

Uh,λ
′
O(G)U,λ := {f ∈ UhO(G)U | x · f = λ′(x)f, and f · x = λ(x)f ∀x ∈ T}

and
Uh,λ

′
M(G)U,λ := {f ∈ UhM(G)U | x · f = λ′(x)f, and f · x = λ(x)f ∀x ∈ T}.

Note that we have and an obvious inclusion

Uh,λ
′
O(G)U,λ ⊆ Uh,λ

′
M(G)U,λ.

We can also identify Uh,λ
′O(G)U,λ with H0(λ)

Uh
λ′ via the isomorphism (4.5.1). By definition of Di

(resp. Dh,i) we know that they are T -eigenvector with eigencharacter
∑i
k=1 εk (resp. (

∑i+1
k=1 εk)−

ε[i]′h) for 1 ≤ i ≤ n (resp. for 1 ≤ i ≤ n − 1). Therefore we observe that Uh,λ
′M(G)U,λ is one

dimensional for any λ, λ′ ∈ X(T ) and is spanned by

Ddn
n

n−1∏
i=1

D
di−di+1−mi
i (Dh,i)

mi

where λ = (d1, · · · , dn) and

λ′ = λ−

(
n−1∑
i=1

miβh,i

)
.

As O(G) is a UFD and Di, Dh,i are irreducible, we deduce that

Ddn
n

n−1∏
i=1

D
di−di+1−mi
i (Dh,i)

mi ∈ O(G)

if and only if

0 ≤ mi ≤ di − di+1 for all 1 ≤ i ≤ n− 1

if and only if

H0(λ)
Uh
λ′ 6= 0

which finishes the proof. �

Remark 4.5.2. The groups Uh we defined have the advantage that the Uh-invariant subspace

H0(λ)Uh ⊆ H0(λ) is a direct sum of its one dimensional weight spaces. In other word, one can

easily distinguish vectors in H0(λ)Uh using the T -action. Note that the weight spaces of H0(λ)
have very large dimensions in general.

We consider the special case of Proposition 4.5.1 when s = 1, h1 = n−1 and hence h = {n−1}.
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Corollary 4.5.3. Let λ = (d1, d2, · · · , dn) ∈ X1(T ). For λ′ ∈ X(T ), we have

dimFpH
0(λ)U1

λ′ ≤ 1.

Moreover, the set of λ′ such that the space above is nontrivial is described explicitly as follows:
consider the set Σ{n−1} of (n− 1)-tuple of integers m = (m1, ...,mn−1) satisfying mi ≤ di − di+1

for 1 ≤ i ≤ n− 1, and

valg
{n−1},m = Ddn

n

n−1∏
i=1

D
di−di+1−mi
i (D{n−1},i)

mi .

Then the set
{valg
{n−1},m | m ∈ Σ{n−1}}

forms a basis of the space H0(λ)U1 , and the weight of the vector valg
{n−1},m is

(d1 −
n−1∑
i=1

mi, d2 +m1, ..., dn−1 +mn−2, dn +mn−1).

Remark 4.5.4. Corollary 4.5.3 essentially describes the decomposition of an irreducible algebraic
representation of GLn after restricting to a maximal Levi subgroup which is isomorphic to GL1 ×
GLn−1. This classical result is crucial in the proof of Theorem 4.7.17.

4.6. Some technical formula. In this section, we prove a technical formula that will be used in
Section 4.7. The main result of this section is Proposition 4.6.5.

Throughout this section, we assume that (an−1, · · · , a0) is n-generic in the lowest alcove (cf.
Definition 4.1.1). We need to do some elementary calculation of Jacobi sums. For this purpose we
need to define the following group operators for 2 ≤ r ≤ n− 1:

X+
r :=

∑
t∈Fp

tp−2u∑n−1
i=r αi

(t) ∈ Fp[G(Fp)],

and similarly

X−r :=
∑
t∈Fp

tp−2w0u∑n−1
i=r αi

(t)w0 ∈ Fp[G(Fp)].

We notice that by definition we have the identification X+
r = X∑n−1

i=r αi,1
, where X∑n−1

i=r αi,1
is

defined in (4.1.2).

Lemma 4.6.1. For a tuple of integers k = (ki,j) ∈ {0, 1, · · · , p− 1}|Φ
+
w0
|, we have

X+
r • Sk,w0

= kr,nSkr,−,w0

where kr,− = (kr,−i,j ) satisfies kr,−r,n = kr,n − 1, and kr,−i,j = ki,j if (i, j) 6= (r, n).

Proof. This is just a special case of Lemma 4.1.2 when α0 =
∑n−1
i=r αi and m = 1. �

For the following lemma, we set

I := {(i1, i2, · · · , is) | 1 ≤ i1 < i2 < · · · < is = n for some 1 ≤ s ≤ n}
to lighten the notation.

Lemma 4.6.2. Let X = (Xi,j)1≤i,j≤n be a matrix satisfying

Xi,j = 0 if 1 ≤ j < i ≤ n− 1.

Then the determinant of X is

(4.6.1) det(X) =
∑

(i1,··· ,is)∈I

(−1)s−1Xn,i1

 ∏
j 6=ik, 1≤k≤s

Xj,j

(s−1∏
k=1

Xik,ik+1

)
.
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Proof. By definition of the determinant we know that

det(X) =
∑
w∈W

(−1)`(w)
n∏
k=1

Xk,w(k).

From the assumption on X, we know that each w that appears in the sum satisfies

(4.6.2) w(k) < k

for all 2 ≤ k ≤ n− 1.
Assume that w has the decomposition into disjoint cycles

w = (i11, i
1
2, · · · , i1n1

) · · · (im1 , im2 , · · · , imnm)

where m is the number of disjoint cycles and nk ≥ 2 is the length for the k-th cycle appearing in
the decomposition.

We observe that the largest integer in {ikj | 1 ≤ j ≤ nk} must be n for each 1 ≤ k ≤ m by
condition (4.6.2). Therefore we must have m = 1 and we can assume without loss of generality
that i1n1

= n. It follows from the condition (4.6.2) that

i1j < i1j+1

for all 1 ≤ j ≤ n1 − 1. Hence we can set

s := n1, i1 := i11, · · · , is := i1n1
.

We observe that `(w) = s− 1 and the formula (4.6.1) follows. �

Recall from the beginning of Section 4.6 that we use the notation AJ1,J2 for the submatrix of
A consisting of the entries at the (i, j)-position with i ∈ J1, j ∈ J2, where J1, J2 are two subsets of
{1, 2, · · · , n} with the same cardinality. For a pair of integers (m, r) with 1 ≤ m ≤ r − 1 ≤ n− 2,
we let

Jm,r0 := {1, 2, · · · , r, n−m+ 1}.
For a matrix A ∈ U(Fp), an element t ∈ Fp, and a triple of integers (m, r, `) satisfying 1 ≤ m ≤

r − 1 ≤ n− 2 and 1 ≤ ` ≤ n− 1, we define some polynomials as follows:

(4.6.3)


Dm,r(A, t) := det

(
u∑n−1

i=r αi
(t)w0Aw0

)
Jm,r0 ,Jn−r+1

0

when 1 ≤ m ≤ r − 1;

D
(`)
r (A, t) := det

(
u∑n−1

i=r αi
(t)w0Aw0

)
J`0 ,J

`
0

when 1 ≤ ` ≤ n− r.

We define the following subsets of I: for each 1 ≤ ` ≤ n− 1

I` := {(i1, i2, · · · , is) ∈ I | n− `+ 1 ≤ i1 < i2 < · · · < is = n for some 1 ≤ s ≤ `}.
Note that we have natural inclusions

I` ⊆ I`′ ⊆ I

if 1 ≤ ` ≤ `′ ≤ n− 1. In particular, I1 has a unique element (n). Similarly, for each 1 ≤ `′ ≤ n− 1
we define

I`
′

:= {(i1, i2, · · · , is) | 1 ≤ i1 < i2 < · · · < is−1 ≤ n− `′ < is = n for some 1 ≤ s ≤ `′},
and we set

I`
′

` := I` ∩ I`
′

for all 1 ≤ `′ ≤ ` − 1 ≤ n − 2. We often write i = (i1, · · · , is) for an arbitrary element of I, and
define the sign of i by

ε(i) := (−1)s.

We emphasize that all the matrices
(
w0u∑n−1

i=r αi
(t)w0Aw0

)
Jm,r1 ,Jn−r+1

2

for 1 ≤ m ≤ r − 1, and

all the matrices
(
w0u∑n−1

i=r αi
(t)w0Aw0

)
J`1 ,J

`
2

for 1 ≤ ` ≤ n − r, after multiplying a permutation
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matrix, satisfy the conditions on the matrix X in Lemma 4.6.2. Hence, by Lemma 4.6.2 we notice
that

(4.6.4)

{
Dm,r(A, t) = Am,r + tfm,r(A) when 1 ≤ m ≤ r − 1;

D
(`)
r (A, t) = 1− tfr,n−`+1(A) wehn 1 ≤ ` ≤ n− r

where for all 1 ≤ m ≤ r − 1

(4.6.5) fm,r(A) :=
∑

i∈In−r+1

ε(i)Am,i1 s∏
j=2

Aij−1,ij

 .

Let (m, r) be a tuple of integers with 1 ≤ m ≤ r − 1 ≤ n − 2. Given a tuple of integers

k ∈ {0, 1, · · · , p− 1}|Φ
+
w0
|, i = (i1, i2, · · · , is) ∈ In−r+1, and an integer r′ satisfying 1 ≤ r′ ≤ r, we

define four tuples of integers in {0, 1, · · · , p− 1}|Φ
+
w0
|

ki,m,r,+ = (k
i,m,r,+
i,j ), ki,m,r = (k

i,m,r
i,j ), ki,m,r,r

′,+ = (k
i,m,r,r′,+
i,j ), ki,m,r,r

′
= (k

i,m,r,r′

i,j )

as follows:

k
i,m,r,+
i,j :=


km,i1 + 1 if (i, j) = (m, i1) and i1 > r;
km,r if (i, j) = (m, r);
ki,j + 1 if (i, j) = (ih, ih+1) for 1 ≤ h ≤ s− 1;
ki,j otherwise,

k
i,m,r
i,j :=

{
k
i,m,r,+
i,j − 1 if (i, j) = (m, r) and i1 > r;

k
i,m,r,+
i,j otherwise,

and

k
i,m,r,r′,∗
i,j :=

{
k
i,m,r,∗
r′,n − 1 if (i, j) = (r′, n);

k
i,m,r,∗
i,j otherwise

where ∗ ∈ {+,∅}. Finally, we define one more tuple of integers kr,+ = (kr,+i,j ) ∈ {0, 1, · · · , p−1}|Φ
+
w0
|

by

kr,+i,j :=

{
kr,n + 1 if (i, j) = (r, n);
ki,j otherwise.

Remark 4.6.3. If we use the shortened notation αi,j =
∑j−1
k=i αk, then we clearly have the equality

(4.6.6) αm,n = αm,i1 +
∑

1≤h≤s−1

αih,ih+1
= αm,r + αr,n

as we always have is = n by definition of the tuple i. The equality (4.6.6) would imply by Lem-
ma 4.1.5 that Ski,m,r,w0

v0 and Skr,+,w0
v0 have the same T (Fp)-eigencharacter, which differs from

the one for Sk,w0
v0 by αr,n = εr − εn. Very roughly speaking, Ski,m,r,w0

v0 and Skr,+,w0
v0 exhaust

minimal modifications of Sk,w0
v0 that modify the corresponding T (Fp)-eigencharacter by αr,n, if

we vary m and i.

Lemma 4.6.4. Fix two integers r and m such that 1 ≤ m ≤ r − 1 ≤ n − 2, and let k = (ki,j) ∈
{0, 1, · · · , p− 1}|Φ

+
w0
|. Assume that ki,j = 0 for r+ 1 ≤ j ≤ n− 1 and that ki,r = 0 for i 6= m, and

assume further that

an−r − a1 + [a1 − an−1 −
n−1∑
i=1

ki,n]1 + km,r < p.
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Then we have

X−r • Sk,w0
v0 = km,r

∑
i∈In−r

ε(i)Ski,m,r,w0
v0

+ ([an−r − an−1 −
n−1∑
i=1

ki,n]1 + km,r)Skr,+,w0
v0

−
n−r∑
`=2

(an−r − a`−1 + km,r)

 ∑
i∈I`\I`−1

ε(i)Ski,r,n−`+1,+,w0
v0

 .

Proof. By the definition of X−r , we have

X−r • Sk,w0v0 =
∑

A∈U(Fp),t∈Fp

tp−2

 ∏
1≤i<j≤n

A
ki,j
i,j

w0u∑n−1
h=r αh

(t)w0Aw0

 v0.

For an element w ∈W , we use Ew to denote the subset of U(Fp)×Fp consisting of all (A, t) such
that

w0u∑n−1
h=r αh

(t)w0Aw0 ∈ B(Fp)wB(Fp).

We consider the standard parabolic subgroup P ⊇ U of G with standard Levi subgroup isomorphic
to Gr−1

m ×GLn−r+1 which induces an embedding GLn−r+1 ↪→ G. We consider the longest element
in the Weyl group of GLn−r+1 and denote its image under the embedding GLn−r+1 ↪→ G by wP .
We notice that

w0u∑n−1
h=r αh

(t)w0Aw0 ∈ GLn−r+1(Fp) · U(Fp)w0 = P (Fp)w0 ⊆
⊔

w1≤wP

B(Fp)w1w0B(Fp),

and deduce that if Ew 6= ∅ then ww0 ≤ wP and in particular ww0(i) = i for all 1 ≤ i ≤ r − 1.
We define Mw to be

Mw :=
∑

(A,t)∈Ew

tp−2

 ∏
1≤i<j≤n

A
ki,j
i,j

w0u∑n−1
h=r αh

(t)w0Aw0

 v0.

By the definition of Ew, we deduce that there exist A′ ∈ Uw(Fp), A
′′ ∈ U(Fp), and T ∈ T (Fp) for

each given (A, t) ∈ Ew such that

(4.6.7) w0u∑n−1
h=r αh

(t)w0Aw0 = A′wTA′′.

Here, the entries of A′, T and A′′ are rational functions of t and the entries of A. We can rewrite
the identity (4.6.7) as

(4.6.8) w0u∑n−1
h=r αh

(−t)w0A
′w = Aw0T

−1(T (A′′)−1T−1).

Note that the right side of (4.6.8) can also be viewed as the Bruhat decomposition of the left side.
In fact, if we define E′w as the set of elements (A′, t) ∈ Uw(Fp)× Fp satisfying

(4.6.9) w0u∑n−1
h=r αh

(−t)w0A
′w ∈ B(Fp)w0B(Fp),

then (4.6.7) and (4.6.8) imply that we have a natural bijection

Ew
∼−→ E′w, (A, t) 7→ (A′, t)

induced from isomorphism of schemes by considering Fp-points. Therefore the entries of A, T , A′′

can also be expressed as rational functions of the entries of A′.
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For each A′ ∈ Uw(Fp) and w ∈W , we define

(4.6.10)


Dw
m,r(A

′, t) := det

((
u∑n−1

i=r αi
(t)w0A

′w
)
Jm,r0 ,Jn−r+1

0

)
when 1 ≤ m ≤ r − 1;

D
w,(`)
r (A′, t) := det

((
u∑n−1

i=r αi
(t)w0A

′w
)
J`0 ,J

`
0

)
when 1 ≤ ` ≤ n− r.

Note that if w = w0, then the definition in (4.6.10) specializes to (4.6.3). We notice that for a
given matrix A′ ∈ Uw(Fp), the inclusion (4.6.9) holds if and only if

(4.6.11) Dw,(`)
r (A′,−t) 6= 0 for all 1 ≤ ` ≤ n− r.

On the other hand, using the bijection Ew
∼−→ E′w, we deduce that (4.6.11) holds for (A′, t) ∈

Uw(Fp)×Fp if and only if there exists a unique determined pair (A, t) ∈ Ew such that (4.6.7) (or
equivalently (4.6.8)) holds for some T ∈ T (Fp), A

′′ ∈ U(Fp) uniquely determined by (A′, t).
By the Bruhat decomposition in (4.6.8), we have

(4.6.12) T−1 = diag

(
Dw,(1)
r ,

D
w,(2)
r

D
w,(1)
r

, · · · , D
w,(n−r)
r

D
w,(n−1−r)
r

,
1

D
w,(n−r)
r

, 1, · · · , 1

)

in which we write D
w,(i)
r for D

w,(i)
r (A′,−t) for brevity. We also have

(4.6.13) Ai,j =


A′i,j if 1 ≤ i < j ≤ n and j ≤ r − 1;
Dw
m,r(A

′,−t) if (i, j) = (m, r);
A′i,n

D
w,(1)
r (A′,−t)

if 1 ≤ i ≤ n− 1 and j = n.

We apply (4.6.7), (4.6.13) and (4.6.12) to Mw and get

Mw =
∑

(A,t)∈Ew

F (A′, w, t)

 ∏
1≤i<j≤n

j≤r−1 or j=n

(A′i,j)
ki,j

A′w0

 v0

where

F (A′, w, t) := tp−2

(
(Dw

m,r)
km,r (Dw,(1)

r )a1−an−1−
∑n−1
i=1 ki,n

n−r∏
s=2

(Dw,(s)
r )as−as−1

)

in which we let Dw
m,r := Dw

m,r(A
′,−t) and D

w,(s)
r := D

w,(s)
r (A′,−t) for brevity. We have discussed

in (4.6.11) that (A, t) ∈ Ew is equivalent to (A′, t) ∈ Uw(Fp) × Fp satisfying the conditions in

(4.6.11). As each D
w,(s)
r (A′,−t) appears in F (A′, w, t) with a positive power, we can automatically

drop the condition (4.6.11) and get

(4.6.14) Mw =
∑

(A,t)∈Uw(Fp)×Fp

F (A′, w, t)

 ∏
1≤i<j≤n

j≤r−1 or j=n

(A′i,j)
ki,j

A′w0

 v0.

If w 6= w0, then there exist a unique integer i0 satisfying r ≤ i0 ≤ n such that ww0(i0) < i0 but
ww0(i) = i for all i0 + 1 ≤ i ≤ n.

By applying Lemma 4.6.2 to D
w,(n+1−i0)
r (A′,−t) (as (u∑n−1

i=r αi
(t)w0A

′w)J`0 ,J`0 satisfy the con-

dition of Lemma 4.6.2 after multiplying a permutation matrix), we deduce that

Dw,(n+1−i0)
r (A′,−t) = tf(A′)

where f(A′) is certain polynomial of entries of A′.
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Now we consider F (A′, w, t) as a polynomial of t. The minimal degree of monomials of t
appearing in F (A′, w, t) is at least

p− 2 + an+1−i0 − an−i0 > p− 1,

and the maximal degree of monomials of t appearing in F (A′, w, t) is

p− 2 + km,r + [a1 − an−1 −
n−1∑
i=1

ki,n]1 +

n−r∑
s=2

as − as−1

= p− 2 + km,r + [a1 − an−1 −
n−1∑
i=1

ki,n]1 + an−r − a1

< 2(p− 1).

As a result, the degree of each monomials of t in F (A′, w, t) is not divisible by p − 1. Hence, we
conclude that

Mw = 0 for all w 6= w0

as we know that
∑
t∈Fp t

k 6= 0 if and only if p− 1 | k and k 6= 0.

Finally, we compute Mw0
explicitly using (4.6.14). Indeed, by applying (4.6.4), the monomials

of t appearing in F (A′, w0, t) is nothing else than

tp−1(A′m,r)
km,r

(
−km,rfm,r(A′)(A′m,r)−1 + [a1 − an−1 −

n−1∑
i=1

ki,n]1fr,n(A′)

+

n−r∑
s=2

(as − as−1)fr,n+1−s(A
′)

)
.

As
∑
t∈Fp t

p−1 = −1, we conclude that

(4.6.15) X−r • Sk,w0
v0 = Mw0

=
∑

A′∈U(Fp)

F0(A′)

 ∏
1≤i<j≤n
j≤r or j=n

(A′i,j)
ki,j

A′w0

 v0

where

F0(A′) := (A′m,r)
km,r

(
km,rfm,r(A

′)(A′m,r)
−1 − [a1 − an−1 −

n−1∑
i=1

ki,n]1fr,n(A′)

−
n−r∑
s=2

(as − as−1)fr,n+1−s(A
′)

)
.

Recalling the explicit formula of fm,r and fr,n+1−s for 1 ≤ s ≤ n−r from (4.6.5) and then rewriting
(4.6.15) as a sum of distinct monomials of entries of A′ finishes the proof. �

Proposition 4.6.5. Keep the assumptions and the notation of Lemma 4.6.4.
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Then we have

X+
r •X−r • Sk,w0

v0 = km,rkr,n
∑

i∈In−r

ε(i)Ski,m,r,r,w0
v0

+ (kr,n + 1)

(
[an−r − an−1 −

n−1∑
i=1

ki,n]1 + km,r

)
Sk,w0v0

− kr,n
n−r∑
`=2

(an−r − a`−1 + km,r)

 ∑
i∈I`\I`−1

ε(i)Ski,r,n−`+1,r,+,w0
v0

 .

Proof. This is just a direct combination of Lemma 4.6.4 and Lemma 4.6.1. �

Remark 4.6.6. The effect of X+
r (resp. X−r ) on T (Fp)-eigencharacter is essentially χ 7→ χ+αr,n

(resp. χ 7→ χ − αr,n) where χ is the T (Fp)-eigencharacter of Sk,w0
v0. The conditions assumed

in Lemma 4.6.4 are crucial for the formula in Proposition 4.6.5. In fact, the formula in Proposi-
tion 4.6.5 is relatively simple in the sense that all the coefficients are totally explicit when we write
X+
r •X−r • Sk,w0

v0 as a linear combination of Sk′,w0
v0 for various k′.

4.7. A non-vanishing theorem. The main target of this section is to prove Theorem 4.7.17.
This theorem together with Corollary 4.4.8 immediately implies Theorem 4.8.1. We start this
section by introducing some notation.

We first define a subset Λw0
of {0, · · · , p−1}|Φ

+
w0
| consisting of the tuples k = (ki,j)i,j such that

for each 1 ≤ r ≤ n− 1 ∑
1≤i≤r<j≤n

ki,j = [a0 − an−1]1 + n− 2.

Note that the set Λw0
embeds into π0 by sending k to Sk,w0

v0. Moreover, this family of vectors
{Sk,w0

v0 | k ∈ Λw0
} shares the same eigencharacter by Lemma 4.1.5.

We define k] ∈ Λw0
where k] = (k]i,j) is defined by k]1,n = [a0 − an−1]1 + n − 2 and k]i,j = 0

otherwise. We set

V ] := 〈G(Fp) · Sk],w0
v0〉 ⊆ π0.

We also need to define some other useful elements of Λw0
. For each 1 ≤ r ≤ n − 1, we define

k],r = (k],ri,j ) ∈ Λw0
by

k],ri,j :=

 n− 2 + [a0 − an−1]1 if 2 ≤ j = i+ 1 ≤ r;
n− 2 + [a0 − an−1]1 if (i, j) = (r, n);
0 otherwise.

In particular, we have

(4.7.1) k],1 = k] and k],n−1 = k0
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where k0 is defined in (4.4.8). If we represent k by a matrix in U(Z) with (i, j)-entry given by ki,j ,

then k],r has the following form

1 k0 0 · · · 0 0 0 0 · · · 0 0
1 k0 · · · 0 0 0 0 · · · 0 0

1 · · · 0 0 0 0 · · · 0 0
. . .

...
...

...
...

. . .
...

...
1 k0 0 0 · · · 0 0

1 0 0 · · · 0 k0

1 0 · · · 0 0
1 · · · 0 0

. . .
...

...
1 0

1


where k0 := n − 2 + [a0 − an−1]1 and the unique k0 appearing on n-th column is on (r, n)-entry.

For each 1 ≤ r ≤ n−2 and 0 ≤ s ≤ [a0−an−1]1 +n−2, we define k],r,s = (k],r,si,j ) ∈ Λw0 as follows:

k],r,si,j =


n− 2 + [a0 − an−1]1 if 2 ≤ j = i+ 1 ≤ r;
n− 2 + [a0 − an−1]1 − s if (i, j) = (r, r + 1);
s if (i, j) = (r, n);
n− 2 + [a0 − an−1]1 − s if (i, j) = (r + 1, n);
0 otherwise.

In particular, we have

(4.7.2) k],r,0 = k],r+1 and k],r,[a0−an−1]1+n−2 = k],r

for each 1 ≤ r ≤ n− 2. If we represent k by a matrix in U(Z) with (i, j)-entry given by ki,j , then

k],r,s has the following form

1 k0 0 · · · 0 0 0 0 0 · · · 0 0
1 k0 · · · 0 0 0 0 0 · · · 0 0

1 · · · 0 0 0 0 0 · · · 0 0
. . .

...
...

...
...

...
. . .

...
...

1 k0 0 0 0 · · · 0 0
1 k0 − s 0 0 · · · 0 s

1 0 0 · · · 0 k0 − s
1 0 · · · 0 0

1 · · · 0 0
. . .

...
...

1 0
1


where the s appearing on n-th column is on (r, n)-entry.

We now introduce the rough idea of the proof of Theorem 4.7.17. We set

(4.7.3) V0 := 〈G(Fp) · Sk0,w0
v0〉 ⊆ π0.

The first obstacle to generalize the method of Proposition 3.1.2 in [HLM] is that V0 does not
necessarily admit a structure as G-representation in general. Our method to resolve this difficulty
is to replace Sk0,w0

v0 by Sk],w0
v0. We prove in Proposition 4.7.16 that V ] admits a structure as
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G-representation and actually can be identified with a dual Weyl module H0(µw0
0 ). (The notation

µw0
0 will be clear in the following.) Now it remains to prove that

(4.7.4) Sk],w0
v0 ∈ V0

to deduce Theorem 4.7.17. We will prove in Proposition 4.7.8 that

Sk],r,s−1,w0
v0 ∈ V0 =⇒ Sk],r,s,w0

v0 ∈ V0

for each 1 ≤ r ≤ n − 2 and 1 ≤ s ≤ [a0 − an−1]1 + n − 2. As a result, we can thus pass from

Sk0,w0
v0 ∈ V0 to Sk],r,w0

v0 ∈ V0 for r = n− 2, n− 3, · · · , 1. The identification k] = k],1 thus gives

us (4.7.4).
We firstly state three direct corollaries of Proposition 4.6.5. It is easy to check that each tuple

k appearing in the following corollaries satisfies the assumption in Proposition 4.6.5.

Corollary 4.7.1. For each 2 ≤ r ≤ n− 1 and 0 ≤ s ≤ [a0 − an−1]1 + n− 3, we have

X+
r •X−r • Sk],r−1,s,w0

v0 = ([a0 − an−1]1 + n− 2− s)2
∑

i∈In−r

ε(i)S(k],r−1,s)i,m,r,r,w0
v0

+ ([an−r − an−1]1 − s)([a0 − an−1]1 + n− 1− s)Skr−1,s,w0
v0

− ([a0 − an−1]1 + n− 2− s)
n−r∑
`=2

(an−r − a`−1 + [a0 − an−1]1 + n− 2− s)

·

 ∑
i∈I`\I`−1

ε(i)S(k],r−1,s)i,r,n−`+1,r,+,w0
v0

 .

Corollary 4.7.2. Fix two integers r and m such that 1 ≤ m ≤ r − 1 ≤ n − 2, and let k = (ki,j)
be a tuple of integers in Λw0 such that

ki,j =


0 if r + 1 ≤ j ≤ n− 1;
0 if i 6= m and j = r;
0 if r + 1 ≤ i ≤ n− 1 and j = n;
1 if (i, j) = (m, r);
1 if (i, j) = (r, n).

Then we have

X+
r •X−r • Sk,w0

v0 =
∑

i∈In−r

ε(i)Ski,m,r,r,w0
v0 + 2(an−r − a0 − n+ 3)Sk,w0

v0

−
n−r∑
`=2

(an−r − a`−1 + 1)

 ∑
i∈I`\I`−1

ε(i)Ski,r,n−`+1,r,+,w0
v0

 .

Corollary 4.7.3. Fix two integers r and m such that 1 ≤ m ≤ r − 1 ≤ n − 2, and let k = (ki,j)
be a tuple of integers in Λw0 such that

ki,j =

{
0 if r ≤ j ≤ n− 1;
0 if r ≤ i ≤ n− 1 and j = n.

Then we have

X+
r •X−r • Sk,w0

v0 = (an−r − a0 − n+ 2)Sk,w0
v0.

We now define the following constants in Fp:{
c` :=

∏`−1
k=1(ak − a0 − n+ 2 + k)2`−k−1

;
c′` := (a` − a0 − n+ 3 + `)c`
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for all 1 ≤ ` ≤ n− 1 where we understand c1 to be 1. As the tuple (an−1, · · · , a0) is n-generic in
the lowest alcove, we notice that c` 6= 0 6= c′` for all 1 ≤ ` ≤ n− 1. By definition of ck and c′k one
can also easily check that

(4.7.5)

`−1∏
k=1

(c′k − ck) = c`.

We also define inductively the constants: for each 1 ≤ ` ≤ n− 1

d`,`′ :=

{
2(a` − a0 − n+ 3) if `′ = 0;

c′`′d`,`′−1 − (a` − a`′ + 1)c`′
∏`′−1
k=1 (c′k − ck) if 1 ≤ `′ ≤ `− 1.

We further define inductively a sequence of group operators Z` as follows:

Z1 := d1,0Id−X+
n−1 •X

−
n−1 ∈ Fp[G(Fp)]

and

Z` := d`,`−1Id−
(
Z`−1 • · · · • Z1 •X+

n−` •X
−
n−`
)
∈ Fp[G(Fp)]

for each 2 ≤ ` ≤ n− 2.

Lemma 4.7.4. For 1 ≤ ` ≤ n− 1, we have the identity

d`,`−1 = (a` − a0 − n+ 2)

(
`−1∏
k=1

c′k

)
+ c′`.

Proof. During the proof of this lemma, we will keep using the following obvious identity with two
variables

(4.7.6) ab = (a+ 1)(b− 1) + a− b+ 1

By definition of d`,`−1 we know that

d`,`−1 = 2(a` − a0 − n+ 3)

`−1∏
k=1

c′k −
`−1∑
`′=1

(a` − a`′ + 1)c`′

`′−1∏
k=1

(c′k − ck)

( `−1∏
k=`′+1

c′k

)
and therefore

d`,`−1 − (a` − a0 − n+ 2)

(
`−1∏
k=1

c′k

)
= (a` − a0 − n+ 4)

`−1∏
k=1

c′k

−
`−1∑
`′=1

(a` − a`′ + 1)c`′

`′−1∏
k=1

(c′k − ck)

( `−1∏
k=`′+1

c′k

) .

Now we prove inductively that for each 1 ≤ j ≤ `− 1

(4.7.7) d`,`−1 − (a` − a0 − n+ 2)

(
`−1∏
k=1

c′k

)
= (a` − a0 − n+ 3 + j)

(
j−1∏
k=1

(c′k − ck)

)`−1∏
k=j

c′k


−

`−1∑
`′=j

(a` − a`′ + 1)c`′

`′−1∏
k=1

(c′k − ck)

( `−1∏
k=`′+1

c′k

) .
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By the identity (4.7.6), one can easily deduce that

(a` − a0 − n+ 3 + j)c′j − (a` − aj + 1)cj

= [(a` − a0 − n+ 3 + j)(aj − a0 − n+ 3 + j)− (a` − aj + 1)] cj

= (a` − a0 − n+ 4 + j)(aj − a0 − n+ 2 + j)cj

= (a` − a0 − n+ 4 + j)(c′j − cj).

Hence, we get the identity:

(4.7.8)
[
(a` − a0 − n+ 3 + j)c′j − (a` − aj + 1)cj

] `−1∏
k=j+1

c′k

(j−1∏
k=1

(c′k − ck)

)

= (a` − a0 − n+ 4 + j)

(
j∏

k=1

(c′k − ck)

) `−1∏
k=j+1

c′k

 .

Thus, if the equation (4.7.7) holds for j, we can deduce that it also holds for j + 1. By taking
j = `− 1 and using the equation (4.7.8) once more, we can deduce that

d`,`−1 − (a` − a0 − n+ 2)

(
`−1∏
k=1

c′k

)
= (a` − a0 − n+ 3 + `)

(
`−1∏
k=1

(c′k − ck)

)
.

Hence, by the equation (4.7.5), one finishes the proof. �

Proposition 4.7.5. Fix two integers r and m such that 1 ≤ m ≤ r − 1 ≤ n− 2.

(i) Let k = (ki,j) be as in Corollary 4.7.2. Then we have

(4.7.9) Zn−r • Sk,w0
= cn−rSk′,w0

where k′ = (k′i,j) is defined as follows:

k′i,j :=

 0 if (i, j) = (m, r) or (i, j) = (r, n);
1 if (i, j) = (m,n);
ki,j otherwise.

(ii) Let k = (ki,j) be as in Corollary 4.7.3. Then we have

(4.7.10) Zn−r • Sk,w0
= c′n−rSk,w0

.

We prove this proposition by a series of lemmas.

Lemma 4.7.6. Proposition 4.7.5 is true for r = n− 1.

Proof. For part (i) of Proposition 4.7.5, by applying Corollary 4.7.2 to the case r = n−1 we deduce
that

X+
n−1 •X

−
n−1 • Sk,w0v0 = 2(a1 − a0 − n+ 3)Sk,w0v0 − Ski0,m,n−1,n−1,w0

v0

where i0 = {n− 1, n}. Hence, part (i) of the proposition follows directly from the definition of Z1

and c1.
For part (ii) of Proposition 4.7.5, again by Corollary 4.7.3 to the case r = n− 1 we deduce that

X+
n−1 •X

−
n−1 • Sk,w0

v0 = (a1 − a0 − n+ 2)Sk,w0
v0.

Then we have
Z1 • Sk,w0

v0 = (a1 − a0 − n+ 4)Sk,w0
v0

and part (ii) of the proposition follows directly from the definition of c′1. �

Lemma 4.7.7. Let ` be an integer with 2 ≤ ` ≤ n−1. If Proposition 4.7.5 is true for r ≥ n−`+1,
then it is true for r = n− `.
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Proof. We prove part (ii) first. Assume that (4.7.10) holds for r ≥ n− `+ 1. In fact, for a Jacobi
sum Sk,w0

satisfying the conditions in the Corollary 4.7.3 for r = n− `, we have

X+
n−` •X

−
n−` • Sk,w0v0 = (a` − a0 − n+ 2)Sk,w0v0

by Corollary 4.7.3. Then we can deduce

Z`−1 • · · · • Z1 •X+
n−` •X

−
n−` • Sk,w0

v0 = (a` − a0 − n+ 2)

(
`−1∏
s=1

c′s

)
Sk,w0

v0

from the inductive assumption of this lemma. Hence, by definition of Z`, we have

Z` • Sk,w0v0 = d`,`−1Sk,w0v0 −Z`−1 • · · · • Z1 •X+
n−` •X

−
n−` • Sk,w0v0

=

(
d`,`−1 − (a` − a0 − n+ 2)

(
`−1∏
s=1

c′s

))
Sk,w0v0

= c′`Sk,w0
v0

where the last equality follows from Lemma 4.7.4.
Now we turn to part (i). Assume that (4.7.9) holds for r ≥ n− `+ 1. We will prove inductively

that for each `′ satisfying 0 ≤ `′ ≤ `− 1, we have

(4.7.11) Z`′ • · · · • Z1 •X+
n−` •X

−
n−` • Sk,w0v0

= d`,`′Sk,w0
v0 +

 `′∏
s=1

(c′s − cs)

∑
i∈I`′`

ε(i)Ski,m,n−`,n−`,w0
v0



+

 `′∏
s=1

(c′s − cs)


 `−1∑
h=`′+1

(a` − ah + 1)
∑

i∈I`′h \I
`′
h+1

ε(i)Ski,n−`,n−h,n−`,w0
v0


where the case `′ = 0, namely the formula for X+

n−`•X
−
n−`•Sk,w0v0, follows directly from Corollary

4.7.2 for r = n− `.
We begin with studying some basic properties of the index sets I`

′

h which are useful for our

induction on `′ to prove (4.7.11). First of all, the set I`
′

`′+1 \ I`
′

`′+2 has a unique element, which is
precisely i = {n− `′ − 1, n}. Furthermore, there is a natural map of sets

res`′ : I`
′

h → I`
′+1
h

for all `′ + 2 ≤ h ≤ ` defined by eliminating the element n− `′ from i ∈ I`
′

h if n− `′ ∈ i. In other

words, for each i ∈ I`
′+1
h , we have

res−1
`′ ({i}) = {i, i ∪ {n− `′}} ⊆ I`

′

h .

We use the shortened notation
i`
′

:= i ∪ {n− `′}
for each i ∈ I`

′+1
h . Note in particular that ε(i) = −ε(i`

′
).

Given an arbitrary i ∈ I`
′+1
h for `′+2 ≤ h ≤ `−1, then Ski,n−`,n−h,n−`,w0

(resp. S
ki
`′ ,n−`,n−h,n−`,w0

)

satisfies the conditions in Corollary 4.7.2 (resp. Corollary 4.7.3). As a result, by the assumption
that Proposition 4.7.5 is true for r = n− `′ − 1, we deduce that
(4.7.12)

Z`′+1 •
(
Ski,n−`,n−h,n−`,w0

v0 − Ski`′ ,n−`,n−h,n−`,w0
v0

)
=
(
c′`′+1 − c`′+1

)
Ski,n−`,n−h,n−`,w0

v0.

Similarly, we have

(4.7.13) Z`′+1 •
(
Ski,m,n−`,n−`,w0

v0 − Ski`′ ,m−`,n−`,w0
v0

)
=
(
c′`′+1 − c`′+1

)
Ski,m,n−`,n−`,w0

v0
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for each i ∈ I`
′+1
` . We also have

(4.7.14) Z`′+1 • Sk,w0v0 = c′`′+1Sk,w0v0

by (4.7.10) for r = n− `′ − 1, and

(4.7.15) Z`′+1 • Ski0,n−`,n−`′−1,n−`,w0
v0 = c`′+1Sk,w0

v0

by (4.7.9) for r = n− `′ − 1 where i0 = {n− `′ − 1, n}.
Now we begin our induction and assume that (4.7.11) is true for some 0 ≤ `′ ≤ `− 2. Then by

combining (4.7.12), (4.7.13), (4.7.14) and (4.7.15), we have

Z`′+1 • · · · • Z1 •X+
n−` •X

−
n−` • Sk,w0

v0

= d`,`′Z`′+1 • Sk,w0v0 +

 `′∏
s=1

(c′s − cs)

Z`′+1 •

∑
i∈I`′`

ε(i)Ski,m,n−`,n−`,w0
v0



+

 `′∏
s=1

(c′s − cs)

Z`′+1 •

 `−1∑
h=`′+1

(a` − ah + 1)
∑

i∈I`′h \I
`′
h+1

ε(i)Ski,n−`,n−h,n−`,w0
v0


which is the same as

(4.7.16) c′`′d`,`′Sk,w0
v0 +

 `′∏
s=1

(c′s − cs)

 (X + Y + Z)

where

X = (a` − a`′ + 1)Z`′+1 • Ski0,n−`,n−`′−1,n−`,w0
v0,

Y =
∑

i∈I`′+1
`

ε(i)Z`′+1 •
(
Ski,m,n−`,n−`,w0

v0 − Ski`′ ,m,n−`,n−`,w0
v0

)
,

and

Z =

`−1∑
h=`′+2

(a` − ah + 1)
∑

i∈I`′+1
h \I`′+1

h+1

ε(i)Z`′+1 •
(
Ski,n−`,n−h,n−`,w0

v0 − Ski`′ ,n−`,n−h,n−`,w0
v0

)
.

One can also readily check that (4.7.16) is also the same asc′`′+1d`,`′ + c`′+1

 `′∏
s=1

(c′s − cs)

 (a` − a`′ + 1)

Sk,w0v0

+

`′+1∏
s=1

(c′s − cs)


 ∑
i∈I`′+1

`

ε(i)Ski,m,n−`,n−`,w0
v0


+

`′+1∏
s=1

(c′s − cs)


 `−1∑
h=`′+2

(a` − ah + 1)
∑

i∈I`′+1
h \I`′+1

h+1

ε(i)Ski,n−`,n−h,n−`,w0
v0

 ,

which implies that (4.7.11) holds for `′ + 1, as we have

d`,`′+1 = c′`′+1d`,`′ + c`′+1

 `′∏
s=1

(c′s − cs)

 (a` − a`′ + 1)

by definition.
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Hence we have finished the proof of (4.7.11) for each 1 ≤ `′ ≤ ` − 1 by induction on `′. Note
that the case `′ = `− 1 for (4.7.11) is just the following

(4.7.17) Z`−1•· · ·•Z1•X+
n−`•X

−
n−`•Sk,w0

v0 = d`,`−1Sk,w0
v0−

(
`−1∏
s=1

(c′s − cs)

)
Ski1,m,n−`,n−`,w0

v0

where i1 = {n}.
Finally, (4.7.9) for r = n − ` follows from the equation (4.7.17) together with the definition of

Z` and the identity (4.7.5). �

Proof of Proposition 4.7.5. It follows easily from Lemma 4.7.6 and Lemma 4.7.7. �

Proposition 4.7.8. For each 1 ≤ r ≤ n−2 and 1 ≤ s ≤ [a0−an−1]1 +n−2, if Sk],r,s−1,w0
v0 ∈ V0,

then Sk],r,s,w0
v0 ∈ V0.

Proof. We deduce from the same argument as (4.7.12), (4.7.13), (4.7.14) and (4.7.15) that the
following equalities

(4.7.18) Zn−2−r • · · · • Z1 • Sk],r,s−1,w0
v0 =

(
n−2−r∏
`=1

c′`

)
Sk],r,s−1,w0

v0,

(4.7.19) Zn−2−r • · · · • Z1 •

 ∑
i∈In−1−r

ε(i)S(k],r,s−1)i,r,r+1,r+1,w0
v0


= −

(
n−2−r∏
`=1

(c′` − c`)

)
Sk],r,s,w0

v0,

and

(4.7.20) Zn−2−r • · · · • Z1 •

 ∑
i∈I`\I`−1

ε(i)S(k],r,s−1)i,r+1,n−`+1,r+1,w0
v0


= c`

(
`−1∏
h=1

(c′h − ch)

)(
n−2−r∏
h=`+1

c′h

)
Sk],r,s−1,w0

v0

hold for each 1 ≤ ` ≤ n − 2 − r. Therefore by replacing (r, s) in Corollary 4.7.1 by (r + 1, s − 1)
and then using (4.7.18), (4.7.19) and (4.7.20) respectively, we can deduce that

Zn−2−r • · · · • Z1 •X+
r+1 •X

−
r+1 • Sk],r,s−1,w0

v0

= −([a0 − an−1]1 + n− 1− s)2

(
n−2−r∏
`=1

(c′` − c`)

)
Sk],r,s,w0

v0 + CSk],r,s−1,w0
v0

= −([a0 − an−1]1 + n− 1− s)2cn−1−rSk],r,s,w0
v0 + CSk],r,s−1,w0

v0

for a certain constant C ∈ Fp. Note that we use the identity (4.7.5) for the last equality .
By our assumption, we know that Sk],r,s−1,w0

v0 ∈ V0. Hence, we can deduce

Sk],r,s,w0
v0 ∈ V0

since ([a0 − an−1]1 + n− 1− s)2cn−1−r 6= 0. �

Corollary 4.7.9. We have Sk],w0
v0 ∈ V0.
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Proof. By (4.7.2) and Proposition 4.7.8 we deduce that

Sk],rv0 ∈ V0 ⇒ Sk],r−1v0 ∈ V0

for each 2 ≤ r ≤ n− 1. Then by (4.7.1) and the definition of V0, we finish the proof. �

Example 4.7.10. We will give an example to illustrate the technical results in Proposition 4.7.5

and Proposition 4.7.8. Given a tuple k ∈ {0, 1, · · · , p − 1}|Φ
+
w0
|, we associate a matrix in U(Z)

with (i, j)-entry given by ki,j for all 1 ≤ i < j ≤ n and abuse the notation k for such a matrix.
In this example, we are going to use k or the matrix in U(Z) associated with it to represent the
corresponding vector Sk,w0v0. We will write

k ⇒ k′

if Sk′,w0
v0 ∈ 〈G(Fp) · Sk,w0

v0〉. We consider the special case n = 5 and r = 1 from now on, and
our goal here is to illustrate the proof of
(4.7.21)

k],1,s−1 =


1 k0 − s+ 1 0 0 s− 1

1 0 0 k0 − s+ 1
1 0 0

1 0
1

⇒ k],1,s =


1 k0 − s 0 0 s

1 0 0 k0 + s
1 0 0

1 0
1


intuitively for all 0 ≤ s ≤ k0 where k0 = 3 + [a0 − a4]1. We firstly observe that

I1 = {(5)}, I2 \ I1 = {(4, 5)} and I3 \ I2 = {(3, 5), (3, 4, 5)}.

The first step towards (4.7.21) is to apply X+
2 •X

−
2 to k],1,s−1 (as a special case of Corollary 4.7.1)

and obtain

(4.7.22) X+
2 •X

−
2 · k

],1,s−1 = (k0 − s)2Y0 + ([a3 − a4]1 − s)(k0 + 1− s)k],1,s−1

+ (k0 − s)
3∑
`=2

(a3 − a`−1 + k0 − s) · Y`

where we have

Y0 := −


1 k0 − s 0 0 s

1 0 0 k0 − s
1 0 0

1 0
1

+


1 k0 − s 0 1 s− 1

1 0 0 k0 − s
1 0 0

1 1
1



+


1 k0 − s 1 0 s− 1

1 0 0 k0 − s
1 0 1

1 0
1

−


1 k0 − s 1 0 s− 1
1 0 0 k0 − s

1 1 0
1 1

1

 ,

Y2 :=


1 k0 − s+ 1 0 0 s− 1

1 0 1 k0 − s
1 0 0

1 1
1

 ,



ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GLn(Qp) IN THE ORDINARY CASE 85

and

Y3 :=


1 k0 − s+ 1 0 0 s− 1

1 1 0 k0 − s
1 0 1

1 0
1

−


1 k0 − s+ 1 0 0 s− 1
1 1 0 k0 − s

1 1 0
1 1

1

 .

Note that the terms in Y0 (resp. the terms in Y`) are indexed by I3 (resp. by I` \ I`−1 for ` = 2, 3).

Then we apply Z1 to each of Y0, k],1,s−1, Y2 and Y3 and obtain

Z1 · k],1,s−1 = c′1k
],1,s−1, Z1 · Y2 = c1k

],1,s−1,

Z1 · Y3 = (c′1 − c1) ·


1 k0 − s+ 1 0 0 s− 1

1 1 0 k0 − s
1 0 1

1 0
1


and

Z1 · Y0 = (c′1 − c1)

−k],1,s +


1 k0 − s 1 0 s− 1

1 0 0 k0 − s
1 0 1

1 0
1




where c′1 = a1 − a0 − 1 and c1 = 1. Then we apply Z2 and obtain

(4.7.23) Z2•Z1 ·k],1,s−1 = c′2c
′
1k
],1,s−1, Z2•Z1 ·Y2 = c′2k

],1,s−1, Z2•Z1 ·Y3 = c2(c′1−c1)k],1,s−1

and

(4.7.24) Z2 • Z1 · Y0 = −(c′2 − c2)(c′1 − c1)k],1,s

where we have c2 = a1 − a0 − 2 and c′2 = (a2 − a0)(a1 − a0 − 2). By combining (4.7.22), (4.7.23)
and (4.7.24), we deduce that

Z2 • Z1 •X+
2 •X

−
2 · k

],1,s−1 = Ck],1,s−1 − (k0 + 1− s)2c3k
],1,s

for c3 = (a1 − a0 − 2)2(a2 − a0 − 1) and a certain constant C ∈ Fp, which implies (4.7.21). If we
consider the subspace V of π0 spanned by the various k (namely Sk,w0v0) appearing in (4.7.22),
then Z1 and Z2 • Z1 induce maps in EndFp(V ). In fact, the image of Z1 is spanned by

k],1,s, k],1,s−1,


1 k0 − s+ 1 0 0 s− 1

1 1 0 k0 − s
1 0 1

1 0
1

 and


1 k0 − s 1 0 s− 1

1 0 0 k0 − s
1 0 1

1 0
1


while the image of Z2 • Z1 is simply spanned by k],1,s and k],1,s−1.

Remark 4.7.11. If we view the procedure of applying a group operator of the form

CId−X+
r •X−r

(for some 2 ≤ r ≤ n−1 and a certain constant C ∈ Fp) as an elementary operation, then Z` is the
composition of 2`−1 such elementary operations by definition. In particular, we need to apply such
elementary operations 2n−2−r times in the proof of Proposition 4.7.8. Such complexity is hidden
in the inductive definition of Z` for 1 ≤ ` ≤ n− 2.

We write β for
∑n−1
r=1 αr to lighten the notation.



86 CHOL PARK AND ZICHENG QIAN

Lemma 4.7.12. Given a Jacobi sum Sk,w0
, we have

Xβ,k1,n
• Sk,w0

= (−1)k1,n+1Sk′,w0

where k′ = (k′i,j) satisfies k′1,n = 0 and k′i,j = ki,j otherwise.

Proof. This is a special case of Lemma 4.1.2 when α0 = β and m = k1,n. �

From now on, whenever we want to view the notation µw0
0 as a weight, namely to fix a lift of

µw0
0 ∈ X(T )/(p− 1)X(T ) into Xreg

1 (T ), we always mean

µw0
0 = (a0 + p− 1, an−2, · · · , a1, an−1 − p+ 1) ∈ X(T ).

In particular, we have

(1, n) · µw0
0 + pβ = µ∗.

We recall the operators Xalg
β,k from the beginning of Section 4.

Lemma 4.7.13. For 1 ≤ r ≤ n− 1, we have the following equalities on H0(µw0
0 )µ∗ :

Xβ,k = −Xalg
β,k

for all 1 ≤ k ≤ p− 1.

Proof. Note that we have

µw0
0 − (µ∗ + kβ) = ([a0 − an−1]1 + n− 2− k, 0, · · · , 0, k − ([a0 − an−1]1 + n− 2)).

Therefore µw0
0 − (µ∗ + kβ) /∈

∑
α∈Φ+ Z≥0α as long as k > [a0 − an−1]1 + n− 2. As (an−1, · · · , a0)

is assumed to be n-generic in the lowest alcove throughout this section, we deduce that

(4.7.25) µw0
0 − (µ∗ + kβ) /∈

∑
α∈Φ+

Z≥0α for all k ≥ p− 1.

Note by the definition (4.0.3) that the image of Xalg
β,k lies inside H0(µw0

0 )µ∗+kβ , which is zero by

(4.7.25) assuming k ≥ p− 1. Hence we deduce that

Xalg
β,k = 0 on H0(µw0

0 )µ∗ for all k ≥ p− 1.

Then the conclusion of this lemma follows from the equality (4.1.4). �

We have a natural embedding H0(µw0
0 ) ↪→ π0 by the definition of algebraic induction and

parabolic induction. Recall that we have defined U1 in Example 4.1.8.

Lemma 4.7.14. We have

Fp[Sk],w0
v0] = H0(µw0

0 )U1
µ∗ .

In particular,

V ] ⊆ H0(µw0
0 ).

Proof. It follows from Corollary 4.5.3 that

dimFpH
0(µw0

0 )U1
µ∗ = 1,

and this space is generated by valg
{n−1},m] where

(4.7.26) m] = (m]
1, · · · ,m

]
n−1) := (0, · · · , 0, [a0 − an−1]1 + n− 2).

We now need to identify the vector valg
{n−1},m] with certain linear combination of Jacobi sums.

Note that by Corollary 4.5.3 we have

valg
{n−1},m] = Dan−1−p+1

n Da1−a0−n+2
n−1 (D{n−1},n−1)[a0−an−1]1+n−2D

[a0−an−2]1
1

n−2∏
i=2

D
an−i−an−i−1

i .
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Given a matrix A ∈ G(Fp), then Di(A) 6= 0 for all 1 ≤ i ≤ n− 1 if and only if

A ∈ B(Fp)w0B(Fp),

and thus the support of valg
{n−1},m] is contained in B(Fp)w0B(Fp). As a result, according to

Proposition 4.1.4, we know that valg
{n−1},m] is a linear combination of vectors of the form

Sk,w0v0.

As valg
{n−1},m] is U1-invariant, and in particular U1(Fp)-invariant, then by Proposition 4.1.11 we

know that it has the form

(4.7.27)
∑
k

CkSk,w0
v0

where we sum over tuples k satisfying k1,n = [a0−an−1]1 +n−2, k1,j = 0 or p−1 for 2 ≤ j ≤ n−1
and ki,j = 0 for all 2 ≤ i < j ≤ n, and Ck ∈ Fp is a certain constant for each tuple k.

Finally, note that

uβ(t) valg
{n−1},m] =

Dan−1−p+1
n Da1−a0−n+2

n−1 (D{n−1},n−1 + tDn−1)[a0−an−1]1+n−2D
[a0−an−2]1
1

n−2∏
i=2

D
an−i−an−i−1

i

is a polynomial of t with degree [a0 − an−1] + n− 2, we conclude that

Xalg
β,[a0−an−1]1+n−2 v

alg
{n−1},m] = valg

{n−1},0

where 0 is the (n− 1)-tuple with all entries zero.
By Lemma 4.7.13 and the fact that

Fp[v
alg
{n−1},0] = Fp[S0,w0

v0] = π
U(Fp),µ

w0
0

0 ,

we deduce that
Xβ,[a0−an−1]1+n−2 v

alg
{n−1},m] = C ′S0,w0v0

for some constant C ′ ∈ F×p . By Lemma 4.7.12 and the linear independence of Jacobi sums proved
in Proposition 4.1.4, we know that only the vector Ck]Sk],w0

v0 can appear in the sum (4.7.27). In
other words, we have shown that

valg
{n−1},m] = C ′′Sk],w0

v0

for some constant C ′′ ∈ F×p , and thus we finish the proof. �

Lemma 4.7.15. The dual Weyl module H0(µw0
0 ) is uniserial of length two with socle F (µw0

0 ) and
cosocle F (µ∗).

Proof. By [Jan03] Proposition II 2.2 we know that socG
(
H0(µw0

0 )
)

is irreducible and can be
identified with F (µw0

0 ) (which is in fact the definition of F (µw0
0 )). Therefore it suffices to show

that H0(µw0
0 ) has only two Jordan–Hölder factor F (µw0

0 ) and F (µ∗), each of which has multiplicity
one.

By [Jan03] II 2.13 (2) it is harmless for us to replace H0(µw0
0 ) by the Weyl module V (µw0

0 )
(defined in [Jan03] II 2.13 ) and show that V (µw0

0 ) has only two Jordan–Hölder factor F (µw0
0 ) and

F (µ∗) and each of them has multiplicity one. As
p <

〈
µw0

0 , (
∑n−1
i=1 αi)

∨
〉

< 2p;

0 <
〈
µw0

0 , (
∑n−2
i=1 αi)

∨
〉

< p;

0 <
〈
µw0

0 , (
∑n−1
i=2 αi)

∨
〉

< p,
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we deduce that the only dominant alcove lying below the one containing µw0
0 is the lowest p-

restricted alcove. In particular, the only dominant weight which is linked to and strictly smaller
than µw0

0 is µ∗.
By [Jan03] Proposition II 8.19, we know the existence of a filtration of subrepresentation

V (µw0
0 ) ⊇ V1(µw0

0 ) ⊇ · · ·
such that the following equality in Grothendieck group holds∑

i>0

Vi(µ
w0
0 ) = F (µ∗).

This equality implies that

V1(µw0
0 ) = F (µ∗)

and

Vi(µ
w0
0 ) = 0 for all i ≥ 2.

By [Jan03] II 8.19 (2) we also know that

V (µw0
0 )/V1(µw0

0 ) ∼= F (µw0
0 ),

and thus we have shown that

V (µw0
0 ) = F (µw0

0 ) + F (µ∗)

in the Grothendieck group. �

Proposition 4.7.16. We have

V ] = H0(µw0
0 ).

Proof. By Lemma 4.7.15, we have the natural surjection

H0(µw0
0 ) � F (µ∗)

which induces a morphism

H0(µw0
0 )µ∗ → F (µ∗)µ∗ .

Now we consider H0(µw0
0 ) as a L1-representation where L1

∼= Gm × GLn−1 is the standard Levi
subgroup of G which contains U1 as a maximal unipotent subgroup. We denote the set of λ ∈ X(T )
which is dominant while viewed as a weight of L1 by XL1(T )+. Then we use the notation H0

L1
(λ)

for the dual Weyl module of L1 which is defined via the same way as the dual Weyl module of G
determined by a weight in X(T )+ ( cf. the beginning of Section 4). The dual Weyl module H0(µw0

0 )
is the mod p reduction of a lattice VZp in the unique irreducible algebraic representation VQp of

G such that
(
V UQp

)
µ
w0
0

6= 0. As the category of finite dimensional algebraic representations of L1

in characteristic 0 is semisimple, VQp
decomposes into a direct sum of characteristic 0 irreducible

representations of L1. More precisely, we have the decomposition

VQp
|L1

=
⊕

λ∈XL1
(T )+

(VQp )
U1
λ 6=0

mλVL1
(λ)

where VL1(λ) is the unique (up to isomorphism) irreducible algebraic representation of L1 such
that

(
VL1

(λ)U1
)
λ
6= 0 and

mλ := dimQp

(
V U1

Qp

)
λ
.

Therefore in the Grothendieck group of algebraic representations of L1 over Fp, we have

(4.7.28) [H0(µw0
0 )]|L1

=
⊕

λ∈XL1
(T )+

H0(µ
w0
0 )

U1
λ 6=0

mλ[H0
L1

(λ)]
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as by Corollary 4.5.3 H0(µw0
0 )U1 is the mod p reduction of V U1

Zp
and V U1

Zp
⊗Zp Qp = V U1

Qp
.

We use the notation W̃L1 for the affine Weyl group associated with the group L1. We say that

µ∗ ↑L1
λ

if there exists w̃ ∈ W̃L1 such that

λ = w̃ · µ∗ and µ∗ ≤ λ.

Assume that there exists a λ ∈ XL1
(T )+ such that µ∗ ↑L1

λ and that H0(µw0
0 )U1

λ 6= 0. We

denote by valg
{n−1},m the vector in H0(µw0

0 )U1

λ 6= 0 given by Corollary 4.5.3. We note that by

Corollary 4.5.3 the vector in H0(µw0
0 )U1

µ∗ is valg
{n−1},m] (see (4.7.26)). As µ∗ ↑L1

λ, we must firstly

have
∑n−1
i=1 mi = [a0 − an−1]1 + n− 2. By the last statement in Corollary 4.5.3, we have

(4.7.29) λ =

(
a0 + p− 1−

n−1∑
i=1

mi, an−2 +m1, · · · , a1 +mn−2, an−1 − p+ 1 +mn−1

)
= (an−1 − n+ 2, an−2 +m1, · · · , a1 +mn−2, an−1 − p+ 1 +mn−1).

Recall η = (n− 1, n− 2, · · · , 1, 0). We notice that µ∗ − η lies in the lowest p-restricted L1-alcove
in the sense that

(4.7.30) 0 < 〈µ∗, α∨〉 < p for all α ∈ Φ+
L1

where Φ+
L1

is the set of positive roots of L1 naturally viewed as a subset of Φ+.
As we assume that (an−1, · · · , a0) is n-generic, it is easy to see the following an−2 +m1 − (an−1 − p+ 1 +mn−1) ≤ p+ 1 + an−2 − an−1 +m1 < 2p;

an−2 +m1 − (a1 +mn−2) ≤ an−2 +m1 − a1 ≤ [a0 − a1]1 < p;
an−3 +m2 − (an−1 − p+ 1 +mn−1) ≤ [an−3 − an−1]1 +m2 ≤ [an−2 − an−1]1 < p,

so that we know that λ− η lies in either the lowest L1-alcove in the sense of (4.7.30) (if we replace
µ∗ by λ) or the p-restricted L1-alcove described by the conditions

p <

〈
λ,
(∑n−1

i=2 αi

)∨〉
< 2p

0 <

〈
λ,
(∑n−2

i=2 αi

)∨〉
< p

0 <

〈
λ,
(∑n−1

i=3 αi

)∨〉
< p

and
0 < 〈λ, α∨〉 < p for all α ∈ ∆L1

where ∆L1
:= {αi | 2 ≤ i ≤ n− 1} is the set of simple positive roots in Φ+

L1
.

In the first case, if λ− η lies in the lowest L1-alcove, as we assume that µ∗ ↑L λ, we must have
λ = µ∗; in the second case, we must have

λ = (2, n) · µ∗ + p

(
n−1∑
i=2

αi

)
= (an−1 − n+ 2, a0 + p, an−3, · · · , a1, an−2 + n− 2− p)

which means by (4.7.29) that

m = (m1, · · · ,mn−1) = ([a0 − an−2]1 + 1, 0, · · · , 0, an−2 − an−1 + n− 3).

This implies an−2−an−1 +n−1 = mn−1 ≥ 0, which is a contradiction to the n-generic assumption
on (an−1, · · · , a0). Therefore we must have λ = µ∗. Hence we deduce by (4.7.28) and the strong
linkage principle [Jan03] II 2.12 (1) that FL1(µ∗) (see the beginning of Section 5 for notation) has
multiplicity one in JHL1

(H0(µw0
0 )|L1

) and is actually a direct summand.
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On the other hand, as FL1(µ∗) is obviously an L1-subrepresentation of F (µ∗), we know that
the surjection of G-representation H0(µw0

0 ) � F (µ∗) induces an isomorphism of L1-representation

on the direct summand FL1(µ∗) on both sides with multiplicity one, by restriction from G to L1.
In particular, we know that the map

H0(µw0
0 )U1

µ∗ → F (µ∗)µ∗

is a bijection, and therefore the composition

V ] ↪→ H0(µw0
0 ) � F (µ∗)

is non-zero as

H0(µw0
0 )U1

µ∗ = Fp[v
alg
{n−1},m] ] = Fp[Sk],w0

v0]

by Lemma 4.7.14. Hence we obtain a surjection

(4.7.31) V ] � F (µ∗),

which implies that the injection

V ] ↪→ H0(µw0
0 )

must be an isomorphism as it induces surjection on cosocle according to Lemma 4.7.15 and (4.7.31).
The proof is thus finished. �

Theorem 4.7.17. Assume that (an−1, · · · , a0) is n-generic in the lowest alcove (cf. Defini-
tion 4.1.1). Then H0(µw0

0 ) ⊆ V0. In particular, we have

F (µ∗) ∈ JH(V0).

Proof. The first inclusion is a direct consequence of Proposition 4.7.16 together with Corollary
4.7.9. The second inclusion follows from the first as we have F (µ∗) ∈ JH(H0(µw0

0 )). �

Before we end this section, we need several remarks to summarize the proof, and to clarify the
necessity for all the constructions.

Remark 4.7.18. If we assume that for all 2 ≤ k ≤ n− 2

(4.7.32) [a0 − an−1]1 + n− 2 < ak − ak−1,

then we can actually show that

Sk0,w0
v0 ∈ H0(µw0

0 )
[U,U ]
µ∗

using Corollary 4.1.10 and the case s = n− 1 of Proposition 4.5.1, and thus

V0 = H0(µw0
0 ).

Moreover, under the condition (4.7.32), we can even prove that the set

{Sk,w0
v0 | k ∈ Λw0

}

forms a basis for H0(µw0
0 )µ∗ .

On the other hand, if we have

[a0 − an−1]1 + n− 2 ≥ ak − ak−1

for some 2 ≤ k ≤ n− 2, then we can show that

F (µskw0
0 ) ∈ JH(V0)

which means that the inclusion

H0(µw0
0 ) ⊆ V0

is actually strict.
In fact, through the proof of Proposition 4.7.8, the subrepresentation of π0 generated by Sk],r,sv0

is shrinking if r is fixed and s is growing. Therefore the subrepresentation of π0 generated by Sk],rv0
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shrinks as r decreases. Finally, we succeeded in shrinking from V0 to V ] which can be identified
with H0(µw0

0 ).

Remark 4.7.19. We need to emphasize that the choice of the operators X+
r and X−r for 2 ≤ r ≤

n− 1 are crucial. For example, the operator∑
t∈Fp

tp−2w0uαr (t)w0 ∈ Fp[G(Fp)]

for some 2 ≤ r ≤ n− 2 does not work in general. The reason is that, as one can check by explicit
computation, applying such operator to Skw0

v0 for some k ∈ Λw0
will generally give us a huge linear

combination of Jacobi sum operators. From our point of view, it is basically impossible to compute
such a huge linear combination explicitly and systematically. Instead, as stated in Proposition
4.6.5, our operators X+

r and X−r can be computed systematically, even though the computation is
still complicated.

The motivation of the choice of operators X+
r and X−r can be roughly explained as follows. First

of all, we need one ‘weight raising operator’ X+ and one ‘weight lowering operator’ X−. These
are two operators lying in a subalgebra Fp〈X+, X−〉 of Fp[G(Fp)] such that

Fp〈X+, X−〉 ∼= Fp[GL2(Fp)].

We start with the vector Sk,w0v0 for some k ∈ Λw0 . We apply the operator X− once and then X+

once, the result is a vector with the same T (Fp)-eigencharacter µ∗. We observe that Sk,w0
v0 is in

general not an eigenvector of the operator X+ •X− because the representation π0, after restricting
from Fp[G(Fp)] to Fp〈X+, X−〉, is highly non-semisimple. The naive expectation is that we just
take the difference

X+ •X− • Sk,w0
v0 − cSk,w0

v0

for some constant c ∈ Fp, and then repeat the procedure by applying some other operators similar
to X+ and X−.

The case n = 3 is easy. In the case n = 4, the operator∑
t∈Fp

tp−2w0uα2(t)w0 ∈ Fp[GL4(Fp)]

is not well behaved as we explained in this remark, and therefore we are forced to use our X−2 to
replace

∑
t∈Fp t

p−2w0uα2
(t)w0.

Now we consider the general case, and it is possible for us to carry on an induction step. We
have an increasing sequence of subgroups of G

P {n−1} ( P {n−2,n−1} ( · · · ( P {2,··· ,n−1}

and

L{n−1} ( L{n−2,n−1} ( · · · ( L{2,··· ,n−1}

where P {r,··· ,n−1} is the standard parabolic subgroup corresponding to the simple roots αk for r ≤
k ≤ n − 1 and L{r,··· ,n−1} is its standard Levi subgroup. Technically speaking, constructing the
vector Sk],r+1,w0

v0 (for some 1 ≤ r ≤ n − 2) from Sk0,w0
v0 should be reduced to Corollary 4.7.9

when we replace G by its Levi subgroup L{r+1,··· ,n−1}. In other words, to construct Sk],r+1,w0
v0

from Sk0,w0
v0 we only need the operators

X+
k , X

−
k ∈ Fp[L{r+2,··· ,n−1}(Fp)] ( Fp[L{r+1,··· ,n−1}(Fp)]

for all r + 2 ≤ k ≤ n− 1.
In order to construct Sk],r,w0

v0 from Sk],r+1,w0
v0, we only need to prove Proposition 4.7.8. Then

we summarize the proof of Proposition 4.7.8 as the following: for some a ∈ F×p and b ∈ Fp

X+
r+1 •X

−
r+1 • Sk],r,s−1,w0

v0 ≡ aSk],r,s,w0
v0 + bSk],r,s−1,w0

v0 + error terms



92 CHOL PARK AND ZICHENG QIAN

and the error terms can be killed by combinations of the operators X+
k , X

−
k for r + 2 ≤ k ≤ n− 1.

4.8. Main results in characteristic p. In this section, we summary our main results on certain
Jacobi sum operators in characteristic p.

We recall two important Jacobi sum operators Sn and S ′n from (4.4.11) and recall from (4.7.3)
that V0 is the sub-representations of π0 generated by

Sk0,w0

(
π
U(Fp),µ0

0

)
.

We also define V1 and V ′1 as the sub-representations of π0 generated by

Sn
(
π
U(Fp),µ1

0

)
and S ′n

(
π
U(Fp),µ′1
0

)
respectively.

The following theorem, which we usually call the non-vanishing theorem, is a technical heart on
the local automorphic side. The proofs of this non-vanishing theorem as well as the next theorem,
which we usually call the multiplicity one theorem, have occupied the previous sections.

Theorem 4.8.1. Assume that (an−1, · · · , a0) is n-generic in the lowest alcove.
Then we have

V1 = V ′1 = V0

and

F (µ∗) ∈ JH(V0).

Proof. This is an immediate consequence of Corollary 4.4.8 and Theorem 4.7.17. �

We also have the following multiplicity one result.

Theorem 4.8.2. Assume that (an−1, · · · , a0) is 2n-generic in the lowest alcove.
Then F (µ∗) has multiplicity one in π0.

Proof. This is a special case of Corollary 4.3.7: replace µ0,n−1
π with µ∗. �

Corollary 4.8.3. Assume that (an−1, · · · , a0) is 2n-generic in the lowest alcove and that τ is an
OE-lattice in π̃◦0 ⊗OE E such that

socG(Fp) (τ ⊗OE F) = F (µ∗).

Then we have

Sn
(

(τ ⊗OE F)U(Fp),µ1

)
6= 0 and S ′n

(
(τ ⊗OE F)U(Fp),µ′1

)
6= 0.

Proof. Such a τ is unique up to homothety by Theorem 4.8.2. By multiplying a suitable power of
$E , we may assume that

π̃◦0 ( τ and π̃◦0 * $τ,

and thus we have a non-zero morphism

π0 → τ ⊗OE F

whose image is the unique quotient of π0 with socle F (µ∗). We now finish the proof by applying
Theorem 4.8.1. �

Remark 4.8.4. Theorem 4.8.1 and Corollary 4.8.3 can be generalized to the case when µ∗ is
replaced by any weight lying sufficiently deep in an arbitrary p-restricted alcove except the highest
one. The crucial points here are the [U(Fp), U(Fp)]-invariance of Sn (resp. S ′n) and that τ (in
Corollary 4.8.3) is one of the simplest lattices of π̃◦0 ⊗OE E apart from those coming from parabolic
inductions from B(Fp).
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5. Mod p local-global compatibility

In this section, we state and prove our main results on mod p local-global compatibility, which
is a global application of our local results of Sections 3 and 4. In the first two sections, we recall
some necessary known results on algebraic automorphic forms and Serre weights, for which we
closely follow [EGH15], [HLM], and [BLGG].

We first fix some notation for the whole section. Let P ⊇ B be an arbitrary standard parabolic
subgroup and N its unipotent radical. We denote the opposite parabolic by P− := w0Pw0 with
corresponding unipotent radical N− := w0Nw0. We fix a standard choice of Levi subgroup L :=
P ∩ P− ⊆ G. We denote the positive roots of L defined by the pair (B ∩ L, T ) by Φ+

L . We use

XL(T )+ := {λ ∈ X(T ) | 〈λ, α∨〉 ≥ 0 for all α ∈ Φ+
L}

to denote the set of dominant weights with respect to the pair (B ∩ L, T ). We denote the Weyl
group of L by WL and identify it with a subgroup of W . The longest Weyl element in WL is

denoted by wL0 . We define the affine Weyl group W̃L of L as the semi-direct product of WL and

X(T ) with respect to the natural action of WL on X(T ). Therefore W̃L has a natural embedding

into W̃ . We define the groups G, P , L, · · · to be the base change of G, P , L, · · · to Fp, respectively.
We also need to define several open compact subgroups of L(Qp). We define

KL := L(Zp),

and via the mod p reduction map

redL : KL = L(Zp) � L(Fp)

we also define KL(1), IL(1), and IL as follows:

KL(1) := (redL)−1(1) ⊆ IL(1) := (redL)−1(U(Fp) ∩ L(Fp))

⊆ IL := (redL)−1(B(Fp) ∩ L(Fp)).

For any dominant weight λ ∈ X(T )+, we let

H0
L(λ) :=

(
IndL

B∩Lw
L
0 λ
)alg

/Fp

be the associated dual Weyl module of L. We also write FL(λ) := socL
(
H0
L(λ)

)
for its irreducible

socle as an algebraic representation of L. Through a similar argument presented at the beginning of
Section 4, the notation FL(λ) is well defined as an irreducible representation of L(Fp) if λ ∈ T (Fp)
is p-regular, namely lies in the image of Xreg

1 (T )→ X(T )/(p− 1)X(T ). We will sometimes abuse

the notation FL(λ) for FL(λ)⊗FpF or FL(λ) for FL(λ)⊗FpFp in the literature. We will emphasize

the abuse of the notation FL(λ) each time we do so.
We introduce some specific standard parabolic subgroups of G. Fix integers i0 and j0 such that

0 ≤ j0 < j0 + 1 < i0 ≤ n− 1, and let i1 and j1 be the integers determined by the equation

(5.0.1) i0 + i1 = j0 + j1 = n− 1.

We let Pi1,j1 ⊃ B be the standard parabolic subgroup of G = GLn corresponding to the subset
{αk | j0 + 1 ≤ k ≤ i0} of ∆. By specifying the notation for general P to Pi1,j1 , we can define
P−i1,j1 , Li1,j1 , Ni1,j1 and N−i1,j1 . We can naturally embed GLj1−i1+1 into G with its image denoted
by Gi1,j1 such that Li1,j1 = Gi1,j1T :

GLj1−i1+1
∼→ Gi1,j1 ↪→ Li1,j1 ↪→ Pi1,j1 ↪→ G.

We define Ti1,j1 to be the maximal tori of Gi1,j1 that is contained in T , and define X(Ti1,j1) to
be the character group of Ti1,j1 . If i1 and j1 are clear from the context (or equivalently i0 and j0
are clear) then we often write P , P− L, N , and N− for Pi1,j1 , P−i1,j1 , Li1,j1 , Ni1,j1 , and N−i1,j1 ,
respectively.
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5.1. The space of algebraic automorphic forms. Let F/Q be a CM field with maximal totally
real subfield F+. We write c for the generator of Gal(F/F+), and let S+

p (resp. Sp) be the set of

places of F+ (resp. F ) above p. For v (resp. w) a finite place of F+ (resp. F ) we write kv (resp.
kw) for the residue field of F+

v (resp. Fw).
From now on, we assume that

◦ F/F+ is unramified at all finite places;
◦ p splits completely in F .

Note that the first assumption above excludes F+ = Q. We also note that the second assumption
is not essential in this section, but it is harmless since we are only interested in GQp -representations
in this paper. Every place v of F+ above p further decomposes and we often write v = wwc in F .

There exists a reductive group Gn/F+ satisfying the following properties (cf. [BLGG], Section
2):

◦ Gn is an outer form of GLn with Gn/F ∼= GLn/F ,

◦ Gn is a quasi-split at any finite place of F+;
◦ Gn(F+

v ) ' Un(R) for all v|∞.

By [CHT08], Section 3.3, Gn admits an integral model Gn over OF+ such that Gn ×OF+ OF+
v

is

reductive if v is a finite place of F+ which splits in F . If v is such a place and w is a place of F
above v, then we have an isomorphism

ιw : Gn(OF+
v

)
∼→ Gn(OFw)

∼→ GLn(OFw).

We fix this isomorphism for each such place v of F+.
Define F+

p := F+ ⊗Q Qp and OF+,p := OF+ ⊗Z Zp. If W is an OE-module endowed with an

action of Gn(OF+,p) and U ⊂ Gn(A∞,pF+ ) × Gn(OF+,p) is a compact open subgroup, the space of
algebraic automorphic forms on Gn of level U and coefficients in W , which is also an OE-module,
is defined as follows:

S(U,W ) :=
{
f : Gn(F+)\Gn(A∞F+)→W | f(gu) = u−1

p f(g) ∀ g ∈ Gn(A∞F+), u ∈ U
}

with the usual notation u = upup for u ∈ U .
We say that the level U is sufficiently small if

t−1Gn(F+)t ∩ U
has finite order prime to p for all t ∈ Gn(A∞F+). We say that U is unramified at a finite place v of
F+ if it has a decomposition

U = Gn(OF+
v

)Uv

for some compact open Uv ⊂ Gn(A∞,vF+ ). If w is a finite place of F , then we say, by abuse of
notation, that w is an unramified place for U or U is unramified at w if U is unramified at w|F+ .

For a compact open subgroup U of Gn(A∞,pF+ )×Gn(OF+,p), we let PU denote the set consisting
of finite places w of F such that

◦ w|F+ is split in F ,
◦ w /∈ Sp,
◦ U is unramified at w.

For a subset P ⊆ PU of finite complement and closed with respect to complex conjugation we

write TP = OE [T
(i)
w , w ∈ P, i ∈ {0, 1, · · · , n}] for the universal Hecke algebra on P, where the

Hecke operator T
(i)
w acts on S(U,W ) via the usual double coset operator

ι−1
w

[
GLn(OFw)

(
$wIdi 0

0 Idn−i

)
GLn(OFw)

]
where $w is a uniformizer of OFw and Idi is the identity matrix of size i. The Hecke algebra TP

naturally acts on S(U,W ).
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Recall that we assume that p splits completely in F . Following [EGH15], Section 7.1 we consider

the subset (Zn+)
Sp
0 consisting of dominant weights a = (aw)w where aw = (a1,w, a2,w, · · · , an,w)

satisfying

(5.1.1) ai,w + an+1−i,wc = 0

for all w ∈ Sp and 1 ≤ i ≤ n. We let

Waw
:= Maw

(OFw)⊗OFw OE
where Maw

(OFw) is the OFw -specialization of the dual Weyl module associated to aw (cf. [EGH15],
Section 4.1.1); by condition (5.1.1), one deduces an isomorphism of Gn(OF+

v
)-representations Waw

◦
ιw ∼= Wawc

◦ ιwc . Therefore, by letting Wav
:= Waw

◦ ιw for any place w|v, the OE-representation
of Gn(OF+,p)

Wa :=
⊗
v|p

Wav

is well-defined.
For a weight a ∈ (Zn+)

Sp
0 , let us write Sa(Qp) to denote the inductive limit of the spaces

S(U,Wa)⊗OE Qp over the compact open subgroups U ⊂ Gn(A∞,pF+ )× Gn(OF+,p). (Note that the

transition maps are induced, in a natural way, from the inclusions between levels U .) Then Sa(Qp)
has a natural left action of Gn(A∞F+) induced by right translation of functions.

We briefly recall the relation between the space A of classical automorphic forms and the
previous spaces of algebraic automorphic forms in the particular case which is relevant to us. Fix
an isomorphism ı : Qp

∼→ C for the rest of the paper. As we did for the OFw -specialization of the

dual Weyl modules, we define a finite dimensional Gn(F+⊗Q R)-representation σa ∼=
⊕
v|∞

σav with

C-coefficients. (We refer to [EGH15], Section 7.1.4 for the precise definition of σa.)

Lemma 5.1.1 ([EGH15], Lemma 7.1.6). The isomorphism ı : Qp
∼→ C induces an isomorphism

of smooth Gn(A∞F+)-representations

Sa(Qp)⊗Qp,ı
C

ı−→ HomGn(F+⊗QR)(σ
∨
a ,A)

for any a ∈ (Zn+)
Sp
0 .

The following theorem guarantees the existence of Galois representations attached to automor-

phic forms on the unitary group Gn. We let | | 1−n2 : F× → Q
×
p denote the unique square root of

| |1−n whose composite with ι : Qp
∼→ C takes positive values.

Theorem 5.1.2 ([EGH15], Theorem 7.2.1). Let Π be an irreducible Gn(A∞F+)-subrepresentation

of Sa(Qp).
Then there exists a continuous semisimple representation

rΠ : GF → GLn(Qp)

such that

(i) rcΠ ⊗ εn−1 ∼= r∨Π;
(ii) for each place w above p, the representation rΠ|GFw is de Rham with Hodge–Tate weights

HT(rΠ|GFw ) = {a1,w + (n− 1), a2,w + (n− 2), · · · , an,w};
(iii) if w|p is a place of F and v := w|F+ splits in F , then

WD(rΠ|GFw )F−ss ∼= recw((Πv ◦ ι−1
w )⊗ | · |

1−n
2 ).

We note that the fact that (iii) holds without semi-simplification on the automorphic side is one
of the main results of [Cara14]. We also note that property (iii) says that the restriction to GFw
is compatible with the local Langlands correspondence at w, which is denoted by recw.
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5.2. Serre weights and potentially crystalline lifts. In this section, we recall the relation of
Serre weights and potentially crystalline lifts via (inertial) local Langlands correspondence.

Definition 5.2.1. A Serre weight for Gn is an isomorphism class of an irreducible smooth Fp-
representation V of Gn(OF+,p). If v is a place of F+ above p, then a Serre weight at v is an

isomorphism class of an irreducible Fp-smooth representation Vv of Gn(OF+
v

). Finally, if w is

a place of F above p, a Serre weight at w is an isomorphism class of an irreducible Fp-smooth
representation Vw of GLn(OFw).

We will often say a Serre weight for a Serre weight for Gn if Gn is clear from the context. A
smooth representation defined over a finite extension of Fp is often called a Serre weight if it is
absolutely irreducible. Note that if Vv is a Serre weight at v, there is an associated Serre weight
at w above v defined by Vv ◦ ι−1

w .
As explained in [EGH15], Section 7.3, a Serre weight V admits an explicit description in terms

of GLn(kw)-representations. More precisely, let w be a place of F above p and write v := w|F+ .
For any n-tuple of integers aw := (a1,w, a2,w, · · · , an,w) ∈ Zn+, that is p-restricted (i.e., 0 ≤ ai,w −
ai+1,w ≤ p−1 for i = 1, 2, · · · , n−1), we consider the Serre weight F (aw) := F (a1,w, a2,w, · · · , an,w),

as defined in [EGH15], Section 4.1.2. It is an irreducible Fp-representation of GLn(kw) and of
Gn(kv) via the isomorphism ιw. Note that F (a1,w, a2,w, · · · , an,w)∨◦ιwc ∼= F (a1,w, a2,w, · · · , an,w)◦
ιw as Gn(kv)-representations, i.e. F (awc)◦ιwc ∼= F (aw)◦ιw if ai,w+an+1−i,wc = 0 for all 1 ≤ i ≤ n.

Hence, if a = (aw)w ∈ (Zn+)
Sp
0 that is p-restricted, then we can set Fav := F (aw) ◦ ιw for w|v. We

also set

Fa :=
⊗
v|p

Fav

which is a Serre weight for Gn(OF+,p). From [EGH15], Lemma 7.3.4 if V is a Serre weight for Gn,

there exists a p-restricted weight a = (aw)w ∈ (Zn+)
Sp
0 such that V has a decomposition V ∼=

⊗
v|p
Vv

where the Vv are Serre weights at v satisfying Vv ◦ ι−1
w
∼= F (aw).

Recall that we write F for the residue field of E.

Definition 5.2.2. Let r : GF → GLn(F) be an absolutely irreducible continuous Galois represen-
tation and let V be a Serre weight for Gn. We say that r is automorphic of weight V (or that
V is a Serre weight of r) if there exists a compact open subgroup U in Gn(A∞,pF ) × Gn(OF+,p)
unramified above p and a cofinite subset P ⊆ PU such that r is unramified at each place of P and

S(U, V )mr 6= 0

where mr is the kernel of the system of Hecke eigenvalues α : TP → F associated to r, i.e.

det (1− r∨(Frobw)X) =

n∑
j=0

(−1)j(NF/Q(w))(
j
2)α(T (j)

w )Xj

for all w ∈ P.

We write W (r) for the set of automorphic Serre weights of r. Let w be a place of F above p
and v = w|F+ . We also write Ww(r) for the set of Serre weights F (aw) such that

(F (aw) ◦ ιw)⊗

 ⊗
v′∈S+

p \{v}

Vv′

 ∈W (r)

where Vv′ are Serre weights of Gn(OF+

v′
) for all v′ ∈ S+

p \ {v}. We often write W (r|GFw ) and

Ww(r|GFw ) for W (r) and Ww(r) respectively, when the given r|GFw is clearly a restriction of an
automorphic representation r to GFw .
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Fix a place w of F above p and let v = w|F+ . We also fix a compact open subgroup U of
Gn(A∞,pF ) × Gn(OF+,p) which is sufficiently small and unramified at all places above p. We may
write U = Gn(OF+

v
) × Uv. If W ′ is an OE-module with an action of

∏
v′∈S+

p \{v} Gn(OF+

v′
), we

define

S(Uv,W ′) := lim
−→
Uv

S(Uv · Uv,W ′)

where the limit runs over all compact open subgroups Uv of Gn(OF+
v

), endowing W ′ with a trivial

Gn(OF+
v

)-action. Note that S(Uv,W ′) has a smooth action of Gn(F+
v ) (given by right translation)

and hence of GLn(Fw) via ιw. We also note that S(Uv,W ′) has an action of TP commuting with
the smooth action of Gn(F+

v ), where P is a cofinite subset of PU .

Lemma 5.2.3 ([EGH15], Lemma 7.4.3). Let U be a compact open subgroup of Gn(A∞,pF ) ×
Gn(OF+,p) which is sufficiently small and unramified at all places above p, and P a cofinite subset
of PU . Fix a place w of F above p and let v = w|F+ . Let V ∼=

⊗
v′∈S+

p
Vv′ be a Serre weight for

Gn. Then there is a natural isomorphism of TP -modules

HomGn(O
F

+
v

) (V ∨v , S(Uv, V ′))
∼→ S(U, V )

where V ′ :=
⊗

v′∈S+
p \{v} Vv′ .

We now recall some formalism related to Deligne–Lusztig representations from Section 4.2. Let
w be a place of F above p. For a positive integer m, let kw,m/kw be an extension satisfying
[kw,m : kw] = m, and let T be an F-stable maximal torus in GLn/kw where F is the Frobenius
morphism. We have an identification from [Her09], Lemma 4.7

T(kw)
∼−→
∏
j

k×w,nj

where n ≥ nj > 0 and
∑
j nj = n; the isomorphism is unique up to

∏
j Gal(kw,nj/kw)-conjugacy.

In particular, any character θ : T(kw) → Q
×
p can be written as θ = ⊗jθj where θj : k×w,nj → Q

×
p

is a character.
Given an F-stable maximal torus T and a primitive character θ, we consider the Deligne-Lusztig

representation RθT of GLn(kw) over Qp defined in Section 4.2. Recall from Section 4.2 that Θ(θj)
is a cuspidal representation of GLnj (kw) associated to the primitive character θj , we have

RθT
∼= (−1)n−r · Ind

GLn(kw)
Pn(kw) (⊗jΘ(θj))

where Pn is the standard parabolic subgroup containing the Levi
∏
j GLnj and r denotes the

number of its Levi factors.
Let Fw,m := W (kw,m)[ 1

p ] for a positive integer m. We consider θj as a character on O×Fw,nj by

inflation and we define the following Galois type rec(θ) : IFw → GLn(Qp) as follows:

rec(θ) :=

r⊕
j=1

 ⊕
σ∈Gal(kw,nj /kw)

σ
(
θj ◦Art−1

Fw,nj

)
where θj is a primitive character on k×w,nj of niveau nj for each j = 1, · · · , r. Recall that

ArtFw,nj : F×w,nj → W ab
Fw,nj

is the isomorphism of local class field theory, normalized by send-

ing the uniformizers to the geometric Frobenii.
We quickly review the inertial local Langlands correspondence. Recall that we write recQp for

the local Langlands correspondence for GLn(Qp) (cf. Theorem 5.1.2).



98 CHOL PARK AND ZICHENG QIAN

Theorem 5.2.4 ([CEGGPS], Theorem 3.7 and [LLL], Proposition 2.3.4). Let τ : IQp
→ GLn(Qp)

be a Galois type. Then there exists a finite dimensional irreducible smooth Qp-representation σ(τ)

of GLn(Zp) such that if π is any irreducible smooth Qp-representation of GLn(Qp) then π|GLn(Zp)

contains a unique copy of σ(τ) as a subrepresentation if and only if recQp
(π)|IQp ∼= τ and N = 0

on recQp(π).

Moreover, if τ ∼= ⊕rj=1τj and the τj are pairwise distinct, then σ(τ) ∼= RθT and τ ∼= rec(θ) for a

maximal torus T in GLn/Fp and a primitive character θ : T(Fp)→ Q
×
p .

The following theorem provides a connection between Serre weights and potentially crystalline
lifts, which will be useful for the main result, Theorem 5.6.2.

Theorem 5.2.5 ([LLL], Proposition 4.2.5). Let w be a place of F above p, T a maximal torus in

GLn/kw , θ =
⊗r

j=1 θj : T(kw)→ Q
×
p a primitive character such that θj are pairwise distinct, and

Vw a Serre weight at w for a Galois representation r : GF → GLn(F).
Assume that Vw is a Jordan-Hölder constituent in the mod p reduction of the Deligne–Lusztig

representation RθT of GLn(kw). Then r|GFw has a potentially crystalline lift with Hodge–Tate
weights {−(n− 1),−(n− 2), · · · , 0} and Galois type rec(θ).

For a given automorphic Galois representation r : GF → GLn(F), it is quite difficult to deter-
mine if a given Serre weight is a Serre weight of r. Thanks to the work of [BLGG], we have the
following theorem, in which we refer the reader to [BLGG] for the unfamiliar terminology.

Theorem 5.2.6 ([BLGG], Theorem 4.1.9). Assume that if n is even then so is n[F+:Q]
2 , that ζp 6∈

F , and that r : GF → GLn(F) is an absolutely irreducible representation with split ramification.
Assume further that there is a RACSDC automorphic representation Π of GLn(AF ) such that

◦ r ' rΠ;
◦ For each place w|p of F , rΠ|GFw is potentially diagonalizable;
◦ r(GF (ζp)) is adequate.

If a = (aw)w ∈ (Zn+)
Sp
0 and for each w ∈ Sp r|GFw has a potentially diagonalizable crystalline lift

with Hodge–Tate weights {a1,w+(n−1), a2,w+(n−2), · · · , an−1,w+1, an,w}, then a Jordan–Hölder
factor of Wa ⊗Zp F is a Serre weight of r.

5.3. Weight elimination and automorphy of a Serre weight. In this section, we state our
main Conjecture for weight elimination (Conjecture 5.3.1) which will be a crucial assumption in
the proof of Theorem 5.6.2. We also prove the automorphy of a certain obvious Serre weight under
the assumptions of Taylor–Wiles type.

Throughout this section, we assume that ρ0 is always a restriction of an automorphic representa-
tion r : GF → GLn(F) to GFw for a fixed place w above p and is generic (cf. Definition 3.0.5). Re-

call that for 0 ≤ j0 < j0 +1 < i0 ≤ n−1 we have defined a tuple of integers (ri0,j0n−1 , · · · , r
i0,j0
1 , ri0,j00 )

in (3.7.1), which determines the Galois types as in (1.1.2). In many cases, we will consider the
dual of our Serre weights, so that we define a pair of integers (i1, j1) by the equation (5.0.1). We
also let

bk := −cn−1−k

for all 0 ≤ k ≤ n− 1. We will keep the notation (i1, j1) and bk for the rest of the paper.
For the rest of this section, we are mainly interested in the following characters of T (Fp): let

µ� := (bn−1, · · · , b0)

and

µ�,i1,j1 := (yn−1, yn−2, · · · , y1, y0)
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where

yj =

 bj if j 6∈ {j1, i1};
bi1 − j1 + i1 + 1 if j = j1;
bj1 + j1 − i1 − 1 if j = i1.

As ρ0 is generic, each of the characters above is p-regular and thus uniquely determines a p-
restricted weight up to a twist in (p − 1)X0(T ), and, by abuse of notation, we write µ�, µ�,i1,j1

for those corresponding p-restricted weights, respectively. We will clarify the twist in (p−1)X0(T )
whenever necessary. We also define a principal series representation

(5.3.1) πi1,j1∗ := Ind
G(Fp)

B(Fp)(µ
�,i1,j1)w0 .

We now state necessary results of weight elimination to our proof of the main results, Theo-
rem 5.6.2, in this paper.

Conjecture 5.3.1. Let r : GF → GLn(F) be a continuous automorphic Galois representation
with r|GFw ∼= ρ0 as in (3.0.1). Fix a pair of integers (i0, j0) such that 0 ≤ j0 < j0 + 1 < i0 ≤ n−1,

and assume that ρi0,j0 is Fontaine–Laffaille generic and that µ�,i1,j1 is 2n-generic.
Then we have

Ww(r) ∩ JH((πi1,j1∗ )∨) ⊆ {F (µ�)∨, F (µ�,i1,j1)∨}.

In an earlier version of this paper, we prove Conjecture 5.3.1 for n ≤ 5. But our method is
rather elaborate to execute for general n. But Bao V. Le Hung pointed out that one can prove
Conjecture 5.3.1 by constructing certain potentially crystalline deformation rings, and a proof of
the conjecture will appear in our forthcoming paper [LHMPQ].

Finally, we prove the automorphy of the Serre weight F (µ�)∨.

Proposition 5.3.2. Keep the assumptions and notation of Conjecture 5.3.1. Assume further that

if n is even then so is n[F+:Q]
2 , that ζp 6∈ F , that r : GF → GLn(F) is an irreducible representation

with split ramification, and that there is a RACSDC automorphic representation Π of GLn(AF )
such that

◦ r ' rΠ;
◦ for each place w′|p of F , rΠ|GF

w′
is potentially diagonalizable;

◦ r(GF (ζp)) is adequate.

Then
{F (µ�)∨} ⊆Ww(r) ∩ JH((πi1,j1∗ )∨).

Proof. We prove that F (µ�)∨ = F (cn−1, cn−2, · · · , c0) ∈Ww(r) as well as F (µ�)∨ ∈ JH((πi1,j1∗ )∨).
Note that (cn−1, · · · , c0) is in the lowest alcove as ρ0 is generic, so that by Theorem 5.2.6 it is
enough to show that ρ0 has a potentially diagonalizable crystalline lift with Hodge–Tate weights
{cn−1 + (n − 1), · · · , c1 + 1, c0}. Since ρ0 is generic, by [BLGGT], Lemma 1.4.3 it is enough to
show that ρ0 has an ordinary crystalline lift with those Hodge–Tate weights. The existence of
such a crystalline lift is immediate by [GHLS], Proposition 2.1.10. On the other hand, we have

F (µ�)∨ ∈ JH((πi1,j1∗ )∨ which is a direct corollary of Theorem 5.5.2. Therefore, we conclude that

F (µ�)∨ ∈Ww(r) ∩ JH((πi1,j1∗ )∨). �

5.4. Some application of Morita theory. In this section, we will recall standard results from
Morita theory to prove Corollary 5.4.3. We fix here an arbitrary finite group H and a finite
dimensional irreducible E-representation V of H. By Proposition 16.16 in [CR90], we know that
for any OE-lattice V ◦ ⊆ V , the set JHF[H](V

◦⊗OE F) depends only on V and is independent of the

choice of V ◦, and thus we will use the notation JHF[H](V ) from now on where V = V ◦ ⊗OE F for
a randomly chosen V ◦. We may assume that E is sufficiently large such that E (resp. its residual
field F) is a splitting field of V (resp. JHF[H](V )). Let C be the category of all finitely generated

OE-modules with an H-action which are isomorphic to subquotients of OE-lattices in V ⊕k for
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some k ≥ 1. Then the irreducible objects of C are just elements of JHF[H](V ). If σ ∈ JHF[H](V )

has multiplicity one in V , then there is an OE-lattice V σ (unique up to homothety by following
the proof of Lemma 4.4.1 of [EGS15] as it actually requires only the multiplicity one of σ in our
notation) such that

cosocH(V σ ⊗OE F) = σ.

By considering an OE-lattice in the E-dual of V with the F-dual of σ as cosocle and then taking
OE-dual of this lattice, we reach anotherOE-lattice Vσ in V , which is the unique (up to homethety),
such that

socH(Vσ ⊗OE F) = σ.

By repeating the proof of Lemma 2.3.1, Lemma 2.3.2 and Proposition 2.3.3 in [Le15], we deduce
the following.

Proposition 5.4.1. If σ has multiplicity one in V , then the lattice V σ is a projective object in C.

Note that the proof of Proposition 2.3.3 in [Le15] requires only that the multiplicity of σ in V
is one, rather than the much stronger condition that each constituent of V has multiplicity one.

Corollary 5.4.2. Let Σ be a subset of JHF[H](V ) such that each σ ∈ Σ has multiplicity one in V .
If an OE-lattice V ◦ ⊆ V satisfies

(5.4.1) cosocH(V ◦ ⊗OE F) =
⊕
σ∈Σ

σ

then we have a surjection

(5.4.2)
⊕
σ∈Σ

V σ � V ◦.

Proof. By (5.4.1) we have a surjection

V ◦ �
⊕
σ∈Σ

σ.

By Proposition 5.4.1 we know that
⊕

σ∈Σ V
σ is a projective object in C. By the definition of V σ

we know that there is a surjection ⊕
σ∈Σ

V σ �
⊕
σ∈Σ

σ

which can be lifted by projectivity to (5.4.2). �

Note in particular that (5.4.2) implies automatically the surjection

(5.4.3)
⊕
σ∈Σ

V σ ⊗OE F � V ◦ ⊗OE F.

Corollary 5.4.3. Let Σ be a subset of JHF[H](V ) such that each σ ∈ Σ has multiplicity one in V .
If an OE-lattice V◦ ⊆ V satisfies

socH(V◦ ⊗OE F) =
⊕
σ∈Σ

σ

then we have an injection

V◦ ⊗OE F ↪→
⊕
σ∈Σ

Vσ ⊗OE F.

Proof. This is simply the F-dual of (5.4.3). �
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5.5. Generalization of Section 4. In this section, we fix a pair of integers (i0, j0) satisfying
0 ≤ j0 < j0 + 1 < i0 ≤ n − 1, and determine (i1, j1) by the equation (5.0.1). We will use the
shortened notation P (resp. N , L, P− · · · ) for Pi1,j1 (resp. Ni1,j1 , Li1,j1 , P−i1,j1 , · · · ) as introduced
at the beginning of Section 5. Proposition 5.5.5 is crucial for the proof of Theorem 5.6.2. We
assume throughout this section that µ�,i1,j1 is 2n-generic (cf. Definition 4.1.1).

We start this section by defining some weights and Jacobi sum operators which will play a
crucial role for our main results, Theorem 5.6.2. Let

µi1,j11 := (x1
n−1, x

1
n−2, · · · , x1

1, x
1
0) and µi1,j1,′1 := (x1,′

n−1, x
1,′
n−2, · · · , x

1,′
1 , x1,′

0 )

where

x1
j =


bn+i1−j if n− j1 + i1 + 1 ≤ j ≤ n− 1;
bj+j1−i1−1 if i1 + 2 ≤ j ≤ n− j1 + i1;
bj1 + j1 − i1 − 1 if j = i1 + 1;
bi1 − j1 + i1 + 1 if j = i1;
bj if 0 ≤ j ≤ i1 − 1

and

x1,′
j =


bj1−1−j if 0 ≤ j ≤ j1 − i1 − 2;
bj−j1+i1+1 if j1 − i1 − 1 ≤ j ≤ j1 − 2;
bj1 + j1 − i1 − 1 if j = j1;
bi1 − j1 + i1 + 1 if j = j1 − 1;
bj if j1 + 1 ≤ j ≤ n− 1.

We also fix certain two elements in the Weyl group W :

wi1,j11 := (sn−3−i1 · · · s1)
j1−i1−1 ∈W and wi1,j1,′1 := (sn−j1+2 · · · sn−1)

j1−i1−1 ∈W,
and further define two more weights

µi1,j1 := (µi1,j11 )w
i1,j1
1 and µi1,j1,′ := (µi1,j1,′1 )w

i1,j1,′
1 .

More precisely, µi1,j1 and µi1,j1,′ can be written as follow:

µi1,j1 = (xn−1, xn−2, · · · , x1, x0) and µi1,j1,′ = (x′n−1, x
′
n−2, · · · , x′1, x′0)

where

xj =


bj if j > j1 or i1 > j;
bj1+i1+1−j if j1 ≥ j > i1 + 1;
bj1 + j1 − i1 − 1 if j = i1 + 1;
bi1 − j1 + i1 + 1 if j = i1

and

x′j =


bj if j > j1 or i1 > j;
bj1+i1−1−j if j1 − 1 > j ≥ i1;
bj1 + j1 − i1 − 1 if j = j1;
bi1 − j1 + i1 + 1 if j = j1 − 1.

Note that if we let

wi1,j1 := sn−j1 · · · sn−i1−2 ∈WL and wi1,j1,′ := sn−i1−1 · · · sn−j1+1 ∈WL

then we have

(µi1,j1)w
i1,j1

= (µ�,i1,j1)w
L
0 = (µi1,j1,′)w

i1,j1,′
.

Recall that wL0 is defined at the beginning of Section 5 and that µ�,i1,j1 is defined in Section 5.3.
We now define certain mod p Jacobi sum operators:

Si1,j11 := S
0,w

i1,j1
1

and Si1,j1,′1 := S
0,w

i1,j1,′
1

.

We further define

Si1,j1 := Ski1,j1 ,wL0 and Si1,j1,′ := Ski1,j1,′,wL0
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where ki1,j1 = (ki1,j1i,j )i,j ∈ {0, · · · , p−1}
|Φ+

wL0

|
and ki1,j1,′ = (ki1,j1,′i,j )i,j ∈ {0, · · · , p−1}

|Φ+

wL0

|
satisfy

ki1,j1i,j :=

 [bi1 − bn−i]1 if n− j1 + 1 ≤ i = j − 1 ≤ n− i1 − 1;
i1 − j1 + 1 + [bi1 − bj1 ]1 if i = j − 1 = n− j1;
0 if j ≥ i+ 2

and

ki1,j1,′i,j :=

 [bn−1−i − bj1 ]1 if n− j1 ≤ i = j − 1 ≤ n− i1 − 2;
i1 − j1 + 1 + [bi1 − bj1 ]1 if i = j − 1 = n− i1 − 1;
0 if j ≥ i+ 2.

We now consider characteristic 0 lifts of the mod p Jacobi sum operators above.

Ŝi1,j1 :=

 ∑
A∈U

wL0
(Fp)

n−i1−1∏
`=n−j1

dA`,`+1ek
i1,j1
`,`+1

 dAe
wL0

and

Ŝi1,j1,′ :=

 ∑
A∈U

wL0
(Fp)

n−i1−1∏
`=n−j1

dA`,`+1ek
i1,j1,′
`,`+1

 dAe
wL0 .

We also let

Ŝi1,j10 :=

 ∑
A∈U

wL0
(Fp)

n−i1−1∏
`=n−j1

dA`,`+1ek
i1,j1,0

`,`+1

 dAe
wL0

where ki1,j1,0 = (ki1,j1,0i,j )i,j ∈ {0, · · · , p− 1}
|Φ+

wL0

|
satisfies

ki1,j1,0i,j :=

{
i1 − j1 + 1 + [bi1 − bj1 ]1 if n− j1 ≤ i = j − 1 ≤ n− i1 − 1;
0 if j ≥ i+ 2.

Note that Ŝi1,j1 , Ŝi1,j1,′, Ŝi1,j10 are Teichmüller lifts of Si1,j1 , Si1,j1,′, Ski1,j1,0,wL0 , respectively. We

will also consider the Teichmüller lifts of Si1,j11 and Si1,j1,′1 as follows:

Ŝi1,j11 :=

 ∑
A∈U

w
i1,j1
1

(Fp)

dAe

wi1,j11 and Ŝi1,j1,′1 :=

 ∑
A∈U

w
i1,j1,′
1

(Fp)

dAe

wi1,j1,′1 .

We recall the operator Ξn ∈ G(Qp) from (4.4.1). Note that µ̃i1,j11 : T (Fp) → O×E is the

Teichmüller lift of µi1,j11 . We also recall κ
(1)
n , κ

(2)
n (cf. (4.4.10)), κn (cf. (4.4.14)), ε∗ (cf. (4.4.13)),

and Pn (cf. (4.4.12)), whose definitions are completely determined by fixing the data n and

(an−1, · · · , a0). We define κ
(1)
i1,j1

, κ
(2)
i1,j1

, κi1,j1 ∈ Z×p , εi1,j1 = ±1 and Pi1,j1 ∈ Z×p by replacing

n and (an−1, · · · , a1, a0) by j1 − i1 + 1 and (bj1 + j1 − i1 − 1, bj1−1, · · · , bi1+1, bi1 − j1 + i1 + 1)
respectively with bk as at the beginning of Section 5.3.

Proposition 5.5.1. Assume that µ�,i1,j1 is 2n-generic. Let

Πi1,j1 := Ind
G(Qp)

B(Qp)χ
i1,j1

be a tamely ramified principal series where χi1,j1 = χi1,j1n−1 ⊗ · · · ⊗ χ
i1,j1
0 : T (Qp)→ E× is a smooth

character satisfying χ |T (Zp)
∼= µ̃i1,j11 . Then we have the identity

Ŝi1,j1,′ • Ŝi1,j1,′1 • (Ξn)j1−i1−1 = p(j1−i1−1)(i1+1)κi1,j1

 n−1∏
k=n−j1+i1+1

χi1,j1k (p)

 Ŝi1,j1 • Ŝi1,j11
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on the 1-dimensional space (Πi1,j1)I(1),µ̃
i1,j1
1 .

Proof. By Lemma 4.4.2 we know that

(Ξn)j1−i1−1 • U j1−i1−1
n = Ŝ(w∗)j1−i1−1 .

Then by Lemma 4.4.1 and the fact

`(wi1,j1,′1 ) + `((w∗)j1−i1−1) = `(wi1,j1,′1 (w∗)j1−i1−1(wi1,j11 )−1) + `(wi1,j11 ) + 2(j1 − i1 − 1)i1

we deduce that

Ŝ
w
i1,j1,′
1

• Ŝ(w∗)j1−i1−1 = p(j1−i1−1)i1 Ŝ
w
i1,j1,′
1 (w∗)j1−i1−1(w

i1,j1
1 )−1 • Ŝwi1,j11

.

Therefore it remains to show that

Ŝi1,j1,′ • Ŝ
w
i1,j1,′
1 (w∗)j1−i1−1(w

i1,j1
1 )−1 = pj1−i1−1κi1,j1 Ŝi1,j1

on the 1-dimensional space

(Πi1,j1)I(1),µ̃i1,j1 = Ŝ
w
i1,j1
1

(
(Πi1,j1)I(1),µ̃

i1,j1
1

)
.

We observe by Lemma 4.4.1 that

Ŝwi1,j1,′ • Ŝwi1,j1,′1 (w∗)j1−i1−1(w
i1,j1
1 )−1 = pj1−i1−1Ŝwi1,j1

and therefore by composing Ŝi1,j10 it remains to show that

(5.5.1) Ŝi1,j10 • Ŝwi1,j1,′ = pj1−i1−1(κ
(2)
i1,j1

)−1Ŝi1,j1,′

on (Πi1,j1)I(1),µ̃i1,j1,′ and

(5.5.2) Ŝi1,j10 • Ŝwi1,j1 = pj1−i1−1(κ
(1)
i1,j1

)−1Ŝi1,j1

on (Πi1,j1)I(1),µ̃i1,j1 . But these can be checked by the same argument as in Corollary 4.4.7. �

We state here a generalization of the Theorem 4.8.2. Recall the definition of πi1,j1∗ from (5.3.1).

Theorem 5.5.2. The constituent F (µ�) has multiplicity one in πi1,j1∗ .

Proof. This is Corollary 4.3.7 if we replace µi1,j1π by µ�. �

We define a characteristic 0 principal series

(π̃i1,j1∗ )◦ := Ind
G(Fp)

B(Fp)(µ̃
�,i1,j1)w0

which is an OE-lattice in (π̃i1,j1∗ )◦ ⊗OE E.

Lemma 5.5.3. (i) For µ ∈ {µi1,j1 , µi1,j1,′, µi1,j11 , µi1,j1,′1 }, we have

dimFp(πi1,j1∗ )U(Fp),µ = 1.

(ii) We have the following non-vanishing results:

Si1,j1
(

(πi1,j1∗ )U(Fp),µi1,j1
)

= Si1,j1,′
(

(πi1,j1∗ )U(Fp),µi1,j1,′
)
6= 0.

(iii) We also have the following non-vanishing results:

Si1,j11

(
(πi1,j1∗ )U(Fp),µ

i1,j1
1

)
= (πi1,j1∗ )U(Fp),µi1,j1

and

Si1,j11

(
(πi1,j1∗ )U(Fp),µ

i1,j1,′
1

)
= (πi1,j1∗ )U(Fp),µi1,j1,′ .
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Proof. The statement (i) is immediate by Bruhat decomposition (4.0.6).
Now we prove (ii). According to Lemma 4.4.1, (5.5.1) and (5.5.2) and Lemma 4.4.6, we deduce

by mod p reduction with respect to the lattice (π̃i1,j1∗ )◦ that

Si1,j1
(

(πi1,j1∗ )U(Fp),µi1,j1
)

= Si1,j1,′
(

(πi1,j1∗ )U(Fp),µi1,j1,′
)

= Ski1,j1,0,wL0

(
(πi1,j1∗ )U(Fp),(µ�,i1,j1 )w

L
0

)
.

If we abuse the notation ki1,j1,0 for the tuple in {0, · · · , p− 1}|Φ
+
w0
| satisfying

ki1,j1,0α = 0 for all α /∈ Φ+
wL0

then by mod p reduction of first possibility of Proposition 4.4.3 we deduce that

Ski1,j1,0,wL0 • S0,wL0 w0
= Ski1,j1,0,w0

on the 1-dimensional subspace (πi1,j1∗ )U(Fp),(µ�,i1,j1 )w0
. Thus we finish the proof of (ii) by

Ski1,j1,0,w0

(
(πi1,j1∗ )U(Fp),(µ�,i1,j1 )w0

)
6= 0

which follows from Proposition 4.1.4.
Finally we prove (iii). We only prove the first equality in (iii) as the same proof works for the

second equality. By Lemma 4.1.6 we know that

S0,(wi1,j1 )−1wL0 w0

(
(πi1,j1∗ )U(Fp),(µ�,i1,j1 )w0

)
= (πi1,j1∗ )U(Fp),µi1,j1

and

S
0,(wi1,j1w

i1,j1
1 )−1wL0 w0

(
(πi1,j1∗ )U(Fp),(µ�,i1,j1 )w0

)
= (πi1,j1∗ )U(Fp),µ

i1,j1
1 .

Therefore it remains to show that

Si1,j11 • S
0,(wi1,j1w

i1,j1
1 )−1wL0 w0

= S0,(wi1,j1 )−1wL0 w0

on the 1-dimensional subspace (πi1,j1∗ )U(Fp),(µ�,i1,j1 )w0
, which follows from the mod p reduction of

Lemma 4.4.1 and the fact that

`(wi1,j11 ) + `((wi1,j1wi1,j11 )−1wL0 w0) = `((wi1,j1)−1wL0 w0).

This completes the proof. �

We define V i1,j1 and V i1,j1,′ to be the subrepresentations of πi1,j1∗ generated by

Si1,j1
(

(πi1,j1∗ )U(Fp),µi1,j1
)

and Si1,j1,′
(

(πi1,j1∗ )U(Fp),µi1,j1,′
)

respectively. Similarly, we define V i1,j10 as the subrepresentation of πi1,j1∗ generated by

Ski1,j1,0
(

(πi1,j1∗ )U(Fp),(µ�,i1,j1 )w0
)
.

Lemma 5.5.4. We have

(5.5.3) V i1,j1 = V i1,j1,′ = V i1,j10

and

(5.5.4) F (µ�) ∈ JH(V i1,j10 ).
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Proof. The equality (5.5.3) follows directly from the proof of (ii) of Lemma 5.5.3.

We define a new tuple ki1,j1,] = (ki1,j1,]i,j )i,j ∈ {0, · · · , p− 1}|Φ
+
w0
| defined by

ki1,j1,]i,j :=

{
i1 − j1 + 1 + [bi1 − bj1 ]1 if (i, j) = (n− j1, n− i1);
0 otherwise.

We also define V i1,j1,] to be the subrepresentation of πi1,j1∗ generated by

Ski1,j1,],w0

(
(πi1,j1∗ )U(Fp),(µ�,i1,j1 )w0

)
.

By Proposition 4.6.5 and the same method in the proof of Proposition 4.7.8 we deduce that

(5.5.5) V i1,j1,] ⊆ V i1,j10 .

By abuse of notation we view µ�,i1,j1 as a fixed weight in X1(T ), and then there exists µ�,′ ∈
X+(T ) such that

µ�,′ ≡ µ� (mod (p− 1)X(T )) and µ�,′ = (n− i1, n− j1) · µ�,i1,j1 + p

n−i1−1∑
r=n−j1

αr.

We define U
i1,j1
1 to be the unipotent subgroup of L generated by Uαr for n−j1 +1 ≤ r ≤ n− i1−1

and then define
U
i1,j1

:= U
i1,j1
1 ·N.

By a direct generalization of proof of Lemma 4.7.14, we can show that

Ski1,j1,],w0

(
(πi1,j1∗ )U(Fp),(µ�,i1,j1 )w0

)
= H0(µ�,i1,j1)U

i1,j1

µ�,′ .

We define V i1,j1alg to be the G-subrepresentation of H0(µ�,i1,j1) generated by H0(µ�,i1,j1)U
i1,j1

µ�,′ and

by definition we have

(5.5.6) (V i1,j1alg )N ↪→ H0(µ�,i1,j1)N and (V i1,j1alg )U
i1,j1

µ�,′ = H0(µ�,i1,j1)U
i1,j1

µ�,′ .

We have natural identification (cf the beginning of Section 5 for definition of H0
L(µ�,i1,j1))

(5.5.7) H0(µ�,i1,j1)N ∼= H0
L(µ�,i1,j1) and H0(µ�,i1,j1)U

i1,j1 ∼= H0
L(µ�,i1,j1)U

i1,j1
1 .

By applying Lemma 4.7.15 and the proof of Proposition 4.7.16 to the Levi L, we deduce that
H0
L(µ�,i1,j1) is uniserial of length two with socle FL(µ�,i1,j1) and cosocle FL(µ�,′) and that

(5.5.8) H0
L(µ�,i1,j1)

U
i1,j1
1

µ�,′
∼−→ FL(µ�,′)µ�,′ .

Combine (5.5.6), (5.5.7) and (5.5.8) we deduce the surjection of representations of L

(V i1,j1alg )N � FL(µ�,′) ∼= H0
L(µ�,′) ∼= H0(µ�,′)N

and thus a non-zero morphism

(V i1,j1alg )→ H0(µ�,′) and (V i1,j1alg )U
i1,j1

µ�,′
∼−→ H0(µ�,′)U

µ�,′
∼←− F (µ�,′)U

µ�,′

by coinduction for algebraic representation from P to G. In particular we know that

F (µ�,′) ∈ JHG

(
V i1,j1alg

)
.

Now we restrict the action of G to G(Fp) and observe the injections

V i1,j1,] ↪→ V i1,j1alg |G(Fp) and F (µ�) ↪→ F (µ�,′)|G(Fp)

which induces

Ski1,j1,],w0

(
(πi1,j1∗ )U(Fp),(µ�,i1,j1 )w0

)
= (V i1,j1,])U

i1,j1 (Fp),µ�

= (V i1,j1alg )U
i1,j1

µ�,′
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and

F (µ�)U(Fp),µ�

= (F (µ�,′)|G(Fp))
U(Fp),µ�

= F (µ�,′)µ�,′ .

Hence, we deduce that

F (µ�) ∈ JHG(Fp)

(
V i1,j1,]

)
which together with (5.5.5) finishes the proof of (5.5.4). �

Proposition 5.5.5. Let τ be an OE-lattice in (π̃i1,j1∗ )◦ ⊗OE E satisfying

socG(Fp) (τ ⊗OE F) ↪→ F (µ�)⊕ F (µ�,i1,j1).

(i) For µ ∈ {µi1,j1 , µi1,j1,′, µi1,j11 , µi1,j1,′1 }, we have

dimF(τ ⊗OE F)U(Fp),µ = 1.

(ii) We have the non-vanishing results for Si1,j1 and Si1,j1,′:

Si1,j1
(

(τ ⊗OE F)U(Fp),µi1,j1
)

= Si1,j1,′
(

(τ ⊗OE F)U(Fp),µi1,j1,′
)
6= 0.

(iii) We also have the non-vanishing results for Si1,j11 and Si1,j1,′1 :

Si1,j11

(
(τ ⊗OE F)U(Fp),µ

i1,j1
1

)
= (τ ⊗OE F)U(Fp),µi1,j1

and

Si1,j1,′1

(
(τ ⊗OE F)U(Fp),µ

i1,j1,′
1

)
= (τ ⊗OE F)U(Fp),µi1,j1,′ .

Proof. We can easily deduce (i) from

dimE((π̃i1,j1∗ )◦ ⊗OE E)U(Fp),µ̃i1,j1 = dimE((π̃i1,j1∗ )◦ ⊗OE E)U(Fp),µ̃i1,j1,′ = 1

and Frobenius reciprocity as F (µi1,j1), F (µi1,j1,′), F (µi1,j11 ) and F (µi1,j1,′1 ) all have multiplicity
one in τ ⊗OE F.

We define πi1,j1[ as the mod p reduction of (π̃i1,j1∗ )◦ ⊗OE E with respect to the unique (up to
homothety) OE-lattice such that

socG(Fp)

(
πi1,j1[

)
= F (µ�).

Then we deduce from Corollary 5.4.3 that there exists an injection

τ ⊗OE F ↪→ πi1,j1∗ ⊕ πi1,j1[

Note that we have

(5.5.9)
(
πi1,j1∗ ⊕ πi1,j1[

)U(Fp),µ

= (πi1,j1∗ )U(Fp),µ ⊕ (πi1,j1[ )U(Fp),µ

for µ ∈ {µi1,j1 , µi1,j1,′, µi1,j11 , µi1,j1,′1 }.
The equality of two spaces in (ii) is true because both of them can be identified with

Ski1,j1,0,w0

(
(τ ⊗OE F)U(Fp),(µ�,i1,j1 )w0

)
by the same argument as in the proof of (ii) of Lemma 5.5.3. Therefore we only need to show

that Si1,j1 (resp. Si1,j1,′) gives rise to a bijection from
(
πi1,j1∗ ⊕ πi1,j1[

)U(Fp),µi1,j1

(resp. from(
πi1,j1∗ ⊕ πi1,j1[

)U(Fp),µi1,j1

) to its image. According to (ii) of Lemma 5.5.3 and (5.5.9) we only

need to show that

Si1,j1
(

(πi1,j1[ )U(Fp),µi1,j1
)
6= 0 and Si1,j1,′

(
(πi1,j1[ )U(Fp),µi1,j1,′

)
6= 0

which follows from Lemma 5.5.4 by definition of πi1,j1[ .



ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GLn(Qp) IN THE ORDINARY CASE 107

We have a unique (up to scalar) non-zero morphism

(5.5.10) πi1,j1∗ → πi1,j1[

which by Lemma 5.5.4 induces isomorphisms

(πi1,j1∗ )U(Fp),µ ∼−→ (πi1,j1[ )U(Fp),µ

for µ ∈ {µi1,j1 , µi1,j1,′}, and hence (iii) follows from (iii) of Lemma 5.5.3 by considering the image

of (iii) of Lemma 5.5.3 under (5.5.10) inside πi1,j1[ . �

Corollary 5.5.6. Let τ be an OE-lattice in (π̃i1,j1∗ )◦ ⊗OE E satisfying

socG(Fp) (τ ⊗OE F) ↪→ F (µ�)⊕ F (µ�,i1,j1).

Then we have

Si1,j1 • Si1,j11

(
(τ ⊗OE F)U(Fp),µ

i1,j1
1

)
= Si1,j1,′ • Si1,j1,′1

(
(τ ⊗OE F)U(Fp),µ

i1,j1,′
1

)
6= 0.

5.6. Main results. In this section, we state and prove our main results on mod p local-global
compatibility. Throughout this section, ρ0 is always assumed to be a restriction of a global repre-
sentation r : GF → GLn(F) to GFw for a fixed place w of F above p. Let v := w|F+ , and assume
further that r is automorphic of a Serre weight V =

⊗
v′ Vv′ with Vw := Vv ◦ ι−1

w
∼= F (µ�)∨. We

may write Vv′ ◦ ι−1
w′
∼= F (aw′)

∨ for a dominant weight aw′ ∈ Zn+ where w′ is a place of F above v′,
and define

(5.6.1) V ′ :=
⊗
v′ 6=v

Vv′ and Ṽ ′ :=
⊗
v′ 6=v

Wav′
.

From now on, we also assume that aw′ is in the lowest alcove for each place w′ of F above p, so
that

V ′ ∼= Ṽ ′ ⊗OE F.

Let U be a compact open subgroup of Gn(A∞,pF ) × Gn(OF+,p), which is sufficiently small and

unramified at all places above p, such that S(U, V )[mr] 6= 0 where mr is the maximal ideal of TP

attached to r for a cofinite subset P of PU .
We fix a pair of integers (i0, j0) such that 0 ≤ j0 < j0 + 1 < i0 ≤ n− 1, and determine a pair of

integers (i1, j1) by the equation (5.0.1). We also define{
M := S(Uv, Ṽ ′)mr ;

M i1,j1 := S(Uv, Ṽ ′)
I(1),µ̃

i1,j1
1

mr .

Note that M i1,j1 is a free OE-module of finite rank as M is a smooth admissible representation of
G(Qp) which is $E-torsion free. For any OE-algebra A, we write M i1,j1

A for M i1,j1 ⊗OE A. We
similarly define MA.

Let Ti1,j1 be the OE-module that is the image of TP in EndOE (M i1,j1). Then Ti1,j1 is a local
OE-algebra with the maximal ideal mr, where, by abuse of notation, we write mr ⊆ Ti1,j1 for the
image of mr of TP . As the level U is sufficiently small, by passing to a sufficiently large E as in
the proof of Theorem 4.5.2 of [HLM], we may assume that Ti1,j1

E
∼= Er for some r > 0. For any

OE-algebra A we write Ti1,j1
A for Ti1,j1 ⊗OE A.

We have M i1,j1
E =

⊕
pM

i1,j1
E [pE ], where the sum runs over the minimal primes p of Ti1,j1 and

pE := pTi1,j1
E . Note that Ti1,j1

E /pE ∼= E for any such p. By abuse of notation, we also write p
(resp. pE) for its inverse image in TP (resp. TPE).

Definition 5.6.1. A non-zero vector vi1,j1 ∈M i1,j1
F is said to be primitive if there exists a vector

v̂i1,j1 ∈M i1,j1 [p] that lifts vi1,j1 , for certain minimal prime p of Ti1,j1 .
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Note that the G(Qp)-subrepresentation of ME generated by a lift v̂i1,j1 of a primitive element
vi1,j1 is irreducible and actually lies in ME [pE ].

Now we can state our main results in this paper. Recall that by ρ0 we always mean an n-
dimensional ordinary representation of GQp

as described in (3.0.1).

Theorem 5.6.2. Fix a pair of integers (i0, j0) satisfying 0 ≤ j0 < j0 + 1 < i0 ≤ n − 1, and let
(i1, j1) be a pair of integers such that i0 + i1 = j0 + j1 = n− 1. We also let r : GF → GLn(F) be
an irreducible automorphic representation with r|GFw ∼= ρ0. Assume that

◦ µ�,i1,j1 is 2n-generic;
◦ ρi0,j0 is Fontaine–Laffaille generic.

Assume further that

(5.6.2) {F (µ�)∨} ⊆Ww(r) ∩ JH((πi1,j1∗ )∨) ⊆ {F (µ�)∨, F (µ�,i1,j1)∨}.

Then there exists a primitive vector in S(Uv, V ′)[mr]
I(1),µ

i1,j1
1 . Moreover, for each primitive

vector vi1,j1 ∈ S(Uv, V ′)[mr]
I(1),µ

i1,j1
1 we have Si1,j1 • Si1,j11 vi1,j1 6= 0 and

Si1,j1,′ • Si1,j1,′ • (Ξn)j1−i1−1vi1,j1 = εi1,j1Pi1,j1(bn−1, · · · , b0) · FLi0,j0n (r|GFw ) · Si1,j1 • Si1,j11 vi1,j1

where

εi1,j1 =

j1−1∏
k=i1+1

(−1)bi1−bk−j1+i1+1

and

Pi1,j1(bn−1, · · · , b0) =

j1−1∏
k=i1+1

j1−i1−1∏
j=1

bk − bj1 − j
bi1 − bk − j

∈ Z×p .

Remark 5.6.3. The right inclusion of (5.6.2) is just Conjecture 5.3.1, which becomes a theorem
in [LHMPQ] (cf. Remark 1.3.2). We also give an evidence for the left inclusion of (5.6.2) in
Proposition 5.3.2 under some assumption of Taylor–Wiles type. As a result, the condition (5.6.2)
can be removed under some standard Taylor–Wiles conditions.

Remark 5.6.4. If M i1,j1 is free as Ti1,j1-module, then all vectors in S(Uv, V ′)[mr]
I(1),µ

i1,j1
1 are

primitive. As a result, one needs such a freeness result to remove the “primitive” condition. Under
a stronger generic condition (compared to our Fontaine-Laffaille generic conditions), it should be
possible to use results from [LHMPQ] to improve (5.6.2) to be an equality

Ww(r) ∩ JH((πi1,j1∗ )∨) = {F (µ�)∨}

in which case one is able to prove the freeness result mentioned above through the technique in
Section 5 of [HLM] under some standard global assumption. It is also possible to prove a freeness
result over some enlarged Hecke algebra as in Section 5 of [HLM], at least if (i1, j1) = (0, n− 1).

Proof. We firstly point out that M i1,j1 6= 0, as S(U, (F (µ�)∨ ◦ ιw) ⊗ V ′)mr 6= 0 and F (µ�) is a

factor of IndKI µ̃
i1,j1
1 = Ind

G(Fp)

B(Fp)µ
i1,j1
1 .

Picking an embedding E ↪→ Qp, as well as an isomorphism ι : Qp
∼−→ C, we see that

(5.6.3) M i1,j1
Qp

∼=
⊕

Π

m(Π) ·ΠI(1),µ̃
i1,j1
1

v ⊗ (Π∞,v)U
v

,

where the sum runs over irreducible representations Π ∼= Π∞⊗Πv⊗Π∞,v of Gn(AF+) over Qp such
that Π ⊗ι C is a cuspidal automorphic representation of multiplicity m(Π) ∈ Z>0 with Π∞ ⊗ι C
being determined by the algebraic representation (Ṽ ′)∨ and with associated Galois representation
rΠ lifting r∨ (cf. Lemma 5.1.1).
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We write δ for the modulus character of B(Qp):

δ :=| |n−1 ⊗ | |n−2 ⊗ · · ·⊗ | | ⊗1

where | | is the (unramified) norm character sending p to p−1. For any Π contributing to (5.6.3),
we have

(i) Πv
∼= Ind

G(Qp)

B(Qp)(ψ ⊗ δ) for some smooth character

ψ = ψn−1 ⊗ ψn−2 ⊗ · · · ⊗ ψ1 ⊗ ψ0

of T (Qp) such that ψ|T (Zp) = µ̃i1,j11 |T (Zp), where ψk are the smooth characters of Q×p .
(ii) r∨Π|GFw is a potentially crystalline lift of r with Hodge–Tate weights {−(n − 1),−(n −

2), · · · ,−1, 0} and WD(r∨Π|GFw )F−ss ∼= ⊕n−1
k=0ψ

−1
k .

Here, part (i) follows from [EGH15], Propositions 2.4.1 and 7.4.4, and part (ii) follows from classical
local-global compatibility (cf. Theorem 5.1.2). Moreover, by Corollary 3.7.3, we have

(5.6.4) FLi0,j0n (ρ0) =

∏i0−1
k=j0+1 ψi1+1+k(p)

p
(i0+j0)(i0−j0−1)

2

.

(Note that we may identify ψi1+1+k with Ω−1
k for j0 < k < i0, where Ωk is defined in Corol-

lary 3.7.3.)

Now we pick an arbitrary primitive vector vi1,j1 ∈ M i1,j1
F [mr] with a lift v̂i1,j1 ∈ M i1,j1 [p]. We

set
τE := 〈Kv̂i1,j1〉E ⊆ME [pE ] and τ := 〈Kv̂i1,j1〉 ⊆M [p],

and thus τ is an OE-lattice in τE . Note that M i1,j1
E [pE ] ⊗E Qp is a direct summand of (5.6.3)

where Π runs over a subset of automorphic representations in (5.6.3). The same argument as
in the paragraph above (4.5.7) of [HLM] using Cebotarev density theorem shows that the local
component Πv of each Π occurring in this direct summand does not depend on Π.

By the definition of τ , we obtain non-zero morphisms

(5.6.5) τ ⊗OE F→M [p]⊗OE F→MF[mr]

as p + $ETP = mr. We denote the image of τ ⊗OE F under the composition (5.6.5) by V and
note that it can be naturally identified with 〈Kvi1,j1〉F according to the definition of τ . By the
assumption (5.6.2) (cf. Conjecture 5.3.1), we deduce that

JH
(
socG(Fp) (MF[mr])

)
⊆ {F (µ�), F (µ�,i1,j1)}

and therefore by (5.6.5) we have

JH
(
socG(Fp)(V )

)
⊆ {F (µ�), F (µ�,i1,j1)}.

We know that there exists an OE-lattice τ ′ ⊆ τE such that

socG(Fp)(V ) ∼= socG(Fp) (τ ′ ⊗OE F) .

Moreover, we have a saturated inclusion τ ↪→ τ ′ which induces a morphism

τ ⊗OE F→ τ ′ ⊗OE F

whose image is isomorphic to V . It follows from Proposition 5.5.5 that we necessarily have iso-
morphisms of F-lines

(τ ⊗OE F)
U(Fp),µi1,j1 ∼−→ V U(Fp),µi1,j1 ∼−→ (τ ′ ⊗OE F)

U(Fp),µi1,j1
.

Hence, by Corollary 5.5.6 and the fact that

V U(Fp),µi1,j1 = F[vi1,j1 ] ⊆MF[mr],

we deduce that

(5.6.6) Si1,j1 • Si1,j11 vi1,j1 6= 0.
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On the other hand, we have the following equality by Proposition 5.5.1

(5.6.7) Ŝi1,j1,′ • Ŝi1,j1,′1 • (Ξn)j1−i1−1v̂i1,j1 = κi1,j1

(∏i0−1
k=j0+1 ψi1+1+k(p)

p
(i0+j0)(i0−j0−1)

2

)
Ŝi1,j1 • Ŝi1,j11 v̂i1,j1 .

By taking mod p reduction of (5.6.7) we deduce from (5.6.4) that

Si1,j1,′ • Si1,j1,′1 • (Ξn)j1−i1−1vi1,j1

= εi1,j1Pi1,j1(bn−1, · · · , b0) · FLi0,j0n (r|GFw ) · Si1,j1 • Si1,j11 vi1,j1 .

This equation together with (5.6.6) finishes the proof. �

Corollary 5.6.5. Keep the notation of Theorem 5.6.2 and assume that each assumption in Theo-
rem 5.6.2 holds for all (i0, j0) such that 0 ≤ j0 < j0 + 1 < i0 ≤ n− 1. Assume further that M i1,j1

is free over Ti1,j1 for all pair (i1, j1) (cf. Remark 5.6.4).
Then the structure of S(Uv, V ′)[mr] as a smooth admissible F-representation of G(Qp) deter-

mines ρ0 up to isomorphism.

Proof. We follow the notation in Section 3.4 of [BH15]. As ρ0 is ordinary, we can view it as a
morphism

ρ0 : GQp
→ B̂(F) ⊆ Ĝ(F)

where B̂ (resp. Ĝ) is the dual group of B (resp. G). The local class field theory gives us a
bijection between smooth characters of Q×p and the smooth characters of the Weil group of Qp

in characteristic 0. This bijection restricts to a bijection between smooth characters of Q×p and

smooth characters of GQp
both with values in O×E . Taking mod p reduction and then taking

products we reach a bijection between smooth F-characters of T (Qp) and Hom(GQp
, T̂ (F)). We

can therefore define χρ0
as the character of T (Qp) corresponding to the composition

χ̂ρ0
: GQp

→ B̂(F) � T̂ (F).

In [BH15], a closed subgroup Cρ0
⊆ B (at the beginning of Section 3.2) and a subset Wρ0

((2)
before Lemma 2.3.6) of W is defined.

As we are assuming that ρ0 is maximally non-split, we observe that Cρ0
= B and Wρ0

= {1} in

our case. Therefore by the definition of Πord(ρ0) in [BH15] before Definition 3.4.3, we know that
it is indecomposable with socle

Ind
G(Qp)

B−(Qp)χρ0
· (ω−1 ◦ θ)

where θ ∈ X(T ) is a twist character defined after Conjecture 3.1.2 in [BH15] which can be chosen to
be η in our notation. Then as a Corollary of Theorem 4.4.7 in [BH15], we deduce that S(Uv, V ′)[mr]
determines χρ0

and hence χ̂ρ0
.

Now, we know that ρ0 is determined by the Fontaine–Laffaille parameters

{FLi0,j0n (ρ0) ∈ P1(F) | 0 ≤ j0 < j0 + 1 < i0 ≤ n− 1}
and χ̂ρ0

, up to isomorphism. Our conclusion thus follows from Theorem 5.6.2 together with
Remark 5.6.4. �
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[BL94] L. Barthel, R. Livné, Irreducible modular representations of GL2 of a local field, Duke Math. J. 1994 Aug,

75(2), 261–92.

[Ber10] L. Berger, Représentations modulaires de GL2(Qp) et représentations galoisiennes de dimension 2,
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