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In this thesis, we study the distribution of prime ideals within the Chebotarev Density The-

orem. The theorem states that the Artin symbols attached to prime ideals are equidistributed

within the Galois group of a given Galois extension.

We exhibit field-uniform unconditional bounds with explicit constants for the least prime

ideal in the Chebotarev Density Theorem, that is, the prime ideal of least norm with a specified

Artin symbol. Moreover, we provide a new upper bound for the number of prime ideals with a

specified Artin symbol which is valid for a wide range and sharp, short of precluding a putative

Siegel zero. To achieve these results, we establish explicit statistical information on the zeros

of Hecke L-functions and the Dedekind zeta function. Our methods were inspired by works of

Linnik, Heath-Brown, and Maynard in the classical case and the papers of Lagarias–Odlyzko,

Lagarias–Montgomery–Odlyzko, and Weiss in the Chebotarev setting.

We include applications for primes represented by certain binary quadratic forms, con-

gruences of coefficients for modular forms, and the group structure of elliptic curves reduced

modulo a prime. In particular, we establish the best known unconditional upper bounds for

the least prime represented by a positive definite primitive binary quadratic form and for the

Lang–Trotter conjectures on elliptic curves.
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Chapter 1

Introduction

“Of course it is happening inside your head... but why on earth should that
mean that it is not real?”

– Albus Dumbledore.

1.1 Primes in an arithmetic progression

In his breakthrough 1837 manuscript, Dirichlet proved that there are infinitely many primes in
any given arithmetic progression. Riemann, in his seminal 1859 paper, proceeded to outline a
remarkable strategy to asymptotically count such primes and, by the end of the 19th century,
the Prime Number Theorem (PNT) for Arithmetic Progressions (APs) was established with the
works of Hadamard and de la Vallée–Poussin. It states that primes are equidistributed amongst
arithmetic progressions; that is, for (a, q) = 1, the prime counting function defined by

π(x; q, a) := #{p ≤ x : p ≡ a (mod q)}

satisfies
π(x; q, a) ∼ 1

ϕ(q)
Li(x) (1.1)

as x→∞, where ϕ(q) = #(Z/qZ)× is the Euler totient function and Li(x) =
∫ x

2
1

log t
dt is the

logarithmic integral. Recall Li(x) ∼ x
log x

as x→∞.

The remarkable arguments leading to (1.1) and its predecessors relied on a deep analytic
understanding of functions associated to Dirichlet characters and their zeros. A Dirichlet char-
acter χ (mod q) is a completely multiplicative q-periodic function on the integers n ∈ Z taking
complex roots of unity as values for (n, q) = 1 and zero otherwise. Given a Dirichlet character

1



CHAPTER 1. INTRODUCTION 2

χ (mod q), the Dirichlet L-function associated to it is given by

L(s, χ) =
∞∑
n=1

χ(n)n−s =
∏
p

(
1− χ(p)

ps

)−1

(1.2)

for Re{s} > 1. Here the product is over all primes p. Of special importance is the principal1

character χ = χ0 which satisfies χ0(n) = 1 for all (n, q) = 1 and equals 0 otherwise. In the
special case q = 1, the principal character χ0 is identically unity and its Dirichlet L-function is
the famous Riemann zeta function given by

ζ(s) =
∞∑
n=1

n−s =
∏
p

(
1− 1

ps

)−1

(1.3)

for Re{s} > 1. It is well-known that Dirichlet L-functions L(s, χ) can be analytically con-
tinued to the entire complex plane, except for a simple pole at s = 1 when χ = χ0 is trivial.
In fact, they satisfy a functional equation relating L(s, χ) to L(1 − s, χ) which yields a sym-
metry of their zeros about the critical line Re{s} = 1/2. As demonstrated by Dirichlet and
many others, the distribution of their zeros is intimately related to the distribution of primes
in arithmetic progressions. The zeros of Dirichlet L-functions either lie in the critical strip
0 < Re{s} < 1 (which are referred to as non-trivial zeros) or at certain non-positive integers
(which are referred to as trivial zeros). It is the non-trivial zeros which are deeply mysterious
and dictate the behaviour of π(x; q, a).

With a more refined understanding of these zeros, the Siegel-Walfisz theorem (1936) quan-
tifies the error term in (1.1) asserting that, for any ε > 0 and x ≥ exp(Oε(q

ε)),

π(x; q, a) =
1

ϕ(q)
Li(x) +O

(
x exp(−

√
c1 log x)

)
(1.4)

for some constant c1 = c1(ε) > 0. However, for any ε < 1/2, the constant c1 and implied
constants depending on ε are ineffective; that is, they are not effectively computable. The
source of this drawback is a putative real zero β1 of a Dirichlet L-function L(s, χ1) attached
to the quadratic Dirichlet character χ1 (mod q) and this zero could conceivably be exceedingly
close to s = 1. We refer to the zero β1 as an exceptional zero2. In general, if many zeros
of a Dirichlet L-function happen to live near the edge of the critical strip at Re{s} = 1, then
π(x; q, a) could behave erratically. Given the symmetry of zeros about the critical line, the
ideal conjectured scenario is the Generalized Riemann Hypothesis (GRH) which states that all

1It is also referred to as the trivial character.
2Other sources may refer to it as a Siegel zero (or Landau–Siegel zero), but we will later make a distinction

with this terminology.
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the non-trivial zeros ρ of a Dirichlet L-function satisfy Re{ρ} = 1/2. Assuming GRH, the
error term in (1.4) drastically improves to O(x1/2 log x) with an effective implied constant and
the asymptotic for π(x; q, a) is valid for x ≥ q2 log4 q. This strong conditional range suggests
there is much left to be desired from the unconditional range in (1.4) which is both exponential
in the modulus q and ineffective. Furthermore, the range of validity in (1.4) is prohibitive for
many applications. Unfortunately, since 1936, there has been little progress towards improving
the valid range of x in (1.4) while maintaining the asymptotic for π(x; q, a).

One may seek to relax the precision of our estimate for π(x; q, a) in hopes of enhancing the
range of x. For example, an estimate of the form

1

ϕ(q)
Li(x)� π(x; q, a)� 1

ϕ(q)
Li(x)

for a range of x which is polynomial in q would be tremendously useful; roughly speaking, for
smaller values of x, can one bound π(x; q, a) within a constant factor of its asymptotic size?
As we shall see, the desired lower bound is overly optimistic and unattainable with current
methods (due to the possible existence of an exceptional zero) but we can obtain a weaker
variant of it. The upper bound, on the other hand, has been established in a very precise form.

Linnik’s theorem

A lower bound for π(x; q, a) is intimately related to bounding the least prime in an arithmetic
progression a (mod q). For (a, q) = 1, define

P (a, q) = min{p prime : p ≡ a (mod q)}. (1.5)

The best known lower bounds for max
a
P (a, q) are due to Granville and Pomerance [GP90].

For upper bounds, (1.4) trivially gives an ineffective unconditional estimate for P (a, q) which
is exponential in q. In a spectacular breakthrough, Linnik [Lin44a, Lin44b] established the first
non-trivial unconditional upper bound on P (a, q) which is polynomial in q.

Theorem (Linnik). Let (a, q) = 1. For some absolute constant L > 0,

P (a, q)� qL, (1.6)

where the implied constant is absolute and effectively computable.

The constant L is known as Linnik’s constant. The Generalized Riemann Hypothesis im-
plies any fixed L > 2 is admissible in (1.6) and conjecturally L > 1 holds. Recently, Lamzouri,
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Li, and Soundararajan [LLS15] made this GRH bound explicit, showing that

P (a, q) ≤ (ϕ(q) log q)2 (1.7)

for q ≥ 4. Unconditional bounds for Linnik’s constant have a long history beginning with Pan
[Pan57] at L = 10, 000 and the current world record sitting at L = 5 by Xylouris [Xyl11b]
based on suggestions in the landmark paper of Heath-Brown [HB92] (see the references therein
for a detailed list of prior works). While elementary proofs of Linnik’s theorem exist [FI10,
GHS], the records for L have thus far been based on Linnik’s original proof which revolves
around deep statistical information on the zeros of Dirichlet L-functions.

We recall the modern approach to proving Linnik’s bound on the least prime in an arith-
metic progression. In order to obtain small explicit values of L in (1.6), one typically requires
three principles [IK04, Chapter 18]; we cite explicit versions which are recorded in [HB92,
Section 1]:

1) A zero-free region: If q is sufficiently large, then the product
∏

χ (mod q) L(s, χ) has at most
one zero in the region

s = σ + it, σ ≥ 1− 0.10367

log(q(2 + |t|))
. (1.8)

If such an exceptional zero exists, then it is real and simple and it corresponds with a non-
trivial real character.

2) A “log-free” zero density estimate: If q is sufficiently large, ε > 0, and we define
N(σ, T, χ) = #{ρ = β + iγ : L(ρ, χ) = 0, |γ| ≤ T, β ≥ σ}, then∑

χ (mod q)

N(σ, T, χ)�ε (qT )( 12
5

+ε)(1−σ), T ≥ 1. (1.9)

3) Deuring–Heilbronn phenomenon: If q is sufficiently large, λ1 > 0 is sufficiently small,
ε > 0, and the exceptional zero β1 in the region (1.8) exists and equals 1 − λ1/ log q, then∏

χ (mod q) L(s, χ) has no other zeros in the region

σ ≥ 1−
(2

3
− ε) log(1/λ1)

log(q(2 + |t|))
. (1.10)

As mentioned earlier, upper bounds for P (a, q) are connected with lower bounds for π(x; q, a).
The most recent such estimate is due to Maynard [May13] who showed for x > q8 and q
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sufficiently large that

π(x; q, a)� log q
√
q
· 1

ϕ(q)
Li(x), (1.11)

where the implied constant is effectively computable. As with prior versions of (1.11), the
valid range of x constitutes a significant improvement over the range of x in (1.4). Linnik’s
theorem with L = 5 and (1.11) represent the best available unconditional lower bounds for
π(x; q, a) with current techniques.

Brun–Titchmarsh theorem

Now, we turn to upper bounds for π(x; q, a). Titchmarsh [Tit30] made the first major develop-
ment by using Brun’s sieve to show for x > q and θ = log q

log x
that

π(x; q, a)� 1

1− θ
1

ϕ(q)
Li(x). (1.12)

The implied constant can be made precise and has been estimated by many authors. Using the
large sieve, Montgomery and Vaughan [MV73] established the strongest such result uniform
over all x > q and obtained the following:

Theorem (Brun–Titchmarsh theorem). Let θ = log q
log x

. For x > q,

π(x; q, a) < C(θ)
1

ϕ(q)
Li(x), (1.13)

where C(θ) = 2/(1− θ).

The range of x > q is best possible since trivially π(x; q, a) ≤ 1 for x ≤ q. The constant
2 in C(θ) is also best possible, short of precluding an exceptional zero. Thus, subsequent au-
thors have instead improved the 1/(1−θ) factor for various ranges of θ including, for example,
Motohashi [Mot74], Goldfeld [Gol75], Iwaniec [Iwa82], and Friedlander–Iwaniec [FI97]. The
aforementioned works made progress on (1.12) from advances in sieve theory and exponen-
tial sums. However, the recent work of Maynard [May13] avoids sieve methods entirely and
relies on information about Dirichlet L-functions inspired by the three principles of Linnik’s
approach.

Theorem (Maynard). For x > q8 and q sufficiently large,

π(x; q, a) <
2

ϕ(q)
Li(x). (1.14)

Equivalently, C(θ) = 2 for 0 < θ < 1/8.
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His proof builds on Heath-Brown’s analysis in [HB92], using a log-free zero density es-
timate for Dirichlet L-functions and a delicate analysis of exceptional zeros. This alternate
approach will be crucial for our purposes. Ultimately, the range of x in the Brun-Titchmarsh
theorem (and its descendants) constitutes a substantial improvement over the Siegel–Walfisz
theorem (1.4). It remains the best upper bound of π(x; q, a) for small x.

1.2 Primes in the Chebotarev Density Theorem

The setting of this thesis will be a vast generalization of the Prime Number Theorem for
Arithmetic Progressions. Let L/F be a Galois extension of number fields with Galois group
G := Gal(L/F ). For a prime ideal p of F unramified in L, let [L/F

p
] denote the conjugacy

class of Frobenius automorphisms in G above p; we refer to it as the Artin symbol of p. For a
conjugacy class C ⊆ G, define for x > 1

πC(x, L/F ) := #
{
p : NF

Qp < x, p prime ideal of F unramified in L,
[L/F

p

]
= C

}
, (1.15)

where NF
Q is the absolute norm of F over Q. We are interested in the growth of the prime

counting function πC(x, L/F ). Established in 1926 [Tsc26], the Chebotarev Density Theorem
(CDT) states that the Artin symbols of primes ideals of F are equidistributed in G; namely,

πC(x, L/F ) ∼ |C|
|G|

Li(x) (1.16)

as x→∞. The special case F = Q and L = Q(e2πi/q) reduces to the Prime Number Theorem
for Arithmetic Progressions in the form of (1.1). The CDT is tremendously powerful in a wide
variety of applications such as the distribution of primes ideals, binary quadratic forms, elliptic
curves, `-adic representations, and modular forms.

Analogous to the PNT for APs, proving the CDT requires knowledge about the distributions
of zeros of L-functions attached to the extension L/F . In particular, for the number field L,
one must analyze the Dedekind zeta function of L given by

ζL(s) =
∑
N

(NL
QN)−s =

∏
P

(
1− 1

(NL
QP)s

)−1

(1.17)

for Re{s} > 1. Here the sum is over integral ideals N of L and the product is over prime
ideals P of L. As with Dirichlet L-functions, the Dedekind zeta function ζL(s) satisfies a
functional equation and has analytic continuation to the entire complex plane with a simple
pole at s = 1. Further, its non-trivial zeros lie in the critical strip 0 < Re{s} < 1 and its
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trivial zeros are at certain non-positive integers. The Dedekind zeta function also suffers from
a putative exceptional zero; that is, we cannot eliminate the existence of a real non-trivial zero
β1 which is exceedingly close to s = 1. Conjecturally, such zeros do not exist and, moreover,
the Generalized Riemann Hypothesis posits that all of the non-trivial zeros lie on the critical
line Re{s} = 1/2.

Lagarias and Odlyzko [LO77] gave an unconditional field-uniform version of the CDT with
an error term, which generalizes the Siegel–Walfisz theorem (1.4). In particular,

πC(x, L/F ) =
|C|
|G|

Li(x) +O
(
x exp

(
− c2

√
log x

nL

))
(1.18)

for x ≥ exp(10nL(logDL)2), where nL = [L : Q] is the degree of L/Q andDL = |disc(L/Q)|
is the absolute value of the absolute discriminant of L. In the above form, the implied constants
in (1.18) are ineffective but can be made effective and absolute by using results of Stark [Sta74]
and enlarging the range of x. Assuming GRH, Lagarias and Odlyzko also showed that the
error term in (1.18) may be significantly improved to O(x1/2 log(DLx

nL)) for x� (logDL)2.
While (1.18) is unsurprisingly far from this expected truth, like (1.4), its range of validity can
be restrictive in many applications. For instance, in the special case of PNT for APs, (1.18)
implies π(x; q, a) attains its asymptotic for x ≥ eO(q3 log2 q) which is far worse than Siegel–
Walfisz (1.4). This predicament underlies the motivating question of this thesis:

Can one estimate πC(x, L/F ) within an absolute constant of its asymptotic size |C||G|Li(x) for a

range of x which is superior to (1.18)?

For example, an estimate of the form

|C|
|G|

Li(x)� πC(x, L/F )� |C|
|G|

Li(x),

for small values of x (polynomial in DL, say) would be extremely desirable. As we shall see,
there has already been some progress towards answering this question. However, just as with
π(x; q, a), the quoted lower bound is overly optimistic (we will settle for a slightly weaker
variant) whereas a suitable upper bound is attainable. We will first review the surrounding
literature and then state our main results in Sections 1.3 and 1.4

Least prime ideal

First, we consider lower bounds for πC(x, L/F ). In analogy with (1.5), these are intimately
related to bounding the prime ideal of least norm with Artin symbol equal to the conjugacy
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class C. In other words, if we define

P (C,L/F ) := min
{

NF
Qp : p degree 1 prime ideal of F unramified in L,

[L/F
p

]
= C

}
,

(1.19)
then we are interested in providing an upper bound for P (C,L/F ). We sometimes refer to this
quantity as the least prime ideal. Note the condition that p is degree 1 (equivalently, NF

Qp is a
rational prime) is unnecessary but interesting for certain applications. Assuming GRH for the
Dedekind zeta function of L, Lagarias and Odlyzko [LO77] showed that

P (C,L/F )� (logDL)2. (1.20)

Bach and Sorenson [BS96] have since provided an explicit version of this bound. These esti-
mates specialize to (1.7) up to quality of the implied constant. Additionally assuming Artin’s
holomorphy conjecture, V.K. Murty [Mur00] proved a further refinement of (1.20) which nicely
depends on the size of the conjugacy class C.

The first non-trivial unconditional upper bound for P (C,L/F ) is due to Lagarias–Montgomery–
Odlyzko [LMO79], wherein they showed

P (C,L/F )� DB1
L (1.21)

for some absolute effectively computable constant B1 > 0. Compared with what is implied
by (1.18), this is a remarkable improvement. Their proof was modelled after Linnik’s classical
approach but the analysis of the Dedekind zeta function of L only required two of the three
principles: a zero-free region and Deuring–Heilbronn phenomenon. The establishment of the
latter was through a pioneering application of power sums. However, unlike Linnik’s constant
for arithmetic progressions and (1.11) for π(x; q, a), no explicit value of B1 > 0 has been
computed before and no corresponding quantitative lower bound has yet been established for
πC(x, L/F ) in the range x� DB1

L . Furthermore, (1.21) implies P (a, q)� qB1q which is a far
cry from Linnik’s theorem (1.6); in fact, the bound implied by Siegel–Walfisz (1.4) is better.

By exploiting some class field theory within L/F , one can obtain further improvement over
(1.21) in many cases and also recover Linnik’s theorem. Let H ⊆ G be an abelian subgroup
such that H ∩ C is non-empty. Let K = LH be the subfield of L fixed by H . By class field
theory, the characters of H = Gal(L/K) are Hecke characters χ of K and therefore have an
associated K-integral ideal fχ called the conductor of χ. Thus, we may define the maximum

conductor of L/K to be

Q = Q(L/K) = max{NK
Q fχ : χ ∈ Ĝal(L/K)}. (1.22)
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Roughly speaking,Q is a measure of the ramification occurring in the abelian extension L/K.
For example,Q = 1 implies L is an unramified extension of K. The first result on P (C,L/F )

utilizing Q follows3 from the works of Fogels [Fog62b, Fog62c, Fog62a]; namely,

P (C,L/F )� (DKQ)C(nK), (1.23)

where C(nK) > 0 is some constant depending only on nK = [K : Q]. The main drawback
of this bound is its lack of complete field-uniformity, especially its unclear and unsatisfactory
dependence of the exponent on the degree of K over Q. A couple of decades later, Weiss
[Wei83, Wei80] amended these issues and proved

P (C,L/F )�
(
nnKK DKQ)B2 (1.24)

for some absolute and effectively computable constant B2 > 0. As with (1.21), no explicit
value of B2 > 0 has yet been calculated. This gap is one of the major objectives of this thesis.
To see how (1.24) compares to (1.21), observe4 that if H is a cyclic subgroup of G, then

D
1/|H|
L ≤ DKQ ≤ D

1/ϕ(|H|)
L .

Therefore, if the nnKK term is negligible in (1.24) then a large cyclic subgroup H intersecting
the conjugacy class C is expected to yield savings in (1.24) over (1.21). We will elaborate
further on this comparison of (1.21) and (1.24) following Theorem 1.3.2. As one last example,
if F = Q and L = Q(e2πi/q), then one may take H to be the full Galois group G ∼= (Z/qZ)×,
in which case K = F = Q and Q(L/K) = q. Thus, Weiss proves a bound on P (C,L/F )

which provides a “continuous transition” from (1.6) to (1.21). In particular, Linnik’s theorem
(1.6) follows from (1.24).

The proof of (1.24) is again fundamentally motivated by Linnik’s approach in the case of
arithmetic progressions, requiring an intense study of Hecke L-functions and their zeros. For
a Hecke character χ of K, the Hecke L-function of χ is given by

L(s, χ,K) =
∏
p

(
1− χ(p)

NK
Q p

s

)−1

(1.25)

for Re{s} > 1, where the product is over prime ideals p of K. In the case K = Q, these
are precisely Dirichlet L-functions. They satisfy the same type of analytic properties with all

3Fogels actually bounds P (C,L/K) when L/K is abelian, but his results can be used to give the claimed
estimate.

4See [BS96, Lemma 4.2] for a proof of the upper bound; the lower bound holds for all H and follows from
the conductor-discriminant formula.
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their non-trivial zeros lying in the critical strip 0 < Re{s} < 1. By class field theory, our
understanding of the distribution of Artin symbols in L/F is dictated by our knowledge of
the distribution of the zeros of Hecke L-functions of K (see Section 2.5 for details). To prove
(1.24), Weiss utilized non-explicit analogues of Linnik’s three principles for Hecke L-functions
and, most importantly, proved a field-uniform log-free zero density estimate for Hecke L-
functions. To be specific, he applied5:

1) A zero-free region: The product
∏

χ L(s, χ,K) over Hecke characters χ attached to L/K
have at most one zero in the region

s = σ + it, σ ≥ 1− c1

log(DKQnnKK ) + nK log(2 + |t|)
, (1.26)

for some absolute constant c1 > 0. If such an exceptional zero exists, then it is real and
simple and it corresponds with a (possibly trivial) real character.

2) A “log-free” zero density estimate: For a Hecke character χ, if we define N(σ, T, χ) =

#{ρ = β + iγ : L(ρ, χ,K) = 0, |γ| ≤ T, β ≥ σ} then, for some absolute constant c2 > 0,∑
χ

N(σ, T, χ)� (DKQnnKK T nK )c2(1−σ), T ≥ 1, (1.27)

where the sum is over Hecke characters χ attached to L/K.

3) Deuring–Heilbronn phenomenon: If λ1 > 0 is sufficiently small and the exceptional
zero β1 in the region (1.26) exists and equals 1 − λ1/ log(DKQnnKK ), then the product∏

χ L(s, χ,K) over Hecke characters χ attached to L/K has no other zeros in the region

σ ≥ 1− c3 log(1/λ1)

log(DKQnnKK ) + nK log(2 + |t|))
(1.28)

for some absolute constant c3 > 0.

Weiss established (1.27) and (1.28) while (1.26) is contained in [LMO79]. He actually proved
estimates [Wei83, Theorem 5.2] which imply a quantitative lower bound for πC(x, L/F ) (see
Theorem 1.3.2 for an explicit variant). In summary, we have adequate field-uniform lower
bounds for πC(x, L/F ) but, in contrast with Linnik’s theorem and primes in arithmetic pro-
gressions, none of the existing results have explicit versions.

5The appearance of nnK

K is not actually necessary for principles 1 and 3 but we keep it for simplicity.
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Brun–Titchmarsh analogues

Next, we consider upper bounds for πC(x, L/F ) which extend the range of (1.18). Here far less
is known. There are a number of results estimating variants or special cases of πC(x, L/F ),
such as [Hux68, Sch70] for counting prime integers in the ring of integers of a number field
and [HL94] for counting prime ideals lying in ray classes, but these lack complete field-
uniformity or do not directly estimate the distribution of Artin symbols. It seems the only
existing field-uniform upper bound for πC(x, L/F ) comes from the foundational paper of
Lagarias–Montgomery–Odlyzko [LMO79] in which they showed

πC(x, L/F )� |C|
|G|

Li(x) (1.29)

for log x� logDL log logDL log log log(e20DL). The proof avoids sieve methods and uses ba-
sic information about the zeros of the Dedekind zeta function of L. While (1.29) is a significant
refinement over the range log x � nL(logDL)2 provided by the effective Chebotarev Density
Theorem (1.18), it remains prohibitive for use in applications. For example, in the case of arith-
metic progressions, it implies the Brun-Titchmarsh theorem (1.12) for x ≥ exp(O(q log2 q)).
This is worse than the effective asymptotic given by Siegel–Walfisz. Moreover, there has been
no explicit computation of the implied constant in (1.29). One expects it to be close to 2 due to
the possibility of a real exceptional zero, just as in (1.13). These deficiencies suggest there is
much left to be desired for upper bounds of πC(x, L/F ) beyond (1.29).

1.3 Analytic estimates

We may now state the main results of this thesis. Recall

nL = [L : Q], DL = |disc(L/Q)|,

and Q = Q(L/K) is defined by (1.22).

1.3.1 Primes in the Chebotarev Density Theorem

We begin with lower bounds for πC(x, L/F ). We establish the first explicit value of B1 in
(1.21) and a corresponding quantitative lower bound for πC(x, L/F ).

Theorem 1.3.1. Let L/F be a Galois extension of number fields with Galois group G and let



CHAPTER 1. INTRODUCTION 12

C ⊆ G be a conjugacy class. Then

πC(x, L/F )� 1

D19
L

|C|
|G|

Li(x)

for x ≥ D35
L and DL sufficiently large. In particular,

P (C,L/F )� D35
L .

Remark.

• In several cases, one can reduce the exponent B1 = 35 by straightforward modifications.
For example, one can take

B1 =


32 if L has a tower of normal extensions with base Q,

24.1 if nL = o(logDL) as DL →∞,

7.5 if ζL(s) does not have a real zero β1 = 1− λ1
logDL

satisfying λ1 = o(1),

where ζL(s) is the Dedekind zeta function ofL. See the remark at the end of Section 7.2.4
for details.

• Note Theorem 1.3.1 improves over [Zam17] wherein the constant B1 = 40 is shown to
be admissible. This improvement stems from a minor adjustment which can be found in
the proof of Theorem 6.1.2; namely, we discard some of the real non-trivial zeros in a
certain power sum estimate.

Theorem 1.3.1 is an explicit variant of [LMO79, Theorem 1.1] though the quantitative
lower bound in Theorem 1.3.1 is not contained in [LMO79]. Its proof is motivated by its
predecessor in conjunction with the powerful techniques pioneered by Heath-Brown [HB92]
in the classical case of arithmetic progressions. In particular, we required explicit versions of
the zero-free region for the Dedekind zeta function (due to Kadiri [Kad12]) and the Deuring–
Heilbronn phenomenon. For the latter principle, we use an explicit variant due to Kadiri–Ng
[KN12] but their result is not intended to repel zeros deep into the critical strip. Hence, we
carefully used the power sum method founded in [LMO79] to obtain a fully equipped Deuring–
Heilbronn phenomenon for the Dedekind zeta function. See Chapter 6 for details. After the
completion6 of Theorem 1.3.1, the author was informed7 by Kadiri and Ng of their unpublished
work [KN] in the case F = Q in which they obtain an upper bound of D40

L for P (C,L/Q).

6An earlier version of [Zam17] was posted to the arXiv in August 2015.
7private communication, January 2016.
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In joint work with Jesse Thorner, our second main result is the first explicit value of B2 in
(1.24) and a corresponding quantitative lower bound for πC(x, L/F ).

Theorem 1.3.2 (Thorner–Z.). Let L/F be a Galois extension of number fields with Galois

group G and let C ⊆ G be a conjugacy class. Let H ⊆ G be an abelian subgroup such that

H ∩C is nonempty, K = LH be the subfield of L fixed by H , andQ = Q(L/K) be defined by

(1.22). Then

πC(x, L/F )� 1

D5
KQ4n3nK

K

|C|
|G|

Li(x)

for x ≥ D694
K Q521 +D232

K Q367n290nK
K and DKQnnKK sufficiently large. In particular,

P (C,L/F )� D694
K Q521 +D232

K Q367n290nK
K . (1.30)

Remarks.

• Theorem 1.3.2 immediately implies that P (a, q) � q521. For historical context, this is
slightly better than Jutila’s bound [Jut70] on P (a, q) established in 1970, which was over
25 years after Linnik’s original theorem.

• If nK ≤ 2(logDK)/ log logDK , then P (C,L/F )� D694
K Q521. Situations where nK >

2(logDK)/ log logDK are rare; the largest class of known examples involve infinite p-
class tower extensions, which were first studied by Golod and Shafarevich [GS64].

• If L/K is unramified, then Q = 1 and DK = D
1/|H|
L . Thus,

P (C,L/F )� D
694/|H|
L +D

232/|H|
L n290nK

K .

If additionally nK ≤ 2(logDK)/ log logDK , this gives

P (C,L/F )� D
694/|H|
L

which improves over Theorem 1.3.1 when |H| ≥ 18.

• In independent work of the author, we consider the case when the degree nK is absolutely
bounded. For nK ≤ 1049, we obtain a further numerical improvement on the exponents
in (1.30). See Theorem 7.4.1 for details.

• See Theorem 10.1.4 for an alternate formulation.
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Theorem 1.3.2 is an explicit variant of [Wei83, Theorem 5.2]. The quantitative lower bound
in Theorem 1.3.2 could conceivably be sharpened to match [Wei83, Theorem 5.2] with some
additional effort. The proof is inspired by Weiss’s approach combined with the innovations
of Heath-Brown [HB92] in the classical case of arithmetic progressions. We naturally re-
quired explicit versions of Linnik’s three principles (namely, (1.26), (1.27), (1.28)) for Hecke
L-functions. Some information about their zero-free regions is due to Ahn and Kwon [AK14]
and Kadiri [Kad12], but this limited scope is the extent of pre-existing results. Thus, another
major contribution of this thesis is the explicit estimates for the zeros of Hecke L-functions.
See Section 1.3.2 for an overview and the beginnings of Chapters 4 to 6 for details on these
new results.

Now, in comparison with the world record value for Linnik’s constant in (1.6), the expo-
nents appearing in (1.30) may seem unusually large. This difference chiefly originates from
the log-free zero density estimate and its proof which uses Turán power sums. This method is
numerically less efficient than those employed in the classical case of arithmetic progressions,
but it has seemingly been the only way to obtain the desired field uniformity. See Section 5.1,
especially Section 5.1.1, for a more detailed explanation of this numerical deficiency.

Next, we direct our attention to new upper bounds of πC(x, L/F ) established in joint work
with Jesse Thorner. Using the log-free zero density estimates in Chapter 5, we prove:

Theorem 1.3.3 (Thorner–Z.). Let L/F be a Galois extension of number fields with Galois

group G. Let C be any conjugacy class of G and let H be an abelian subgroup of G such that

H ∩C is non-empty. If K is the subfield of L fixed by H andQ = Q(L/K) is given by (1.22),
then

πC(x, L/F )� |C|
|G|

Li(x),

provided that

x� D246
K Q185 +D82

KQ130n246nK
K . (1.31)

Remarks.

• For the valid range of x, one can minimize the exponents of DK andQ at the expense of
a less desirable dependence on nnKK and vice versa. In particular, the same upper bound
for πC(x, L/F ) holds when

x� D164
K Q123 +D55

KQ87n68nK
K +D2

KQ2nK
14,000nK . (1.32)

See the remarks at the end of Section 8.2.1 for details.

• See Theorem 10.1.5 for an alternate formulation.
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Our result always gives an improvement over (1.29). Choosing H to be the cyclic group
generated by a fixed element of C, we have that D1/|H|

L ≤ DKQ ≤ D
1/ϕ(|H|)
L (see [Wei83,

Section 6]). Moreover, by the classical work of Minkowski and the conductor-discriminant
formula (2.21), we have that nK � logDK ≤ 1

|H| logDL. Therefore, Theorem 1.3.3 holds
when log x� 1

ϕ(|H|)(logDL)(log logDL). This improves (1.29) especially when H is a large.
One usually obtains further savings. For most fields K, it seems reasonable to expect nK �
(logDK)/ log logDK holds in light of Minkowski’s bound for nK . In this case, Theorem 1.3.3
holds for log x� log(DKQ) or rather log x� 1

ϕ(|H|) logDL.
Building on [May13], we obtain an implied constant that is essentially sharp (short of

precluding the existence of an exceptional zero) when x is sufficiently large in terms of L/F .

Theorem 1.3.4 (Thorner–Z.). Let L/F be a Galois extension of number fields with Galois

group G and let C be any conjugacy class of G. Let H be an abelian subgroup of G such that

H ∩C is non-empty. If K is the subfield of L fixed by H andQ = Q(L/K) is given by (1.22),
then

πC(x, L/F ) <
{

2 +O
(
nKx

− 1
166nK+327

)} |C|
|G|

Li(x)

for

x� D695
K Q522 +D232

K Q367n290nK
K , (1.33)

provided that DKQnnKK is sufficiently large. If any of the following conditions also hold, then

the error term can be omitted:

• K has a tower of normal extensions over Q.

• (2nK)2n2
K � DKQ1/2.

• x� n
334n2

K
K .

The source of our improvements in Theorems 1.3.3 and 1.3.4 over (1.29) stem from fur-
ther exploiting the decomposition of the Dedekind zeta function of L as a product of Hecke
L-functions ofK. This allows us to apply the powerful log-free zero density estimate and more
efficiently estimate certain sums over non-trivial zeros. The proofs are inspired by Maynard’s
[May13] L-function and “Linnik-type” approach to the Brun–Titchmarsh theorem. Conse-
quently, we carefully apply the same explicit estimates for Hecke L-functions used in the proof
of Theorem 1.3.2 and perform a similarly delicate analysis in the case of an exceptional zero.

1.3.2 Distribution of zeros of Hecke L-functions

We summarize the key results on the zeros of Hecke L-functions in this thesis which make
explicit principles (1.26), (1.27), and (1.28). Additional results and a more detailed discussion
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for each principle can be found at the beginning of Chapters 4 to 6.

Theorem 1.3.5. Suppose L/K is an abelian extension and Q = Q(L/K) is given by (1.22).
If DKQnnKK is sufficiently large then the product of Hecke L-functions

∏
χ L(s, χ,K) of Hecke

characters χ attached to L/K has at most one zero, counting with multiplicity, in the rectangle

σ ≥ 1− 0.0875

log(DKQnnKK )
, |t| ≤ 1,

where s = σ + it ∈ C. If this exceptional zero exists, then it is a simple real zero and its

associated character is real.

Corollary 1.3.6. Suppose DKn
nK
K is sufficiently large. The Dedekind zeta function ζK(s) has

at most 1 zero, counting with multiplicity, in the rectangle

σ ≥ 1− 0.0875

log(DKn
nK
K )

, |t| ≤ 1,

where s = σ + it. If this exceptional zero exists, it is real.

Theorem 1.3.5 and Corollary 1.3.6 are both improvements over [AK14, Kad12] when nK =

o(logDK/ log logDK), which is often a mild assumption as nK = O(logDK) unconditionally.
See Section 4.1 for a stronger theorem (cf. Theorem 4.1.1) and additional details. Next, for a
Hecke character χ of a number field K, define

N(σ, T, χ) = #{ρ = β + iγ : L(ρ, χ,K) = 0, |γ| ≤ T, β ≥ σ}.

We prove the first explicit version of a “log-free” zero density estimate for Hecke L-functions.

Theorem 1.3.7 (Thorner–Z.). Suppose L/K is an abelian extension and Q = Q(L/K) is

given by (1.22). For T ≥ 1 and 0 ≤ σ ≤ 1,∑
χ

N(σ, T, χ)� (DKQnnKK T nK+1)162(1−σ).

where the sum is over Hecke characters χ attached to L/K.

See Sections 5.1 and 7.3.1 for a stronger theorem (cf. Theorem 5.1.1 and Theorem 7.3.6)
and further discussion. Finally, we prove an explicit version of Deuring–Heilbronn phenomenon
for Hecke L-functions.

Theorem 1.3.8 (Thorner–Z.). Suppose L/K is an abelian extension, Q = Q(L/K) is given

by (1.22), and DKQnnKK is sufficiently large. Assume a real Hecke character ψ of L/K has a
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real zero 1
2
≤ β1 < 1. Then the product

∏
χ L(s, χ,K) over Hecke characters χ attached to

L/K has no other zeros in the region

σ ≥ 1−
log
( c3

(1− β1) log(DKQnnKK T nK )

)
61 log(DKQnnKK T nK )

,

where c3 > 0 is an absolute effective sufficiently small constant.

See Section 6.1 for a stronger theorem (cf. Theorem 6.1.1 which has no nnKK dependence)
and further discussion. See also Section 4.1 (cf. Theorem 4.1.3) for other variants of Deuring–
Heilbronn which we refer to as “zero repulsion”.

1.4 Applications

Finally, we list the key applications of the results from Section 1.3.

1.4.1 Binary quadratic forms

Let us review the classical theory of primitive (integral) binary quadratic forms with negative
discriminant and their connections with the Chebotarev Density Theorem. The results from
Section 1.3 allow us to deduce new consequences for such forms. We follow much of the
notation and conventions of [Cox89].

Let D ≥ 1 be a positive integer. Let Q(X, Y ) = aX2 + bXY + cY 2 ∈ Z[X, Y ] be a binary
quadratic form with discriminant b2−4ac = −D. The form is primitive if its coefficients a, b, c
are relatively prime. A matrix g = ( p qr s ) ∈ GL2(Z) naturally acts on such forms via

(g ·Q)(X, Y ) = Q(pX + qY, rX + sY ).

This gives an equivalence relation between primitive binary quadratic forms with discriminant
−D. Two forms are said to be equivalent if they differ by a transformation in GL2(Z). Two
forms are said to be properly equivalent8 if they differ by a transformation in SL2(Z). By the
beautiful composition laws and genus theory of Gauss, the set of such forms, up to proper
equivalence, form a finite abelian group, say Cl(−D). Let h(−D) be the size of this group;
that is, h(−D) is the number of primitive binary quadratic forms with discriminant −D, up to
proper equivalence.

8Sometimes we may refer to this as SL2-equivalence.
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We say that an integer m is represented by Q(X, Y ) if there exists (X, Y ) ∈ Z2 such that
Q(X, Y ) = m. Our central focus is on primes p represented by Q(X, Y ). For x > 1, define

πQ(x) = #{p ≤ x : p - D, p is represented by Q(X, Y )}.

Amazingly, πQ(x) is an instance of a Chebotarev prime counting function πC(x, L/Q) for a
particular number field L.

Theorem. Let D ≥ 1 be a positive integer. Let Q(X, Y ) = aX2 + bXY + cY 2 ∈ Z[X, Y ] be

a primitive binary quadratic form with discriminant −D. Let K = Q(
√
−D) and write D =

f 2DK . There exists a number field L, called the ring class field of the order of discriminant

−D in K, such that:

(i) L is abelian over K and Galois over Q.

(ii) Q = Q(L/K) ≤ f where the maximum conductor Q is given by (1.22).

(iii) ϕ : Cl(−D)
∼−→ Gal(L/K) is an isomorphism.

(iv) Let C be the conjugacy class in Gal(L/Q) containing the class of Q(X, Y ) mapped

under ϕ. Then #C = 1 if Q(X, Y ) is properly equivalent to its opposite Q(X,−Y ) and

#C = 2 otherwise.

(v) A prime p - D is represented by Q(X, Y ) if and only if [L/Q
p

] = C. In particular,

πQ(x) = πC(x, L/Q).

(vi) [L : Q] = 2h(−D) and DL ≤ Dh(−D)

(vii) h(−D)�ε D
1/2+ε for ε > 0.

Proof. This celebrated theorem is the culmination of many classical results; parts (i)–(v) can
be deduced from the arguments in [Cox89, Theorem 9.12], for example. For (vi), note that
[L : K] = h(−D) since h(−D) = #Cl(−D) = #Gal(L/K) = [L : K] by (iii). Moreover,
by the conductor-discriminant formula (2.21) and (ii), we have that

logDL =
∑
χ

logDχ ≤ [L : K] log(DKQ) ≤ h(−D) logD.



CHAPTER 1. INTRODUCTION 19

For (vii), let hK denote the (broad) class number of K so, by classical estimates involving the
class number formula, we have that hK � D

1/2+ε
K . Thus, by [Cox89, Theorem 7.24],

h(−D) ≤ hKf
∏
p|f

(
1 +

1

p

)
�ε (DKf

2)1/2+ε �ε D
1/2+ε.

We will use the above well-known theorem repeatedly without reference. Now, by the
Chebotarev Density Theorem, it follows that

πQ(x) ∼ δQ
h(−D)

Li(x) (1.34)

as x → ∞, where δQ = 1/2 if Q is properly equivalent to its opposite and δQ = 1 otherwise.
Under the effective Chebotarev Density Theorem, (1.34) holds for log x � (logD)2 provided
the Dedekind zeta function ζL(s) does not have a real exceptional zero; otherwise, the effective
range is even worse. On the Generalized Riemann Hypothesis (GRH), the asymptotic (1.34)
holds for x� D1+ε.

There have been a few results in the literature on πQ(x) beyond (1.34). As a consequence
of Weiss’s result [Wei83, Theorem 5.2], it is known that

πQ(x)� 1

D1/2
· 1

h(−D)
Li(x) (1.35)

for log x � logD or equivalently for x � DO(1). Thus, the least prime p represented by
Q(X, Y ) satisfies p � DO(1); this result was originally proven by Fogels [Fog62b] and was
also observed by Kowalski and Michel [KM02]. There has been no explicit constant in place
of the O(1), unlike the many works on Linnik’s theorem for the least prime in an arithmetic
progression.

Recently, Ditchen [Dit13] established very strong estimates for πQ(x) on the average distri-
bution of primes represented by binary quadratic forms. His results emulate the spectacular the-
orems of Bombieri–Vinogradov and Barban–Davenport–Halberstam on primes in arithmetic
progressions. Roughly speaking, he obtains a GRH-quality estimate for πQ(x) on average over
fundamental discriminants −D 6≡ 0 (mod 8) provided D ≤ x3/20−ε. Ditchen obtains a sim-
ilarly strong result [Dit13, Theorem 1.2] by averaging over form classes [Q] ∈ Cl(−D) as
well. These yield average bounds for the least prime p represented by Q(X, Y ). Informally
speaking, he showed forms with fundamental discriminant −D 6≡ 0 (mod 8) represent some
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prime p satisfying

p�δ

D20/3+δ on average over discriminants D,

D3+δ on average over discriminants D and form classes.
(1.36)

We exhibit an unconditional explicit bound for the least such prime p represented by
Q(X, Y ). This is an explicit variant of (1.35).

Corollary 1.4.1. Let D ≥ 1 be an integer and let Q(X, Y ) ∈ Z[X, Y ] be a primitive binary

quadratic form of discriminant −D. For D sufficiently large and x� D455,

πQ(x)� 1

D5
· 1

h(−D)
Li(x).

In particular, there exists a prime p - D represented by Q(X, Y ) satisfying

p� D455.

Proof. This is an immediate consequence of Theorem 7.4.1.

Remarks.

• Theorem 1.3.2 implies p � D694, so the above represents an improvement over this
original bound.

• With a more careful analysis in Theorem 1.3.2 when nK = 2, theD−5 in the lower bound
can likely be improved to D−1/2 which would agree with (1.35).

From the results of Chapter 9, we also obtain a substantially better bound (in an exceptional
case) for the least prime represented by Q(X, Y ).

Corollary 1.4.2. Let D ≥ 1 be an integer and let Q(X, Y ) ∈ Z[X, Y ] be a primitive binary

quadratic form of discriminant−D. Let L be the ring class field of the order inK = Q(
√
−D)

of discriminant −D. Let C be the element of Gal(L/K) corresponding to Q(X, Y ).

Suppose ψ ∈ ̂Gal(L/K) is a real Hecke character such that L(s, ψ, L/K) has a real zero

β = 1− 1

η log(nnKK DKQ)
,

where η ≥ 20. Let δ > 0 be arbitrary. If ψ(C) = 1 and η ≥ η(δ) then there exists a prime
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p - D such that p is represented by Q(X, Y ) and

p�δ

D9.5+δ if ψ is quadratic,

D6+δ if ψ is principal.

All implied constants are effective.

Remarks.

• As per Remark 3 following Theorem 9.1.1, one can sharpen the bound in Corollary 1.4.2
to

p�δ

D7+δ if ψ is quadratic,

D4+δ if ψ is principal,

but the implied constants are rendered ineffective.

• One may indirectly compare Corollary 1.4.2 to (1.36). The quality of exponents are
fairly similar.

In the opposite direction, one may seek an upper bound for πQ(x) within an absolute con-
stant factor of its asymptotic size (1.34). A result of Lagarias–Montgomery–Odlyzko [LMO79,
Theorem 1.5] implies that

πQ(x)� 1

h(−D)
Li(x)

for x ≥ eOε(D
1/2+ε). As far as the author is aware, this was the only upper bound of its kind.

While this range of x improves over the effective Chebotarev Density Theorem (1.34), it re-
mains very far from the GRH range of x�ε D

1+ε. We prove an unconditional improvement.

Corollary 1.4.3 (Thorner–Z.). Let D ≥ 1 be an integer and let Q(X, Y ) ∈ Z[X, Y ] be a

primitive binary quadratic form of discriminant −D. For x� D164,

πQ(x)� 1

h(−D)
Li(x).

Proof. This is an immediate consequence of Theorem 1.3.3. Note we have applied Theo-
rem 1.3.3 with the range (1.32).

Inspired by the classical Brun-Titchmarsh theorem, we are also able to deduce a more
precise upper bound for πQ(x).
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Corollary 1.4.4 (Thorner–Z.). Let D ≥ 1 be an integer and let Q(X, Y ) ∈ Z[X, Y ] be a

primitive binary quadratic form of discriminant −D. For x� D695 and D sufficiently large,

πQ(x) < 2
δQ

h(−D)
Li(x).

Proof. This is an immediate consequence of Theorem 1.3.4 .

Up to the quality of exponent, the unconditional ranges in Corollaries 1.4.3 and 1.4.4 are
commensurate with the GRH range x�ε D

1+ε. Furthermore, Corollary 1.4.4 is within a factor
of 2 of the asymptotic (1.34), which is best possible short of precluding a Siegel zero.

1.4.2 Elliptic curves and modular forms

We now consider applications to the study of elliptic curves and modular forms. Let E/Q be
an elliptic curve without complex multiplication (CM), and let NE be the conductor of E. The
order and group structure of E(Fp), the group of Fp-rational points on E, frequently appears
when doing arithmetic over E. We are interested in understanding the distribution of values
and divisibility properties of #E(Fp).

V. K. Murty [Mur94] and Li [Li12] proved unconditional and GRH-conditional bounds on
the least prime that does not split completely in a number field. This yields bounds on the
least prime p - `NE such that ` - #E(Fp), where ` ≥ 11 is prime. As an application of
Theorem 1.3.2, we prove a complementary result on the least p - `NE such that ` | #E(Fp).
To state the result, we define ω(NE) = #{p : p | NE} and rad(NE) =

∏
p|NE p.

Theorem 1.4.5 (Thorner–Z.). Let E/Q be an non-CM elliptic curve of conductor NE , and let

` ≥ 11 be prime. There exists a prime p - `NE such that ` | #E(Fp) and

p� `(5000+1600ω(NE))`2rad(NE)1900`2 .

Remark. The proof is easily adapted to allow for elliptic curves over other number fields; we
omit further discussion for brevity.

One of the first significant results in the study of the distribution of values of #E(Fp) is
due to Hasse, who proved that if p - NE , then |p + 1−#E(Fp)| < 2

√
p. For a given prime `,

the distribution of the primes p such that #E(Fp) ≡ p + 1 (mod `) can also be studied using
the mod ` Galois representations associated to E.

Theorem 1.4.6 (Thorner–Z.). Let E/Q be a non-CM elliptic curve of squarefree conductor

NE , and let ` ≥ 11 be prime. There exists a prime p - `NE such that #E(Fp) ≡ p+ 1 (mod `)
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and

p�
(
`900ω(NE)+4100rad(NE)1800

)`+1
.

Theorem 1.4.6 will follow from a more general result on congruences for the Fourier coef-
ficients of certain holomorphic cuspidal modular forms. Let

f(z) =
∞∑
n=1

af (n)e2πinz (1.37)

be a cusp form of integral weight kf ≥ 2, level Nf ≥ 1, and nebentypus χf . Suppose further
that f is a normalized eigenform for the Hecke operators. We call such a cusp form f a
newform; for each newform f , the map n 7→ af (n) is multiplicative. Suppose that af (n) ∈ Z
for all n ≥ 1. In this case, χf is trivial when f does not have CM, and χf is a nontrivial real
character when f does have CM. Furthermore, when kf = 2, f is the newform associated to
an isogeny class of elliptic curves E/Q. In this case, Nf = NE , and for any prime p - NE , we
have that af (p) = p+ 1−#E(Fp).

Theorem 1.4.7 (Thorner–Z.). Let f(z) =
∑∞

n=1 af (n)e2πinz ∈ Z[[e2πiz]] be a non-CM new-

form of even integral weight kf ≥ 2, level Nf , and trivial nebentypus. Let ` ≥ 3 be a prime

such that (10.3) holds and gcd(kf − 1, `− 1) = 1. For any progression a (mod `), there exists

a prime p - `Nf such that af (p) ≡ a (mod `) and

p�
(
`900ω(Nf )+4100rad(Nf )

1800
)`+1

.

Remarks.

• Equation (10.3) is a fairly mild condition regarding whether the modulo ` reduction of
a certain representation is surjective. This condition is satisfied by all but finitely many
choices of `. See Section 8.2.3 for further details.

• The proofs of Theorems 1.4.5 to 1.4.7 are easily adapted to allow composite moduli ` as
well as elliptic curves and modular forms with CM. Moreover, the proofs can be easily
modified to study the mod ` distribution of the trace of Frobenius for elliptic curves over
number fields other than Q. We omit further discussion for brevity.

• Using Theorem 1.3.1, the least prime p such that af (p) ≡ a (mod `) satisfies the bound
p � `120`3(1+ω(Nf ))rad(Nf )

40(`3−1) for any choice of a. Thus, Theorem 1.4.7 is an im-
provement for large `.
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• If r24(n) is the number of representations of n as a sum of 24 squares, then 691r24(p) =

16(p11+1)+33152τ(p), where Ramanujan’s function τ(n) is the n-th Fourier coefficient
of ∆(z), the unique non-CM newform of weight 12 and level 1. If ` 6= 691 is such that
(10.3) holds for f(z) = ∆(z), then by Theorem 1.4.7, there exists p 6= ` such that
691r24(p) ≡ 16(p11 + 1) (mod `) and p� `4100(`+1).

Next, we use Theorem 1.3.3 to improve the best unconditional upper bounds for two out-
standing conjectures of Lang and Trotter [LT76]. Let

f(z) =
∞∑
n=1

af (n)e2πinz

be a newform as in (1.37) with integral coefficients af (n). Further, suppose that f does not
have complex multiplication and hence the nebentypus of f is trivial. Fix a ∈ Z, and let

πf (x, a) = #{p ≤ x : af (p) = a}. (1.38)

Lang and Trotter conjectured that as x→∞, we have that

πf (x, a) ∼ cf,a


√
x

log x
if kf = 2,

1 if kf ≥ 4,

where cf,a ≥ 0 is a certain constant depending on f and a alone.
In the special case where kf = 2, Elkies [Elk91] proved that πf (x, 0) �Nf x

3/4. In all
other cases, Serre proved in 1981 that

πf (x, a)�Nf

x

(log x)1+δ

for any δ < 1/4; following the ideas of M. R. Murty, V. K. Murty, and Saradha [MMS88], Wan
[Wan90] improved the range of δ in 1990 to any δ < 1. This was further sharpened by V. K.
Murty [Mur97] in 1997; he proved9 that

πf (x, a)�Nf

x(log log x)3

(log x)2
. (1.39)

Using Theorem 1.3.3, we give a modest improvement10.
9Theorem 5.1 of [Mur97] actually claims a stronger result, but a step in the proof seems not to be justified.

The best that the argument appears to give is what we have stated above; see the end of Section 9.1 in [TZ17a] for
further discussion.

10Note that we recover the claimed result [Mur97, Theorem 5.1].
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Theorem 1.4.8 (Thorner–Z.). Let f be a newform of even integral weight kf ≥ 2, level Nf ,

and trivial nebentypus with integral coefficients. If πf (x, a) is given by (1.38), then

πf (x, a)�Nf

x(log log x)2

(log x)2
.

We also consider a different (but closely related) conjecture of Lang and Trotter regarding
the Frobenius fields of an elliptic curve. Let E/Q be an elliptic curve of conductor NE without
complex multiplication. For a prime p - N , let Πp be the Frobenius endomorphism of E/Fp.
Defining aE(p) = p+ 1−#E(Fp), we have that Π2

p − aE(p)Πp + p = 0. By Hasse, we know
that |aE(p)| < 2

√
p, so Q(Πp) in End(E/Fp)⊗ZQ is an imaginary quadratic field. For a fixed

imaginary quadratic field k with absolute discriminant Dk, let

πE(x, k) = #{p ≤ x : Q(Πp) ∼= k}. (1.40)

Lang and Trotter conjectured that as x→∞,

πE(x, k) ∼ cE,k

√
x

log x
,

where cE,k > 0 is a certain constant depending on E and k alone. Using the square sieve,
Cojocaru, Fouvry, and M. R. Murty [CFM05] proved that

πE(x, k)�NE ,k
x(log log x)13/12

(log x)25/24
.

Using V. K. Murty’s version of the Chebotarev Density Theorem and Serre’s method of mixed
representations (see [Ser81]), Zywina [Zyw15] improved this bound to

πE(x, k)�NE ,k
x(log log x)2

(log x)2
. (1.41)

Using Theorem 1.3.3, we establish a modest improvement to (1.41).

Theorem 1.4.9 (Thorner–Z.). Let E/Q be an elliptic curve of conductor NE and let k be a

fixed imaginary quadratic number field. If πE(x, k) is defined by (1.40) then

πE(x, k)�NE ,k
x log log x

(log x)2
.
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1.5 Conventions and organization

Conventions

We will employ Vinogradov’s notation and big-O notation. That is,

• f � g or f = O(g) implies there is an absolute constant C > 0 such that |f | ≤ C · g.

• f � g if and only f � g and g � f .

• f = o(g) if and only if f
g
→ 0 as some parameter, say x, goes to infinity.

• f ∼ g if and only if f
g
→ 1 as some parameter, say x, goes to infinity.

We also adhere to the convention that all implied constants in all asymptotic inequalities (e.g.
f � g or f = O(g)) are absolute with respect to all parameters, unless otherwise specified. If
an implied constant depends on a parameter, such as ε, then we use�ε andOε to denote that the
implied constant depends at most on ε. All implied constants will be effectively computable,
unless otherwise specified.

The sets Z,Q,R, and C will respectively denote the integers, rational numbers, real num-
bers, and complex numbers.

Organization

For the reader who wishes to proceed quickly to the proofs of the main theorems:

• Theorem 1.3.1 is proven in Section 7.2.

• Theorem 1.3.2 is proven in Section 7.3.

• Theorem 1.3.3 is proven in Section 8.2.1.

• Theorem 1.3.4 is proven in Sections 8.2.2 and 8.2.3.

• Theorem 1.3.5 is a consequence of Theorem 4.1.1, proven in Section 4.4.

• Theorem 1.3.7 is a consequence of Theorem 5.1.1, proven in Chapter 5.

• Theorem 1.3.8 is a consequence of Theorem 6.1.1, proven in Chapter 6.

• Corollary 1.4.2 is a consequence of Theorem 9.1.1, proven in Chapter 9.

• Theorems 1.4.5 to 1.4.7 are proven in Section 8.2.3.

• Theorems 1.4.8 and 1.4.9 are proven in Section 10.3.
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We also briefly describe the organization and contents of the chapters.

• Chapter 2 consists of background material and notation for Hecke L-functions, elemen-
tary estimates, Artin L-functions, and Deuring’s reduction. All subsequent chapters rely
on the information here. If we refer to a chapter as “self–contained” then we are not
precluding the use of results from Chapter 2.

• Chapter 3 specifies some key notation and identifies certain zeros of Hecke L-functions.
Further, we establish several different “explicit inequalities” related to HeckeL-functions
by involving classical arguments, higher derivatives, and smooth weights. The results
therein form the technical crux of all subsequent proofs and applications in Chapter 4.

• Chapter 4 is a continuation of Chapter 3, establishing explicit zero-free regions and zero
repulsion of Hecke L-functions. Chapters 3 and 4 are chiefly inspired by the work of
Heath-Brown [HB92].

• Chapter 5 contains the proof of log-free zero density estimates. It is self-contained aside
from a crucial application of Lemma 3.2.4. The overall strategy follows Weiss [Wei83]
but requires a more careful analysis.

• Chapter 6 is on the Deuring–Heilbronn phenomenon for Hecke L-functions and the
Dedekind zeta function. It is self-contained and uses power sums as the main tool. The
arguments are motivated by the proof of [LMO79, Theoreom 5.1].

• Chapter 7 contains proofs of two of the main results of this thesis (Theorems 1.3.1
and 1.3.2). It amasses the results of Chapters 4 to 6 along with ideas of Heath-Brown
[HB92] to address the least prime ideal problem in two different ways.

• Chapter 8 contains proofs of two of the main results of this thesis (Theorems 1.3.3
and 1.3.4). As in Chapter 7, we combine the results of Chapters 4 to 6 to give upper
bounds for the number of prime ideals with a prescribed Artin symbol. The approach
here is influenced by Maynard [May13] as well as the arguments of Chapter 7.

• Chapter 9 is a self-contained piece on an exceptional case of the ”least prime ideal”
problem. The methods are entirely different, employing sieve techniques inspired by
Heath-Brown [HB90] and Friedlander–Iwaniec [FI10, Chapter 24].

• Chapter 10 contains the applications of our main theorems to elliptic curves and modular
forms, including the Lang–Trotter conjectures. The arguments therein borrow from a
variety of sources including works of Serre [Ser81], Murty–Murty–Saradha [MMS88],
V.K. Murty [Mur97], and Zywina [Zyw15].
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1.6 Joint work and published material

Joint work

Parts of this thesis were produced in collaboration with Jesse Thorner [TZ17b, TZ17a]. We
have made these joint contributions clear in the statement of the theorems in Chapter 1. For
the remainder of this thesis, we will no longer continue making these distinctions. Instead, we
shall specify here which parts of this thesis are a product of joint work:

• parts of Chapter 2; most of the contents here is elementary or background material.

• Chapter 5

• parts of Chapter 6; namely, Theorem 6.1.1 and Sections 6.2.2 and 6.3.1.

• parts of Chapter 7; namely, Section 7.3 and parts of Section 7.1.

• Chapter 8

• Chapter 10

Published material

Parts of this thesis are based on published or accepted material:

• [Zam16a] (doi:10.1016/j.jnt.2015.10.003) is related to Chapters 3 and 4.

• [Zam16b] (doi:10.1142/S1793042116501335) is related to Chapter 9.

• [Zam17] (doi:10.7169/facm/1651) is related to Chapters 6 and 7.

• [TZ17b] (accepted) is related to Chapters 5 to 7 and 10.

• [TZ17a] (doi:10.1093/imrn/rnx031) is related to Chapters 8 and 10.

http://doi.org/10.1016/j.jnt.2015.10.003
http://dx.doi.org/10.1142/S1793042116501335
http://doi.org/10.7169/facm/1651
https://doi.org/10.1093/imrn/rnx031


Chapter 2

Background

“Sometimes I’ll start a sentence and I don’t even know where it’s going. I just
hope I find it along the way.”

– Michael Scott, The Office.

In this chapter, we establish notation and recall basic facts regarding Hecke characters, L-
functions, arithmetic sums, prime ideal counting functions, Artin L-functions, and Deuring’s
reduction. The necessary analytic and algebraic number theory material can be found in [IK04,
Neu99]. The contents here will be used throughout this thesis.

2.1 Hecke characters and congruence class groups

The notation here is motivated by the discussion in [Wei83, Section 1]. Let K be a number
field of degree nK = [K : Q] with ring of integers OK . Let DK denote the absolute value of
the discriminant of K over Q and N = NK

Q denote the absolute field norm of K over Q. For an
integral ideal q ofK, let I(q) be the group of fractional ideals ofK relatively prime to q and let
Pq be the group of principal ideals (α) of K such that α is totally positive and α ≡ 1 (mod q).
The narrow ray class group of K modulo q is given by Cl(q) = I(q)/Pq. A subgroup H , or
H (mod q), of Cl(q) will be referred to as a congruence class group of K modulo q. Abusing
notation, we will also regard H as a subgroup of I(q) containing Pq.

Characters of Cl(q) are Hecke characters and denoted χ (mod q) or simply χ when the
modulus is understood. The notation χ (modH) refers to a character χ (mod q) satisfying
χ(H) = 1. Properly speaking, the domain of χ is the quotient group Cl(q) but, for notational
convenience, we pullback the domain of χ to I(q) and then extend it to all of I(OK) by zero.
In other words, χ(n) is a multiplicative function on all integral ideals n ⊆ O and χ(n) = 0 for
(n, q) 6= 1.

29
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The trivial character χ0 (mod q) is also referred to as the principal character and satisfies
χ0(n) = 1 for all (n, q) 6= 1. We distinguish this character with an additional piece of notation:

E0(χ) :=

1 if χ is principal,

0 otherwise.
(2.1)

For m dividing n, the natural inclusion I(n) ↪→ I(m) induces a surjective homomorphism
I(n)/Pn → I(m)/Pm through which a character χ (modm) induces a character χ̃ (mod n).
Similarly, a congruence class group H (modm) induces a congruence class group H̃ (mod n).
A Hecke character χ (modm) (resp. congruence class group H) is primitive if it cannot be
induced, except by itself.

For a Hecke character χ (mod q), let χ∗ (mod fχ) be the unique primitive character induc-
ing χ. The conductor of χ is the integral ideal fχ. Similarly, for a congruence class group
H (mod q), let H∗ (mod fH) be the unique primitive congruence class group inducing H . The
conductor of H is the integral ideal fH . It is well known that

fH = lcm{fχ : χ (modH)}.

We require analytic measures of congruence class groups H and Hecke characters χ. For a
Hecke character χ (mod q), denote

Dχ := DKNfχ,

and for a congruence class group H (mod q), denote

hH := [I(q) : H], QH := max{Nfχ : χ (modH)}, (2.2)

which we refer to as the class number of H and the maximum analytic conductor of H re-
spectively. Observe that the quantity Dχ depends only on the primitive character χ∗ and the
quantities hH andQH depend only on the primitive congruence class groupH∗. For simplicity,
we will often writeQ = QH since we will usually retain the sameH throughout our arguments.

2.2 Hecke L-functions

The Hecke L-function associated to a Hecke character χ (mod q) is given by

L(s, χ) = L(s, χ,K) =
∑
n⊆O

χ(n)(Nn)−s =
∏
p

(
1− χ(p)

(Np)s

)−1

for σ > 1,
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where s = σ + it ∈ C. Throughout this thesis, we will retain the convention that the complex
variable s may be written as s = σ + it for σ, t ∈ R. Moreover, unless otherwise specified,
we shall henceforth refer to Hecke characters as characters. We will also usually suppress the
dependence of L(s, χ,K) on the number field K when it is understood.

If χ is the primitive principal character then its Hecke L-function is the Dedekind zeta
function of K, which is defined as

ζK(s) =
∑
n⊆O

(Nn)−s =
∏
p

(
1− 1

(Np)s

)−1

for σ > 1. (2.3)

In this section, we record classical facts about L(s, χ).

Functional Equation

Let χ (mod fχ) be a primitive character. Recall that the gamma factor of χ is given by

γχ(s) :=
[
π−s/2Γ

(s
2

)]a(χ)

·
[
π−

s+1
2 Γ
(s+ 1

2

)]b(χ)

, (2.4)

where Γ(s) is the Gamma function and a(χ), b(χ) are certain non-negative integers satisfying

a(χ) + b(χ) = [K : Q] = nK . (2.5)

The completed L-function of L(s, χ) is defined to be

ξ(s, χ) := [s(1− s)]E0(χ)Ds/2
χ γχ(s)L(s, χ). (2.6)

With an appropriate choice of a(χ) and b(χ), it is well-known that ξ(s, χ) is an entire function
satisfying the functional equation

ξ(s, χ) = w(χ) · ξ(1− s, χ), (2.7)

where w(χ) ∈ C is the global root number having absolute value 1. The zeros of ξ(s, χ) are
the non-trivial zeros ρ of L(s, χ) and are known to satisfy 0 < Re{ρ} < 1. The trivial zeros ω

of L(s, χ) are given by

ord
s=ω

L(s, χ) =


a(χ)− E0(χ) if ω = 0,

b(χ) if ω = −1,−3,−5, . . . ,

a(χ) if ω = −2,−4,−6, . . . ,

(2.8)
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and arise as poles of the gamma factor of χ. Since ξ(s, χ) is entire of order 1, it admits a
Hadamard product factorization given by

ξ(s, χ) = eA(χ)+B(χ)s
∏
ρ

(
1− s

ρ

)
es/ρ. (2.9)

If χ is trivial then L(s, χ) is the Dedekind zeta function of K. Of course, the above infor-
mation still holds but we shall sometimes use separate notation to distinguish this case. The
completed Dedekind zeta function ξK(s) is given by

ξK(s) = s(1− s)Ds/2
K γK(s)ζK(s), (2.10)

where γK is the gamma factor of K defined by

γK(s) =
[
π−

s
2 Γ
(s

2

)]r1+r2
·
[
π−

s+1
2 Γ
(s+ 1

2

)]r2
. (2.11)

Here r1 = r1(K) and 2r2 = 2r2(K) are respectively the number of real and complex embed-
dings of K. It is well-known that ξK(s) is entire and satisfies the functional equation

ξK(s) = ξK(1− s). (2.12)

We refer to its zeros as the non-trivial zeros ρ of ζK(s), which are known to lie in the strip
0 < Re{s} < 1. The trivial zeros ω of ζK(s) occur at certain non-positive integers arising
from poles of the gamma factor of K; namely,

ord
s=ω

ζK(s) =


r1 + r2 − 1 if ω = 0,

r2 if ω = −1,−3,−5, . . . ,

r1 + r2 if ω = −2,−4,−6, . . . .

(2.13)

See [LO77, Section 5] for further details on these facts.

Explicit Formula

Using the Hadamard product for ξ(s, χ), one may derive an explicit formula for the logarithmic
derivative of L(s, χ).

Lemma 2.2.1. Let χ be a primitive Hecke character. Then

−L
′

L
(s, χ) =

E0(χ)

s− 1
+
E0(χ)

s
+

1

2
logDχ +

γ′χ
γχ

(s)−B(χ)−
∑
ρ

( 1

s− ρ
+

1

ρ

)
,
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identically for all s ∈ C. The constant B(χ) ∈ C depends only on χ and the conditionally

convergent sum is over all zeros ρ of ξ(s, χ). Moreover,

Re{B(χ)} = −1

2

∑
ρ

( 1

1− ρ
+

1

ρ

)
= −

∑
ρ

Re
1

ρ
< 0.

Proof. See [LO77, Section 5] for a proof. Note “
∑
ρ

” denotes “ lim
T→∞

∑
|Imρ|≤T

”.

2.3 Elementary L-function estimates

In this section, we state elementary estimates ofL-functions beginning with well-known bounds
for the Dedekind zeta function and the convexity bound for Hecke L-functions.

Lemma 2.3.1. For σ > 1,

ζK(σ) ≤ ζ(σ)nK ≤
( σ

σ − 1

)nK
,

log ζK(σ) ≤ nK log
( σ

σ − 1

)
,

−ζ
′
K

ζK
(σ) ≤ −nK

ζ ′

ζ
(σ) ≤ nK

σ − 1
.

where ζ(s) = ζQ(s) is the classical Riemann zeta function.

Proof. For the first inequality, observe that

ζK(σ) =
∏
p

(1− (Np)−σ)−1 =
∏
p

∏
(p)⊆p

(1− (Np)−σ)−1 ≤
∏
p

(1− p−σ)−nK = ζ(σ)nK

and note ζ(σ) ≤
(

σ
σ−1

)
from [MV07, Corollary 1.14]. The second inequality follows easily

from the first. The third inequality follows by an argument similar to that of the first and
additionally noting − ζ′

ζ
(σ) < 1

σ−1
by [Lou92, Lemma (a)] for example.

Lemma 2.3.2 (Rademacher). Let δ ∈ (0, 1
2
) and χ be a primitive Hecke character. Then

|L(s, χ)| �
∣∣∣s+ 1

s− 1

∣∣∣E0(χ)

ζQ(1 + δ)nK
( Dχ

(2π)nK
(1 + |s|)nK

)(1−σ+δ)/2

uniformly in the region

−δ ≤ σ ≤ 1 + δ.
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Proof. This is a version of [Rad60, Theorem 5] which has been simplified for our purposes.
In his notation, the constants vq, ap, ap+r2 , vp are all zero for characters of Cl(q). Recall that
ζQ( · ) is the classical Riemann zeta function.

When applying the above convexity result, we may sometimes require bounds for the
Gamma function Γ(s) =

∫∞
0
e−tts−1dt in a vertical strip; for instance, from [MV07, Appendix

C], we have that
Γ(s)�δ e

−|t| (2.14)

uniformly in the region −1 + δ ≤ Re{s} ≤ 2 with |s| ≥ δ. A more accurate bound for Γ(s)

in such a region has exponent −π
2

+ δ instead of −1. However, this detail does not affect our
calculations so we choose this weaker bound for simplicity.

Next, we record some bounds related to γχ(s) defined in (2.4).

Lemma 2.3.3. Let s = σ + it with σ > 1 and t ∈ R. Then

(i) Re{Γ′

Γ
(s)} ≤ log |s|+ σ−1

(ii) Re{
γ′χ
γχ

(s)} ≤ nK
2

(log(|s|+ 1) + σ−1 − log π)

In particular, for 1 < σ ≤ 6.2 and |t| ≤ 1,

Re{
γ′χ
γχ

(s)} ≤ 0

Proof. The first estimate follows from [OS97, Lemma 4]. The second estimate is a straightfor-
ward consequence of the first combined with the definition of γχ(s) in (2.4). The third estimate
follows from [AK14, Lemma 3].

Lemma 2.3.4. Let χ be a primitive Hecke character. If Re{s} ≥ 1/8, then

γ′χ
γχ

(s)� nK log(2 + |s|).

Proof. See [LO77, Lemma 5.3].

Lemma 2.3.5. Let k ≥ 1 and χ be a Hecke character. Then

1

k!

dk

dsk
γ′χ
γχ

(s)� nK

uniformly for s satisfying Re{s} > 1.
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Proof. Denote ψ(k)( · ) = dk

dsk
Γ′

Γ
( · ). From (2.4), we have that

dk

dsk
γ′χ
γχ

(s) =
a(χ)

2k+1
· ψ(k)

(s
2

)
+
b(χ)

2k+1
· ψ(k)

(s+ 1

2

)
. (2.15)

Since a(χ) + b(χ) = nK , it suffices to bound ψ(k)(z) for Re{z} > 1/2. From the well-known
logarithmic derivative of the Gamma function (see [MV07, (C.10)] for example), observe

∣∣∣ψ(k)(z)

k!

∣∣∣ =
∣∣∣(−1)k

∞∑
n=1

1

(n+ z)k+1

∣∣∣ ≤ 2k+1
∑
n odd

1

nk+1
= (2k+1 − 1)ζQ(k + 1)

for Re{z} > 1/2. This yields the result when combined with (2.15) as ζQ(k + 1) ≤ ζQ(2) =

π2/6.

Lemma 2.3.6. Let χ be a Hecke character (not necessarily primitive) of a number field K and

k ≥ 1 be a positive integer. Then

(−1)k+1 d
k

dsk
L′

L
(s, χ) =

∑
p

∞∑
m=1

(log Np)χ(p)
(log Npm)k

(Npm)s
=

δ(χ)k!

(s− 1)k+1
−
∑
ω

k!

(s− ω)k+1

for Re{s} > 1, where the first sum is over prime ideals p of K and the second sum is over all

zeros ω of L(s, χ), including trivial ones, counted with multiplicity.

Proof. By standard arguments, this follows from the Hadamard product (2.9) of ξ(s, χ) and
the Euler product of L(s, χ). See [LMO79, Equations (5.2) and (5.3)], for example.

We end this subsection with a classical explicit bound on the number of zeros of L(s, χ) in
a circle. See [LMO79, Lemma 2.2] for a non-explicit version.

Lemma 2.3.7. Let χ be a Hecke character. Let s = σ + it with σ > 1 and t ∈ R. For r > 0,

denote

Nχ(r; s) := #{ρ = β + iγ : 0 < β < 1, L(ρ, χ) = 0, |s− ρ| ≤ r}. (2.16)

If 0 < r ≤ 1, then

Nχ(r; s) ≤ {4 logDK + 2 log Nfχ + 2nK log(|t|+ 3) + 4 + 4E0(χ)} · r + 4 + 4E0(χ).

Proof. Without loss, we may assume χ is primitive. Observe Nχ(r; s) ≤ Nχ(r; 1 + it) ≤
Nχ(2r; 1 + r + it) so it suffices to bound the latter quantity. Now, if s0 = 1 + r + it, notice

Nχ(2r; s0) ≤ 4r
∑

|s0−ρ|≤2r

Re

{
1

s0 − ρ

}
≤ 4r

∑
ρ

Re

{
1

s0 − ρ

}
.



CHAPTER 2. BACKGROUND 36

Applying Lemmas 2.2.1 and 2.3.3 twice and noting Re
{
L′

L
(s0, χ)

}
≤ − ζ′K

ζK
(1 + r) via their

respective Euler products, the above is

≤ 4r

(
Re

{
L′

L
(s0, χ)

}
+

1

2
logDχ + Re

{
γ′χ
γχ

(s0)

}
+ E0(χ)Re

{
1

s0
+

1

s0 − 1

})
≤ {4 logDK + 2 log Nfχ + 2nK log(|t|+ 3) + 4 + 4E0(χ)} · r + 4 + 4E0(χ)

as Dχ = DKNfχ. For the details on estimating − ζ′K
ζK

(1 + r), see Lemma 2.4.3.

In Chapter 3, we will improve the bound in Lemma 2.3.7 by exhibiting an explicit inequality
involving the logarithmic derivative of L(s, χ).

2.4 Arithmetic sums

Here we estimate various basic arithmetic sums over integral and prime ideals of K and conse-
quently we must define some additional quantities related to the Dedekind zeta function ζK(s),
given by (2.3). It is well-known that ζK(s) has a simple pole at s = 1. Thus, we may define

κK := Res
s=1

ζK(s) and γK := κ−1
K lim

s→1

(
ζK(s)− κK

s− 1

)
, (2.17)

so the Laurent expansion of ζK(s) at s = 1 is given by

ζK(s) =
κK
s− 1

+ κKγK +OK(|s− 1|).

We refer to γK as the Euler-Kronecker constant of K, which was introduced by Ihara [Iha06].
For more details on γK , see also [Iha10, Mur11] for example.

Lemma 2.4.1. For x > 0 and ε > 0,

∣∣∣ ∑
Nn<x

1

Nn

(
1− Nn

x

)nK
− κK

(
log x−

nK∑
j=1

1

j

)
− κKγK

∣∣∣�ε

(
nnKK DK

)1/4+ε
x−1/2.

Proof. Without loss, ε < 1/2. The quantity we wish to bound equals

1

2πi

∫ − 1
2

+i∞

− 1
2
−i∞

ζK(s+ 1)
xs

s

nK !∏nK
j=1(s+ j)

ds =
nK !

2πi

∫ − 1
2

+i∞

− 1
2
−i∞

ζK(s+ 1)
Γ(s)

Γ(nK + 1 + s)
xsds.

Using Lemma 2.3.2, Stirling’s formula, and ζQ(1 + ε)nK � eOε(nK), the result follows.
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Corollary 2.4.2. Let ε > 0 be arbitrary. If x ≥ 3
(
nnKK DK)1/2+ε then

∑
Nn<x

1

Nn
≥ {1− (1 + 2ε)−1 +Oε((log x)−1)} · κK log x.

Proof. It suffices to assume that κK ≥ 1/ log x. From Lemma 2.4.1, it follows that

1

κK

∑
Nn<x

1

Nn
≥ log x−

nK∑
j=1

1

j
+ γK +Oε

(
x−

ε
8 log x

)
,

by our assumption on x. By [Iha06, Proposition 3],

γK ≥ −
1

2
logDK +

γQ + log 2π

2
· nK − 1

where γQ = 0.5772 . . . is Euler’s constant. Since
∑

1≤j≤nK j
−1 ≤ log nK + 1,

1

κK

∑
Nn<x

1

Nn
≥ (log x){1 +Oε(x

−ε/8)} − 1

2
logDK +

γQ + log 2π

2
· nK − log nK − 2

≥ (log x){1− 1
1+2ε +Oε((log x)−1)},

by our assumption on x.

Taking the logarithmic derivative of ζK(s) yields in the usual way

−
ζ ′K
ζK

(s) =
∑

n⊆OK

ΛK(n)

(Nn)s
(2.18)

for Re{s} > 1, where ΛK( · ) is the von Mangoldt Λ-function of the field K defined by

ΛK(n) =

log Np if n is a power of a prime ideal p,

0 otherwise.
(2.19)

Using this identity, we prove an elementary lemma.

Lemma 2.4.3. For y ≥ 3 and 0 < r < 1,

(i) −
ζ ′K
ζK

(1 + r) =
∑
n

ΛK(n)

Nn1+r
≤ 1

2
logDK +

1

r
+ 1.

(ii)
∑

Nn≤y

ΛK(n)

Nn
≤ e log(eD

1/2
K y).

Proof. Part (i) follows from Lemmas 2.2.1 and 2.3.3, (2.18), and the fact that Re{(1 + r −
ρ)−1} ≥ 0. Part (ii) follows from (i) by taking r = 1

log y
.
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We will need a lemma to transfer from imprimitive characters to primitive ones.

Lemma 2.4.4. Let m be an integral ideal. Then, for ε > 0,

∑
p|m

log Np

Np
≤
√
nK log Nm ≤ 1

2

(nK
ε

+ ε log Nm
)

where the sum is over prime ideals p dividing m.

Proof. The second inequality follows from (x+ y)/2 ≥ √xy for x, y ≥ 0. It suffices to prove
the first estimate. Write m =

∏r
i=1 p

ei
i in its unique ideal factorization where pi are distinct

prime ideals and ei ≥ 1. Denote qi = Npi and am = #{i : qi = m}. Observe that am = 0

unless m is a power of a rational prime p. Since the principal ideal (p) factors into at most nK
prime ideals in K, it follows am ≤ nK for m ≥ 1. Thus, by Cauchy-Schwarz,

∑
p|m

log Np

Np
=

r∑
i=1

log qi
qi
≤
( r∑
i=1

log qi
q2
i

)1/2( r∑
i=1

log qi

)1/2

=
(∑
m≥1

am
logm

m2

)1/2( r∑
i=1

log qi

)1/2

≤ n
1/2
K

(∑
m≥1

logm

m2

)1/2( r∑
i=1

ei log qi

)1/2

=
(∑
m≥1

logm

m2

)1/2√
nK log Nm.

Since
∑

m≥1
logm
m2 < 1, the result follows.

We record a lemma involving some simple sums over prime ideals.

Lemma 2.4.5. Let a ∈ (0, 1], δ > 0 be arbitrary and d be an integral ideal of K. Then

(i)
∑
p

1

(Np)1+δ
�δ nK

(ii)
∑
p|d

1

(Np)a
� n

a/2
K (log Nd)1−a/2

(iii)
∑
p|d

1

(Np)a
� δ−2/a+1nK + δ log Nd

Proof. For (i), observe that

∑
p

1

(Np)1+δ
≤ nK

∑
p

1

p1+δ
�δ nK ,
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where the latter sum is over rational primes p. For (ii), using Hölder’s inequality, we see that

∑
p|d

1

(Np)a
≤
(∑

p|d

1
)1−a(∑

p|d

1

Np

)a
.

Bounding the first sum by log Nd and the second sum by Lemma 2.4.4 yields the desired result.
Statement (iii) follows easily from (ii) by considering whether nK ≤ δ2/a log Nd or not.

Next, we desire a bound for hH in terms of nK , DK , and Q = QH .

Lemma 2.4.6. Let H be a congruence class group of K. For ε > 0, hH ≤ eOε(nK)D
1/2+ε
K Q1+ε.

Proof. Observe, by the definitions of Q and fH in Section 2.1, that for a Hecke character
χ (modH) we have fχ | fH and Nfχ ≤ Q. Hence,

hH =
∑

χ (modH)

1 ≤
∑

Nf≤Q
f | fH

∑
χ (mod f)

1 =
∑

Nf≤Q
f | fH

#Cl(f).

Recall the classical bound #Cl(f) ≤ 2nKhKNf where hK is the class number ofK (in the broad
sense) from [Mil13, Theorem 1.7], for example. Bounding the class number using Minkowski’s
bound (see [Wei83, Lemma 1.12] for example), we deduce that

hH ≤
∑

Nf≤Q
f | fH

eOε(nK)D
1/2+ε
K Nf ≤ eOε(nK)D

1/2+ε
K Q1+ε

∑
f | fH

1

(Nf)ε
.

For the remaining sum, notice
∑

f | fH (Nf)−ε ≤
∏

p|fH (1 − Np−ε)−1 ≤ eO(ω(fH)), where ω(fH)

is the number of prime ideals p dividing fH . From [Wei83, Lemma 1.13], we have ω(fH) �
Oε(nK) + ε log(DKQ) whence the desired estimate follows after rescaling ε.

[Wei83, Lemma 1.16] is comparable with Lemma 2.4.6 but Q1+ε is replaced by NfH . The
relative size of these quantities is not immediately clear, so we end this section with a compar-
ison between Q and NfH .

Lemma 2.4.7. Let H be a congruence class group of K. Then Q ≤ NfH ≤ Q2.

Remark. The lower bound is achieved when H = PfH . We did not investigate the tightness of
the upper bound as this estimate will be sufficient our purposes.

Proof. The arguments here are motivated by [Wei83, Lemma 1.13]. Without loss, we may
assume H is primitive. Since Q = QH = max{Nfχ : χ (modH)} and fH = lcm{fχ :

χ (modH)}, the lower bound is immediate. For the upper bound, consider any m | fH . Let Hm

denote the image ofH under the map I(fH)/PfH → I(m)/Pm. This induces a map I(fH)/H →



CHAPTER 2. BACKGROUND 40

I(m)/Hm, which, since H is primitive, must have non-trivial kernel. Hence, characters of
I(m)/Hm induce characters of I(fH)/H .

Now, for p | fH , choose e = ep ≥ 1 maximum satisfying pe | fH . Define mp := fHp
−1 and

consider the induced map I(fH)/H → I(mp)/Hmp with kernel Vp. Since H is primitive, Vp
must be non-trivial and hence #Vp ≥ 2. Observe that the characters χ of I(fH)/H such that
pe - fχ are exactly those which are trivial on Vp and hence are hH

#Vp
in number. For a given p,

this yields the following identity:

hH
2
≤ hH

(
1− 1

#Vp

)
=

∑
χ (modH)
pep‖fχ

1.

Multiplying both sides by log(Npep) and summing over p | fH , we have that

1

2
hH log NfH =

hH
2

∑
p|fH

log(Npep) ≤
∑
p|fH

∑
χ (modH)
pep‖fχ

log Npep ≤
∑

χ (modH)

log Nfχ ≤ hH logQ.

Comparing both sides, we deduce NfH ≤ Q2, as desired.

2.5 Artin L-functions and Deuring’s reduction

This section can be safely ignored until Chapters 7 and 8. Let L/F be a Galois extension of
number fields with Galois group G := Gal(L/F ) and let C be a conjugacy class of G. This
section consists of preliminary material required for counting prime ideals p of F with Artin
symbol [L/F

p
] = C. A similar discussion can be found in [LMO79, Section 3]. For the number

field F , we will use the following notation throughout this section:

• OF is the ring of integers of F .

• nF = [F : Q] is the degree of F/Q.

• DF = |disc(F/Q)| is the absolute value of the absolute discriminant of F .

• N = NF
Q is the absolute field norm of F .

• ζF (s) is the Dedekind zeta function of F .

• p is a prime ideal of F .

• n is an integral ideal of F .
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• ΛF (n) is the von Mangoldt Λ-function for F given by

ΛF (n) =

log NF
Qp if n is a power of a prime ideal p,

0 otherwise.

Artin L-functions

Let us briefly recall the definition of an Artin L-function from [MM97, Chapter 2, Section 2].
For each prime ideal p of F , and a prime ideal P of L lying above p, define the decomposition
group DP to be Gal(LP/Fp), where LP (resp. Fp) is the completion of L (resp. F ) at P
(resp. p). Let kP (resp. kp) denote the residue field of LP (resp. Fp). We have a map DP to
Gal(kP/kp) (the Galois group of the residue field extension), which is surjective by Hensel’s
lemma. The kernel of this map is the inertia group IP. Thus, we have the exact sequence

1→ IP → DP → Gal(kP/kp)→ 1.

The group Gal(kP/kp) is cyclic with generator x 7→ xNp, where Np is the cardinality of kp.
We can choose an element σP ∈ DP whose image in Gal(kP/kp) is this generator. We call
σP a Frobenius element at P; it is well-defined modulo IP. We have that IP is trivial for
all unramified p, and for these p, σP is well-defined. For p unramified, we denote by σp the
conjugacy class of Frobenius elements at primes P above p; in this case, note that σp = [L/F

p
].

Let ρ : G→ GLn(C) be a representation of G, and let ψ denote its character. Let V be the
underlying complex vector space on which ρ acts, and let V IP be the subspace of V on which
IP acts trivially. We now define their local Euler factors to be

Lp(s, ψ, L/F ) =

det(In − ρ(σp)Np−s)−1 if p is unramified in L,

det(In − ρ(σP) |
V
IP Np−s)−1 if p is ramified in L,

where In is the n× n identity matrix. This is well-defined for all p, which allows us to define
the Artin L-function

L(s, ψ, L/F ) =
∏
p

Lp(s, ψ, L/F )

for Re{s} > 1. It is well-known to be analytic and non-zero for Re{s} > 1.

Some class field theory

Let A be any abelian subgroup of G = Gal(L/F ) and let K = LA be the subfield of L
fixed by A. We describe some properties of the associated 1-dimensional Artin L-functions



CHAPTER 2. BACKGROUND 42

L(s, χ, L/K). First, from [Hei67] for example, note that

ζL(s) =
∏
χ∈Â

L(s, χ, L/K), (2.20)

where the product is over the Artin characters χ of A = Gal(L/K). From the above, one can
deduce the conductor-discriminant formula, which states

logDL =
∑
χ

logDχ. (2.21)

We wish to elaborate on the relationship between the L-functions in (2.20) and the Hecke
L-functions defined in Section 2.2.

By the fundamental theorem of class field theory, there is an integral ideal f = fL/K attached
to the extension L/K and a surjective homomorphism ϕ : I(f)→ Gal(L/K), where I(f) is the
group of fractional ideals ofK relatively prime to f. Hence, I(f)/H is isomorphic to Gal(L/K)

where H = kerϕ. From this isomorphism, we obtain a natural correspondence between the 1-
dimensional Artin characters χ of Gal(L/K) and the Hecke characters χ̃ (modH) of I(f)/H .
In particular, they satisfy

χ̃∗(P) = χ
([L/K

P

])
(2.22)

for all prime ideals P ⊆ OK unramified in L. We emphasize that χ̃∗ is the primitive Hecke
character inducing χ̃. Furthermore, under this correspondence, we have that∏

χ∈Â

L(s, χ, L/K) =
∏

χ̃ (modH)

L(s, χ̃∗, K). (2.23)

In particular, the 1-dimensional Artin L-function L(s, χ, L/K) is equal to a certain primi-

tive Hecke L-function L(s, χ̃∗, K). While L(s, χ̃,K) is not necessarily primitive for any
given Hecke character χ̃ (modH), its L-function L(s, χ̃,K) equals its primitive counterpart
L(s, χ̃∗, K) up to a finite number of local Euler factors. Thus, the two L-functions have the
same non-trivial zeros, counted with multiplicity. Hence, each 1-dimensional Artin L-function
L(s, χ, L/K) has the same non-trivial zeros, counted with multiplicity, as a corresponding (not
necessarily primitive) Hecke L-function L(s, χ̃,K) for some χ̃ (modH). By (2.20) and (2.23),
this implies that ∏

χ̃ (modH)

L(s, χ̃,K) (2.24)

has the same non-trivial zeros, counted with multiplicity, as
∏
χ∈Â

L(s, χ, L/K).
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Prime ideal counting function

For a conjugacy class C ⊆ G, let gC ∈ C be arbitrary. Define

ZC(s) := −|C|
|G|

∑
ψ

ψ(gC)
L′

L
(s, ψ, L/F ), (2.25)

where ψ runs over irreducible characters of G and L(s, ψ, L/F ) is the associated Artin L-
function. Note the definition of ZC(s) does not depend on the choice of gC since ψ is the trace
of the representation ρ and gC is conjugate to any other choice. By orthogonality relations for
characters (see [Hei67, Section 3] for example),

ZC(s) =
∑
n⊆OF

ΛF (n)ΘC(n)(Nn)−s, (2.26)

where ΘC(n) is supported on integral ideals n which are powers of a prime ideal; in particular,
for prime ideals p unramified in L and m ≥ 1,

ΘC(pm) =

1 if [L/F
p

]m ⊆ C,

0 otherwise,
(2.27)

and 0 ≤ ΘC(pm) ≤ 1 if p ramifies in L. This discussion and definition of ΘC( · ) is also
contained in [LMO79, Section 3]. Thus, by (1.15), we have that

πC(x, L/F ) =
∑
Np<x

p unramified in L

ΘC(p) (2.28)

for x > 1. In Chapters 7 and 8, we will be concerned with a prime ideal counting function
which is naturally related to πC(x, L/F ) and is given by

ψC(x, L/F ) :=
∑
Nn<x

ΛF (n)ΘC(n). (2.29)

Observe, by (2.26) and Mellin inversion, that

ψC(x, L/F ) =

∫ 2+i∞

2−i∞
ZC(s)

xs

s
ds. (2.30)

This property motivates the use of ZC(s) in our analytic arguments. Next, we record a basic
lemma relating πC(x, L/F ) with ψC(x, L/F ) for use in Chapter 8. In that scenario, we will
only be interested in an upper bound for πC(x, L/F ), so we give a simpler statement that
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suffices for our purposes.

Lemma 2.5.1. If x > x0 > 3, then

πC(x, L/F ) ≤ ψC(x, L/F )

log x
+

∫ x

x0

ψC(t, L/F )

t log2 t
dt+O(nFx0).

Proof. For simplicity, write ψC(t) in place of ψC(t, L/F ). For t > 1, define

π̃C(t) :=
∑
Np<t

ΘC(p), θC(t) :=
∑
Np<t

ΘC(p) log Np,

where the sums are over all prime ideals p of F and ΘC(p) is given by (2.27). First, observe
that, by (2.27) and (2.28), the only difference between π̃C(x) and πC(x, L/F ) is the contribu-
tion from the prime ideals p of F ramified in L. Since 0 ≤ ΘC(p) ≤ 1 for such prime ideals,
we observe that

πC(x, L/F ) ≤ π̃C(x), (2.31)

so it suffices to estimate π̃C(x). Using partial summation, we see that if 3 < x0 < x, then

π̃C(x) =
θC(x)

log x
+

∫ x

x0

θC(t)

t log2 t
dt+ π̃C(x0). (2.32)

Since there are at most nF prime ideals above a rational prime p, observe that

π̃C(x0) ≤
∑
p<x0

∑
p|(p)

1 ≤ nF
∑
p<x0

1� nFx0

log x0

� nFx0. (2.33)

Moreover, θC(t) ≤ ψC(t) for all t > 1. Combining these observations with (2.31) and (2.32)
yields the desired result.

Deuring’s reduction

In general, ArtinL-functionsL(s, ψ, L/F ) are only known to be meromorphic in the half-plane
Re{s} > 1. Thus, ZC(s) is meromorphic in Re{s} > 1. However, we will need ZC(s) to be
meromorphically continued to the entire complex plane in order to execute standard arguments
involving contour integrals like (2.30). To do so, we must enact Deuring’s reduction.

Let A be any abelian subgroup of G = Gal(L/F ) such that A ∩C is non-empty. From the
definition of ZC(s) in (2.25), we may assume without loss of generality that gC ∈ A ∩ C. If



CHAPTER 2. BACKGROUND 45

K = LA is the fixed field of A then by [Hei67, Lemma 4],

ZC(s) = −|C|
|G|

∑
χ

χ(gC)
L′

L
(s, χ, L/K), (2.34)

where the sum runs over irreducible characters χ of A, which are necessarily 1-dimensional
since A is abelian. By class field theory, the Artin L-function L(s, χ, L/K) is a certain primi-

tive Hecke L-function. Therefore, (2.34) implies ZC(s) is meromorphic in the entire complex
plane. This concludes Deuring’s reduction.

Notational convention

One may wish to notationally distinguish a 1-dimensional Artin L-function L(s, χ, L/K) with
the primitive Hecke L-function L(s, χ̃∗, K) associated to it by class field theory. However,
throughout this thesis, we will frequently make no such distinction and abuse notation. We
will often treat L(s, χ, L/K) as a primitive Hecke L-function with conductor fχ ⊆ OK .



Chapter 3

Explicit inequalities for Hecke L-functions

“You may encounter many defeats, but you must not be defeated. In fact, it
may be necessary to encounter the defeats, so you can know who you are, what
you can rise from, how you can still come out of it.”

– Maya Angelou.

In this chapter, we establish several different explicit inequalities related to the zeros of
Hecke L-functions by involving classical arguments, higher derivatives, and smooth weights.
The notation and results build the foundations for Chapter 4.

3.1 Zero-free gap and labelling of zeros

Let H (mod q) be an arbitrary congruence class group of the number field K. The main goal
of this section is to show that there is a thin rectangle inside the critical strip above which there
is a zero-free gap for ∏

χ (modH)

L(s, χ). (3.1)

This zero-free gap is necessary for the proof of Lemma 3.4.3, which is a crucial component for
later sections.

Let ν(x) and η(x) be fixed increasing functions for x ∈ [1,∞) such that

ν(x) ∈ [4,∞), ν(x)� log(x+ 4),

η(x) ∈ [2,∞), η(x)→∞ as x→∞, and x
η(x) log(x+1)

is increasing.
(3.2)

46
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One could take η(x) = 1
2

log x+ 2, for example. Denote

L := logDK + 3
4

logQ+ nK · ν(nK),

L∗ := logDK + 3
4
· logQ,

T := (L∗)1/η(nK) log(nK+1) + ν(nK),

(3.3)

whereQ = QH is defined by (2.2). Similarly, for a Hecke character χ (modH) with conductor
fχ, define

Lχ := logDχ + nK · ν(nK),

L∗χ := logDχ,

L0 := Lχ0 = logDK + nK · ν(nK).

(3.4)

Note that Dχ ≤ DKQ for any χ (modH) by definition of Q.

For the remainder of Chapters 3 and 4, we shall maintain this notation because these quan-
tities will be ubiquitous in all of our estimates. Moreover, all implicit constants will be inde-
pendent of the number field K, the congruence class group H , and all Hecke characters χ, and
will only implicitly depend on the choice of ν and η.

First, we record some simple relationships between the quantities defined in (3.3) and (3.4).

Lemma 3.1.1. Let χ (modH) be arbitrary. For the quantities defined in (3.3) and (3.4), all of

the following hold:

(i) 4 ≤ T ≤ L.

(ii) nK log T = o(L).

(iii) L∗ + nK log T ≤ L+ o(L) and L∗χ + nK log T ≤ Lχ + o(L).

(iv) T → ∞ as L → ∞.

(v) aL0 + bLχ ≤ (a+ b)L for all 0 ≤ b ≤ 3a.

Proof. Statements (i) and (iii) follow easily from (ii) and the definitions of T ,L and L∗. For
(ii), observe that

nK log T ≤ nK logL∗

η(nK) log(nK + 1)
+ nK log ν(nK) + nK log 2.

The second and third terms are o(L) as ν(nK) is increasing. For the first term, note that
nK

η(nK) log(nK+1)
is increasing as a function nK by (3.2). Thus, substituting the upper bound
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nK = O(logDK) = O(L∗) from Minkowski’s theorem, we deduce that

nK log T � L∗

η(L∗)
+ o(L) = o(L),

since η(x)→∞ as x→∞ and L∗ ≤ L. For (iv), if nK is bounded, then necessarily L∗ →∞
in which case both T and L approach infinity. Otherwise, if nK → ∞, then both T and L
approach infinity since ν(x)→∞ as x→∞. For (v), the claim follows from the definition of
L and the fact that Dχ ≤ DKQ for all χ (modH).

Next, we establish a zero-free gap which motivates the choice ofL and its related quantities.

Lemma 3.1.2. Let T? ≥ 1 be fixed and let C0 > 0 be a sufficiently large absolute constant and

let T be defined as in (3.3). For L sufficiently large, there exists a positive integer T0 = T0(H)

such that T? ≤ T0 ≤ T
10

and
∏

χ (modH)

L(s, χ) has no zeros in the region

1− log log T
C0L

≤ σ ≤ 1, T0 ≤ |t| ≤ 10T0.

Proof. For 0 ≤ α ≤ 1 and T ≥ 0, denote

NH(α, T ) =
∑

χ (modH)

#{ρ ∈ C | L(ρ, χ) = 0, α ≤ β ≤ 1, 0 ≤ |γ| ≤ T},

where we count zeros with multiplicity. By [Wei83, Theorem 4.3], for c6 ≤ α ≤ 1− c7
L+nK log T

,

NH(α, T )� (nnKK hHDKQT
nK )c8(1−α)

for some absolute constants 0 < c6 < 1, c7 > 0, c8 > 0 and provided T and L are sufficiently
large. By Lemma 3.1.1 and Lemma 2.4.6, observe hH ≤ eO(L) and nK log T � L for T ≤ T .
Moreover, nnKK DKQ ≤ eO(L) since ν(x)� log(x+ 4) by (3.2). It follows that, for T = T and
T sufficiently large,

NH(α, T )� (eL · T nK )c9(1−α) (3.5)

for c6 ≤ α ≤ 1− c10
L and some absolute constants c9 > 0 and c10 > 0.

Now suppose, for a contradiction, that no such T0 exists. Setting α = 1− log log T
C0L , it follows

that every region
α ≤ σ ≤ 1, 10j ≤ |t| ≤ 10j+1,

for J? ≤ j < J , where J := b log T
log 10
c and J? = d log T?

log 10
e, contains at least one zero of



CHAPTER 3. EXPLICIT INEQUALITIES FOR HECKE L-FUNCTIONS 49

∏
χ (modH) L(s, χ). Hence,

NH(α, T ) ≥ J − J? � log T ,

since T? is fixed and T is sufficiently large. On the other hand, by (3.5), our choice of α implies

NH(α, T )� exp
( c9

C0

(
log log T +

nK log T log log T
L

))
.

From Lemma 3.1.1, we have nK log T = o(L) so for some absolute constant c11 > 0,

NH(α, T )� exp
(c11

C0

log log T
)
� (log T )

c11
C0 .

Upon taking C0 = 2c11, we obtain a contradiction for T sufficiently large. From Lemma 3.1.1,
we may equivalently ask that L is sufficiently large.

3.1.1 Labeling of zeros

Using the zero-free gap from Lemma 3.1.2, we label important “bad” zeros of∏
χ (modH)

L(s, χ).

These zeros will be referred to throughout Chapters 3 and 4. A typical zero of L(s, χ) will be
denoted ρ = β + iγ or ρχ = βχ + iγχ when necessary.

Worst Zero of each Character

Let T? ≥ 1 be a fixed quantity throughout Chapters 3 and 4; consequently, the condition that
L is sufficiently large also depends implicitly on T? throughout Chapters 3 and 4. Consider the
rectangle

R = RH := {s ∈ C : 1− log log T
C0L

≤ σ ≤ 1, |t| ≤ T0}

for T0 = T0(H) ∈ [T?,
T
10

] and C0 > 0 defined by Lemma 3.1.2. Denote Z to be the multiset
of zeros of

∏
χ (modH) L(s, χ) contained in R. Choose finitely many zeros ρ1, ρ2, . . . from Z

as follows:

1. Pick ρ1 such that β1 is maximal, and let χ1 be the corresponding character. Remove all
zeros of L(s, χ1) and L(s, χ1) from Z .

2. Pick ρ2 such that β2 is maximal, and let χ2 be the corresponding character. Remove all
zeros of L(s, χ2) and L(s, χ2) from Z .
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...

Continue in this fashion until Z has no more zeros to choose. It follows that if χ 6= χi, χi for
1 ≤ i < k, then by Lemma 3.1.2 every zero ρ of L(s, χ) satisfies:

Re(ρ) ≤ Re(ρk) or |Im(ρ)| ≥ 10T0. (3.6)

For convenience of notation, denote

ρk = βk + iγk, βk = 1− λk
L
, γk =

µk
L
.

Second Worst Zero of the Worst Character

Suppose L(s, χ1) has a zero ρ′ 6= ρ1, ρ1 in the rectangle R, or possibly a repeated real zero
ρ′ = ρ1. Choose ρ′ with Re(ρ′) maximal and write

ρ′ = β′ + iγ′, β′ = 1− λ′

L
, γ′ =

µ′

L
.

3.2 Classical explicit inequality

We may now prove an inequality for−Re{L′
L

(s, χ)} based on a bound for L(s, χ) in the critical
strip and a type of Jensen’s formula employed by Heath-Brown in [HB92, Section 3]. First, we
introduce an estimate designed to deal with non-primitive characters.

Lemma 3.2.1. Assume H is a primitive congruence class group and χ (modH) is induced by

the character χ∗. For ε > 0,

L′

L
(s, χ) =

L′

L
(s, χ∗) +O

(nK
ε

+ εL∗
)
,

uniformly in the range σ > 1.

Proof. Since H is primitive, notice χ (modH) is a Hecke character modulo fH . Hence, using
the Euler products of the respective L-functions,∣∣∣L′

L
(s, χ)− L′

L
(s, χ∗)

∣∣∣ ≤∑
p|fH

∑
j≥1

log Np

(Np)j
≤ 2

∑
p|fH

log Np

Np
.

The desired result then follows from Lemmas 2.4.4 and 2.4.7.

Second, we rewrite the convexity bound for Hecke L-functions in a convenient form.
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Lemma 3.2.2. Assume H is a primitive congruence class group and χ (modH) is induced by

the primitive character χ∗. There exists an absolute constant φ > 0 such that for ε > 0,∣∣∣s− 1

s+ 1

∣∣∣E0(χ)

· |L(s, χ∗)| ≤ exp
{

2φ log(Dχτ
nK )(1− σ + ε) +Oε(nK)

}
uniformly in the region

−ε ≤ σ ≤ 1 + ε, τ = |t|+ 3.

In particular, one may take φ =
1

4
.

Proof. Combining Lemmas 2.3.1 and 2.3.2 yields the desired result.

Any improvement on the constant φ in Lemma 3.2.2 will have a wide-reaching effect on
the mains results of this thesis. For example, the Lindelöf hypothesis for Hecke L-functions
gives φ = ε. For the remainder of Chapters 3 and 4 , we set

φ :=
1

4
.

We may now establish the main result of this section.

Proposition 3.2.3. Let χ be a primitive Hecke character. For any 0 < ε < 1/4 and any

0 < δ < ε,

−Re
{L′
L

(s, χ)
}
≤ (φ+ 1

π
ε+ 4ε2 + 5ε10) log(Dχτ

nK ) + (4ε2 + 80ε10) logDK

+ Re
{E0(χ)

s− 1

}
−

∑
|1+it−ρ|≤δ

Re
{ 1

s− ρ

}
+Oε(nK),

(3.7)

and

− Re
{L′
L

(s, χ)
}
≤ (φ+ 1

π
ε+ 5ε10) log(Dχτ

nK ) + Re
{E0(χ)

s− 1

}
+Oε(nK), (3.8)

uniformly in the region

1 < σ ≤ 1 + ε, t ∈ R,

where τ = |t|+ 3.

Remark.

• When K = Q, Heath-Brown [HB92, Lemma 3.1] showed a similar inequality with φ =
1
6

instead of φ = 1
4

by leveraging Burgess’ estimate for character sums. Our arguments
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are largely motivated by his result, but we include a few modifications. Note that Heath-
Brown’s notation for φ differs by a factor of 2 with our notation.

• Li [Li12] proved a similar result for the Dedekind zeta function with t = 0. Using
a different approach involving Stechkin’s trick, Kadiri and Ng [KN12] established an
analogous estimate for the Dedekind zeta function with φ = 1

2
(1− 1√

5
) ≈ 0.27.

• When applying Proposition 3.2.3, we often use the notation in (3.3) and (3.4) in which
case we will use, without mention, that

(φ+ 1
π
ε+ 4ε2 + 5ε10) logDχ + (4ε2 + 80ε10) logDK ≤ (φ+ 4ε)Lχ

for 0 < ε < 1/4.

Proof. Let r = r(ε) ∈ (0, 1
10

) be a parameter to be specified later. Choose R = Rs,χ(r) < 1

such that the circles |w − s| = R and |w − 1| = r are disjoint and L(w, χ) has no zeros on
the circle |w − s| = R. From these choices, one may take R ∈ (R1 − r, R1) with R1 = 1 or
R1 = 1− 4r.

Apply [HB92, Lemma 3.2] with f(z) = ( z−1
z+1

)E0(χ)L(z, χ) and a = s to deduce

− Re
{L′
L

(s, χ)
}

=
E0(χ)

s− 1
−

∑
|s−ρ|<R

Re
{ 1

s− ρ
− s− ρ

R2

}
− J +O(1), (3.9)

since E0(χ)
s+1

= O(1) and where

J :=
1

πR

∫ 2π

0

(cos θ) · log
∣∣∣(s+Reiθ − 1

s+Reiθ + 1

)E0(χ)

· L(s+Reiθ, χ)
∣∣∣dθ.

Since |w − s| = R and |w − 1| = r are disjoint and R < 1, one can verify

∣∣∣s+Reiθ − 1

s+Reiθ + 1

∣∣∣ �ε 1,

as r = r(ε) depends only on ε. Thus,

J =
1

πR

∫ 2π

0

(cos θ) · log |L(s+Reiθ, χ)|dθ +Oε(1) = J̃ +Oε(1),

say. We require a lower bound for J̃ so we divide the contribution of the integral into three
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separate intervals depending on the sign of cos θ; that is,

J̃ = J1 + J2 + J3 =

∫ π/2

0

+

∫ 3π/2

π/2

+

∫ 2π

3π/2

.

• For θ ∈ [0, π/2], by Lemma 2.3.1 it follows that

| logL(s+Reiθ, χ)| ≤ log ζK(σ +R cos θ) ≤ nK log
( 1

σ − 1 +R cos θ

)
.

Thus, on the interval I1 := [0, π
2
− (σ − 1)], as σ − 1 ≥ 0, the contribution to J1 is

�ε nK

∫ π/2

0

(cos θ) log(1/R cos θ)dθ �ε nK .

On the interval I2 := [π
2
− (σ − 1), π

2
], as cos θ ≥ 0, the contribution to J1 is

�ε nK log(1/(σ − 1))

∫
I2

(cos θ)dθ �ε nK(σ − 1) log(1/(σ − 1))�ε nK ,

because 0 ≤ σ − 1 ≤ ε and x log(1/x) is bounded as x→ 0+.

• For θ ∈ [π/2, 3π/2], notice

0 < σ − 1 ≤ σ +R cos θ ≤ σ ≤ 1 + ε,

as R < 1. Hence, by Lemma 3.2.2,

log |L(s+Reiθ, χ)| ≤ 2φ log(Dχτ
nK )(1− σ −R cos θ + ε) +Oε(nK)

≤ 2φ log(Dχτ
nK )(−R cos θ + ε) +Oε(nK).

This implies that∫ 3π/2

π/2

(cos θ) · log |L(s+Reiθ, χ)|dθ

≥ 2φ log(Dχτ
nK )

∫ 3π/2

π/2

(
−R cos2 θ + ε cos θ

)
dθ +Oε(nK)

= φ log(Dχτ
nK )
(
− πR− 4ε

)
+Oε(nK).

• For θ ∈ [3π/2, 2π], we similarly obtain the same contribution as θ ∈ [0, π/2].
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Combining all contributions, we have that

J ≥ −
(
φ+

ε

πR

)
log(Dχτ

nK ) +Oε(nK), (3.10)

since φ = 1/4. For the sum over zeros in (3.9), notice that we may arbitrarily discard zeros
from the sum since, for |s− ρ| < R,

Re
{ 1

s− ρ
− s− ρ

R2

}
= (σ − β)

( 1

|s− ρ|2
− 1

R2

)
≥ 0. (3.11)

Substituting (3.10) and the above observation to every zero ρ in (3.9) yields (3.8) with 1
π
ε+5ε10

replaced by 1
πR
ε. Taking R→ R1 and r(ε) = ε10 yields (3.8) whether R1 = 1 or R1 = 1− 4r.

To establish (3.7), we continue our argument and notice by (3.11) that we may restrict our
sum over zeros from |s − ρ| < R to a smaller circle within it: |1 + it − ρ| ≤ r for any
0 < r < R − ε. From our previous observation, we may discard zeros outside of this smaller
circle. As R > 9/10, we have that δ < ε < 1/4 < R − ε so we may take r = δ for the radius
of the smaller circle.

Now, from Lemma 2.3.7,

Nχ(δ, 1 + it) = #{ρ : |1 + it− ρ| ≤ δ} ≤ 2 log(DKDχτ
nK )δ +O(1).

Further, for such zeros ρ satisfying |1 + it− ρ| ≤ δ, notice that

Re{s− ρ} = σ − β ≤ ε+ δ ≤ 2ε,

implying ∑
|1+it−ρ|≤δ

Re
{s− ρ

R2

}
≤ 4ε2

R2
log(DKDχτ

nK ) +O(1), (3.12)

as δ < ε. Combining (3.9), (3.10), and (3.12) and similarly taking R → R1 establishes
(3.7).

Using Proposition 3.2.3, we may improve upon Lemma 2.3.7.

Lemma 3.2.4. Let χ be a Hecke character and 0 < r < ε < 1/4. If s = σ + it with

1 < σ < 1 + ε and Nχ(r; s) by (2.16), then

Nχ(r; s) ≤ Φ
(
2 logDK + log Nfχ + nK log(|t|+ 3) +Oε(nK)

)
· r + 4 + 4δ(χ),

where Φ = 1 + 4
π
ε+ 16ε2 + 340ε10.
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Proof. Analogous to Lemma 2.3.7 except we bound Nχ(r; 1 + it) instead of Nχ(2r; 1 + r+ it)

and further, we apply Proposition 3.2.3 in place of Lemmas 2.2.1 and 2.3.3.

3.3 Polynomial explicit inequality

By including higher derivatives of −L′

L
(s, χ), the goal of this section is establish a general-

ization of the “classical explicit inequality” based on techniques in [HB92, Section 4]. Let
χ (modH) be a Hecke character. For a polynomial P (X) =

∑d
k=1 akX

k ∈ R[X] of degree
d ≥ 1, define a real-valued function

P(s, χ) = P(s, χ;P ) :=
∑
n⊆O

ΛK(n)

(Nn)σ

( d∑
k=1

ak

(
(σ − 1) log Nn

)k−1

(k − 1)!

)
· Re

{ χ(n)

(Nn)it

}
(3.13)

for σ > 1 and where ΛK( · ) is the von Mangoldt Λ-function on integral ideals of OK defined
by (2.5). From the classical formula

−L
′

L
(s, χ) =

∑
n⊆O

ΛK(n)χ(n)(Nn)−s for σ > 1,

it is straightforward to deduce that

P(s, χ) =
d∑

k=1

ak(σ − 1)k−1 · Re
{ (−1)k

(k − 1)!

dk−1

dsk−1

L′

L
(s, χ)

}
for σ > 1. (3.14)

To prove an explicit inequality using P(s, χ), we reduce the problem to primitive characters.

Lemma 3.3.1. Assume H is a primitive congruence class group. Let χ (modH) be induced

from the primitive character χ∗ (mod fχ). Let P (X) ∈ R[X] be a polynomial with P (0) = 0.

Then, for ε > 0,

P(s, χ) = P(s, χ∗) +OP (ε−1nK + εL),

uniformly in the region

1 < σ ≤ 1 +
100

L
.

Proof. Since H is primitive, notice χ (modH) is a Hecke character modulo fH . Denote d =

degP . Observe that∣∣∣P(s, χ)− P(s, χ∗)
∣∣∣�P

∑
(n,fH)6=1

ΛK(n)

Nn

( log Nn

L

)d−1

�P

∑
p|fH

∑
j≥1

log Np

(Np)j
·
(j log Np

L

)d−1

.
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For p | fH , note log Np ≤ log NfH ≤ 2 logQ� L by Lemma 2.4.7 and (3.3). Thus, the above
is

�P

∑
p|fH

∑
j≥1

jd−1 log Np

(Np)j
�P

∑
p|fH

log Np

Np
.

The desired result then follows from Lemma 2.4.4 and Lemma 2.4.7.

Proposition 3.3.2. AssumeH is a primitive congruence class group. Let χ (modH) and ε > 0

be arbitrary. Suppose the polynomial P (X) =
∑d

k=1 akX
k of degree d ≥ 1 has non-negative

real coefficients. There exists δ = δ(ε, P ) > 0 such that

1
L · P(s, χ) ≤ Re

{
P
(
σ−1
s−1

)
σ − 1

E0(χ)−
∑

|1+it−ρχ|≤δ

P
(
σ−1
s−ρχ

)
σ − 1

}
· 1

L
+ a1φ

Lχ
L + ε (3.15)

uniformly in the region

1 +
1

L logL
≤ σ ≤ 1 +

100

L
, |t| ≤ T ,

provided L is sufficiently large depending on ε and P .

Proof. Let χ∗ (mod fχ) be the primitive character inducing χ (modH). From Lemma 3.3.1
and the observation that nK = o(L), it follows that

1
LP(s, χ) = 1

LP(s, χ∗) + ε

for L sufficiently large depending on ε and P . Thus, it suffices to show (3.15) with P(s, χ∗)

instead of P(s, χ). Define

P2(X) :=
d∑

k=2

akX
k = P (X)− a1X.

Using Lemmas 2.2.1 and 2.3.5, we see for k ≥ 2 and σ > 1 that

(−1)k

(k − 1)!

dk−1

dsk−1

L′

L
(s, χ∗) =

E0(χ)

(s− 1)k
−
∑
ρχ

1

(s− ρχ)k
+
E0(χ)

sk
− (−1)k

(k − 1)!

dk−1

dsk−1

L′∞
L∞

(s, χ∗)

=
E0(χ)

(s− 1)k
−
∑
ρχ

1

(s− ρχ)k
+O(nK).
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Substituting these formulae into P(s, χ∗;P2) defined via (3.14), it follows for σ > 1 that

P(s, χ∗;P2) =
1

σ − 1

d∑
k=2

akRe

{(σ − 1

s− 1

)k
E0(χ)−

∑
ρχ

( σ − 1

s− ρχ

)k}
+OP (nK). (3.16)

Without loss, suppose ε < 1/4 and obtain δ = δ(ε) from Proposition 3.2.3. Since σ < 1 + 100
L ,

we see by the zero density estimate [LMO79, Lemma 2.1] and Lemma 3.1.1 that

∑
|1+it−ρχ|≥δ

∣∣∣ σ − 1

s− ρχ

∣∣∣k � (100

L

)k ∑
|1+it−ρχ|≥δ

1

|s− ρχ|k
�δ

(100

L

)k∑
ρχ

1

1 + |t− γχ|2

�δ

(100

L

)k
· (L∗ + nK log T )

�δ
(100)k

Lk−1
�δ,P

1

L
.

Hence,
1

σ − 1

d∑
k=2

akRe

{ ∑
|1+it−ρχ|≥δ

( σ − 1

s− ρχ

)k}
�ε,P logL,

since σ > 1 + 1
L logL and δ depends only on ε. Removing this contribution in (3.16) implies

P(s, χ∗;P2) =
1

σ − 1

d∑
k=2

akRe

{(σ − 1

s− 1

)k
E0(χ)−

∑
|1+it−ρχ|≤δ

( σ − 1

s− ρχ

)k}
+Oε,P (nK + logL)

= Re

{
P2(σ−1

s−1
)}

σ − 1
E0(χ)−

∑
|1+it−ρχ|≤δ

P2( σ−1
s−ρχ )

σ − 1

}
+Oε,P (nK + logL).

For the linear polynomial P1(X) := a1X , we apply Proposition 3.2.3 directly to find that

P(s, χ∗;P1) ≤ a1

(
φ+ 4ε

)
Lχ + Re

{
P1

(
σ−1
s−1

)
σ − 1

E0(χ)−
∑

|1+it−ρχ|≤δ

P1

(
σ−1
s−ρχ

)
σ − 1

}
+Oε,P (nK log T )

for L sufficiently large depending on ε. Finally, from (3.14), we see that P(s, χ∗;P ) =

P(s, χ∗;P1) + P(s, χ∗;P2) since P = P1 + P2, so combining the above inequality with the
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previous equation, we conclude that

P(s, χ∗) ≤ a1

(
φ+ 4ε

)
Lχ + Re

{
P
(
σ−1
s−1

)
σ − 1

E0(χ)−
∑

|1+it−ρχ|≤δ

P
(
σ−1
s−ρχ

)
σ − 1

}
+Oε,P (nK log T + logL).

Dividing both sides by L and taking L sufficiently large depending on ε and P , the errors may
be made arbitrarily small by Lemma 3.1.1. Rescaling ε yields the desired result.

Proposition 3.3.2 will be utilized in many contexts but typically we want to restrict the sum
over zeros ρ to a few specified zeros. To do so, we impose an additional condition on P (X).

Definition 3.3.3. A polynomial P (X) ∈ R≥0[X] is admissible if P (0) = 0 and

Re
{
P
(1

z

)}
≥ 0 when Re{z} ≥ 1.

Now we establish the desired general lemma.

Lemma 3.3.4. Let ε > 0 and 0 < λ < 100 be arbitrary, and let s = σ + it with

σ = 1 +
λ

L
, |t| ≤ T .

Let χ (modH) be an arbitrary Hecke character and let Z := {ρ̃1, ρ̃2, . . . , ρ̃J} be a finite

multiset of zeros of L(s, χ) (called the extracted zeros), where

ρ̃j = β̃j + iγ̃j =
(

1− λ̃j
L

)
+ i · µ̃j

L
, 1 ≤ j ≤ J.

Suppose P (X) =
∑d

k=1 akX
k is an admissible polynomial. Then

λ

L
· P(s, χ) ≤ Re

{
E0(χ)P

( λ

λ+ iµ

)
−

J∑
j=1

P
( λ

λ+ λ̃j + i(µ− µ̃j)

)}
+ a1λφ

Lχ
L + ε

for L sufficiently large depending only on ε, P , and J .

Proof. From Proposition 3.3.2 and the admissibility of P , it follows that

λ
LP(s, χ) ≤ a1λφ

Lχ
L + ε+ Re

{
E0(χ)P

( λ

λ+ iµ

)
−

∑
|1+it−ρχ|≤δ

ρχ∈Z

P
( λ

λ+ λχ + i(µ− µχ)

)}
(3.17)
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for some δ = δ(ε, P ) and L sufficiently large depending on ε, P and λ. Note the admissibility
of P was used to restrict the sum over zeros further by throwing out ρχ 6∈ Z satisfying |1 +

it−ρχ| ≤ δ. For the remaining sum, consider ρ̃j ∈ Z . If |1 + it− ρ̃j| ≥ δ, then |µ̃j−µ| �δ L
or λ̃j �δ L. As P (0) = 0, it follows that

Re

{
P
( λ

λ+ λ̃j + i(µ− µ̃j)

)}
�ε,P L−1.

Hence, in the sum over zeros in (3.17), we may include each extracted zero ρ̃j with error at
most Oε,P (L−1). This implies

∑
|1+it−ρχ|≤δ

ρχ∈Z

Re

{
P
( λ

λ+ λχ + i(µ− µχ)

)}
=

J∑
j=1

Re

{
P
( λ

λ+ λ̃j + i(µ− µ̃j)

)}

+Oε,P (L−1J).

Using this estimate in (3.17) and taking L sufficiently large depending on ε, P and J , we have
the desired result after rescaling ε.

During computations, we will employ Lemma 3.3.4 with P (X) = P4(X) as given in
[HB92]. That is, for the remainder of Chapters 3 and 4, denote

P4(X) := X +X2 + 4
5
X3 + 2

5
X4. (3.18)

We establish a key property of P4(X) in Lemma 3.3.6 using the following observation.

Lemma 3.3.5. Let V,W ≥ 0 be arbitrary and m ≥ 1 be a positive integer. Define

Gm(x, y, z) := V · xm

(x2 + z2)m
+W · ym

(y2 + z2)m
− 1

(1 + z2)m

for x, y, z ∈ R. If x, y ≥ 1 then

Gm(x, y, z) ≥ 0 provided
V

xm
+
W

ym
≥ 1.

Proof. Notice

Gm(x, y, z) =
V/xm

(1 + (z/x)2)m
+

W/ym

(1 + (z/y)2)m
− 1

(1 + z2)m
≥
( V
xm

+
W

ym
− 1
) 1

(1 + z2)m
.



CHAPTER 3. EXPLICIT INEQUALITIES FOR HECKE L-FUNCTIONS 60

Lemma 3.3.6. The polynomial P4(X) is admissible. Additionally, if 0 < a ≤ b ≤ c, A > 0,

and B,C ≥ 0, then

Re{C · P4

( a

c+ it

)
+B · P4

( a

b+ it

)
− A · P4

( a

a+ it

)
} ≥ 0, (3.19)

provided
C

c4
+
B

b4
≥ A

a4
.

Proof. The proof that P4(X) is admissible is given in [HB92, Section 4]. It remains to prove
(3.19). By direct computation, one can verify that

Re{P4

( a

b+ it

)
} =

16

5

(ab)4

(b2 + t2)4
+

a(b− a)

5(b2 + t2)3
Q(a, b, t), (3.20)

where Q(a, b, t) = 5t4 + 2(5b2 + 5ab − a2)t2 + b2(5b2 + 10ab + 14a2) is clearly positive for
0 < a ≤ b and t ∈ R. Thus, for 0 < a ≤ b and t ∈ R, we have

Re{P4

( a

b+ it

)
} ≥ 16

5

(ab)4

(b2 + t2)4
. (3.21)

Now, consider the LHS of (3.19). Apply (3.21) to the first and second term and (3.20) to the
third term. Thus, the LHS of (3.19) is

≥ 16a4

5
·
(
C · c4

(c2 + t2)4
+B · b4

(b2 + t2)4
− A · a4

(a2 + t2)4

)
≥ 16A

5
·G4

(
c
a
, b
a
, t
a

)
, (3.22)

where G4(x, y, z) is defined in Lemma 3.3.5 with V = C/A and W = B/A. Applying
Lemma 3.3.5 to G4

(
c
a
, b
a
, t
a

)
immediately implies (3.19) with the desired condition.

3.4 Smoothed explicit inequality

We further generalize the “classical explicit inequality” (Proposition 3.2.3) to smoothly weighted
versions of −L′

L
(s, χ), similar to the well-known Weil’s explicit formula. For any Hecke char-

acter χ (modH) and function f : [0,∞)→ R with compact support, define

W(s, χ; f) :=
∑
n⊆O

ΛK(n)χ(n)(Nn)−sf
( log Nn

L

)
for σ > 1,

K(s, χ; f) := Re{W(s, χ; f)}.
(3.23)
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We begin with the same setup as [HB92, Section 5]. Assume f satisfies the following:

Condition 1 Let f be a continuous function from [0,∞) to R, supported in [0, x0) and

bounded absolutely by M . Let f be twice differentiable on (0, x0), with f ′′ being continu-

ous and bounded by B.

Recall that the Laplace transform of f is given by

F (z) :=

∫ ∞
0

e−ztf(t)dt, z ∈ C. (3.24)

Note F (z) is entire since f has compact support. For Re(z) > 0, we have

F (z) =
1

z
f(0) + F0(z), (3.25)

where
|F0(z)| ≤ |z|−2A(f) (3.26)

with
A(f) = 3Bx0 +

2|f(0)|
x0

.

Define the content of f to be

C = C(f) := (x0,M,B, f(0)). (3.27)

For the purposes of generality, estimates in this section will depend only on the content of
f . For all subsequent sections, we will ignore this distinction and allow dependence on f in
general. We first reduce our analysis to primitive characters and then prove the main result.

Lemma 3.4.1. Assume H is a primitive congruence class group. Suppose χ (modH) is in-

duced from χ∗ (mod fχ). For ε > 0 and f satisfying Condition 1,

W(s, χ; f) =W(s, χ∗; f) +OC
(
ε−1nK + εL∗

)
uniformly in the region σ > 1.
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Proof. Since H is primitive, notice χ (modH) is a Hecke character modulo fH . Thus,∣∣∣W(s, χ; f)−W(s, χ∗; f)
∣∣∣ ≤ ∑

(n,fH)6=1

ΛK(n)

Nn
|f(L−1 log Nn)|

≤M
∑

(n,fH)6=1

ΛK(n)

Nn
= M

∑
p|fH

∑
j≥1

log Np

(Np)j
≤ 2M

∑
p|fH

log Np

Np
.

The desired result then follows from Lemmas 2.4.4 and 2.4.7.

Proposition 3.4.2. AssumeH is a primitive congruence class group. Let χ (modH) and ε > 0

be arbitrary, and suppose s = σ + it satisfies

|σ − 1| ≤ (logL)1/2

L
, |t| ≤ T .

Suppose f satisfies Condition 1 and that f(0) ≥ 0. Then there exists δ = δ(ε, C) ∈ (0, 1)

depending only on ε and the content of f such that

1
L · K(s, χ; f) ≤ E0(χ) · Re{F ((s− 1)L)} −

∑
|1+it−ρ|≤δ

Re{F ((s− ρ)L)}

+ f(0)φLχL + ε,

(3.28)

provided L is sufficiently large depending on ε and the content of f .

Proof. The proof will closely follow the arguments of [HB92, Lemma 5.2]. Let χ∗ (mod fχ)

be the primitive character inducing χ. From Lemma 3.4.1,

K(s, χ; f) = K(s, χ∗; f) +OC(ε
−1nK + εL∗).

Dividing both sides by L and recalling nK = o(L), it follows that

L−1K(s, χ; f) ≤ L−1K(s, χ∗; f) + ε

for L sufficiently large depending on ε and the content of f . Thus, we may prove (3.28) with
K(s, χ∗; f) instead of K(s, χ; f).

Let σ ≥ 1 + 2L−1 and set σ0 := 1 + L−1 so σ0 < σ. Consider

I :=
1

2πi

∫ σ0+i∞

σ0−i∞

(
− L′

L
(w, χ∗)

)
F0((s− w)L)dw. (3.29)
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Since F0 satisfies (3.26) and

−L
′

L
(w, χ∗)� |ζ

′
K

ζK
(σ0)| � nK(σ0 − 1)−1

by Lemma 2.3.1, the integral converges absolutely. Hence, we may compute I by interchanging
the summation and integration, and calculating the integral against (Nn)−w term-wise. That is
to say,

I =
∑
n⊆O

Λ(n)χ∗(n)
( 1

2πi

∫ σ0+i∞

σ0−i∞
(Nn)−wF0((s− w)L)dw

)
. (3.30)

Arguing as in [HB92, Section 5, p.21] and using Lebesgue’s Dominated Convergence Theo-
rem, one can verify that

1

2πi

∫ σ0+i∞

σ0−i∞
(Nn)−wF0((s− w)L)dw =

(Nn)−s

L
·
(
f(L−1 log Nn)− f(0)

)
,

since f satisfies Condition 1. Substituting this result into (3.30), we see that

I =
1

L

(
W(s, χ∗; f) +

L′

L
(s, χ∗)f(0)

)
. (3.31)

Returning to (3.29), we shift the line of integration from (σ0 ±∞) to (−1
2
±∞) yielding

I = E0(χ)F0((s− 1)L)−
∑
ρ

F0((s− ρ)L)

− r(χ)F0(sL) +
1

2πi

∫ − 1
2

+i∞

− 1
2
−i∞

(
− L′

L
(w, χ∗)

)
F0((s− w)L)dw,

(3.32)

where the sum is over the non-trivial zeros of L(w, χ) and r(χ) ≥ 0 is the order of the trivial
zero w = 0 of L(w, χ∗). From (2.5) and (2.8), notice r(χ) ≤ nK so by (3.26),

r(χ)|F0(sL)| � nKA(f)

|sL|2
� nKA(f)

L2
� A(f)

L
.

To bound the remaining integral in (3.32), we apply the functional equation (2.7) of L(w, χ∗)

and Lemma 2.3.4. Namely, using Lemma 2.3.1, we note for Re{w} = −1/2 that

−L
′

L
(w, χ∗) = L∗χ +

L′

L
(1− w, χ∗) +O(nK log(2 + |w|)) = L∗χ +O(nK log(2 + |w|)).
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From (3.26), we therefore find that

1

2πi

∫ − 1
2

+i∞

− 1
2
−i∞

(
− L′

L
(w, χ∗)

)
F0((s− w)L)dw

=
L∗χ
2πi

∫ − 1
2

+i∞

− 1
2
−i∞

F0((s− w)L)dw +O
(A(f)

L2

∫ − 1
2

+i∞

− 1
2
−i∞

nK · log(2 + |w|)
|s− w|2

dw
)
.

Since F0 is entire and satisfies (3.26), we may pull the line of integration in the first integral
as far left as we desire, concluding that the first integral vanishes. One can readily verify that
integral in the error term is

� A(f)

L2
· nK log(2 + |s|)� A(f)nK log T

L2
� A(f)

L

by Lemma 3.1.1. Combining these bounds into (3.32) and comparing with (3.31) yields

1
L · W(s, χ∗; f) = −L

′

L
(s, χ∗)f(0) 1

L + E0(χ) · F0((s− 1)L)−
∑
ρ

F0((s− ρ)L) +O
(A(f)

L

)
.

(3.33)
We wish to apply Proposition 3.2.3 giving δ = δ(ε), but we must discard zeros in the above
sum where |1 + it− ρ| ≥ δ. By (3.26), [LMO79, Lemma 2.1], and Lemma 3.1.1, this discard
induces an error

�
∑

|1+it−ρ|≥δ

A(f)

L2|s− ρ|2
�δ

A(f)

L2

∑
ρ

1

1 + |t− γ|2
�δ

A(f)

L2
(L∗ + nK log T )�δ

A(f)

L
.

Hence, taking real parts of (3.33), applying Proposition 3.2.3, and using (3.25), we find

K(s, χ∗; f)

L
≤ E0(χ)Re

{
F ((s− 1)L)−

∑
|1+it−ρ|<δ

F ((s− ρ)L)
}

+ f(0)
(
φ+ ε

)Lχ
L +Oδ,C

(
L−1

)
.

Taking L sufficiently large depending on ε and the content of f , the error term may be made
arbitrarily small. Upon choosing a new ε, we have established (3.28) in the range

1 + 2L−1 ≤ σ ≤ 1 + (logL)1/2L−1.

Similar to the discussion in [HB92, Section 5, p.22-23], one may show (3.28) holds in the
desired extended range by considering g(t) = eαtf(t) for 0 ≤ α ≤ (logL)/3x0.

In analogy with Proposition 3.3.2 and Lemma 3.3.4, we would like to use Proposition 3.4.2
by restricting the sum over zeros ρ to just a few specified zeros. To do so, we require our weight
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f to satisfy an additional condition which was introduced in [HB92, Section 6].

Condition 2 The function f is non-negative. Moreover, its Laplace transform F satisfies

Re{F (z)} ≥ 0 for Re(z) ≥ 0.

Condition 2 implies that, viewed as a real-variable function of t ∈ R, F (t) is a positive decreas-
ing real-valued function. We may now give a more convenient version of Proposition 3.4.2 in
the following lemma.

Lemma 3.4.3. Let ε ∈ (0, 1) be arbitrary, and let s = σ + it with

|σ − 1| ≤ log log T
C0L

, |t| ≤ 5T0,

where constantsC0 > 0 and T0 ≥ 1 come from Lemma 3.1.2. Write σ = 1−λ/L and t = µ/L.
Let χ (modH) be an arbitrary Hecke character and let Z := {ρ̃1, ρ̃2, . . . , ρ̃J} be a finite,

possibly empty, multiset of zeros of L(s, χ) (called the extracted zeros) containing the multiset

{ρχ : σ < βχ ≤ 1, |γχ| ≤ T0}.

Write ρ̃j = β̃j + iγ̃j =
(

1− λ̃j
L

)
+ i · µ̃j

L
for 1 ≤ j ≤ J and suppose f satisfies Conditions 1

and 2. Then

L−1 · K(s, χ; f) ≤ E0(χ) · Re{F (−λ+ iµ)} −
J∑
j=1

Re{F (λ̃j − λ− i(µ̃j − µ))}+ f(0)φLχL + ε

for L sufficiently large depending only on ε, J , and the content of f .

Remark. The dependence of “sufficiently large” on J is insignificant for our purposes, as we
will employ the lemma with 0 ≤ J ≤ 10 in all of our applications.

Proof. From Proposition 3.4.2, it follows that

K(s, χ; f)

L
≤ f(0)

(
φLχL + ε

)
+ E0(χ) · Re{F (−λ+ iµ)}

−
∑

|1+it−ρ|≤δ

Re{F ((s− ρ)L)}
(3.34)

for some δ = δ(ε, C). We consider the sum over zeros depending on whether ρ ∈ Z or not. For
any ρ = ρ̃j ∈ Z , if |1 + it− ρ̃j| ≥ δ, then |µ̃j − µ| �δ L or λ̃j �δ L. From (3.25) and (3.26),
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it follows that
Re{F ((s− ρ̃j)L)} �ε,C L−1.

implying

∑
|1+it−ρ|≤δ

ρ∈Z

Re{F ((s− ρ)L)} =
J∑
j=1

Re{F (λ̃j − λ− i(µ̃j − µ))}+Oε,C(JL−1). (3.35)

Next, for all zeros ρ = β + iγ 6∈ Z satisfying |1 + it− ρ| ≤ δ, we claim β ≤ σ. Assuming the
claim, it follows by Condition 2 that∑

|1+it−ρ|≤δ
ρ6∈Z

Re{F ((s− ρ)L)} ≥ 0. (3.36)

To see the claim, assume for a contradiction that σ ≤ β ≤ 1 for some zero ρ = β+iγ occurring
in (3.36). As |1 + it− ρ| ≤ δ, it follows that

|γ| ≤ |t|+ δ ≤ 5T0 + 1 ≤ 6T0.

Hence, from Lemma 3.1.2, either

|γ| ≤ T0 or β ≤ 1− log log T
C0L

.

In the latter case, it follows β ≤ σ which is a contradiction, so it must be that |γ| ≤ T0 and
σ ≤ β ≤ 1. By the assumptions of the lemma, it follows ρ ∈ Z , which is also a contradiction.
This proves the claim.

Therefore, combining (3.35) and (3.36), we may conclude that

−
∑

|1+it−ρ|≤δ

Re{F ((s− ρ)L)} ≤ −
J∑
j=1

Re{F (λ̃j − λ− i(µ̃j − µ))}+Oε,C(JL−1).

Using this bound in (3.34) and taking L sufficiently large depending on ε, C and J , we have the
desired result upon choosing a new ε.

We also record a lemma useful for applications of Lemma 3.4.3 in Sections 4.2 and 4.3.
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Lemma 3.4.4. Suppose f satisfies Conditions 1 and 2. For a, b ≥ 0 and y ∈ R, we have that

Re{F (−a+ iy)− F (iy)− F (b− a+ iy)} ≤

F (−a)− F (0) if b ≥ a,

F (−a)− F (b− a) if b ≤ a.

Proof. If b ≥ a, then by Condition 2, Re{F (b − a + iy)} ≥ 0 so the LHS of the desired
inequality is

≤ Re{F (−a+ iy)− F (iy)} =

∫ ∞
0

f(t)(eat − 1) cos(yt)dt

≤
∫ ∞

0

f(t)(eat − 1)dt

= F (−a)− F (0)

since f(t) ≥ 0 and a ≥ 0. A similar argument holds for b ≤ a, except we exclude Re{F (iy)}
by positivity in this case.



Chapter 4

Zero-free regions and zero repulsion

“You can’t cross the sea merely by standing and staring at the water.”

– Rabindranath Tagore.

Let H be a congruence class group for a number field K. We will retain the notation of
Chapters 2 and 3 and, in particular, the definitions in Section 3.1. This chapter consists of
various results about the distribution of zeros for the product of Hecke L-functions given by∏

χ (modH)

L(s, χ).

We will establish explicit zero-free regions and zero repulsion results by exploiting the
explicit inequalities of Chapter 3. Our chief inspiration will continue to be Heath-Brown’s
paper [HB92] on Dirichlet L-functions.

We will postpone establishing the full form of two of the three key principles of Linnik: the
Deuring–Heilbronn phenomenon and the log-free zero density estimate. These two principles
require vastly different approaches than the methods employed in this chapter. While some-
what deviating from the literature, we make a subtle non-technical distinction between “zero
repulsion” and “Deuring–Heilbronn phenomenon”. For us, the former occurs when a zero
(real or complex) close to Re{s} = 1 repels other zeros but not far into the critical strip; the
latter occurs when a simple real zero very close to s = 1 repels other zeros deep into the crit-
ical strip. Therefore, in Chapter 4, we will discuss zero repulsion but not Deuring–Heilbronn
phenomenon.

68
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4.1 Statement of results

Let us now state the main theorems of this chapter. Recall K is an arbitrary number field, H
is an arbitrary congruence class group of K, and Q = QH is given by (2.2). Throughout this
chapter, T? ≥ 1 is a fixed positive real number and ν(x) is any fixed increasing real-variable
function ≥ 4 such that ν(x)� log(x+ 4). Thus, any implied constants (e.g. coming from a
“sufficiently large” condition) depend implicitly on T? and ν.

Theorem 4.1.1. Let H be a congruence class group of a number field K. Suppose DKQn
nK
K

is sufficiently large and let r ≥ 1 be an integer. Then the function
∏

χ (modH)
ordχ≥r

L(s, χ) has at most

1 zero, counting with multiplicity, in the rectangle

σ ≥ 1− c0

logDK + 3
4

logQ+ nK · ν(nK)
, |t| ≤ T?,

where s = σ + it and

c0 =



0.1764 if r ≥ 6,

0.1489 if r = 5,

0.1227 if r = 2, 3, 4,

0.0875 if r = 1.

Further, if this exceptional zero ρ1 exists, then it and its associated character χ1 are both real.

Remark. Here ordχ is the multiplicative order of χ.

As mentioned in Chapter 1, some explicit results have been shown by Kadiri [Kad12] and
Ahn and Kwon [AK14]. However, these results are for a single Hecke L-function L(s, χ)

instead of
∏

χ (modH) L(s, χ). Further, those zero-free regions are of the form

σ ≥ 1− c̃0

logDK + logQ
, |t| ≤ 0.13. (4.1)

Note that the dependence on the degree nK is “absorbed” by logDK . It has been shown that
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L(s, χ) is zero-free (except possibly for one real zero when χ is real) in the rectangle (4.1) for

c̃0 =



0.1149 if ordχ ≥ 5 [AK14],

0.1004 if ordχ = 4 [AK14],

0.0662 if ordχ = 3 [AK14],

0.0392 if ordχ = 2 and DK is sufficiently large [Kad12]1,

0.0784 if ordχ = 1 and DK is sufficiently large [Kad12].

Note that the results of [Kad12] also allow for |t| ≤ 1 to be used in (4.1). Comparing the above
known values for c̃0 with c0 in Theorem 4.1.1, if a given family of number fields K satisfies

nK = o
( logDK

log logDK

)
, (4.2)

then, for a suitable choice of ν(x), Theorem 4.1.1 is superior to all previously known cases,
especially in the Q-aspect. A classical theorem of Minkowski states, for any number field K,

nK = O(logDK)

so, unless nK is unusually large, one would expect that (4.2) typically holds.

We also establish a result, similar to those of [Gra81] and [HB92] for Dirichlet L-functions,
giving a larger zero-free region but allowing more zeros.

Theorem 4.1.2. Let H be a congruence class group of a number field K. Suppose DKQn
nK
K

is sufficiently large. Then
∏

χ (modH)

L(s, χ) has at most 2 zeros, counting with multiplicity, in

the rectangle

σ ≥ 1− 0.2866

logDK + 3
4

logQ+ nK · ν(nK)
|t| ≤ T?.

Moreover, the Dedekind zeta function ζK(s) has at most 2 zeros, counting with multiplicity, in

the rectangle

σ ≥ 1− 0.2909

logDK + nK · ν(nK)
|t| ≤ T?.

When an exceptional zero ρ1 from Theorem 4.1.1 exists, we prove an explicit version of
strong zero repulsion.

Theorem 4.1.3. LetH be a congruence class group of a number fieldK. Suppose χ1 (modH)

1This case is not explicitly written in the cited paper but is directly implied by the case ordχ = 1.
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is a real character and

β1 = 1− λ1

logDK + 3
4

logQ+ nK · ν(nK)

is a real zero of L(s, χ1) with λ1 > 0. Then, providedDKQn
nK
K is sufficiently large (depending

on R ≥ 1 and possibly ε > 0), the function
∏

χ (modH)

L(s, χ) has only the one zero β1, counting

with multiplicity, in the rectangle

σ ≥ 1− min{c1 log(1/λ1), R}
logDK + 3

4
logQ+ nK · ν(nK)

, |t| ≤ T?,

where s = σ + it and

c1 =



1
2
− ε if χ1 is quadratic and λ1 ≤ 10−10,

0.2103 if χ1 is quadratic and λ1 ≤ 0.1227,

1− ε if χ1 is principal and λ1 ≤ 10−5,

0.7399 if χ1 is principal and λ1 ≤ 0.0875.

Kadiri and Ng [KN12] have established an explicit version of strong zero repulsion for
zeros of the Dedekind zeta function ζK(s) with

c1 =

0.9045 if λ1 ≤ 10−6,

0.6546 if λ1 ≤ 0.0784.

Hence, Theorem 4.1.3 improves upon their result when (4.2) holds and when the primary term
c1 log(1/λ1) dominates, as normally is the case in applications.

We also establish some explicit numerical bounds related to the zero density of Hecke L-
functions. While Chapter 5 is dedicated to the log-free zero density estimate in its complete
form, we have chosen to include these numerical bounds in Chapter 4 since the techniques
employed are similar to the other theorems herein. For λ > 0 and T? ≥ 1, define

N(λ) = N(λ;T?) = #{χ (modH) : χ 6= χ0, L(s, χ) has a zero in the region S(λ) },

where

S(λ) = S(λ;T?) =
{
s ∈ C : σ ≥ 1− λ

logDK + 3
4

logQ+ nK · ν(nK)
, |t| ≤ T?

}
. (4.3)
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In the classical case K = Q, H = Pq, and q = (q), this quantity has been analyzed by
[Gra81, HB92] for a slowly growing range (λ � log log log q) and by [HB92] for a bounded
range (λ ≤ 2). We establish a result in the same vein as the latter. To do so, we require some
technical assumptions.

Let 0 < λ ≤ 2 be given. Let f ∈ C2
c ([0,∞)) have Laplace transformF (z) =

∫∞
0
f(t)e−ztdt.

Suppose f satisfies all of the following:

f(t) ≥ 0 for t ≥ 0; Re{F (z)} ≥ 0 for Re{z} ≥ 0;

F (λ) > 1
3
f(0);

(
F (λ)− 1

3
f(0)

)2

> 1
3
f(0)

(
1
4
f(0) + F (0)

)
.

(4.4)

We therefore have the following result.

Theorem 4.1.4. Let ε > 0 and 0 < λ ≤ 2. Suppose f ∈ C2
c ([0,∞)) satisfies (4.4). Then

unconditionally,

N(λ) ≤

(
1
4
f(0) + F (0)

)(
F (0)− 1

12
f(0)

)
(
F (λ)− 1

3
f(0)

)2

− 1
3
f(0)

(
1
4
f(0) + F (0)

) + ε

for DKQn
nK
K sufficiently large depending on ε and f .

Remark. Let ρ1 be a certain zero of a Hecke L-function L(s, χ1) with the property that
Re{ρ1} ≥ Re{ρχ} for any character χ (modH) with a zero ρχ in the rectangle S(λ) given
by (4.3). By introducing dependence on ρ1, the bound on N(λ) in Theorem 4.1.4 can be
improved. See Section 3.1 for the choice of ρ1 and Theorem 4.5.1 for further details.

Theorem 4.1.4 and its proof are inspired by [HB92, Section 12] and so similarly, the ob-
tained bounds are non-trivial only for a narrow range of λ. By choosing f roughly optimally,
we exhibit a table of bounds derived from Theorem 4.1.4 below.

λ .100 .125 .150 .175 .200 .225 .250 .275 .300 .325 .350 .375 .400 .425

N(λ) 2 2 3 3 4 4 5 6 7 9 11 15 22 46

One can see that the estimates obtained are comparable to Theorems 4.1.1 and 4.1.2 which
respectively imply that N(0.1227) ≤ 1 and N(0.2866) ≤ 2.

In the classical case K = Q, Heath-Brown substantially improved upon all preceding work
for zeros of Dirichlet L-functions. For general number fields K, we have taken advantage of
the innovations founded in [HB92] to improve on the existing aforementioned results and also
to establish new explicit estimates. As such, the general structure of this chapter is reminiscent
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of his work and is subject to small improvements similar to those suggested in [HB92, Section
16]. Xylouris implemented a number of those suggestions in [Xyl11a] so, in principle, one
could refine the results here by the same methods.

Finally, we emphasize that, throughout Chapter 4, we will use the notation established in
Chapter 2 and Section 3.1. The identified zeros in Section 3.1 will play an especially key role.
The results of Chapter 3 form the technical crux of all proofs of this chapter.

For the reader who wishes to proceed quickly to the proofs of the theorems:

• Theorem 4.1.1 is proved in Section 4.4.

• Theorem 4.1.2 is an immediate corollary of Propositions 4.2.7, 4.2.13, 4.3.4 and 4.3.10.

• Theorem 4.1.3 is an immediate corollary of Propositions 4.2.7 and 4.2.13.

• Theorem 4.1.4 is a special case of Theorem 4.5.1.

4.2 Zero repulsion: χ1 and ρ1 are real

Recall the indexing of zeros from Section 3.1. Throughout this section, we assume χ1 and
ρ1 are real. We wish to quantify the zero repulsion of ρ1 with ρ′ and ρ2 using the results of
Sections 3.3 and 3.4 along with various trigonometric identities analogous to the classical one:
3 + 4 cos θ + cos 2θ ≥ 0. We emphasize that χ1 can be quadratic or possibly principal.

We will primarily use the smoothed explicit inequality (Lemma 3.4.3) so we assume that the
weight function f continues to satisfy Conditions 1 and 2. For simplicity, henceforth denote
K(s, χ) = K(s, χ; f), which is given by (3.23). Suppose characters χ, χ∗ have zeros ρ, ρ∗
respectively. Our starting point is the trigonometric identity

0 ≤ χ0(n)
(
1 + Re{χ(n)(Nn)iγ}

)(
1 + Re{χ∗(n)(Nn)iγ∗}

)
.

Multiplying by Λ(n)f(L−1 log Nn)(Nn)−σ and summing over n, it follows that

0 ≤ K(σ, χ0) +K(σ + iγ, χ) +K(σ + iγ∗, χ∗)

+
1

2
K(σ + iγ + iγ∗, χχ∗) +

1

2
K(σ + iγ − iγ∗, χχ∗)

for σ > 0. (4.5)

In some cases, we will use a simpler trigonometric identity:

0 ≤ χ0(n) + Re{χ(n)(Nn)iγ},
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which similarly yields

0 ≤ K(σ, χ0) +K(σ + iγ, χ) for σ > 0. (4.6)

4.2.1 Bounds for λ′

Recall ρ1, λ1, ρ
′ and λ′ are defined in Section 3.1.1. We establish zero repulsion results for ρ′ in

terms of ρ1, using different methods depending on various ranges of λ1. In this subsection, we
intentionally include more details to proofs but in later subsections we shall omit these extra
explanations as the arguments will be similar to those found here.

Lemma 4.2.1. Assume χ1 and ρ1 are real. Let ε > 0 and suppose f satisfies Conditions 1 and

2. Provided L is sufficiently large depending on ε and f , the following holds:

(a) If χ1 is quadratic and λ′ ≤ λ2, then with ψ = 4φ it follows that

0 ≤ F (−λ′)− F (0)− F (λ1 − λ′) + f(0)ψ + ε

+ Re{F (−λ′ + iµ′)− F (iµ′)− F (λ1 − λ′ + iµ′)}.

(b) If χ1 is principal, then with ψ = 2φ it follows that

0 ≤ F (−λ′)− F (0)− F (λ1 − λ′) + f(0)ψ + ε

+ Re{F (−λ′ + iµ′)− F (iµ′)− F (λ1 − λ′ + iµ′)}.

Proof. (a) In (4.5), choose χ = χ∗ = χ1, ρ = ρ′ and ρ∗ = ρ1 with σ = β′ in (4.5) giving

0 ≤ K(β′, χ0) +K(β′ + iγ′, χ1) +K(β′, χ1) +K(β′ + iγ′, χ0). (4.7)

Apply Lemma 3.4.3 to each K(∗, ∗) term and extract the relevant zeros as follows:

• ForK(β′, χ0) andK(β′+ iγ′, χ0), extract no zeros since by assumption λ′ ≤ λ2 yielding

L−1K(β′, χ0) ≤ f(0)φL0L + F (−λ′) + ε,

L−1K(β′ + iγ′, χ0) ≤ f(0)φL0L + Re{F (−λ′ + iµ′)}+ ε.
(4.8)

• For K(β′ + iγ′, χ1) and K(β′, χ1), extract {ρ1, ρ
′} implying

L−1K(β′ + iγ′, χ1) ≤ f(0)φ
Lχ1
L − F (0)− Re{F (λ1 − λ′ + iµ′)}+ ε,

L−1K(β′, χ1) ≤ f(0)φ
Lχ1
L − F (λ1 − λ′)− Re{F (iµ′)}+ ε.

(4.9)
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Using (4.8) and (4.9) in (4.7) and rescaling ε, the desired inequality follows except with ψ =

φ · 2L0+2Lχ1
L . From Lemma 3.1.1, ψ ≤ 4φ so we may use ψ = 4φ instead.

(b) Use (4.6) with χ = χ0, σ = β′ and ρ = ρ′, from which we deduce

0 ≤ K(β′, χ0) +K(β′ + iγ′, χ0) for σ > 0.

Similar to (a), for bothK(∗, χ0) terms, apply Lemma 3.4.3 extracting both zeros {ρ1, ρ
′} yield-

ing

L−1K(β′, χ0) ≤ f(0)φL0L + F (−λ′)− F (λ1 − λ′)− Re{F (iµ′)}+ ε

L−1K(β′ + iγ′, χ0) ≤ f(0)φL0L + Re{F (−λ′ + iµ′)− F (λ1 − λ′ + iµ′)} − F (0) + ε

Combined with the previous inequality, this yields the desired result with ψ = 2φ · L0L . By
Lemma 3.1.1, we may use ψ = 2φ instead.

λ1 very small

We now obtain a preliminary version of the strong zero repulsion for zeros of L(s, χ1).

Lemma 4.2.2. Assume χ1 and ρ1 are real. Let ε > 0 and suppose L is sufficiently large

depending on ε.

(a) If χ1 is quadratic and λ′ ≤ λ2, then either λ′ < 4e or

λ′ ≥
(1

2
− ε
)

log(λ−1
1 ),

which is non-trivial for λ1 ≤ 3.5× 10−10.

(b) If χ1 is principal, then either λ′ < 4e or

λ′ ≥
(
1− ε

)
log(λ−1

1 ),

which is non-trivial for λ1 ≤ 1.8× 10−5.

Proof. The proof is a close adaptation of [HB92, p. 37]. From Lemma 3.4.4 and Lemma 4.2.1,
we have that

0 ≤ 2F (−λ′)− F (0)− 2F (λ1 − λ′) + f(0)(ψ + ε).

where ψ depends on the cases in Lemma 4.2.1 and we assume f(0) > 0. As in [HB92, p. 37],
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choose

f(t) =

x0 − t if 0 ≤ t ≤ x0,

0 if t ≥ x0,

for which Conditions 1 and 2 hold. Then by the same calculations, we see that

2F (−λ′)− 2F (λ1 − λ′) ≤
2x0λ1 exp(x0λ

′)

(λ′)2
, F (0) = 1

2
x2

0, f(0) = x0.

Hence, from the first inequality, we have that

2x0λ1(λ′)−2 exp(x0λ
′)− 1

2
x2

0 + x0(ψ + ε) ≥ 0.

Choose x0 := 2ψ+ 1
λ′

+2ε so that the dependence on f is uniform for λ′ ≥ 1. With this choice,
our inequality above then leads to

λ1 ≥
λ′

4
exp(−x0λ

′) =
λ′

4e
exp(−(2ψ + 2ε)λ′).

When λ′ ≥ 4e, we conclude that

λ′ ≥ ( 1
2ψ
− ε) log(λ−1

1 ).

The result in each case follows from the value of ψ given in Lemma 4.2.1 and noting φ =

1/4.

λ1 small

Here we create a “numerical version” of Lemma 4.2.1.

Lemma 4.2.3. Let ε > 0 and for b ≥ 0, assume 0 < λ1 ≤ b and retain the assumptions of

Lemma 4.2.1. Suppose, for some λ′b > 0, we have

2F (−λ′b)− 2F (b− λ′b)− F (0) + f(0)ψ ≤ 0 (4.10)

where ψ = 4φ or 2φ if χ1 is quadratic or principal respectively. Then λ′ ≥ λ′b − ε for L
sufficiently large depending on ε, b and f .

Proof. Lemma 4.2.1 and Lemma 3.4.4 imply that

0 ≤ 2F (−λ′)− 2F (λ1 − λ′)− F (0) + f(0)ψ + ε.
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λ1 ≤ 1
2

log λ−1
1 ≥ λ? ≥ λ

10−10 11.51 10.99 .8010
10−9 10.36 9.920 .7975
10−8 9.210 8.838 .7930
10−7 8.059 7.740 .7873
10−6 6.908 6.623 .7796
10−5 5.756 5.481 .7687
10−4 4.605 4.303 .7521
.001 3.454 3.075 .7239
.005 2.649 2.176 .6896
.010 2.303 1.778 .6679
.015 2.100 1.542 .6522
.020 1.956 1.374 .6394
.025 1.844 1.244 .6283

λ1 ≤ 1
2

log λ−1
1 ≥ λ? ≥ λ

.030 1.753 1.137 .6183

.035 1.676 1.048 .6092

.040 1.609 .9699 .6007

.045 1.551 .9016 .5927

.050 1.498 .8407 .5852

.055 1.450 .7859 .5780

.060 1.407 .7362 .5711

.065 1.367 .6906 .5644

.070 1.330 .6487 .5580

.075 1.295 .6098 .5517

.080 1.263 .5738 .5457

.085 1.233 .5401 .5397

Table 4.1: Bounds for λ? = λ′ with χ1 quadratic, ρ1 real and λ1 small;
and for λ? = λ2 with χ1 quadratic, ρ1 real, χ2 principal and λ1 small.

Now, by Conditions 1 and 2, the function

F (−λ)− F (b− λ) =

∫ ∞
0

f(t)eλ(1− e−b)dt

is an increasing function of λ and also of b. Hence, the previous inequality implies that

0 ≤ 2F (−λ′)− 2F (b− λ′)− F (0) + f(0)ψ + ε.

On the other hand, from the increasing behaviour of F (−λ)− F (b− λ), we may deduce that,
if (4.10) holds for some λ′b, then

0 ≤ 2F (−λ)− 2F (b− λ)− F (0) + f(0)ψ only if λ ≥ λ′b.

Comparing with the previous inequality and choosing a new value of ε, we conclude that λ′ ≥
λ′b − ε. See [KN12, p.773] for details on this last argument.

In each case, employing Lemma 4.2.3 for various values of b requires a choice of f depend-
ing on b which maximizes the computed value of λ′b. Based on numerical experimentation, we
choose f = fλ from [HB92, Lemma 7.2] with parameter λ = λ(b). This produces Tables 4.1
and 4.2. Note that the bounds in Table 4.1 are applicable in a later subsection for bounds on
λ2.
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λ1 ≤ log λ−1
1 ≥ λ′ ≥ λ

10−5 11.51 11.66 1.545
10−4 9.210 9.324 1.516
.001 6.908 6.902 1.468
.005 5.298 5.135 1.413
.010 4.605 4.352 1.379
.015 4.200 3.887 1.355
.020 3.912 3.555 1.336
.025 3.689 3.297 1.319
.030 3.507 3.084 1.304
.035 3.352 2.905 1.291
.040 3.219 2.749 1.279
.045 3.101 2.611 1.267
.050 2.996 2.488 1.257
.055 2.900 2.377 1.246
.060 2.813 2.275 1.237
.065 2.733 2.181 1.227
.070 2.659 2.095 1.218
.075 2.590 2.015 1.210
.080 2.526 1.940 1.201

λ1 ≤ log λ−1
1 ≥ λ′ ≥ λ

.085 2.465 1.869 1.193

.0875 2.436 1.836 1.189

.090 2.408 1.803 1.185

.095 2.354 1.741 1.178

.100 2.303 1.681 1.170

.105 2.254 1.625 1.163

.110 2.207 1.572 1.156

.115 2.163 1.521 1.149

.120 2.120 1.472 1.142

.125 2.079 1.426 1.135

.130 2.040 1.381 1.129

.135 2.002 1.338 1.122

.140 1.966 1.297 1.116

.145 1.931 1.258 1.110

.150 1.897 1.220 1.103

.155 1.864 1.183 1.097

.160 1.833 1.148 1.091

.165 1.802 1.113 1.085

.170 1.772 1.080 1.079

Table 4.2: Bounds for λ′ with χ1 principal, ρ1 real and λ1 small.

λ1 medium

As a first attempt, we use techniques similar to before.

Lemma 4.2.4. Assume χ1 and ρ1 are real. Provided L is sufficiently large, it follows that if ρ′

is real then

λ′ ≥

0.6069 if χ1 is quadratic and λ′ ≤ λ2,

1.2138 if χ1 is principal,

and if ρ′ is complex then

λ′ ≥

0.1722 if χ1 is quadratic and λ′ ≤ λ2,

0.3444 if χ1 is principal.

Proof. If ρ′ is real, then µ′ = 0. From Lemma 4.2.1 it follows that

0 ≤ F (−λ′)− F (0)− F (λ1 − λ′) + 1
2
f(0)ψ + ε,
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where ε, f, ψ are specified in Lemma 4.2.1. Since F is decreasing by Condition 2,

0 ≤ F (−λ′)− 2F (0) + 1
2
f(0)ψ + ε.

We select the function from [HB92, Lemma 7.5] corresponding to k = 2. Hence,

1

λ′
cos2 θ ≤ 1

2
ψ + ε.

For k = 2, we find θ = 0.9873... and so λ′ ≥ 0.6069
ψ

for an appropriate choice of ε. If ρ′ is com-
plex, then we follow a similar argument selecting f from [HB92, Lemma 7.5] corresponding
to k = 3

2
(i.e. θ = 1.2729...).

For ρ′ complex, a method based on Section 3.3 leads to better bounds than Lemma 4.2.4.

Lemma 4.2.5. Assume χ1 and ρ1 is real and also suppose ρ′ is complex. Let λ > 0 and J > 0.

If L is sufficiently large depending on ε, λ and J then

0 ≤ (J2 + 1
2
)
(
P4(1)− P4

( λ

λ+ λ1

))
− 2J · P4

( λ

λ+ λ′
)

+

2φ(J + 1)2λ+ ε if χ1 is quadratic,

φ(J + 1)2λ+ ε if χ1 is principal,

provided
J0

(λ+ λ′)4
+

1

(λ+ λ1)4
>

1

λ4
with J0 = min{J

2
+ 1

2J
, 4J}. (4.11)

Remark. Recall P4(X) is defined by (3.18).

Proof. For an admissible polynomial P (X) =
∑d

k=1 akX
k, we begin with the inequality

0 ≤ χ0(n)(1 + χ1(n))
(
J + Re{χ1(n)(Nn)−iγ

′}
)2

= (J2 + 1
2
)
(
χ0(n) + χ1(n)

)
+ 2J ·

(
Re{χ0(n)(Nn)−iγ

′}+ Re{χ1(n)(Nn)−iγ
′}
)

+ 1
2
·
(
Re{χ0(n)(Nn)−2iγ′}+ Re{χ1(n)(Nn)−2iγ′}

)
.

To introduce P(s, χ) = P(s, χ;P ), we multiply the above inequality by

Λ(n)

(Nn)σ

( d∑
k=1

ak

(
(σ − 1) log Nn

)k−1

(k − 1)!

)
with σ = 1 + λ

L and sum over ideals n yielding

0 ≤ (J2 + 1
2
)
(
P(σ, χ0) + P(σ, χ1)

)
+ 2J ·

(
P(σ + iγ′, χ0) + P(σ + iγ′, χ1)

)
+ 1

2
·
(
P(σ + 2iγ′, χ0) + P(σ + 2iγ′, χ1)

)
.

(4.12)
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Taking P (X) = P4(X) so a1 = 1, we consider the two cases depending on χ1.

(a) χ1 is quadratic: Apply Lemma 3.3.4 to each P(∗, ∗) term in (4.12) extracting the pole from
χ0-terms and the zeros ρ1, ρ

′ (and possibly ρ′) from the χ1-terms. Each of these applications
yields the following:

L−1 · P(σ, χ0) ≤ φL0L + ε+
P4(1)

λ
,

L−1 · P(σ, χ1) ≤ φ
Lχ1
L + ε− 1

λ
·
(
P4

( λ

λ+ λ1

)
+ Re

{
P4

( λ

λ+ λ′ + iµ′
)})

,

L−1 · P(σ + iγ′, χ0) ≤ φL0L + ε+
1

λ
· Re

{
P4

( λ

λ+ iµ′
)}
,

L−1 · P(σ + iγ′, χ1) ≤ φ
Lχ1
L + ε− 1

λ
·
(
P4

( λ

λ+ λ′
)

+ Re
{
P4

( λ

λ+ λ1 + iµ′
)

+ P4

( λ

λ+ λ′ + 2iµ′
)})

,

L−1 · P(σ + 2iγ′, χ0) ≤ φL0L + ε+
1

λ
· Re

{
P4

( λ

λ+ 2iµ′
)}
,

L−1 · P(σ + 2iγ′, χ1) ≤ φ
Lχ1
L + ε− 1

λ
· Re

{
P4

( λ

λ+ λ1 + 2iµ′
)

+ P4

( λ

λ+ λ′ + iµ′
)}
,

provided L is sufficiently large depending on ε and λ. For the term P(σ+iγ′, χ1), we extracted
all 3 zeros of χ1 since µ′ 6= 0. Substituting these inequalities into (4.12) and noting L0+Lχ1

L ≤ 2

by Lemma 3.1.1, we find that

0 ≤ (J2 + 1
2
)
(
P4(1)− P4

( λ

λ+ λ1

))
− 2JP4

( λ

λ+ λ′
)
− A−B + 2φ(J + 1)2λ+ ε,

(4.13)
where

A = Re
{

(J2 + 1) · P4

( λ

λ+ λ′ + iµ′
)}

+ 2J · P4

( λ

λ+ λ1 + iµ′
)
− 2J · P4

( λ

λ+ iµ′
)}
,

B = Re
{

2J · P4

( λ

λ+ λ′ + 2iµ′
)

+
1

2
· P4

( λ

λ+ λ1 + 2iµ′
)
− 1

2
· P4

( λ

λ+ 2iµ′
)}
.

From Lemma 3.3.6, we see that A,B ≥ 0, provided

J2 + 1

(λ+ λ′)4
+

2J

(λ+ λ1)4
>

2J

λ4
and

2J

(λ+ λ′)4
+

1/2

(λ+ λ1)4
>

1/2

λ4
.

Assumption (4.11) implies both of these inequalities.
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(b) χ1 is principal: Then (4.12) becomes

0 ≤ (2J2 + 1)P(σ, χ0) + 4J · P(σ + iγ′, χ0) + P(σ + 2iγ′, χ0).

We similarly apply Lemma 3.3.4 to each term above extracting the pole and zeros ρ1, ρ
′

(and possibly ρ′). Each of these applications yields the following:

L−1 · P(σ, χ0) ≤ φL0L + ε+
1

λ

(
P4(1)− P4

( λ

λ+ λ1

)
+ Re

{
P4

( λ

λ+ λ′ + iµ′
)})

,

L−1 · P(σ + iγ′, χ0) ≤ φL0L + ε+
1

λ

(
− P4

( λ

λ+ λ′
)

+ Re
{
P4

( λ

λ+ iµ′
)
− P4

( λ

λ+ λ1 + iµ′
)

− P4

( λ

λ+ λ′ + 2iµ′
)})

,

L−1 · P(σ + 2iγ′, χ0) ≤ φL0L + ε+
1

λ
· Re

{
P4

( λ

λ+ 2iµ′
)
− P4

( λ

λ+ λ1 + 2iµ′
)
− P4

( λ

λ+ λ′ + iµ′
)}
.

Substituting these into the previous inequality, noting L0L ≤ 1, and dividing by 2, we obtain
(4.13) except with 2φ replaced by φ. Following the same argument, we obtain the desired
result.

Again, we exhibit a “numerical version” of Lemma 4.2.5.

Corollary 4.2.6. Assume χ1 and ρ1 is real and suppose ρ′ is complex. Let ε > 0. Suppose

0 < λ1 ≤ b, λ > 0, J > 0 and that there exists λ′b ∈ [0,∞) satisfying

(J2 + 1
2
)
(
P4(1)− P4

( λ

λ+ b

))
− 2J · P4

( λ

λ+ λ′b

)
+ ψ(J + 1)2λ ≤ 0

where ψ = 2φ or φ if χ1 is quadratic or principal respectively. If

J0

(λ+ λ′b)
4

+
1

(λ+ b)4
>

1

λ4
, where J0 = min{J

2
+ 1

2J
, 4J},

then λ′ ≥ λ′b − ε provided L is sufficiently large depending on ε, λ and J .

Proof. From Lemma 4.2.5,

0 ≤ (J2 + 1
2
)
(
P4(1)− P4

( λ

λ+ λ1

))
− 2J · P4

( λ

λ+ λ′
)

+ (2− E0(χ1)) · φ(J + 1)2λ+ ε.

Since P4 has non-negative coefficients and P4(0) = 0, the above expression is increasing with
λ1 and λ′. From this observation, the desired result follows.
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λ1 ≤ 1
2

log(1/λ1) λ? ≥ λ J
.09 1.204 .5261 1.239 .8837
.10 1.151 .5063 1.265 .8793
.11 1.104 .4880 1.289 .8752
.12 1.060 .4709 1.310 .8714

.1227 1.049 .4665 1.316 .8704
.13 1.020 .4549 1.330 .8677
.14 .9831 .4398 1.348 .8642
.15 .9486 .4257 1.364 .8608
.16 .9163 .4122 1.379 .8575
.17 .8860 .3995 1.393 .8544
.18 .8574 .3874 1.405 .8513
.19 .8304 .3759 1.417 .8483
.20 .8047 .3649 1.428 .8454
.21 .7803 .3544 1.438 .8426
.22 .7571 .3443 1.447 .8398
.23 .7348 .3347 1.455 .8370
.24 .7136 .3254 1.463 .8343
.25 .6931 .3165 1.471 .8316
.26 .6735 .3080 1.477 .8289
.27 .6547 .2998 1.483 .8263
.28 .6365 .2918 1.489 .8237

.2866 .6248 .2868 1.493 .8220

Table 4.3: Bounds for λ? = λ′ with χ1 quadratic, ρ1 real and λ1 medium;
and for λ? = λ2 with χ1 quadratic, ρ1 real, χ2 principal, and ρ2 complex.

Corollary 4.2.6 gives lower bounds for λ′ for certain ranges of λ1. For each range 0 < λ1 ≤
b, we choose λ = λ(b) > 0, J = J(b) > 0 to produce an optimal lower bound λ′b for λ′. This
produces Tables 4.3 and 4.4.

Summary of bounds on λ′

We collect the results for each range of λ1 into a single result for ease of use.

Proposition 4.2.7. Assume χ1 and ρ1 are real. Suppose L is sufficiently large depending on

ε > 0. Then:

(a) Suppose χ1 is quadratic and λ′ ≤ λ2. Then

λ′ ≥

(1
2
− ε) log λ−1

1 if λ1 ≤ 10−10

0.2103 log λ−1
1 if λ1 ≤ 0.1227

and if λ1 > 0.1227 then the bounds in Table 4.3 apply and λ′ ≥ 0.2866.
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λ1 ≤ log(1/λ1) ≥ λ′ ≥ λ J
.18 1.715 1.052 2.478 .8837
.19 1.661 1.032 2.505 .8815
.20 1.609 1.013 2.530 .8793
.21 1.561 .9939 2.555 .8772
.22 1.514 .9759 2.578 .8752
.23 1.470 .9586 2.600 .8733
.24 1.427 .9418 2.621 .8714
.25 1.386 .9255 2.641 .8695
.26 1.347 .9098 2.660 .8677
.27 1.309 .8945 2.678 .8659
.28 1.273 .8797 2.695 .8642
.29 1.238 .8653 2.712 .8625
.30 1.204 .8513 2.728 .8608
.31 1.171 .8377 2.743 .8592
.32 1.139 .8245 2.758 .8575
.33 1.109 .8116 2.772 .8560
.34 1.079 .7990 2.785 .8544
.35 1.050 .7867 2.798 .8528
.36 1.022 .7748 2.811 .8513
.37 .9943 .7631 2.822 .8498
.38 .9676 .7517 2.834 .8483
.39 .9416 .7406 2.845 .8469
.40 .9163 .7297 2.855 .8454
.41 .8916 .7191 2.866 .8440
.42 .8675 .7087 2.875 .8426
.43 .8440 .6985 2.885 .8412
.44 .8210 .6886 2.894 .8398
.45 .7985 .6788 2.903 .8384
.46 .7765 .6693 2.911 .8370
.47 .7550 .6600 2.919 .8356
.48 .7340 .6508 2.927 .8343
.49 .7133 .6418 2.934 .8329
.50 .6931 .6330 2.941 .8316
.51 .6733 .6244 2.948 .8303
.52 .6539 .6159 2.955 .8289
.53 .6349 .6076 2.961 .8276
.54 .6162 .5995 2.967 .8263
.55 .5978 .5915 2.973 .8250
.56 .5798 .5837 2.978 .8237
.57 .5621 .5760 2.984 .8224

.5733 .5563 .5735 2.985 .8220

Table 4.4: Bounds for λ′ with χ1 principal, ρ1 real and λ1 medium.
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(b) Suppose χ1 is principal. If λ1 ≤ 0.0875, then

λ′ ≥

(1− ε) log λ−1
1 if λ1 ≤ 10−5

0.7399 log λ−1
1 if λ1 ≤ 0.0875

and if λ1 > 0.0875 then the bounds in Tables 4.2 and 4.4 apply and λ′ ≥ 0.5733.

Remark. The constants 0.1227 and 0.0875 come a posteriori from the corresponding zero-free
regions established in Section 4.4.

Proof. (a) Suppose λ1 ≤ 10−10. From Table 4.1, we see that λ′ ≥ 10.99 > 4e and so the
desired bound follows from Lemma 4.2.2. Suppose λ1 ≤ 0.1227. One compares Lemma 4.2.4
and Table 4.3 and finds that the latter gives weaker bounds. Thus, we only consider Tables 4.1
and 4.3 for this range of λ1. For the subinterval λ1 ∈ [0.12, 0.1227], it follows that

λ′ ≥ 0.4663 ≥ 0.4663

log 1/0.12
log λ−1

1 ≥ 0.2200 log λ−1
1 .

Repeat this process for each subinterval [10−10, 10−9], [10−9, 10−8], . . . , [0.85, 0.9], . . . , [0.12, 0.1227]

to obtain the desired bound. For λ1 > 0.1227, one again compares Lemma 4.2.4 and Table 4.3
and finds that the latter gives weaker bounds. For (b), we argue analogous to (a) except we
only use Table 4.2 for λ1 ≤ 0.0875.

4.2.2 Bounds for λ2

Recall ρ1, λ1, ρ2 and λ2 are defined in Section 3.1.1. We follow the same general approach as
λ′ with natural modifications. Throughout, we shall assume λ2 ≤ λ′; otherwise, we may use
the bounds from Section 4.2.1 on λ′.

Lemma 4.2.8. Assume χ1 and ρ1 are real and also that λ2 ≤ λ′. Suppose f satisfies Conditions

1 and 2. For ε > 0, provided L is sufficiently large depending on ε and f , the following holds:

(a) If χ1, χ2 are non-principal, then, with ψ = 4φ, it follows that

0 ≤ F (−λ2)− F (0)− F (λ1 − λ2) + f(0)ψ + ε.

(b) If χ1 is principal, then χ2 is necessarily non-principal and, with ψ = 2φ, it follows that

0 ≤ F (−λ2)− F (0)− F (λ1 − λ2) + f(0)ψ + ε.
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(c) If χ2 is principal, then χ1 is necessarily non-principal and, with ψ = 4φ, it follows that

0 ≤ F (−λ2)− F (0)− F (λ1 − λ2) + f(0)ψ + ε

+ Re{F (−λ2 + iµ2)− F (iµ2)− F (λ1 − λ2 + iµ2)}.

Proof. In (4.5), set (χ, ρ) = (χ1, ρ1) and (χ∗, ρ∗) = (χ2, ρ2) and σ = β2, which gives

0 ≤ K(β2, χ0) +K(β2, χ1) +K(β2 + iγ2, χ2) + 1
2
K(β2 + iγ2, χ1χ2) + 1

2
K(β2 − iγ2, χ1χ2).

(4.14)
The arguments involved are entirely analogous to Lemma 4.2.1 so we omit the details here. For
all cases, one applies Lemma 3.4.3 to eachK(∗, ∗) term, extracting ρ1 or ρ2 whenever possible.
We remark that χ1χ2 and χ1χ2 are always non-principal by construction (see Section 3.1).

λ1 very small

We include the final result here without proof for the sake of brevity.

Lemma 4.2.9. Assume χ1 and ρ1 are real and λ2 ≤ λ′. Suppose L is sufficiently large depend-

ing on ε > 0.

(a) If χ1, χ2 are non-principal, then either λ2 < 2e or

λ2 ≥
(1

2
− ε
)

log(λ−1
1 ),

which is non-trivial for λ1 ≤ 1.8× 10−5.

(b) If χ1 is principal, then χ2 is necessarily non-principal and either λ2 < 2e or

λ2 ≥
(
1− ε

)
log(λ−1

1 ),

which is non-trivial for λ1 ≤ 4.3× 10−3.

(c) If χ2 is principal, then χ1 is necessarily non-principal and either λ2 < 4e or

λ2 ≥
(1

2
− ε
)

log(λ−1
1 ),

which is non-trivial for λ1 ≤ 3.5× 10−10.

Proof. Analogous to Lemma 4.2.2 using Lemma 4.2.8 in place of Lemma 4.2.1. We omit the
details for brevity.
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λ1 small

Lemma 4.2.10. Assume χ1 and ρ1 are real and also that λ2 ≤ λ′. Suppose f satisfies Condi-

tions 1 and 2. Let ε > 0 and assume 0 < λ1 ≤ b for some b > 0. Suppose, for some λ̃b > 0, we

have

F (−λ̃b)− F (b− λ̃b)− F (0) + 4φf(0) ≤ 0 if χ1, χ2 are non-principal,

F (−λ̃b)− F (b− λ̃b)− F (0) + 2φf(0) ≤ 0 if χ1 is principal,

2F (−λ̃b)− 2F (b− λ̃b)− F (0) + 4φf(0) ≤ 0 if χ2 is principal.

Then, according to the above cases, λ2 ≥ λ̃b − ε provided L is sufficiently large depending on

ε, b and f .

Proof. Analogous to Lemma 4.2.3 using Lemma 4.2.8 in place of Lemma 4.2.1. Hence, we
omit the proof.

As before, Lemma 4.2.10 requires a choice of f depending on b which maximizes the
computed value of λ̃b. Based on numerical experimentation, we choose f = fλ from [HB92,
Lemma 7.2] with parameter λ = λ(b) for all cases. This produces Tables 4.1, 4.5 and 4.6.

λ1 medium

We first deal with the case when ρ2 is real and χ2 is principal, i.e. µ2 = 0.

Lemma 4.2.11. Assume χ1 and ρ1 are real. Suppose L is sufficiently large. If ρ2 is real, then

λ2 ≥

0.3034 if χ1, χ2 are non-principal,

0.6069 otherwise.

If ρ2 is complex, then

λ2 ≥


0.3034 if χ1, χ2 are non-principal,

0.6069 if χ1 is principal,

0.1722 if χ2 is principal.

Proof. Analogous to Lemma 4.2.4 using Lemma 4.2.8 in place of Lemma 4.2.1. The argu-
ments lead to selecting f from [HB92, Lemma 7.5] corresponding to k = 2 (i.e. θ = 0.9873...)
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λ1 ≤ 1
2

log λ−1
1 ≥ λ2 ≥ λ

10−5 5.756 5.828 .7725
10−4 4.605 4.662 .7579
.001 3.454 3.451 .7342
.005 2.649 2.569 .7065
.010 2.303 2.178 .6896
.015 2.100 1.947 .6776
.020 1.956 1.783 .6679
.025 1.844 1.654 .6596
.030 1.753 1.550 .6522
.035 1.676 1.461 .6455
.040 1.609 1.384 .6394
.045 1.551 1.317 .6337
.050 1.498 1.256 .6283
.055 1.450 1.202 .6232
.060 1.407 1.152 .6183
.065 1.367 1.107 .6137
.070 1.330 1.065 .6092
.075 1.295 1.026 .6049
.080 1.263 .9895 .6007
.085 1.233 .9555 .5967
.090 1.204 .9236 .5928
.095 1.177 .8935 .5890
.100 1.151 .8652 .5853
.105 1.127 .8383 .5816
.110 1.104 .8127 .5781
.115 1.081 .7884 .5746
.120 1.060 .7653 .5712
.125 1.040 .7432 .5679
.130 1.020 .7221 .5646
.135 1.001 .7019 .5613
.140 .9831 .6825 .5582
.145 .9655 .6639 .5550
.150 .9486 .6460 .5520

λ1 ≤ 1
2

log λ−1
1 ≥ λ2 ≥ λ

.155 .9322 .6288 .5489

.160 .9163 .6122 .5459

.165 .9009 .5962 .5429

.170 .8860 .5808 .5400

.175 .8715 .5659 .5371

.180 .8574 .5515 .5342

.185 .8437 .5376 .5314

.190 .8304 .5242 .5286

.195 .8174 .5111 .5258

.200 .8047 .4985 .5231

.205 .7924 .4863 .5203

.210 .7803 .4744 .5176

.215 .7686 .4629 .5150

.220 .7571 .4517 .5123

.225 .7458 .4408 .5097

.230 .7348 .4302 .5070

.235 .7241 .4200 .5044

.240 .7136 .4100 .5018

.245 .7032 .4002 .4993

.250 .6931 .3908 .4967

.255 .6832 .3816 .4942

.260 .6735 .3726 .4916

.265 .6640 .3638 .4891

.270 .6547 .3553 .4866

.275 .6455 .3470 .4841

.280 .6365 .3389 .4817

.285 .6276 .3310 .4792

.290 .6189 .3233 .4768

.295 .6104 .3158 .4743

.300 .6020 .3084 .4719

Table 4.5: Bounds for λ2 with χ1 quadratic, ρ1 real, χ2 non-principal and λ1 small.
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λ1 ≤ log λ−1
1 ≥ λ2 ≥ λ

.004 5.521 6.150 1.448

.006 5.116 5.705 1.434

.008 4.828 5.386 1.422

.010 4.605 5.137 1.413

.015 4.200 4.682 1.394

.020 3.912 4.357 1.379

.025 3.689 4.103 1.366

.03 3.507 3.895 1.355

.04 3.219 3.565 1.336

.05 2.996 3.309 1.319

.06 2.813 3.099 1.304

.07 2.659 2.922 1.291

.08 2.526 2.769 1.279

.0875 2.436 2.666 1.270

.10 2.303 2.513 1.257

.12 2.120 2.304 1.237

.14 1.966 2.130 1.218

.16 1.833 1.979 1.201

.18 1.715 1.847 1.186

.20 1.609 1.730 1.171

.22 1.514 1.625 1.156

λ1 ≤ log λ−1
1 ≥ λ2 ≥ λ

.24 1.427 1.531 1.142

.26 1.347 1.444 1.129

.28 1.273 1.365 1.116

.30 1.204 1.292 1.104

.32 1.139 1.224 1.092

.34 1.079 1.162 1.080

.36 1.022 1.103 1.068

.38 .9676 1.048 1.057

.40 .9163 .9970 1.046

.42 .8675 .9488 1.035

.44 .8210 .9033 1.025

.46 .7765 .8605 1.014

.48 .7340 .8199 1.004

.50 .6931 .7816 .9934

.52 .6539 .7452 .9833

.54 .6162 .7106 .9733

.56 .5798 .6778 .9633

.58 .5447 .6466 .9535

.60 .5108 .6168 .9438

.6068 .4996 .6070 .9405

Table 4.6: Bounds for λ2 with χ1 principal, ρ1 real and λ1 small.
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when ρ2 is real or χ2 is non-principal, and to k = 3/2 (i.e. θ = 1.2729...) when ρ2 is complex
and χ2 is principal.

For χ2 principal and ρ2 complex, the “polynomial method” of Section 3.3 yields better
bounds.

Lemma 4.2.12. Assume χ1 is quadratic and ρ1 is real. Further suppose χ2 is principal and ρ2

is complex. Let λ > 0 and J > 0. If L is sufficiently large depending on ε, λ and J , then

0 ≤ (J2 + 1
2
)
(
P4(1)− P4

( λ

λ+ λ1

))
− 2JP4

( λ

λ+ λ2

)
+ 2φ(J + 1)2λ+ ε,

provided
J0

(λ+ λ2)4
+

1

(λ+ λ1)4
>

1

λ4
, (4.15)

where J0 = min{J
2

+ 1
2J
, 4J}.

Proof. This is analogous to Lemma 4.2.5 so we give a brief outline here. We begin with the
inequality

0 ≤ χ0(n)(1 + χ1(n))
(
J + Re{(Nn)−iγ2}

)2

= (J2 + 1
2
)
(
χ0(n) + χ1(n)

)
+ 2J ·

(
Re{(Nn)−iγ2}+ Re{χ1(n)(Nn)−iγ2}

)
+ 1

2
·
(
Re{(Nn)−2iγ2}+ Re{χ1(n)(Nn)−2iγ2}

)
.

We introduce P(s, χ) = P(s, χ;P4) in the usual way with σ = 1 + λ
L , yielding

0 ≤ (J2 + 1
2
)
(
P(σ, χ0) + P(σ, χ1)

)
+ 2J ·

(
P(σ + iγ2, χ0) + P(σ + iγ2, χ1)

)
+ 1

2
·
(
P(σ + 2iγ2, χ0) + P(σ + 2iγ2, χ1)

)
.

(4.16)

Next, apply Lemma 3.3.4 to each P(∗, ∗) term in (4.16) extracting the zero ρ2 from χ0-terms
and the zero ρ1 from the χ1-terms. One also extracts both zeros {ρ2, ρ2} from P(σ + iγ2, χ0).
Noting L0+Lχ1

L ≤ 2 by Lemma 3.1.1 and choosing a new ε, these applications yield the follow-
ing:

0 ≤ (J2 + 1
2
)
(
P4(1)− P4

( λ

λ+ λ1

))
− 2JP4

( λ

λ+ λ2

)
− A−B + 2φ(J + 1)2λ+ ε,

(4.17)
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provided L is sufficiently large depending on ε and λ and where

A = (J2 + 1)Re
{
P4

( λ

λ+ λ2 + iµ2

)}
+ 2J · Re

{
P4

( λ

λ+ λ1 + iµ2

)}
− 2J · Re

{
P4

( λ

λ+ iµ2

)}
,

B = 2J · Re
{
P4

( λ

λ+ λ2 + 2iµ2

)}
+

1

2
· Re

{
P4

( λ

λ+ λ1 + 2iµ2

)}
− 1

2
· Re

{
P4

( λ

λ+ 2iµ2

)}
.

Assumption (4.15) implies A,B ≥ 0 by Lemma 3.3.6 yielding the desired result from (4.17).

With an appropriate numerical version of Lemma 4.2.12, analogous to Corollary 4.2.6, we
obtain lower bounds for λ2 for λ1 ∈ [0, b] and fixed b > 0. Optimally choosing λ = λ(b) >

0, J = J(b) > 0 produces Table 4.3 again.

Summary of bounds on λ2

We collect the estimates of the previous subsections for each range of λ1 into a one result for
ease of use.

Proposition 4.2.13. Assume χ1 and ρ1 are real. Suppose L is sufficiently large depending on

ε > 0:

(a) Suppose χ1 is quadratic and λ2 ≤ λ′. Then

λ2 ≥

(1
2
− ε) log λ−1

1 if λ1 ≤ 10−10

0.2103 log λ−1
1 if λ1 ≤ 0.1227

and if λ1 > 0.1227 then the bounds in Table 4.3 apply and λ2 ≥ 0.2866.

(b) Suppose χ1 is principal. Then

λ2 ≥ (1− ε) log λ−1
1 if λ1 ≤ 0.0875.

and if λ1 > 0.0875 then the bounds in Table 4.6 apply and λ2 ≥ 0.6069.

Remark. After comparing Propositions 4.2.7 and 4.2.13 in the case when χ1 is quadratic, we
realize that the additional assumptions λ′ ≤ λ2 or λ2 ≤ λ′ are superfluous.

Proof. (a) First, suppose χ2 is non-principal. For λ1 ≤ 10−5, we see from Table 4.5 that
λ2 ≥ 5.828 > 2e so the desired bound follows form Lemma 4.2.9. For 10−5 ≤ λ1 ≤
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0.1227, consider Table 4.5. Apply the same process as in Proposition 4.2.7 to each subinterval
[10−5, 10−4], . . . , [0.12, 0.125] to obtain

λ2 ≥ 0.3506 log λ−1
1 .

Now, suppose χ2 is principal. For λ1 ≤ 10−10, we see from Table 4.1 that λ2 ≥ 10.99 > 4e

so the desired bound follows from Lemma 4.2.9. For 10−10 ≤ λ1 ≤ 0.1227, consider Tables 4.1
and 4.3. Apply the same process as in Proposition 4.2.7 to each subinterval

[10−10, 10−9], . . . , [0.85, 0.9], . . . [0.12, 0.1227]

and obtain
λ2 ≥ 0.2103 log λ−1

1 .

Upon comparing the two cases, the latter gives weaker results in the range λ1 ≤ 0.1227. For
λ1 > 0.1227, we compare Lemma 4.2.11 and Tables 4.3 and 4.5 to see that Table 4.3 gives the
weakest bounds.

(b) Similar to (a) except we use Table 4.6 in conjunction with Lemma 4.2.9. The range λ1 ≤
0.004 gives the bound λ2 ≥ (1− ε) log λ−1

1 . The range 0.004 ≤ λ1 ≤ 0.0875 turns out to give
a better bound but we opt to write a bound uniform for λ1 ≤ 0.0875. For λ1 > 0.0875, we use
Lemma 4.2.11 and Table 4.6.

4.3 Zero repulsion: χ1 or ρ1 is complex

When χ1 or ρ1 is complex, the effect of zero repulsion is lesser than when χ1 and ρ1 are real.
Nonetheless, we will follow the same general outline as the previous section, but with modified
trigonometric identities and more frequently using the “polynomial method” of Section 3.3.
Also, whether χ1 is principal naturally affects our arguments in a significant manner so, for
clarity, we further subdivide our results on this condition. Recall the definitions of zeros ρ1, ρ

′,

and ρ2 in Section 3.1.1.
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4.3.1 Bounds for λ′

χ1 non-principal

Lemma 4.3.1. Assume χ1 or ρ1 is complex with χ1 non-principal. Let λ > 0, J ≥ 1
4
. If L is

sufficiently large depending on ε, λ and J then

0 ≤ (J2 + 1
2
)P4(1)− (J2 + 1

2
) · P4

( λ

λ+ λ′
)
− 2J · P4

( λ

λ+ λ1

)
+ 2(J + 1)2φλ+ ε,

provided
J0

(λ+ λ1)4
+

1

(λ+ λ′)4
>

1

λ4
with J0 = min{J + 3

4J
, 4J}. (4.18)

Proof. For simplicity, denote P(s, χ) = P(s, χ;P4). Our starting point is the inequality

0 ≤ χ0(n)
(
1 + Re{χ1(n)(Nn)iγ

′}
)(
J + Re{χ1(n)(Nn)iγ1}

)2
.

In the usual way, it follows that

0 ≤ (J2 + 1
2
)
{
P(σ, χ0) + P(σ + iγ′, χ1)

}
+

+ JP(σ + i(γ1 + γ′), χ2
1) + 2JP(σ + iγ1, χ1) + JP(σ + i(γ1 − γ′), χ0)

+ 1
4
P(σ + i(2γ1 + γ′), χ3

1) + 1
2
P(σ + 2iγ1, χ

2
1) + 1

4
P(σ + i(2γ1 − γ′), χ1),

(4.19)

where σ = 1 + λ
L . To each term P( · , χr1) above, we apply Lemma 3.3.4 extracting zeros

depending on the order of χ1 and the value of r. We divide our argument into cases.

(i) (ordχ1 ≥ 4) Extract {ρ1, ρ
′} from P( · , χr1) when r = 1. From (4.19), we deduce

0 ≤(J2 + 1
2
)P4(1)− (J2 + 1

2
)P4

( λ

λ+ λ′
)
− 2JP4

( λ

λ+ λ1

)
− A+ λψ + ε, (4.20)

where ψ = (J2 + 3J + 3
2
)φ
Lχ1
L + (J2 + J + 1

2
)φL0L , and

A = Re
{

(J2 + 3
4
)P4

( λ

λ+ λ1 + it1

)
+ 2J · P4

( λ

λ+ λ′ + it1

)
− J · P4

( λ

λ+ it1

)}
with t1 = µ′ − µ1. One can easily verify that J2 + 3J + 3

2
≤ 3 · (J2 + J + 1

2
) and so

by Lemma 3.1.1, we may more simply take ψ = 2(J + 1)2φ in (4.20). By Lemma 3.3.6,
assumption (4.18) implies A ≥ 0, completing the proof of case (i).

(ii) (ordχ1 = 3) Extract {ρ1, ρ
′} or {ρ1, ρ′} from P( · , χr1) when r = 1 or 2 respectively.
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Then by (4.19),

0 ≤(J2 + 1
2
)P4(1)− (J2 + 1

2
)P4

( λ

λ+ λ′
)
− 2JP4

( λ

λ+ λ1

)
− A−B + λψ + ε,

(4.21)
where ψ = (J2 + 3J + 5

4
)φ
Lχ1
L + (J2 + J + 3

4
)φL0L , the quantity A is as defined in case

(i), and

B = Re
{
J · P4

( λ

λ+ λ1 + it2

)
+ 1

2
· P4

( λ

λ+ λ′ + it2

)
− 1

4
· P4

( λ

λ+ it2

)}
with t2 = µ′ + 2µ1. Again, one can check that J2 + 3J + 5

4
≤ 3 · (J2 + J + 3

4
) and so by

Lemma 3.1.1, we may take ψ = 2(J + 1)2φ in (4.21). Similar to (i), Lemma 3.3.6 and
assumption (4.18) imply A,B ≥ 0.

(iii) (ordχ1 = 2) Extract {ρ1, ρ1, ρ
′} fromP( · , χr1) when r = 1 or 3. Again, apply Lemma 3.3.4

to the terms in (4.19) except with a slightly more careful analysis. We outline these mod-
ifications here.

• Write 2J ·P(σ+iγ1, χ1) = J ·P(σ+iγ1, χ1)+J ·P(σ+iγ1, χ1). Extract {ρ1, ρ1, ρ
′}

from the first term and extract {ρ1, ρ1, ρ′} from the second term.

• For 1
4
P(σ+i(2γ1+γ′), χ1) and 1

4
P(σ+i(2γ1−γ′), χ1), extract {ρ1, ρ

′} and {ρ1, ρ′}
respectively.

With these modifications, (4.19) overall yields

0 ≤(J2 + 1
2
)P4(1)− (J2 + 1

2
)P4

( λ

λ+ λ′
)
− 2JP4

( λ

λ+ λ1

)
+ λ(ψ + ε)

− Re
{

(J2 + 3
4
)P4

( λ

λ+ λ1 + it1

)
+ J · P4

( λ

λ+ λ′ + it1

)
− J · P4

( λ

λ+ it1

)}
− Re

{
(J2 + 3

4
) · P4

( λ

λ+ λ1 + it3

)
+ J · P4

( λ

λ+ λ′ + it3

)
− J · P4

( λ

λ+ it3

)}
− Re

{
2J · P4

( λ

λ+ λ1 + it4

)
+ 1

2
· P4

( λ

λ+ λ′ + it4

)
− 1

2
· P4

( λ

λ+ it4

)}
(4.22)

where t1 = µ′−µ1; t3 = µ′+µ1; t4 = 2µ1; and ψ = (J2+2J+1)φ
Lχ1
L +(J2+2J+1)φL0L .

Trivially J2 + 2J + 1 ≤ 3 · (J2 + 2J + 1) and so by Lemma 3.1.1, we may more simply
take ψ = 2(J + 1)2φ. The three terms Re{. . . } in (4.22) are all ≥ 0 by Lemma 3.3.6 and
(4.18) and hence can be ignored.

This completes the proof in all cases.

A suitable numerical version of Lemma 4.3.1 produces Table 4.7.
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λ1 ≤ λ′ ≥ λ J
.1227 .7391 1.097 .7788
.125 .7266 1.104 .7797
.130 .7007 1.120 .7817
.135 .6766 1.135 .7836
.140 .6540 1.149 .7854
.145 .6328 1.162 .7872
.150 .6128 1.174 .7889
.155 .5939 1.185 .7906
.160 .5759 1.195 .7923
.165 .5589 1.204 .7939
.170 .5427 1.213 .7955
.175 .5272 1.221 .7971
.180 .5124 1.229 .7986
.185 .4982 1.236 .8001
.190 .4846 1.242 .8016
.195 .4715 1.249 .8030
.200 .4590 1.254 .8045
.205 .4469 1.259 .8059

λ1 ≤ λ′ ≥ λ J
.210 .4353 1.264 .8073
.215 .4241 1.269 .8087
.220 .4132 1.273 .8100
.225 .4027 1.276 .8114
.230 .3926 1.280 .8127
.235 .3828 1.283 .8140
.240 .3733 1.285 .8153
.245 .3641 1.288 .8166
.250 .3552 1.290 .8179
.255 .3465 1.292 .8191
.260 .3381 1.294 .8204
.265 .3300 1.295 .8216
.270 .3220 1.296 .8229
.275 .3143 1.297 .8241
.280 .3068 1.298 .8253
.285 .2995 1.299 .8265
.290 .2924 1.299 .8277
.2909 .2911 1.299 .8279

Table 4.7: Bounds for λ′ with χ1 or ρ1 complex and χ1 non-principal

χ1 principal

Lemma 4.3.2. Assume χ1 is principal, ρ1 is complex, and ρ′ is real. Suppose f satisfies

Conditions 1 and 2. For ε > 0, provided L is sufficiently large depending on ε and f , the

following holds:

0 ≤ 2F (−λ′)− 2F (λ1 − λ′)− F (0) + 2φf(0) + ε.

Proof. This is analogous to Lemma 4.2.1. To be brief, use (4.6) with (χ, γ) = (χ0, γ1) and
σ = β′ and apply Lemma 3.4.3 extracting {ρ′, ρ1, ρ1} fromK(β′, χ0) and {ρ′, ρ1} fromK(β′+

iγ1, χ0).

A numerical version of Lemma 4.3.2 yields bounds for λ′ with f = fλ taken from [HB92,
Lemma 7.2], producing Table 4.8. The remaining case consists of χ1 principal with both ρ1

and ρ′ complex.

Lemma 4.3.3. Assume χ1 is principal, ρ1 is complex and ρ′ is complex. Let λ > 0 and J > 0.

If L is sufficiently large depending on ε, λ and J then

0 ≤ (J2 + 1
2
)P4(1)− (J2 + 1

2
) · P4

( λ

λ+ λ1

)
− 2J · P4

( λ

λ+ λ′
)

+ 2(J + 1)2φλ+ ε
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λ1 ≤ λ′ ≥ λ
.0875 1.836 1.189
.09 1.803 1.185
.10 1.681 1.170
.11 1.572 1.156
.12 1.472 1.142
.13 1.381 1.129
.14 1.297 1.116
.15 1.220 1.103
.16 1.148 1.091
.17 1.080 1.079
.18 1.017 1.068
.19 .9578 1.056
.20 .9020 1.045
.21 .8493 1.034

λ1 ≤ λ′ ≥ λ
.22 .7994 1.023
.23 .7522 1.013
.24 .7073 1.002
.25 .6646 .9917
.26 .6239 .9813
.27 .5851 .9711
.28 .5480 .9609
.29 .5126 .9508
.30 .4787 .9407
.31 .4462 .9307
.32 .4150 .9208
.33 .3851 .9108
.34 .3565 .9009
.3443 .3445 .8966

Table 4.8: Bounds for λ′ with χ1 principal, ρ1 complex and ρ′ real

provided both of the following hold:

1

(λ+ λ1)4
+

J0

(λ+ λ′)4
>

1

λ4
and

2

(λ+ λ1)4
+

J1

(λ+ λ′)4
>

1

λ4
, (4.23)

where J0 = min{J + 3
4J
, 4J} and J1 = 4J/(J2 + 1).

Proof. Analogous to Lemma 4.3.1 but we exchange the roles of ρ1 and ρ′ using that

0 ≤ χ0(n)
(
1 + Re{(Nn)iγ1}

)(
J + Re{(Nn)iγ

′}
)2
.

Writing P(s) = P(s, χ0;P4), it follows in the usual way that

0 ≤ (J2 + 1
2
)
{
P(σ) + P(σ + iγ1)

}
+ JP(σ + i(γ′ + γ1)) + 2JP(σ + iγ′) + JP(σ + i(γ′ − γ1))

+ 1
4
P(σ + i(2γ′ + γ1)) + 1

2
P(σ + 2iγ′) + 1

4
P(σ + i(2γ′ − γ1)),

(4.24)
where σ = 1 + λ

L . Next, apply Lemma 3.3.4 to each term according to the following outline:

• P(σ) and P(σ + iγ′) extract all 4 zeros {ρ1, ρ1, ρ
′, ρ′}.

• P(σ + iγ1) and P(σ + i(γ′ + γ1)) extract only {ρ1, ρ
′, ρ′}.

• P(σ + i(γ′ − γ1)) extract only {ρ1, ρ
′, ρ′}.

• P(σ + i(2γ′ + γ1)) and P(σ + i(2γ′ − γ1)) extract {ρ1, ρ
′} and {ρ1, ρ

′} respectively.
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• P(σ + 2iγ′) extract only {ρ1, ρ1, ρ
′}.

When necessary, we utilize that P4(X) = P4(X). Then overall we obtain:

0 ≤(J2 + 1
2
)P4(1)− (J2 + 1

2
)P4

( λ

λ+ λ1

)
− 2J · P4

( λ

λ+ λ′
)

+ 2φ(J + 1)2λ+ ε

−
7∑
r=1

Re
{
Ar · P4

( λ

λ+ λ1 + itr

)
+Br · P4

( λ

λ+ λ′ + itr

)
− Cr · P4

( λ

λ+ itr

)}
,

(4.25)
where tr, Ar, Br, and Cr are given by the following table.

r 1 2 3 4 5 6 7

tr µ1 µ′ µ′ + µ1 µ′ − µ1 2µ′ 2µ′ + µ1 2µ′ − µ1

Ar 2J2 + 1 2J 2J 2J 1/2 1/2 1/2

Br 2J 2J2 + 3/2 J2 + 3/4 J2 + 3/4 2J J J

Cr J2 + 1/2 2J J J 1/2 1/4 1/4

It suffices to show the sum over r in (4.25) is non-negative. By Lemma 3.3.6, the sum is ≥ 0

provided
Ar

(λ+ λ1)4
+

Br

(λ+ λ′)4
>
Cr
λ4

for r = 1, 2, . . . , 7.

After inspection, the most stringent conditions are r = 1, 2 and 5, which are implied by as-
sumption (4.23).

This produces Table 4.9 in the usual fashion.

Summary of bounds

We collect the results in the subsection into a single proposition for the reader’s convenience.

Proposition 4.3.4. Assume χ1 or ρ1 is complex. Provided L is sufficiently large, we have the

following:

(a) If χ1 is non-principal then λ′ ≥ 0.2909 and the bounds for λ′ in Table 4.7 apply.

(b) If χ1 is principal then λ′ ≥ 0.2909 and the bounds for λ′ in Table 4.9 apply.

Proof. If χ1 is non-principal, then the only bounds available come from Table 4.7. If χ1

is principal, then upon comparing Tables 4.8 and 4.9, one finds that the latter gives weaker
bounds.
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λ1 ≤ λ′ ≥ λ J
.0875 .5330 1.155 .8815
.090 .5278 1.161 .8804
.095 .5179 1.171 .8782
.100 .5083 1.181 .8762
.105 .4991 1.190 .8742
.110 .4902 1.198 .8723
.115 .4817 1.206 .8704
.120 .4734 1.213 .8686
.125 .4654 1.220 .8669
.130 .4577 1.226 .8652
.135 .4502 1.232 .8636
.140 .4429 1.238 .8620
.145 .4359 1.243 .8605
.150 .4290 1.248 .8590
.155 .4223 1.252 .8576
.160 .4159 1.257 .8562
.165 .4096 1.261 .8548
.170 .4034 1.265 .8534
.175 .3974 1.268 .8521
.180 .3916 1.271 .8509
.185 .3859 1.274 .8496
.190 .3804 1.277 .8484

λ1 ≤ λ′ ≥ λ J
.195 .3749 1.280 .8472
.200 .3696 1.282 .8460
.205 .3645 1.284 .8449
.210 .3594 1.286 .8437
.215 .3545 1.288 .8426
.220 .3497 1.290 .8415
.225 .3449 1.291 .8405
.230 .3403 1.293 .8394
.235 .3358 1.294 .8384
.240 .3314 1.295 .8374
.245 .3270 1.296 .8364
.250 .3228 1.297 .8354
.255 .3186 1.297 .8344
.260 .3145 1.298 .8335
.265 .3106 1.298 .8326
.270 .3066 1.299 .8317
.275 .3028 1.299 .8308
.280 .2990 1.299 .8299
.285 .2953 1.299 .8290
.290 .2917 1.299 .8281
.2909 .2911 1.299 .8280

Table 4.9: Bounds for λ′ with χ1 principal, ρ1 complex and ρ′ complex
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4.3.2 Bounds for λ2

Before dividing into cases, we begin with the following lemma analogous to Lemma 4.3.1.

Lemma 4.3.5. Assume χ1 or ρ1 is complex. Suppose f satisfies Conditions 1 and 2. For ε > 0,

provided L is sufficiently large depending on ε and f , the following holds:

(a) If χ1, χ2 are non-principal, then

0 ≤ F (−λ1)− F (0)− F (λ2 − λ1) + 4φf(0) + ε.

(b) If χ1 is principal, then ρ1 is complex, χ2 is non-principal and

0 ≤ F (−λ1)− F (0)− F (λ2 − λ1) + 4φf(0) + ε

+ Re{F (−λ1 + iµ1)− F (iµ1)− F (λ2 − λ1 + iµ1)}.

(c) If χ2 is principal, then χ1 is non-principal and

0 ≤ F (−λ1)− F (0)− F (λ2 − λ1) + 4φf(0) + ε

+ Re{F (−λ1 + iµ2)− F (iµ2)− F (λ2 − λ1 + iµ2)}.

Proof. The arguments involved are very similar to Lemma 4.2.1 and Lemma 4.2.8 so we omit
most of the details. Briefly, use (4.5) by setting (χ, ρ) = (χ1, ρ1) and (χ∗, ρ∗) = (χ2, ρ2) and
σ = β1, which gives

0 ≤ K(β1, χ0) +K(β1 + iγ1, χ1) +K(β1 + iγ2, χ2)

+ 1
2
K(β1 + i(γ1 + γ2), χ1χ2) + 1

2
K(β1 + i(γ1 − γ2), χ1χ2).

(4.26)

Apply Lemma 3.4.3 to each K(∗, ∗) term, extracting zeros ρ1 or ρ2 whenever possible, de-
pending on the cases. Recall χ1χ2 and χ1χ2 are always non-principal by construction (see
Section 3.1).

χ1 and χ2 non-principal

A numerical version of Lemma 4.3.5 suffices here.

Lemma 4.3.6. Assume χ1 or ρ1 is complex with χ1, χ2 non-principal. Let ε > 0 and for b > 0,

assume 0 < λ1 ≤ b. Suppose, for some λ̃b > 0, we have

F (−b)− F (0)− F (λ̃b − b) + 4φf(0) ≤ 0.
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λ1 ≤ λ2 ≥ λ
.1227 .4890 .3837
.13 .4779 .3888
.135 .4706 .3922
.140 .4635 .3955
.145 .4566 .3986
.150 .4499 .4017
.155 .4433 .4047
.160 .4370 .4077
.165 .4308 .4105
.170 .4247 .4133
.175 .4188 .4160
.180 .4131 .4187
.185 .4075 .4213
.190 .4020 .4238
.195 .3966 .4263
.200 .3914 .4287
.205 .3862 .4311
.210 .3812 .4334
.215 .3763 .4357

λ1 ≤ λ2 ≥ λ
.220 .3715 .4380
.225 .3668 .4402
.230 .3622 .4423
.235 .3576 .4444
.240 .3532 .4465
.245 .3488 .4486
.250 .3446 .4506
.255 .3404 .4526
.260 .3363 .4545
.265 .3322 .4564
.270 .3283 .4583
.275 .3244 .4602
.280 .3205 .4620
.285 .3168 .4638
.290 .3131 .4656
.295 .3094 .4673
.300 .3059 .4690
.3034 .3035 .4702

Table 4.10: Bounds for λ2 with χ1 or ρ1 complex and χ1, χ2 non-principal

Then λ2 ≥ λ̃b − ε provided L is sufficiently large depending on ε and f .

Proof. Analogous to Lemma 4.2.10 using Lemma 4.3.5 in place of Lemma 4.2.8. Hence, we
omit the proof.

This produces Table 4.10 by taking f = fλ from [HB92, Lemma 7.2] with parameter
λ = λ(b).

χ1 principal or χ2 is principal

When χ2 is principal and ρ2 is real, a numerical version of Lemma 4.3.5 suffices.

Lemma 4.3.7. Assume χ1 or ρ1 is complex. Further assume χ2 is principal and ρ2 is real. Let

ε > 0 and for b > 0, assume 0 < λ1 ≤ b. Suppose, for some λ̃b > 0, we have

F (−b)− F (0)− F (λ̃b − b) + 2φf(0) ≤ 0.

Then λ2 ≥ λ̃b − ε provided L is sufficiently large depending on ε and f .

This produces Table 4.11 by taking f from [HB92, Lemma 7.2] with parameter λ = λ(b).
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λ1 ≤ λ2 ≥ λ
.1227 1.221 .6530
.13 1.203 .6620
.15 1.155 .6846
.17 1.112 .7049
.19 1.073 .7234
.21 1.037 .7403
.23 1.003 .7560
.25 .9710 .7707
.27 .9412 .7844
.29 .9132 .7973
.31 .8867 .8095
.33 .8615 .8210
.35 .8377 .8320

λ1 ≤ λ2 ≥ λ
.37 .8149 .8425
.39 .7932 .8526
.41 .7725 .8622
.43 .7526 .8714
.45 .7335 .8803
.47 .7152 .8889
.49 .6977 .8971
.51 .6807 .9051
.53 .6644 .9128
.55 .6487 .9203
.57 .6336 .9276
.59 .6189 .9346
.6068 .6070 .9404

Table 4.11: Bounds for λ2 with χ1 or ρ1 complex and χ2 principal and ρ2 real

Now, when χ1 is principal or when χ2 is principal and ρ2 is complex, we employ the “polyno-
mial method”.

Lemma 4.3.8. Suppose χj is principal and ρj is complex, and let χk 6= χj . Let ε, λ, J > 0. If

L is sufficiently large depending on ε, λ and J , then

0 ≤ (J2 + 1
2
)
{
P4(1)− P4

( λ

λ+ λk

)}
− 2JP4

( λ

λ+ λj

)
+ 2φ(J + 1)2λ+ ε

provided
J0

(λ+ λj)4
+

1

(λ+ λk)4
>

1

λ4
, where J0 = min{J + 3

4J
, 4J}. (4.27)

Proof. Write P(s, χ) = P(s, χ;P4). We begin with the inequality

0 ≤ χ0(n)
(
1 + Re{χk(n)(Nn)−iγk}

)(
J + Re{(Nn)−iγj}

)2
.

It follows in the usual fashion that

0 ≤ (J2 + 1
2
)
{
P(σ, χ0) + P(σ + iγk, χk)

}
+

+ JP(σ + i(γj + γk), χk) + 2JP(σ + iγj, χ0) + JP(σ + i(γj − γk), χk)

+ 1
4
P(σ + i(2γj + γk), χk) + 1

2
P(σ + 2iγj, χ0) + 1

4
P(σ + i(2γj − γk), χk),

(4.28)

where σ = 1 + λ
L . Next, apply Lemma 3.3.4 to each P(∗, ∗) term in (4.28) extracting {ρj, ρj}

from χ0-terms, ρk from the χk-terms, and ρk from χk-terms. When necessary, we also use that
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P4(X) = P4(X). Then overall

0 ≤(J2 + 1
2
)P4(1)− (J2 + 1

2
)P4

( λ

λ+ λk

)
− 2JP4

( λ

λ+ λj

)
+ ψλ+ ε− A−B, (4.29)

where

A = Re
{

(2J2 + 3
2
)P4

( λ

λ+ λj + iµj

)
+ 2J · P4

( λ

λ+ λk + iµj

)
− 2J · P4

( λ

λ+ iµj

)}
,

B = Re
{

2J · P4

( λ

λ+ λj + 2iµj

)
+ 1

2
· P4

( λ

λ+ λk + 2iµj

)
− 1

2
· P4

( λ

λ+ 2iµj

)}
,

and ψ = (J2 + 2J + 1)φ
Lχk
L + (J2 + 2J + 1)φL0L . Trivially J2 + 2J + 1 ≤ 3 · (J2 + 2J + 1)

so, by Lemma 3.1.1, we may more simply take ψ = 2(J + 1)2φ in (4.29). From Lemma 3.3.6
and (4.27), it follows that A,B ≥ 0.

We record a numerical version of Lemma 4.3.8 without proof.

Corollary 4.3.9. Suppose χ1 or ρ1 is complex. For b > 0, assume 0 < λ1 ≤ b and let λ, J > 0.

Denote J0 := min{J + 3
4J
, 4J}. Assume one of the following holds:

(a) χ1 is principal, ρ1 is complex. Further there exists λ̃b ∈ [0,∞) satisfying

0 = (J2 + 1
2
)
(
P4(1)− P4

( λ

λ+ λ̃b

))
− 2J · P4

( λ

λ+ b

)
+ 2φ(J + 1)2λ+ ε

and
J0

(λ+ b)4
+

1

(λ+ λ̃b)4
>

1

λ4
.

(b) χ2 is principal, ρ2 is complex. Further there exists λ̃b ∈ [0,∞) satisfying

0 = (J2 + 1
2
)
(
P4(1)− P4

( λ

λ+ b

))
− 2J · P4

( λ

λ+ λ̃b

)
+ 2φ(J + 1)2λ+ ε

and
1

(λ+ b)4
+

J0

(λ+ λ̃b)4
>

1

λ4
.

Then, in either case, λ2 ≥ λ̃b − ε for L sufficiently large depending on ε, b, λ and J .

This produces Tables 4.12 and 4.13.
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λ1 ≤ λ2 ≥ λ J
.0875 1.017 .9321 .7627
.090 .9892 .9474 .7640
.095 .9385 .9760 .7666
.100 .8937 1.002 .7690
.105 .8537 1.026 .7713
.110 .8175 1.048 .7735
.115 .7846 1.069 .7757
.120 .7544 1.087 .7777
.125 .7266 1.104 .7797
.130 .7007 1.120 .7817
.135 .6766 1.135 .7836
.140 .6540 1.149 .7854
.145 .6328 1.162 .7872
.150 .6128 1.174 .7889
.155 .5939 1.185 .7906
.160 .5759 1.195 .7923
.165 .5589 1.204 .7939
.170 .5427 1.213 .7955
.175 .5272 1.221 .7971
.180 .5124 1.229 .7986
.185 .4982 1.236 .8001
.190 .4846 1.242 .8016

λ1 ≤ λ2 ≥ λ J
.195 .4715 1.249 .8030
.200 .4590 1.254 .8045
.205 .4469 1.259 .8059
.210 .4353 1.264 .8073
.215 .4241 1.269 .8087
.220 .4132 1.273 .8100
.225 .4027 1.276 .8114
.230 .3926 1.280 .8127
.235 .3828 1.283 .8140
.240 .3733 1.285 .8153
.245 .3641 1.288 .8166
.250 .3552 1.290 .8179
.255 .3465 1.292 .8191
.260 .3381 1.294 .8204
.265 .3300 1.295 .8216
.270 .3220 1.296 .8229
.275 .3143 1.297 .8241
.280 .3068 1.298 .8253
.285 .2995 1.299 .8265
.290 .2924 1.299 .8277
.2909 .2911 1.299 .8279

Table 4.12: Bounds for λ2 with χ1 principal and ρ1 complex
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λ1 ≤ λ2 ≥ λ J
.1227 .4691 1.217 .8677
.125 .4654 1.220 .8669
.130 .4577 1.226 .8652
.135 .4502 1.232 .8636
.140 .4429 1.238 .8620
.145 .4359 1.243 .8605
.150 .4290 1.248 .8590
.155 .4223 1.252 .8576
.160 .4159 1.257 .8562
.165 .4096 1.261 .8548
.170 .4034 1.265 .8534
.175 .3974 1.268 .8521
.180 .3916 1.271 .8509
.185 .3859 1.274 .8496
.190 .3804 1.277 .8484
.195 .3749 1.280 .8472
.200 .3696 1.282 .8460
.205 .3645 1.284 .8449
.210 .3594 1.286 .8437

λ1 ≤ λ2 ≥ λ J
.215 .3545 1.288 .8426
.220 .3497 1.290 .8415
.225 .3449 1.291 .8405
.230 .3403 1.293 .8394
.235 .3358 1.294 .8384
.240 .3314 1.295 .8374
.245 .3270 1.296 .8364
.250 .3228 1.297 .8354
.255 .3186 1.297 .8344
.260 .3145 1.298 .8335
.265 .3106 1.298 .8326
.270 .3066 1.299 .8317
.275 .3028 1.299 .8308
.280 .2990 1.299 .8299
.285 .2953 1.299 .8290
.290 .2917 1.299 .8281
.2909 .2911 1.299 .8280

Table 4.13: Bounds for λ2 with χ1 or ρ1 complex and χ2 principal and ρ2 complex

Summary of bounds

We collect the results in the subsection into a single proposition for the reader’s convenience.

Proposition 4.3.10. Assume χ1 or ρ1 is complex. Provided L is sufficiently large, the following

holds:

(a) If χ1 is non-principal, then λ2 ≥ 0.2909 and the bounds for λ2 in Table 4.13 apply.

(b) If χ1 is principal, then λ2 ≥ 0.2909 and the bounds for λ2 in Table 4.12 apply.

Proof. If χ1 is non-principal then one compares Table 4.10, Table 4.11 and Table 4.13 and finds
that the last one gives the weakest bounds. If χ1 is principal, then the only bounds available
come from Table 4.12.

4.4 Zero-free region

Proof of Theorem 4.1.1: If χ1 and ρ1 are both real, then Theorem 4.1.1 is implied by Propo-
sitions 4.2.7 and 4.2.13. Thus, it remains to consider when χ1 or ρ1 is complex, dividing our
cases according to the order of χ1.
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χ1 has order ≥ 5

We begin with the inequality

0 ≤ χ0(n)
(
3 + 10 · Re{χ1(n)(Nn)−iγ1}

)2(
9 + 10 · Re{χ1(n)(Nn)−iγ1}

)2
, (4.30)

which was also used in [HB92, Section 9]. This will also be roughly optimal for our purposes.
We shall use the smoothed explicit inequality with a weight f satisfying Conditions 1 and 2.
By the usual arguments, we expand out the above identity, multiply by the appropriate factor
and sum over n. Overall this yields

0 ≤ 14379 · K(σ, χ0) + 24480 · K(σ + iγ1, χ1) + 14900 · K(σ + 2iγ1, χ
2
1)

+ 6000 · K(σ + 3iγ1, χ
3
1) + 1250 · K(σ + 4iγ1, χ

4
1),

(4.31)

where K(s, χ) = K(s, χ; f) and σ = 1− λ?

L with constant λ? satisfying

λ1 ≤ λ? ≤ min{λ′, λ2}.

Now, apply Lemma 3.4.3 to each term in (4.31) and consider cases depending on ordχ1. For
K(σ + niγ1, χ

n
1 ):

• (ordχ1 ≥ 6) Extract {ρ1} if n = 1 only.

• (ordχ1 = 5) Set λ? = λ1 and extract {ρ1} if n = 1 only.

It follows that

0 ≤ 14379 · F (−λ?)− 24480 · F
(
λ1 − λ?

)
+Bf(0)φ+ ε, (4.32)

where B = 14379 · L0L + 46630 · Lχ1L . From Lemma 3.1.1, B ≤ 57516 + 3493
Lχ1
L ≤ 62174 so

(4.32) reduces to

0 ≤ 14379 · F (−λ?)− 24480 · F
(
λ1 − λ?

)
+ 62174φf(0) + ε. (4.33)

We now consider cases.

• (ordχ1 ≥ 6) Without loss, we may assume λ1 ≤ 0.180. From Propositions 4.3.4
and 4.3.10, we may take λ? = 0.3916. Choose f according to [HB92, Lemma 7.1]
with parameters θ = 1 and λ = 0.243. Then (4.33) implies λ1 ≥ 0.1764.
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• (ordχ1 = 5) Since λ? = λ1 in this case, (4.33) becomes

0 ≤ 14379 · F (−λ1)− 24480 · F (0) + 62174f(0)φ+ ε.

We choose f according to [HB92, Lemma 7.5] with k = 24480/14379 giving θ =

1.1580... and
λ−1

1 cos2 θ ≤ 1

4
· 62174

14379
+ ε,

whence λ1 ≥ 0.1489.

χ1 has order 2, 3 or 4

We use the same identity (4.30), but instead we will apply the “polynomial method” with
P4(X). In the usual way, it follows from (4.30) that

0 ≤ 14379 · P(σ, χ0) + 24480 · P(σ + iγ1, χ1) + 14900 · P(σ + 2iγ1, χ
2
1)

+ 6000 · P(σ + 3iγ1, χ
3
1) + 1250 · P(σ + 4iγ1, χ

4
1),

(4.34)

where σ = 1 + λ
L with λ > 0. The above identity will be roughly optimal for our purposes.

Now, we apply Lemma 3.3.4 to each term above and consider cases depending on ordχ1. For
each term P(σ + niγ1, χ

n
1 ):

• (ordχ1 = 4) Extract {ρ1} if n = 1 and {ρ1} if n = 3.

• (ordχ1 = 3) Extract {ρ1} if n = 1 or 4 and {ρ1} if n = 2.

• (ordχ1 = 2) Extract {ρ1, ρ1} if n = 1 or 3 since ρ1 is necessarily complex.

It follows that

0 ≤ 14379 · P4(1)− 24480 · P4

( λ

λ+ λ1

)
+ Aχ1 +Bχ1φλ+ ε, (4.35)
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where

Aχ1 =



Re{1250 · P4

( λ

λ+ 4iµ1

)
− 6000 · P4

( λ

λ+ λ1 + 4iµ1

)
}, ordχ1 = 4,

Re{6000 · P4

( λ

λ+ 3iµ1

)
− 16150 · P4

( λ

λ+ λ1 + 3iµ1

)
}, ordχ1 = 3,

Re{14900 · P4

( λ

λ+ 2iµ1

)
− 30480 · P4

( λ

λ+ λ1 + 2iµ1

)
} ordχ1 = 2,

+Re{1250 · P4

( λ

λ+ 4iµ1

)
− 6000 · P4

( λ

λ+ λ1 + 4iµ1

)
},

and

Bχ1 =


15629 · L0L + 45380 · Lχ1L if ordχ1 = 4,

20379 · L0L + 40630 · Lχ1L if ordχ1 = 3,

30529 · L0L + 30480 · Lχ1L if ordχ1 = 2.

By Lemma 3.1.1, we observe Bχ1 ≤ 61009. Furthermore, applying Lemma 3.3.6 to Aχ1 , it
follows that Aχ1 ≤ 0 in all cases provided

14900

λ4
− 30480

(λ+ λ1)4
≤ 0. (4.36)

Thus, (4.35) implies

0 ≤ 14379 · P4(1)− 24480 · P4

( λ

λ+ λ1

)
+ 61009φλ+ ε

provided (4.36) holds. Taking λ = 0.9421 yields λ1 ≥ 0.1227.

χ1 is principal

Recall in this case we assume ρ1 is complex. We begin with a slightly different inequality:

0 ≤ χ0(n)
(
0 + 10 · Re{(Nn)−iγ1}

)2(
7 + 10 · Re{(Nn)−iγ1}

)2
.

Again using the “polynomial method” with P4(X), it similarly follows that

0 ≤ 620 · P(σ, χ0) + 1050 · P(σ + iγ1, χ0) + 745 · P(σ + 2iγ1, χ0)

+ 350 · P(σ + 3iγ1, χ0) + 125 · P(σ + 4iγ1, χ0),
(4.37)
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where σ = 1 + λ
L with λ > 0. Apply Lemma 3.3.4 to each term above, extracting {ρ1, ρ1}

since ρ1 is necessarily complex. Since L0 ≤ L, we have that

0 ≤ 620 · P4(1)− 1050 · P4

( λ

λ+ λ1

)
+ A0 + 2890φλ+ ε, (4.38)

where

A0 = Re{1050 · P4

( λ

λ+ iµ1

)
− 1365 · P4

( λ

λ+ λ1 + iµ1

)
}

+ Re{745 · P4

( λ

λ+ 2iµ1

)
− 1400 · P4

( λ

λ+ λ1 + 2iµ1

)
}

+ Re{350 · P4

( λ

λ+ 3iµ1

)
− 870 · P4

( λ

λ+ λ1 + 3iµ1

)
}

+ Re{125 · P4

( λ

λ+ 4iµ1

)
− 350 · P4

( λ

λ+ λ1 + 4iµ1

)
}.

Applying Lemma 3.3.6 to each term of A0, it follows that A0 ≤ 0 provided

1050

λ4
− 1365

(λ+ λ1)4
≤ 0. (4.39)

Thus, (4.38) implies

0 ≤ 620 · P4(1)− 1050 · P4

( λ

λ+ λ1

)
+ 2890φλ+ ε

provided (4.39) is satisfied. Taking λ = 1.291 yields λ1 ≥ 0.0875. This completes the proof
of Theorem 4.1.1.

4.5 Numerical zero density estimate

Recall T? ≥ 1 is fixed andH is an arbitrary congruence class group ofK. Let us first introduce
some notation intended only for this section.

Worst low-lying zeros of each character

Consider the rectangle
{s ∈ C : 0 ≤ σ ≤ 1, |t| ≤ T?}.
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For each character (modH) with a zero in this rectangle, index it χ(k) for k = 1, 2, . . . with a
zero ρ(k) in this rectangle defined by:

Re(ρ(k)) = max{Re(ρ) : L(ρ, χ(k)) = 0, |γ| ≤ T?},

so χ(j) 6= χ(k) for j 6= k. Write

ρ(k) := β(k) + iγ(k), β(k) = 1− λ(k)

L
, γ(k) =

µ(k)

L
.

Without loss, we may assume λ(1) ≤ λ(2) ≤ . . . and so on.

Remark. Upon comparing with the indexing given in Section 3.1, we always have the bound
λk ≥ λ(k) for all k where both quantities exist. Further, λ1 = λ(1).

4.5.1 Low-lying zero density

For λ ≥ 0, consider the rectangle

S = S(λ) := {s ∈ C : 1− λ

L
≤ σ ≤ 1, |t| ≤ T?}.

Define

N = N(λ) := #{χ (modH) : χ 6= χ0, L(s, χ) has a zero in S(λ)} =
∑
λ(k)≤λ
χ(k) 6=χ0

1.

Below is the main result of this section which gives bounds on N(λ) using the smoothed
explicit inequality.

Theorem 4.5.1. Suppose f satisfies Conditions 1 and 2 and let ε > 0. Assume λ1 ≥ b for some

b ≥ 0. For λ ≥ 0, if

F (λ− b) > 4
3
f(0)φ,

and (
F (λ− b)− 4

3
f(0)φ

)2

> 4
3
f(0)φ

(
f(0)φ+ F (−b)

)
then unconditionally,

N(λ) ≤

(
f(0)φ+ F (−b)

)(
F (−b)− 1

3
f(0)φ

)
(
F (λ− b)− 4

3
f(0)φ

)2

− 4
3
f(0)φ

(
f(0)φ+ F (−b)

) + ε (4.40)
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for L sufficiently large depending on ε, T?, and f .

Remark. If ζK(s) has a real zero in S(λ), then one can extract this zero from K(σ, χ0; f) in
the argument below and hence improve (4.40) to

N(λ) ≤

(
f(0)φ+ F (−b)− F (λ− b)

)(
F (−b)− F (λ− b)− 1

3
f(0)φ

)
(
F (λ− b)− 4

3
f(0)φ

)2

− 4
3
f(0)φ

(
f(0)φ+ F (−b)− F (λ− b)

) + ε

with naturally modified assumptions. The utility of such a bound is not entirely clear. If the real
zero is exceptional, then the zero repulsion from Section 4.2 would likely be a better substitute.

Proof. We closely follow the arguments in [HB92, Section 12]. Let χ (modH) denote a non-
principal character with a zero ρ̃ = β̃ + iγ̃ in S(λ); that is, b ≤ λ1 ≤ λ̃ ≤ λ. Applying
Lemma 3.4.3 with s = σ + iγ̃ where σ = 1− b

L and Z = {ρ̃} we find that

L−1 · K(σ + iγ̃, χ; f) ≤ f(0)φLχL − F (λ̃− b) + ε (4.41)

forL sufficiently large depending on ε and the content of f . Since F is decreasing by Condition
2, it follows that F (λ̃ − b) ≥ F (λ − b). Also recalling that LχL ≤

4
3

by (3.3) and (3.4), we see
that (4.41) implies:

L−1 · K(σ + iγ̃, χ; f) ≤ f(0)4
3
φ− F (λ− b) + ε. (4.42)

Summing (4.42) over χ = χ(j) (which are non-principal by construction) and γ̃ = γ(j) for
j = 1, . . . , N where N = N(λ), we deduce that(
F (λ− b)− f(0)4

3
φ− ε

)
NL ≤ −

∑
j≤N

K(σ + iγ(j), χ(j); f)

= −
∑

(n,q)=1

Λ(n)(Nn)−σf
( log Nn

L

)
Re
{∑
j≤N

χ(j)(n)(Nn)−iγ
(j)
}

≤
∑

(n,q)=1

Λ(n)(Nn)−σf
( log Nn

L

)∣∣∣∑
j≤N

χ(j)(n)(Nn)−iγ
(j)
∣∣∣.
(4.43)

The LHS of (4.43) is positive by assumption so after squaring both sides of (4.43), we apply
Cauchy-Schwarz to the last expression on the RHS implying

(
LHS of (4.43)

)2 ≤ S1S2,
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where

S1 =
∑

(n,q)=1

Λ(n)(Nn)−σf
( log Nn

L

)
= K(β, χ0; f),

and S2 =
∑

(n,q)=1

Λ(n)(Nn)−σf
( log Nn

L

)∣∣∣∑
j≤N

χ(j)(n)(Nn)−iγ
(j)
∣∣∣2

=
∑
j,k≤N

K(σ + i(γ(j) − γ(k)), χ(j)χ(k); f).

The 1 term from S1 and the N terms in S2 with j = k give

K(σ, χ0; f) ≤ L
(
f(0)φ+ F (−b) + ε

)
by Lemma 3.4.3. For the N2 − N terms in S2 with j 6= k, apply Lemma 3.4.3 extracting no
zeros to see that

K(σ + i(γ(j) − γ(k)), χ(j)χ(k); f) ≤ L
(
f(0)4

3
φ+ ε

)
.

Therefore, from (4.43), we conclude that(
F (λ− b)− f(0)4

3
φ− ε

)2

N2L2

≤ L
[
f(0)φ+ ε+ F (−b)

]
× L

[(
f(0)φ+ ε+ F (−b)

)
N +

(
f(0)4

3
φ+ ε

)
(N2 −N)

]
.

Dividing both sides by NL2, solving the inequality, and choosing a new ε > 0 depending on
f , we find

N ≤

(
f(0)φ+ F (−b)

)(
F (−b)− 1

3
f(0)φ

)
(
F (λ− b)− 4

3
f(0)φ

)2

− 4
3
f(0)φ

(
f(0)φ+ F (−b)

) + ε

provided the denominator is positive, which is one of our hypotheses.

To demonstrate the utility of Theorem 4.5.1, we produce a table of numerical bounds for
N(λ). Just as in Heath-Brown’s case [HB92, Table 13], it turns out that the acquired bounds
only hold for certain bounded ranges of λ ∈ [0, λb] depending on λ1 ≥ b. However, for
small values of λ, the resulting bounds are better than similar ones obtained in Chapter 5 (cf.
Table 5.1).

We apply Theorem 4.5.1 using the weight f = fθ̂,λ̂ from [HB92, Lemma 7.1] with param-
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λ1 ≥ 0 λ1 ≥ .0875 λ1 ≥ .1 λ1 ≥ .1227 λ1 ≥ .15 λ1 ≥ .20 λ1 ≥ .25 λ1 ≥ .30 λ1 ≥ .35
λ N(λ) N(λ) N(λ) N(λ) N(λ) N(λ) N(λ) N(λ) N(λ)
.1 2 2
.125 2 2 2 2
.150 3 3 3 3
.175 3 3 3 3 3
.200 4 4 4 3 3
.225 4 4 4 4 4 4
.250 5 5 5 5 4 4
.275 6 6 5 5 5 5 5
.300 7 6 6 6 6 6 5
.325 9 8 7 7 7 7 6 6
.350 11 9 9 9 8 8 7 7
.375 15 11 11 10 10 9 8 8 7
.400 22 15 14 13 12 11 10 9 8
.425 46 22 20 18 16 14 12 11 10
.450 ∞ 41 36 29 24 19 16 13 12
.475 1087 207 85 51 30 22 18 15
.500 ∞ ∞ ∞ ∞ 90 40 27 21
.525 ∞ 413 61 34
.550 ∞ ∞ 127
.575 ∞
.600

Table 4.14: Bounds for N(λ) in Theorem 4.5.1

eters θ̂ and λ̂, say, taking

θ̂ = 1.63 + 1.28b− 4.35λ, λ̂ = λ.

This is roughly optimal based on numerical experimentation and produces Table 4.14. Only
non-trivial bounds are displayed since trivially N(λ) ≤ 1 for λ < λ1.

4.5.2 Extending the low-lying zero density estimate

To extend the valid range of λ in Table 4.14, we introduce a variant inspired by suggestion 8 of
[HB92, Section 12]. For λ ≥ λ? > 0 fixed, define

S(λ, λ?) := {s ∈ C : 1− λ

L
≤ σ < 1− λ?

L
, |t| ≤ T?}
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and

N(λ, λ?) = #{χ (modH) : χ 6= χ0, L(s, χ) has a zero in S(λ, λ?) } =
∑

λ?<λ(k)≤λ
χ(k) 6=χ0

1.

Trivially, S(λ, 0) = S(λ) and

N(λ) = N(λ?) +N(λ, λ?).

To bound the latter quantity, construct a subsetM(λ, λ?) ofM := {χ(k) : k ≥ 1} as follows:

1. Remove the trivial character fromM.

2. Delete every character χ = χ(k) fromM such that L(s, χ) has a zero in S(λ?).

3. Select a character ψ ∈M such that ψ has a zero in S(λ, λ?). Put ψ inM(λ, λ?).

4. Delete2 ψ and ψχ fromM for every character χ with a zero in S(λ?).

5. Repeat Steps 3 and 4 until there are no more characters to choose fromM.

Denote M(λ, λ?) = #M(λ, λ?). By construction, if ψ1 and ψ2 are distinct characters of
M(λ, λ?) then ψ1ψ2 6= χ for any χ with a zero in S(λ?). Moreover, it follows that

N(λ, λ?) ≤ {N(λ?) + 1}M(λ, λ?).

since, for each ψ ∈M(λ, λ?), we deleted at most N(λ?) characters (as well as ψ itself) which
could have a zero in S(λ, λ?). Combining this with our previous bound for N(λ), we deduce

N(λ) ≤ {N(λ?) + 1}M(λ, λ?) +N(λ?) (4.44)

for λ ≥ λ? > 0. Bounding M(λ, λ?) for values of λ exceeding Table 4.14 will therefore allow
us to extend the range for N(λ) as well. Unfortunately, the possible existence of a complex
zero in S(λ?) for the Dedekind zeta function ζK(s) (i.e. the trivial character χ0 (modH))
limits the potential of this argument.

Proposition 4.5.2. Let λ ≥ b > 0 be fixed and set M = M(λ, b). Assume the Dedekind zeta

function ζK(s) does not have a complex zero in the region

Re{s} > 1− b

L
, |Im{s}| ≤ T?.

2Note that Step 4 automatically deletes ψχ as well since if L(s, χ) has a zero in S(λ?) then so does L(s, χ).
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If

F (λ− b) > 4
3
f(0)φ,

and (
F (λ− b)− 4

3
f(0)φ

)2

> 4
3
f(0)φ

(
f(0)φ+ F (−b)

)
then unconditionally,

M(λ, b) ≤

(
f(0)φ+ F (−b)

)(
F (−b)− 1

3
f(0)φ

)
(
F (λ− b)− 4

3
f(0)φ

)2

− 4
3
f(0)φ

(
f(0)φ+ F (−b)

) + ε (4.45)

for L sufficiently large depending on ε, T?, and f .

Proof. We sketch the proof since it is a straightforward adaptation of the proof of Theo-
rem 4.5.1 using the characters ofM(λ, b). One first deduces, by Lemma 3.4.3, that

L−1 · K(σ + iγ(j), χ(j); f) ≤ f(0)4
3
φ− F (λ− b) + ε (4.46)

for all χ(j) ranging over M(λ, b), so 1 ≤ j ≤ M . The above holds since no character χ ∈
M(λ, b) has a zero in S(b). Rearranging and applying Cauchy-Schwarz, one must bound the
analogous S1 and S2. To do so, we again see that

K(σ, χ0; f) ≤ L
(
f(0)φ+ F (−b) + ε

)
by Lemma 3.4.3. It is here we use that L(s, χ0) has no complex zero in S(b); if any real zero
β = 1− λ

L of L(s, χ) arises in our application of Lemma 3.4.3, we may discard it by Condition
2 as F (λ − b) ≥ 0. For the M2 −M terms in S2 with j 6= k, we again apply Lemma 3.4.3
extracting no zeros to see that

K(σ + i(γ(j) − γ(k)), χ(j)χ(k); f) ≤ L
(
f(0)4

3
φ+ ε

)
.

Note that no zeros are extracted due to the construction ofM(λ, b). In particular, χ(j)χ(k) 6= χ

for any χ with a zero in S(b). Continuing with the same arguments as in Theorem 4.5.1, we
conclude the desired result.

We could similarly produce a table like Table 4.14 using Proposition 4.5.2. However, we
will not require such precision in its application in Section 7.4. We will content ourselves with
the following corollary.

Corollary 4.5.3. If L is sufficiently large then N(0.569) ≤ 3365 unconditionally.
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Proof. We wish to apply Proposition 4.5.2 using the weight f = fλ̂ from [HB92, Lemma 7.2]
with parameter λ̂, say. By Theorem 4.1.1, b = 0.0875 is a valid choice and N(0.0875) ≤ 1.
Taking λ̂ = 0.2784, we deduce, by Proposition 4.5.2, that

M(0.569, 0.0875) ≤ 1682.

Thus, by (4.44), we conclude N(0.569) ≤ 2 · 1682 + 1 = 3365, as desired.

We emphasize that the goal of Corollary 4.5.3 is to maximize the value of λ for which we
can obtain a reasonable bound for N(λ). The precise quality of the bound is not of serious
concern since it will still be far better than those obtained in Chapter 5 (cf. Table 5.1). With
this purpose in mind, one can see that λ = 0.569 in Corollary 4.5.3 exceeds λ = 0.425 in the
first column of Table 4.14. In fact, it exceeds the range of λ in every column of Table 4.14.



Chapter 5

Log-free zero density estimates

“So me put in work, work, work, work, work, work...”
– Rihanna.

In this chapter, we use the power sum method to prove explicit versions of the log-free zero
density estimates for Hecke L-functions due to Weiss. These results serve as generalizations
of the classical log-free zero density estimate (1.9) for Dirichlet characters. We will retain the
notation of Chapter 2 but we will abandon the notation introduced in Chapters 3 and 4.

5.1 Statement of results

Let H be an arbitrary congruence class group of a number field K. For a Hecke character
χ (modH), 0 < σ < 1, and T ≥ 1 arbitrary, define

N(σ, T, χ) := #{ρ = β + iγ : L(ρ, χ) = 0, σ < β < 1, |γ| ≤ T},

where the nontrivial zeros ρ of L(s, χ) are counted with multiplicity. Weiss [Wei83, Corollary
4.4] proved that if 1

2
≤ σ < 1 and T ≥ n2

Kh
1/nK
H , then∑

χ (modH)

N(σ, T, χ)� (eO(nK)D2
KQT

nK )C(1−σ), (5.1)

where C > 0 is some absolute constant. We will prove the following.

Theorem 5.1.1. Let H be a congruence class group of a number field K. If 1
2
≤ σ < 1 and

T ≥ max{n5/6
K (D

4/3
K Q4/9)−1/nK , 1}, then∑

χ (modH)

N(σ, T, χ)� {eO(nK)D2
KQT

nK+2}81(1−σ). (5.2)

115
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If 1− 10−3 ≤ σ < 1, then one may replace 81 with 73.5.

Remark.

• Theorem 5.1.1 noticeably improves Weiss’ density estimate (5.1) in the range of T . If
nK ≤ 2(logDK)/ log logDK , then Theorem 5.1.1 holds for T ≥ 1. Thus we may take
T ≥ 1 for most choices of K.

• One can verify from Minkowski’s lower bound for DK and the valid range of T that the
eO(nK) factor is always negligible, regardless of how nK compares to (logDK)/ log logDK .

To obtain the precise numerical exponents in Theorems 1.3.2 and 1.3.4, we will require a
more explicit version of Theorem 5.1.1 when σ is very close to 1 and T is fixed. This desired
precision necessitates the introduction of a few important quantities.

Let δ0 > 0 be fixed and sufficiently small. For this chapter only1, define

L :=

(1
3

+ δ0) logDK + (19
36

+ δ0) logQ+ ( 5
12

+ δ0)nK log nK if n5nK/6
K ≥ D

4/3
K Q4/9,

(1 + δ0) logDK + (3
4

+ δ0) logQ+ δ0nK log nK otherwise.
(5.3)

Notice that

L ≥ (1 + δ0) logDK + (3
4

+ δ0) logQ+ δ0nK log nK and L ≥ ( 5
12

+ δ0)nK log nK (5.4)

unconditionally. First, we restate a slightly weaker form of Theorem 5.1.1 using L .

Theorem 5.1.2. Let H be a congruence class group of a number field K. Let T ≥ 1 be

arbitrary. If 0 < λ < L then ∑
χ (modH)

N(1− λ
L
, T, χ)� e162λ

provided L is sufficiently large depending only on T .

Proof. One can verify this in a straightforward manner from (5.3) and Theorem 5.1.1.

In addition to Theorem 5.1.2, we will require a more explicit zero density estimate for

1Actually, we will return to this quantity in later chapters but emphasize this point here to avoid confusion.
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“low-lying” zeros. For T ≥ 1, define

N (λ) = NH(λ, T ) :=
∑

χ (modH)

N(1− λ
L
, T, χ)

=
∑

χ (modH)

#{ρ : L(ρ, χ) = 0, 1− λ
L
< Re{ρ} < 1, |Im{ρ}| ≤ T}.

(5.5)
NoticeN (λ) defined here is not the same asN(λ) as defined by (4.3). Instead, one hasN(λ) ≤
N (λ). By Theorems 4.1.1 and 4.1.2, observe that N (0.0875) ≤ 1 and N (0.2866) ≤ 2. In
light of these bounds, we search for explicit numerical estimates forN (λ) with 0.287 ≤ λ ≤ 1.
These are given by Table 5.1 and help establish the following explicit bound on N (λ).

Theorem 5.1.3. Let H be a congruence class group of a number field K. Let ε0 > 0 be fixed

and sufficiently small. If 0 < λ < ε0L and T ≥ 1 then

N (λ) = NH(λ, T ) ≤ e162λ+188

for L sufficiently large depending only on T . If 0 < λ ≤ 1, then the bounds for N (λ) in

Table 5.1 are superior.

The proof of Theorem 5.1.3 is given in Section 5.4.2 and essentially relies on Theorem 5.3.3
with a careful choice of parameters for each fixed value of λ.

5.1.1 Comparing the mollifier method with power sums

It is instructive to compare the two primary methods for proving log-free zero density esti-
mates. The basic idea behind the proof of (1.9) (the so-called mollifier method) is to construct
a Dirichlet polynomial which detects zeros by assuming large values at the zeros of a Dirichlet
L-function. The optimal Dirichlet polynomial for this task will look like a version of µ(n),
where

µ(n) =

(−1)r if n is squarefree with r prime factors,

0 otherwise

is the usual Möbius function. In order to efficiently sum the large values contributed by each
of the detected zeros, one relies on the fact that the partial sums of µ(n) exhibit significant
cancellation. To see why this is true, observe that the Prime Number Theorem (with the error
term of Hadamard and de la Vallée-Poussin) is equivalent to the statement that there exists an
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λ logN (λ) ≤ α η ω ξ J(ξλ) Yξλ Xξλ

.287 198.1 .3448 .09955 .03466 1.0082 .46 5.8 993

.288 198.3 .3444 .09943 .03462 1.0082 .46 5.8 991

.289 198.5 .3441 .09931 .03458 1.0082 .46 5.8 988

.290 198.7 .3437 .09918 .03454 1.0082 .46 5.8 986

.291 198.9 .3433 .09906 .03450 1.0082 .46 5.8 984

.292 199.1 .3429 .09894 .03446 1.0081 .46 5.8 982

.293 199.3 .3426 .09882 .03442 1.0081 .46 5.8 979

.294 199.5 .3422 .09870 .03439 1.0081 .46 5.8 977

.295 199.8 .3418 .09859 .03435 1.0081 .46 5.8 975

.296 200.0 .3415 .09847 .03431 1.0081 .46 5.8 973

.297 200.2 .3411 .09835 .03427 1.0080 .46 5.8 970

.298 200.4 .3408 .09823 .03423 1.0080 .46 5.8 968

.299 200.6 .3404 .09811 .03420 1.0080 .46 5.8 966

.300 200.8 .3400 .09800 .03416 1.0080 .46 5.8 964

.325 205.9 .3316 .09518 .03326 1.0075 .47 5.8 914

.350 211.0 .3240 .09257 .03242 1.0071 .47 5.7 871

.375 216.0 .3171 .09014 .03163 1.0067 .47 5.7 833

.400 220.9 .3108 .08787 .03090 1.0064 .48 5.7 800

.425 225.7 .3054 .08678 .02878 1.0061 .46 5.6 769

.450 230.4 .2998 .08373 .02956 1.0059 .48 5.6 744

.475 235.1 .2948 .08184 .02895 1.0056 .48 5.6 720

.500 239.8 .2903 .08006 .02837 1.0054 .49 5.6 699

.550 249.0 .2821 .07677 .02729 1.0050 .49 5.5 661

.600 258.0 .2748 .07379 .02631 1.0046 .50 5.5 629

.650 266.9 .2684 .07109 .02542 1.0043 .50 5.4 602

.700 275.6 .2627 .06862 .02460 1.0041 .50 5.4 579

.750 284.3 .2576 .06634 .02383 1.0039 .51 5.4 559

.800 292.9 .2529 .06424 .02313 1.0037 .51 5.4 541

.850 301.4 .2486 .06230 .02247 1.0035 .51 5.3 525

.900 309.8 .2447 .06049 .02186 1.0033 .51 5.3 510

.950 318.2 .2412 .05880 .02128 1.0032 .52 5.3 497
1.00 326.5 .2378 .05722 .02074 1.0030 .52 5.3 486

Table 5.1: Bounds for N (λ) in Theorem 5.1.3
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absolute constant c3 > 0 such that if x is sufficiently large, then∑
n≤x

µ(n)� x exp(−c3(log x)1/2). (5.6)

The fact that (5.6) is a part of the proofs of the log-free zero density estimates in [Gra77,
HB92, IK04, Jut77] may not be immediately obvious. After summing the mollified Dirichlet
polynomials over all characters χ (mod q) and applying duality, one must ultimately minimize
the quadratic form

S(x) =
∑
n≤x

(∑
d|n

λd

)2

subject to the constraint

λd =

µ(d) if 1 ≤ d < z1,

0 if d > z2,

where 1 < z1 < z2 are given real numbers. See, for example, [IK04, Pages 430–431]. For the
purpose of proving a log-free zero density estimate, it is convenient to define

λd =

µ(d) min
(

1,
log(z2/d)

log(z2/z1)

)
if 1 ≤ d ≤ z2,

0 if d > z2.

Each of [Gra77, HB92, IK04, Jut77] uses the beautiful work of Graham [Gra78] to estimate
S(x) with this choice of λd; Graham proves that

S(x) =
x

log(z2/z1)

(
1 +O

( 1

log(z2/z1)

))
. (5.7)

At several points in the proof of (5.7), Graham uses the asymptotic Prime Number Theorem in
the form (5.6).

For a number field K, let µK(n) be the extension of the Möbius function to the prime
ideals of K. For the sake of simplicity, suppose that the Dedekind zeta function ζK(s) has no
exceptional zero. The effective form of the Prime Ideal Theorem proven in [LO77] is equivalent
to the statement that there exists an absolute constant c4 > 0 such that if log x� nK(logDK)2,
then ∑

Nn≤x

µK(n)� x exp
(
− c4

( log x

nK

)1/2)
.

Therefore, to generalize (5.7) to the Möbius function of K, x needs to be larger than any
polynomial in DK before the partial sums of µK(n) up to x begin to exhibit cancellation. Thus
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if one extends the preceding arguments to prove an analogue of (1.9) for the Hecke characters
of K, then the ensuing log-free zero density estimate will not have the K-uniformity which is
necessary to prove Theorem 1.3.2.

Turán developed an alternate formulation of log-free zero density estimates. The idea is to
take high derivatives of −L′

L
(s, χ). This produces a large sum of complex numbers involving

zeros of L(s, χ), which can be bounded below by the Turán power sum method (see Proposi-
tion 5.3.1). The integral of a certain zero-detecting polynomial (which is not defined in terms
of the Möbius function) gives an upper bound for these high derivatives. Therefore, when a
certain zero-detecting polynomial (which is not defined in terms of the Möbius function) en-
counters a zero of L(s, χ), its integral will be bounded away from zero because of the lower
bound given by the power sum method. The contributions from the detected zeros up to height
T are summed efficiently using a particular large sieve inequality (see Section 5.2).

The advantage of using the power sum method in our proofs lies in the fact that the method
is a purely Diophantine result, independent of the number fields in our proofs; this allows for
noticeably better field uniformity than the mollifier method. The disadvantage is that the lower
bound in the power sum method is quite small, which, for example, would inflate the constant
12/5 in (1.9). To our knowledge, the power sum method is the only tool available that will
produce a K-uniform log-free zero density estimate of the form (1.9) which is strong enough
to deduce a conclusion as strong as Theorem 1.3.2. Limitations to the power sum method
indicate a genuine obstacle to any substantive improvements in the constants in Theorem 1.3.2
when using these methods.

To prove the large sieve inequality (5.11) used in the proof of Theorem 5.1.1, we bounded
certain sums over integral ideals, which required smoothing the sums using a kernel that is
nK-times differentiable. Unfortunately, the smoothing introduces the powers of nKnK (see the
comments immediately preceding [Wei83, Section 1]). As mentioned after Theorem 1.3.2,
the factor of nKnK is negligible if nK is small compared to (logDK)/ log logDK , which is
expected to be the case in most applications.

5.2 Mean values of Dirichlet polynomials

In [Gal70], Gallagher proves the following mean value results for Dirichlet polynomials.

Theorem. Let {an} be a sequence of complex numbers such that
∑

n≥1 n|an|2 <∞.

(i) If T ≥ 1, then

∑
χ mod q

∫ T

−T

∣∣∣ ∞∑
n=1

anχ(n)nit
∣∣∣2dt� ∞∑

n=1

(qT + n)|an|2, (5.8)



CHAPTER 5. LOG-FREE ZERO DENSITY ESTIMATES 121

where the sum is over Dirichlet characters χ mod q.

(ii) Let R ≥ 2, and assume an = 0 if n has any prime factor less than R. If T ≥ 1, then

∑
q≤R

log
R

q

∑∗

χ mod q

∫ T

−T

∣∣∣ ∞∑
n=1

anχ(n)nit
∣∣∣2dt� ∞∑

n=1

(R2T + n)|an|2. (5.9)

Here,
∑∗ denotes the restriction to primitive Dirichlet characters χ mod q.

In (5.9), the log(R/q) weighting on the left hand side (which arises from the support of an)
turns out to be decisive in some applications, such as the proof of (1.6). To prove Theo-
rem 5.1.1, we need a K-uniform analogue of (5.8) when an is supported as in (5.9). Weiss
used the Selberg sieve to prove such a result in his Ph.D. thesis [Wei80, Theorem 3′, p. 98].

Theorem (Weiss). Let b( · ) be a complex-valued function on the integral ideals n of K, and

suppose that
∑

n(Nn)|b(n)|2 < ∞. Let T � 1. Suppose that b(n) = 0 when n has a prime

ideal factor p with Np ≤ z, and define V (z) =
∑

Nn≤z Nn−1. If 0 < ε < 1/2, then

∑
χ (modH)

∫ T

−T

∣∣∣∑
n

b(n)χ(n)Nn−it
∣∣∣2dt�∑

n

|b(n)|2
( κK
V (z)

Nn+c(ε)(nnKK DKQT
nKz4)1/2+εhHT

)

for some constant c(ε) > 0 depending only on ε.

Remark. Assuming the Lindelöf Hypothesis for Hecke L-functions, the upper bound becomes

�
∑
n

|b(n)|2
( κK
V (z)

Nn + c(ε)(DKQ)εhHT
1+εnKz2+ε

)
.

This appears to be optimal when using the Selberg sieve, considering that when K = Q, the
second term is roughly (qTz2)1+ε. For related unconditional results, see Duke [Duk89, Section
1].

This result is interesting in its own right, but to make the result more practical for the
applications at hand, Weiss chooses b(n) to be supported on the prime ideals p such that y <
Np ≤ yc1 . Then, Weiss sets z = y1/3 and chooses log y ≥ c2 log(DKQT

nK ) and ε = 1/3. By
Corollary 2.4.2 and taking c1 and c2 to be sufficiently large, Weiss’ result reduces to

∑
χ(H)=1

∫ T

−T

∣∣∣ ∑
y<Np≤yc1

b(p)χ(n)Nn−it
∣∣∣2dt� 1

log y

∑
y<p≤yc1

|b(p)|2Np.

In [Wei83, Corollary 3.8], Weiss recasts this estimate with more generally.
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Corollary 5.2.1 (Weiss). Let b( · ) be a complex-valued function on the prime ideals p of K

such that
∑

p(Np)|b(p)|2 < ∞ and b(p) = 0 whenever Np ≤ y. Let H be a primitive congru-

ence class group of K. If y ≥ (hHn
2nK
K DKQT

2nK )8, then

∑
χ(H)=1

∫ T

−T

∣∣∣∑
p

b(p)χ(n)Nn−it
∣∣∣2dt� 1

log y

∑
p

|b(p)|2Np.

The exponent 8 in the range of y in Corollary 5.2.1 is large enough to influence the value
of C in (5.1), which affects B2 in (1.24). In this section, we improve Corollary 5.2.1 so that it
does not influence the exponents in Theorem 5.1.1.

Theorem 5.2.2. Let υ ≥ ε > 0 be arbitrary. Let b( · ) be a complex-valued function on the

prime ideals p of K such that
∑

p(Np)|b(p)|2 <∞ and b(p) = 0 whenever Np ≤ y. Let H be

a primitive congruence class group of K. If T ≥ 1 and

y ≥ Cε
{
hHn

(5/4+υ)nK
K D

3/2+υ
K Q1/2T nK/2+1

}1+ε (5.10)

for some sufficiently large Cε > 0 then

∑
χ (modH)

∫ T

−T

∣∣∣∑
p

b(p)χ(p)Np−it
∣∣∣2dt ≤ ( 5π{1− 1

1+υ
}−1

1
1+ε

log( y
hH

)− L′
+Oε(y

− ε
2 )
)∑

p

Np|b(p)|2,

(5.11)
where L′ = 1

2
logDK + 1

2
logQ+ 1

4
nK log nK + (nK

2
+ 1) log T +Oε(1).

Remark. Taking υ = ε and using Lemma 2.4.6, we improve the range of y in Corollary 5.2.1
to

y � eOε(nK)
{
n

5/4nK
K D2

KQ
3/2T nK/2+1

}1+ε
.

5.2.1 Preparing for the Selberg sieve

To apply the Selberg sieve, we will require several weighted estimates involving Hecke char-
acters. Before we begin, we highlight the necessary properties of our weight Ψ.

Lemma 5.2.3. For T ≥ 1, let A = T
√

2nK . Define

Ψ̂(s) =
[sinh(s/A)

s/A

]2nK

and let

Ψ(x) =
1

2πi

∫ 2+i∞

2−i∞
Ψ̂(s)x−sds
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be the inverse Mellin transform of Ψ̂(s). Then:

(i) 0 ≤ Ψ(x) ≤ A/2 and Ψ(x) is a compactly supported function vanishing outside the

interval e−2nK/A ≤ x ≤ e2nK/A.

(ii) Ψ̂(s) is an entire function.

(iii) For all complex s = σ + it, |Ψ̂(s)| ≤ (A/|s|)2nKe|σ|/A.

(iv) For |s| ≤ A, |Ψ̂(s)| ≤ (1 + |s|2/(5A2))2nK .

(v) Uniformly for |σ| ≤ A/
√

2nK , |Ψ̂(s)| � 1.

(vi) Let {bm}m≥1 be a sequence of complex numbers with
∑

m |bm| <∞. Then∫ T

−T

∣∣∣∑
m

bmm
−it
∣∣∣2dt ≤ 5π

2

∫ ∞
0

∣∣∣∑
m

bmΨ
( x
m

)∣∣∣2dx
x

Proof. For (i)–(v), see [Wei83, Lemma 3.2]; in his notation, Ψ(x) = H2nK (x) with parameter
A = T

√
2nK . Statement (vi) follows easily from the proof of [Wei83, Corollary 3.3].

For the remainder of this section, assume:

• H (mod q) is an arbitrary primitive congruence class group of K.

• 0 < ε < 1/2 and T ≥ 1 is arbitrary.

• Ψ is the weight function of Lemma 5.2.3.

Next, we establish improved analogues of [Wei83, Lemmas 3.4 and 3.6 and Corollary 3.5].

Lemma 5.2.4. Let χ (modH) be a Hecke character. For x > 0,∣∣∣∑
n

χ(n)

Nn
·Ψ
( x

Nn

)
− E0(χ)

ϕ(q)

Nq
κK

∣∣∣�ε

{
n
nK/4
K D

1/2
K Q1/2T nK/2+1

}1+ε

.

Proof. The quantity we wish to bound equals

1

2πi

∫ −1+i∞

−1−i∞
L(s+ 1, χ)Ψ̂(s)xsds. (5.12)

If χ (mod q) is induced by the primitive character χ∗ (mod fχ), then

L(s, χ) = L(s, χ∗)
∏
p|q
p-fχ

(1− χ∗(p)Np−s).
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Thus |L(it, χ)| ≤ 2ω(q)|L(it, χ∗)| where ω(q) is the number of distinct prime ideal divisors
of q. Since H (mod q) is primitive, q = fH so ω(q) ≤ 6e4/εnK + ε

2
log(DKQ), by [Wei83,

Lemma 1.13]. Thus, for Re{s} = −1, |L(s+ 1, χ)| � eOε(nK)(DKQ)ε/2|L(s+ 1, χ∗)|. Thus,
by the convexity bound (Lemma 2.3.2), the expression in (5.12) is

� eOε(nK)(DKQ)
1
2

+εx−1

∫ ∞
0

(1 + |t|)( 1
2

+ε)nK |Ψ̂(−1 + it)|dt

as Dχ ≤ DKQ. By Lemma 5.2.3(iii) and (iv), this integral is

�
∫ A

2

0

(1 + |t|)( 1
2

+ε)nK |Ψ̂(−1 + it)|dt+

∫ ∞
A
2

(1 + |t|)( 1
2

+ε)nK |Ψ̂(−1 + it)|dt,

which is � eO(nK)A( 1
2

+ε)nK+1. Collecting the above estimates, the claimed bound, up to a
factor of ε, follows upon recalling A = T

√
2nK and noting eO(nK) �ε (nnKK )ε.

Corollary 5.2.5. Let C be a coset of H , and let d be an integral ideal coprime to q. For all

x > 0, we have

∣∣∑
n∈C
d|n

1

Nn
Ψ
( x

Nn

)
− ϕ(q)

Nq

κK
hH
· 1

Nd

∣∣�ε

{
n
nK/4
K D

1/2
K Q1/2T nK/2+1

}1+ε · 1

x
.

Proof. The proof is essentially the same as that of [Wei83, Corollary 3.5], except for the fact
that we have an improved bound in Lemma 5.2.4.

We now apply the Selberg sieve. For z ≥ 1, define

Sz = {n : p | n =⇒ Np > z} and V (z) =
∑
Nn≤z

1

Nn
. (5.13)

Lemma 5.2.6. Let C be a coset of H . For x > 0 and z ≥ 1,

∑
n∈C∩Sz

1

Nn
Ψ
( x

Nn

)
≤ κK
hHV (z)

+Oε

({nnK/4K D
1/2
K Q1/2T nK/2+1

}1+ε
z2+2ε

x

)
.

Proof. The proof is essentially the same as that of [Wei83, Lemma 3.6], except for the fact that
we have an improved bound in Lemma 5.2.4.
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5.2.2 Proof of Theorem 5.2.2

Let z be a parameter satisfying 1 ≤ z ≤ y, which we will specify later. Extend b(n) to all
integral ideals n of K by zero. Applying Lemma 5.2.3 and writing bm =

∑
Nn=m b(n)χ(n), for

each Hecke character χ (modH), it follows that

∑
χ (modH)

∫ T

−T

∣∣∣∑
n

b(n)χ(n)Nn−it
∣∣∣2dt ≤ 5π

2

∫ ∞
0

∑
χ (modH)

∣∣∣∑
n

b(n)χ(n)Ψ
( x

Nn

)∣∣∣2dx
x
.

(5.14)
By the orthogonality of characters and the Cauchy-Schwarz inequality,

∑
χ (modH)

∣∣∣∑
n

b(n)χ(n)Ψ
( x

Nn

)∣∣∣2 ≤ hH
∑

C∈I(q)/H

(∑
n∈C

Nn|b(n)|2Ψ
( x

Nn

)) ∑
n∈C∩Sz

Ψ( x
Nn

)

Nn
,

since z ≤ y and b(n) is supported on prime ideals with norm greater than y. For δ = δ(ε) > 0

sufficiently small and Bδ > 0 sufficiently large, denote

M ′
δ = Mδz

2+2δ and Mδ = Bδ

{
n
nK/4
K D

1/2
K Q1/2T nK/2+1

}1+δ
.

By Lemma 5.2.6, the right hand side of the preceding inequality is therefore at most

∑
C∈I(q)/H

∑
n∈C

Nn|b(n)|2Ψ
( x

Nn

)( κK
V (z)

+
hHM

′
δ

x

)
≤
∑
n

Nn|b(n)|2Ψ
( x

Nn

)( κK
V (z)

+
hHM

′
δ

x

)
.

Combining the above estimates into (5.14) yields

∑
χ (modH)

∫ T

−T

∣∣∣∑
p

b(p)χ(p)Np−it
∣∣∣2dt

≤ 5π

2

∑
n

Nn|b(n)|2
( κK
V (z)

∫ ∞
0

Ψ
( x

Nn

)dx
x

+ hHM
′
δ

∫ ∞
0

1

x
Ψ
( x

Nn

)dx
x

)
≤ 5π

2

∑
n

Nn|b(n)|2
( κK
V (z)

|Ψ̂(0)|+ hHM
′
δ

Nn
|Ψ̂(1)|

)
,

by Lemma 5.2.3(v). Since b(n) is supported on prime ideals whose norm is greater than y, the
above is ≤ 5π

2
( κK
V (z)

+O(hHMδz
2+2δy−1))

∑
p Np|b(p)|2. Now, select z satisfying

z =
(y(1+δ)/(1+ε)

hHMδ

)1/(2+2δ)

, (5.15)
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so 1 ≤ z ≤ y. Hence,

∑
χ (modH)

∫ T

−T

∣∣∣∑
p

b(p)χ(p)Np−it
∣∣∣2dt ≤ 5π

2

( κK
V (z)

+Oε(y
−ε/2)

)∑
p

Np|b(p)|2 (5.16)

for δ = δ(ε) > 0 sufficiently small. From (5.10) and (5.15), it follows that z ≥ 3(nnKK DK)1/2+υ/2

provided Cε in (5.10) is sufficiently large. Applying Corollary 2.4.2 to (5.16), it follows that

∑
χ (modH)

∫ T

−T

∣∣∣∑
p

b(p)χ(p)Np−it
∣∣∣2dt ≤ ( 5πυ

2{1 + υ} log z +Oε(1)
+Oε(y

−ε/2)
)∑

p

Np|b(p)|2,

since υ ≥ ε > 0. Finally, by (5.10) and (5.15),

2 log z ≥ 1
1+ε

log( y
hH

)− 1
2
{logDK + logQ+ 1

2
nK log nK + (nK + 2) log T +Oε(1)}.

Substituting this estimate into the previous inequality, we obtain the desired conclusion.

5.3 Detecting the zeros of Hecke L-functions

5.3.1 Notation

We first specify some additional notation to be used throughout this section.

Arbitrary Quantities

• Let H (mod q) be a primitive congruence class group.

• Let ε ∈ (0, 1/8) and φ = 1 + 4
π
ε+ 16ε2 + 340ε10.

• Let T ≥ 1. Recall Q = QH as in (2.2) and define

L = LT,ε := logDK + 1
2

logQ+ (nK
2

+ 1) log(T + 3) + ΘnK , (5.17)

where Θ = Θ(ε) ≥ 1 is sufficiently large depending on ε.

• Let λ0 >
1
20

. Suppose τ ∈ R and λ > 0 satisfy

λ0 ≤ λ ≤ 1
16
L and |τ | ≤ T. (5.18)

Furthermore, denote r = λ
L .
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Fixed Quantities

• Let α, η ∈ (0,∞) and ω ∈ (0, 1) be fixed.

• Define A ≥ 1 so that A1 =
√
A2 + 1 satisfies

A1 = 2(4e(1 + 1/α))α(1 + η). (5.19)

• Let x = eXL and y = eY L with X, Y > 0 given by

Y = Yλ =
1

eA1

· 1

α

{
2φA+

8

λ

}
,

X = Xλ =
2 log

(
2A1

1−ω

)
(1− ω)

· 1 + α

α

{
2φA+

8

λ

}
,

(5.20)

and α, η, ω are chosen so that 2 < Y < X . Notice X = Xλ and Y = Yλ depend on the
arbitrary quantities ε and λ, but they are uniformly bounded above and below in terms of
α, η, and ω, i.e. X � 1 and Y � 1. For this reason, while X and Y are technically not
fixed quantities, they may be treated as such.

5.3.2 Key ingredients

Detecting Zeros

The first goal of this section is to prove the following proposition.

Proposition 5.3.1. Let χ (modH) be a Hecke character. Suppose L(s, χ) has a non-trivial

zero ρ satisfying

|1 + iτ − ρ| ≤ r = λ
L . (5.21)

Further assume

J(λ) :=
W1λ+W2

A1(1 + η)k0
< 1, (5.22)

where X = Xλ, Y = Yλ,

k0 = k0(λ) = α−1
(
2φAλ+ 8

)
,

W1 = W1(λ) = 8A1

(
1 + 1

k0

)
+ 2eA1

(
Y + 1

2
+ {2X + 1}e−ωλX

)
+O(ε),

W2 = W2(λ) = 2eω−1A1e
−ωλX + 18 +O(ε).
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If λ < ε
A1
L and 2 < Y < X then

r4 log
(x
y

)∫ x

y

∣∣∣ ∑
y≤Np<u

χ(p) log Np

Np1+iτ

∣∣∣2du
u

+ E0(χ)1{|τ |<Ar}(τ)

≥
(α/(1 + α)

8e21/α

)4φAλ+16 (1− J(λ))2

4
.

Remark. Note that Wj(λ)� 1 for j = 1, 2.

The proof of Proposition 5.3.1 is divided into two main steps, with the final arguments cul-
minating in Section 5.3.5. The method critically hinges on the following power sum estimate
due to Kolesnik and Straus [KS83].

Theorem 5.3.2 (Kolesnik–Straus). For any integer M ≥ 0 and complex numbers z1, . . . , zN ,

there is an integer k withM+1 ≤ k ≤M+N such that |zk1 +· · ·+zkN | ≥ 1.007( N
4e(M+N)

)N |z1|k.

Remark. For any M ≥ 1, one can verify that the expression
(

N
4e(M+N)

)N is a decreasing
function of N . We will use this fact without mention.

Makai [Mak64] showed that the constant 4e is essentially optimal.

Explicit Zero Density Estimate

Using Theorem 5.2.2 and Proposition 5.3.1, the second and primary goal of this section is to
establish an explicit log-free zero density estimate. Recall, for a Hecke character χ,

N(σ, T, χ) = #{ρ : L(ρ, χ) = 0, σ < Re{ρ} < 1, |Im(ρ)| ≤ T}. (5.23)

where σ ∈ (0, 1) and T ≥ 1.

Theorem 5.3.3. Let ξ ∈ (1,∞) and υ ∈ (0, 1
10

] be fixed and denote σ = 1− λ
L . Suppose

λ0 ≤ λ < ε
ξA1
L, X > Y > 4.6, and T ≥ max{n5/6

K (D
4/3
K Q4/9)−1/nK , 1}, (5.24)

where X = Xξλ and Y = Yξλ. Then

∑
χ (modH)

N(σ, T, χ) ≤ 4ξ√
ξ2 − 1

· (C4λ
4 + C3λ

3 + C1λ+ C0)eB1λ+B2 · {1− J(ξλ)}−2,
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where J( · ) is defined by (5.22) satisfying J(ξλ) < 1, and

B1 = 4φAξ log(4eα−1(1 + α)2(1+α)/α), B2 = 16 log(4eα−1(1 + α)2(1+α)/α),

C4 =
5πeφX(X − Y )2(X + Y + 1 + ε)ξ4(

1− 1
1+υ

)(
1

1+ε
Y − 4

) , C3 =
4

φξ
C4, C1 = 4φAξ, C0 = 16A+ ε.

(5.25)

Remark.

• In Section 5.4, we will employ Theorem 5.3.3 with various choices of parameters α, η, υ, ε, ω,
and ξ depending on the range of σ. Consequently, this result is written without any ex-
plicit choice of the fixed or arbitrary quantities found in Section 5.3.1.

• The quantities C4 and C3 are technically not constants with respect to λ or ε but one can
see that both are bounded absolutely according to the definitions in Section 5.3.1.

Sections 5.3.3 and 5.3.4 are dedicated to preparing for the proof of Proposition 5.3.1 which
is contained in Section 5.3.5. The proof of Theorem 5.3.3 is finalized in Section 5.3.6.

5.3.3 A large derivative

Suppose χ (modH) is induced from the primitive character χ∗. Denote F (s) := L′

L
(s, χ∗) and

z := 1 + r + iτ . Using Theorem 5.3.2, the goal of this subsection is to show F (s) has a large
high order derivative, which we establish in the following lemma.

Lemma 5.3.4. Keep the above notation and suppose L(s, χ) has a zero ρ satisfying (5.21). If

λ < ε
A1
L and 1S is the indicator function of a set S, then

E0(χ)1{|τ |<Ar}(τ) +
∣∣∣rk+1

k!
F (k)(z)

∣∣∣ ≥ ( α
4e(1+α)

)2φAλ+8

2k+1

{
1−

{
8(1 + 1

k
)A1 +O(ε)

}
λ+ 18

A1(1 + η)k

}
for some integer k in the range 1

α
· (2φAλ+ 8) ≤ k ≤ 1+α

α
· (2φAλ+ 8).

Proof. By [Wei83, Lemma 1.10],

F (s) +
E0(χ)

s− 1
=

∑
|1+iτ−ρ|<1/2

1

s− ρ
+G(s)

uniformly in the region |1 + iτ − s| < 1/2, where G(s) is analytic and |G(s)| � L in this
region. Differentiating the above formula k times and evaluating at z = 1 + r+ iτ , we deduce

(−1)k

k!
· F (k)(z) +

E0(χ)

(z − 1)k+1
=

∑
|1+iτ−ρ|<1/2

1

(z − ρ)k+1
+O(4kL),
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since r = λ
L <

1
16

by assumption (5.18). The error term arises from bounding G(k)(z) using
Cauchy’s integral formula with a circle of radius 1/4. For zeros ρ that satisfy Ar < |1 + iτ −
ρ| < 1/2, notice that

(A2 + 1)r2 < r2 + |1 + iτ − ρ|2 ≤ |z − ρ|2 ≤ (r + |1 + iτ − ρ|)2 ≤ (r + 1/2)2 < 1.

Recalling A1 =
√
A2 + 1, it follows by partial summation that

∑
Ar<|1+iτ−ρ|<1/2

1

|z − ρ|k+1
≤
∫ 1

A1r

u−k−1dNχ(u; z) = (k + 1)

∫ 1

A1r

Nχ(u; z)

uk+2
du+O(L)

where we bounded Nχ(1; z)� L using [LMO79, Lemma 2.2]. By Lemma 2.3.7, the above is
therefore

≤ (k + 1)

∫ ∞
A1r

4uL+ 8

uk+2
du+O(L) ≤

4{1 + 1
k
}A1rL+ 8

(A1r)k+1
+O(L).

By considering cases, one may bound the E0(χ)-term as follows:

rk+1 ·
∣∣∣ E0(χ)

(z − 1)k+1

∣∣∣ ≤ E0(χ) · 1{|τ |<Ar}(τ) +
1

Ak+1
1

. (5.26)

The above results now yield

E0(χ)1{|τ |<Ar}(τ) +
∣∣∣rk+1F (k)(z)

k!

∣∣∣
≥
∣∣∣ ∑
|1+iτ−ρ|≤Ar

rk+1

(z − ρ)k+1

∣∣∣− [4{1 + 1
k
}A1rL+ 9

Ak+1
1

+O
(
(4r)k+1L

)]
.

(5.27)

To lower bound the remaining sum over zeros, we wish to apply Theorem 5.3.2. Denote

N = Nχ(Ar; 1 + iτ) = #{ρ : L(ρ, χ) = 0, |1 + iτ − ρ| ≤ Ar}.

Since λ < ε
A1
L < ε

A
L and ε < 1

8
, it follows by Lemma 3.2.4 and (5.17) that N ≤ 2φAλ + 8.

Define M := b2φAλ+8
α
c. Thus, from Theorem 5.3.2 and assumption (5.21),

∣∣∣ ∑
|1+iτ−ρ|≤Ar

1

(z − ρ)k+1

∣∣∣ ≥ ( α

4e(1 + α)

)2φAλ+8 1

(2r)k+1
(5.28)
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for some M + 1 ≤ k ≤M +N . To simplify the right hand side of (5.27), observe that

(4r)k+1L ≤ 4λ(4r)k � λ(4ε)kA−k1 � ελA−k1 , (5.29)

since r = λ
L <

ε
A1
< 1

4A1
by assumption. Moreover, our choice of A1 in (5.19) implies

A
−(k+1)
1 =

( α

4e(1 + α)

)αk 1

2k
· 1

A1(1 + η)k
≤
( α

4e(1 + α)

)2φAλ+8 1

2k+1
· 2

A1(1 + η)k
(5.30)

since αk ≥ α(M + 1) ≥ 2φAλ + 8. Incorporating (5.28)-(5.30) into (5.27) yields the desired
result. The range of k in Lemma 5.3.4 is determined by the above choice of M and N .

5.3.4 Short sum over prime ideals

Continuing with the discussion and notation of Section 5.3.3, from the Euler product for
L(s, χ∗), we have that

F (s) =
L′

L
(s, χ∗) = −

∑
n

χ∗(n)ΛK(n)(Nn)−s

for Re{s} > 1, where ΛK( · ) is given by (2.5). Differentiating the above formula k times, we
deduce that

(−1)k+1rk+1

k!
· F (k)(z) =

∑
n

ΛK(n)χ∗(n)

Nn1+r+iτ
· rJk(r log Nn) (5.31)

for any integer k ≥ 1, where z = 1 + r + iτ and Jk(u) = uk/k!. From Stirling’s bound (see
[oST]) in the form kke−k

√
2πk ≤ k! ≤ kke−k

√
2πke1/12k, one can verify that

Jk(u) ≤

A
−k
1 eu if u ≤ k

eA1

,

A−k1 e(1−ω)u if u ≥ 2
1−ω log

(
2A1

1−ω

)
k,

(5.32)

for any k ≥ 1 and A1 > 1, ω ∈ (0, 1) defined in Section 5.3.1. The goal of this subsection is to
bound the infinite sum in (5.31) by an integral average of short sums over prime ideals.

Lemma 5.3.5. Suppose the integer k is in the range given in Lemma 5.3.4. If λ < ε
A1
L then

∣∣∣∑
n

χ∗(n)ΛK(n)

Nn1+r+iτ
· rJk(r log Nn)

∣∣∣ ≤ r2

∫ x

y

∣∣∣ ∑
y≤Np<u

χ∗(p) log Np

Np1+iτ

∣∣∣du
u

+ (e[Y + 1
2

+ {2X + 1}e−ωλX +O(ε)]λ+ e1−ωλX/ω)A−k1 ,
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where x = eXL and y = eY L with X = Xλ, Y = Yλ defined by (5.20).

Proof. First, divide the sum on the left hand side into four sums:∑
n

=
∑
Np<y

+
∑

y≤Np<x

+
∑
Np≥x

+
∑

n not prime

= S1 + S2 + S3 + S4.

Observe that (5.20) and (5.32), along with the range of k in Lemma 5.3.4, imply that

Jk(r log Nn) ≤

A−k1 (Nn)r if Nn ≤ y,

A−k1 (Nn)(1−ω)r if Nn ≥ x.
(5.33)

Hence, for S1, it follows by Lemma 2.4.3 that

|S1| ≤ rA−k1

∑
Np<y

log Np

Np
≤ rA−k1 · e log(eD

1/2
K y) ≤ e

(
λY +

λ

2
+ ε
)
A−k1 ,

since r = λ
L < ε, logDK ≤ L, and y = eY L. Similarly, for S3, apply partial summation using

Lemma 2.4.3 to deduce that

|S3| ≤ rA−k1

∑
Np≥x

log Np

(Np)1+ωr
≤ rA−k1

∫ ∞
x

ωre log(eD
1/2
K t)

t1+ωr
dt ≤ ({X+ 1

2
}λ+ω−1 +ε)

e1−ωλX

Ak1
.

For S4, since uk

k!
≤ eu for u > 0, observe that

Jk(r log Nn) = (2r)k(1
2

log Nn)k/k! ≤ (2r)k(Nn)
1
2 .

Thus, by Lemma 2.4.3,

|S4| ≤ r
∑
p

∑
m≥2

log Np

(Npm)1+r
Jk(r log Npm) ≤ (2r)kr

∑
p

∑
m≥2

log Np

(Npm)1/2+r
� (2r)kr

∑
p

log Np

Np1+2r

� λεA−k1 ,

since logDK ≤ L and L−1 � r = λ
L < ε

A1
. Also note that ε ∈ (0, 1

8
) implies (2ε)k � ε.

Finally, for the main term S2, define

W (u) = Wχ(u; τ) :=
∑

y≤Np<u

χ(p) log Np

Np1+iτ
,
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so by partial summation,

S2 = rW (x)x−rJk(r log x)− r2

∫ x

y

W (u)
d

dt
[e−tJk(t)]

∣∣∣∣∣
t=r log u

du

u
(5.34)

as W (y) = 0. Similar to S1, S3, and S4, it follows from (5.33) and Lemma 2.4.3 that

|rW (x)x−rJk(r log x)| ≤ rA−k1 x−ωr
∑

y≤Np<x

ΛK(n)

Nn
≤ e
(
{X + 1

2
}λ+ ε

)
e−ωλXA−k1 .

Observe | d
dt

(e−tJk(t))| = |e−tJk−1(t)− e−tJk(t)| ≤ e−t[Jk−1(t) + Jk(t)] ≤ 1 from the defini-
tion of Jk(t) and since

∑∞
k=0 Jk(t) = et. Hence,

|S2| ≤ r2

∫ x

y

|W (u)|du
u

+ e
(
{X + 1

2
}λ+ ε

)
e−ωλXA−k1 .

Collecting all of our estimates, we conclude the desired result as λ ≥ λ0 � 1.

5.3.5 Proof of Proposition 5.3.1

If E0(χ)1{|τ |<Ar}(τ) = 1 then the inequality in Proposition 5.3.1 holds trivially, as the right
hand side is certainly less than 1. Thus, we may assume otherwise.

Combining Lemmas 5.3.4 and 5.3.5 via (5.31), it follows that

r2

∫ x

y

∣∣∣ ∑
y≤Np<u

χ∗(p) log Np

Np1+iτ

∣∣∣du
u
≥
( α

4e(1 + α)

)2φAλ+8

· 1

2k+1

{
1− J(λ)

}
, (5.35)

after boundingA−k1 as in (5.30) and noting k ≥ k0 in the range of Lemma 5.3.4. By assumption,
J(λ) < 1 and hence the right hand side of (5.35) is positive. Therefore, squaring both sides
and applying Cauchy-Schwarz to the left hand side gives

r4 log(x/y)

∫ x

y

∣∣∣ ∑
y≤Np<u

χ∗(p) log Np

Np1+iτ

∣∣∣2du
u
≥
( α

4e(1 + α)

)4φAλ+16

· 1

22k+2

{
1− J(λ)

}2
.

By assumption, y = eY L > e2L ≥ Nfχ, so it follows χ∗(p) = χ(p) for y ≤ Np < x so we may
replace χ∗ with χ in the above sum over prime ideals. Finally, we note k ≤ 1+α

α
(2φAλ + 8)

since k is in the range of Lemma 5.3.4, yielding the desired result.
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5.3.6 Proof of Theorem 5.3.3

For χ (modH), consider zeros ρ = β + iγ of L(s, χ) such that

1− λ/L ≤ β < 1, |γ| ≤ T. (5.36)

Denote λ? = ξλ and r? = λ?/L = ξ(1 − σ), so by (5.24) we have r? < ε
A1

. For any zero
ρ = β + iγ of L(s, χ), define Φρ,χ(τ) := 1{|1+iτ−ρ|≤r?}(τ). If ρ satisfies (5.36) then one can
verify by elementary arguments that

1

r?

∫ T

−T
Φρ,χ(τ)dτ ≥

√
ξ2 − 1

ξ
.

Applying Proposition 5.3.1 to such zeros ρ, it follows that∫ T

−T

1

r?
Φρ,χ(τ)

[
(r?)4 log(x/y)

∫ x

y

∣∣∣ ∑
y≤Np<u

χ(p) log Np

Np1+iτ

∣∣∣2du
u

+ E0(χ)1{|τ |<Ar?}(τ)
]
dτ

≥
√
ξ2 − 1

4ξ

( α

4e(1 + α)2(1+α)/α

)2φAξλ+16

×
{

1− J(ξλ)
}

=: w(λ),

say. Note x = eXL and y = eY L where X = Xλ? and Y = Yλ? . Summing over all zeros ρ of
L(s, χ) satisfying (5.36), we have that

w(λ)N(σ, T, χ) ≤ (X − Y )(2φr?L+ 8)(r?)3L
∫ x

y

(∫ T

−T

∣∣∣ ∑
y≤Np<u

χ(p) log Np

Np1+iτ

∣∣∣2dτ)du
u

+ E0(χ)(4φAr?L+ 16A),
(5.37)

because, by Lemma 3.2.4,∑
ρ

L(ρ,χ)=0

Φρ,χ(τ) = Nχ(r?; 1 + iτ) ≤ 2φr?L+ 8

for |τ | ≤ T and r? < ε. From the conditions on Y and T in (5.24) and the definition of L in
(5.17), observe that, for ν = ν(ε) > 0 sufficiently small, Lemma 2.4.6 implies that

y = eY L ≥ Cν{hHn(5/4+2υ)nK
K D

3/2+2υ
K Q1/2T nK/2+1}1+ν ,
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since υ ≤ 1
10

and Θ = Θ(ε) ≥ 1 is sufficiently large. Therefore, we may sum (5.37) over
χ (modH) and apply Theorem 5.2.2 with b(p) = log Np

Np
for y ≤ Np < u to deduce

w(λ)
∑

χ (modH)

N(σ, T, χ) ≤
(
C ′(2φr?L+ 8)(r?)3 +Oε

((r?)4L2

eεY L/2
)) ∫ x

y

∑
y≤Np<u

(log Np)2

Np

du

u

+ 4Aφr?L+ 16A, (5.38)

where C ′ = 5π(X − Y )(1 − 1
1+υ

)−1( 1
1+ε

Y − 4)−1. To calculate C ′, we replaced L′ (found
in Theorem 5.2.2) by observing from Lemma 2.4.6 that L′ + 1

1+ε
log hH ≤ 4L since T ≥

max{n5/6
K D

−4/3nK
K Q−4/9nK , 1} and Θ = Θ(ε) is sufficiently large. For the remaining integral

in (5.38), notice by Lemma 2.4.3 that

∫ x

y

∑
y≤Np<u

(log Np)2

Np

du

u
≤ log x

∫ x

y

e log(eD
1/2
K u)

du

u
≤ e

2
X(X − Y )(X + Y + 1 + 2

L)L3.

Substituting this estimate in (5.38) and recalling r? = λ?/L = ξλ/L, we have shown

w(λ)
∑

χ (modH)

N(σ, T, χ) ≤ 2φC ′′ξ4 · λ4 + 8C ′′ξ3 · λ3 + 4φAξ · λ+ 16A+Oε(λ
3Le−εL),

where C ′′ = e
2
X(X − Y )(X + Y + 1 + 2

L)C ′. Since L ≥ Θ and Θ is sufficiently large
depending on ε, the big-O error term above and the quantity 2

L in C ′′ may both be bounded by
ε. This completes the proof of Theorem 5.3.3.

5.4 Proofs of log-free zero density estimates

Having established Theorem 5.3.3, we may deduce Theorems 5.1.1 and 5.1.3.

5.4.1 Proof of Theorem 5.1.1

Without loss, we may assume H (mod q) is primitive because Q = QH = QH′ , hH = hH′ and∑
χ (modH)

N(σ, T, χ) =
∑

χ (modH′)

N(σ, T, χ)
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if H ′ induces H . Suppose 1
2
≤ σ ≤ 1− 0.05

4
. By a naive application of [LMO79, Lemma 2.1],

one can verify that for T ≥ 1,∑
χ (modH)

N(σ, T, χ)� hHT log(DKQT
nK )� (eO(nK)D2

KQT
nK+2)81(1−σ) (5.39)

after bounding hH with Lemma 2.4.6.

Now, let ε ∈ (0, 1/8) be fixed and define L as in (5.17). Suppose 1 − ε
4
< σ < 1. Let

R ≥ 1 be fixed and sufficiently large. By applying the bound in Lemma 2.4.6 to [Wei83,
Theorem 4.3], we deduce that for T ≥ 1,∑

χ (modH)

N(1− R
L , T, χ)� 1, (5.40)

so it suffices to bound
∑

χ (modH) N(σ, T, χ) in the range

1− ε

4
< σ < 1− R

L
. (5.41)

Equivalently, if σ = 1 − λ
L then we consider the range R < λ < ε

4
L. According to Theo-

rem 5.3.3 and the notation defined in Section 5.3.1, select

ξ = 1 + 10−5, υ = 10−5, η = 10−5, ω = 10−5, and α = 0.15.

It follows that the constants B2, C0, C1, C3, C4 in Theorem 5.3.3 are bounded absolutely,

X > Y > 4.6, B1 ≤ 146.15φ, and ξA1 < 4

where φ = 1 + 4
π
ε + 16ε2 + 340ε10. Moreover, since λ > R, J(ξλ)� λ

(1+10−5)λ
� R

(1+10−5)R

and therefore J(ξλ) < 1
2

for R sufficiently large. Thus, by Theorem 5.3.3,∑
χ (modH)

N(σ, T, χ)� λ4e146.15φλ � e146.2φλ = e146.2φ(1−σ)L (5.42)

for σ satisfying (5.41) and T ≥ max{n5/6
K D

−4/3nK
K Q−4/9nK , 1}. To complete the proof of

Theorem 5.1.1, it remains to choose ε in (5.42). If ε = 0.05 then 146.2φ < 162 = 2·81 yielding
the desired result when combined with (5.39). If ε = 10−3 then 146.2φ < 147 = 2 · 73.5 as
claimed.
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5.4.2 Proof of Theorem 5.1.3

For T ≥ 1, set T0 := max{n5/6
K D

−4/3nK
K Q−4/9nK , T}. Comparing L = LT0,δ0 given by (5.17)

with L given by (5.3), one may deduce L ≤ L for L sufficiently large depending only on T .
Hence, for λ > 0 and L sufficiently large depending only on T , we have that

N (λ) = NH(λ) =
∑

χ (modH)

N(1− λ
L
, T, χ) ≤

∑
χ (modH)

N(1− λ
L , T, χ), (5.43)

where N(σ, T, χ) defined in (5.23). For λ ≤ 0.2866, the result follows as N (0.2866) ≤ 2 by
Theorem 4.1.2. For each fixed value of 0.2866 ≤ λ ≤ 1 appearing in Table 5.1, we apply
Theorem 5.3.3 with υ = 0.1 and ε ∈ (0, 10−5) assumed to be fixed and sufficiently small; this
yields a bound forN (λL /L). By (5.43), the same bound holds forN (λ). Using MATLAB, we
roughly optimize the bound in Theorem 5.3.3 by numerical experimentation over the remaining
parameters (α, η, ω, ξ) which produces Table 5.1. Note that we have verified J(ξλ) < 1 and
Xξλ > Yξλ > 4.6 in each case. It remains to consider λ ≥ 1. Apply Theorem 5.3.3 with

T = 1, λ0 = 1, α = 0.1549, η = 0.05722,

ε = 10−5, υ = 0.1, ξ = 1.0030, ω = 0.02074.

This choice of values is motivated by the last row of Table 5.1, but with a more suitable choice
for α. With this selection, one can check that for any λ ≥ 1,

4.61 ≤ Yξλ ≤ 9.2, 264 ≤ Xξλ ≤ 526, J(ξλ) ≤ 0.272.

These inequalities can be verified by elementary arguments and the definitions in Section 5.3.1
and (5.22). In particular, for any λ ≥ 1, the assumptions of Theorem 5.3.3 are satisfied for all
1 ≤ λ < ε0L . Denoting C4, C3, C1, C0, B2, B1 as in Theorem 5.3.3, it follows that:

C4 = C4(λ) ≤ 6.0× 1013, C1 ≤ 17, B2 ≤ 154,

C3 = C3(λ) ≤ 2.4× 1014, C0 ≤ 65, B1 ≤ 156,

for λ ≥ 1. Thus, by Theorem 5.3.3, for 1 ≤ λ ≤ ε0L ,

N (λ) ≤ 52
(
6.0× 1013 · λ4 + 2.4× 1014 · λ3 + 17 · λ+ 65

)
e156λ+154

≤ 52 · 6.7× 1012 ·
((6λ)4

4!
+

(6λ)3

3!
+ 6λ+ 1

)
e156λ+154

≤ 52 · 6.7× 1012 · e162λ+154 ≤ e162λ+188.



Chapter 6

Deuring–Heilbronn phenomenon

“Everybody, try laughing. Then whatever scares you will go away!”

– Tatsuo Kusakabe, My Neighbor Totoro.

The Deuring–Heilbronn phenomenon for Hecke L-functions quantifies the zero repulsion
effect of a simple real zero attached to a real (possibly trivial) Hecke character all the way
to the critical line. In this chapter, we establish explicit variants of the Deuring–Heilbronn
phenomenon for the Dedekind zeta function of a number fieldK and for the Hecke L-functions
of characters χ (modH) where H is an arbitrary congruence class group of K. As usual, we
retain the notation of Chapter 2 only.

The only known proof method which retains the appropriate field uniformity utilizes power
sums. This technique originates from the work of Lagarias–Montgomery–Odlyzko [LMO79,
Theorem 5.1] and appears again in a paper of Weiss [Wei83, Theorem 4.3]. In all cases, our
approach follows the general structure of [LMO79, Theorem 5.1] with a more careful analysis.

6.1 Statement of results

We begin by stating a variant for Hecke L-functions.

Theorem 6.1.1. Let H be a congruence class group of a number field K with Q = QH given

by (2.2). Let ψ (modH) be a real Hecke character and suppose L(s, ψ) has a real zero β1. Let

T ≥ 1 be arbitrary, and χ (modH) be an arbitrary Hecke character. Let ρ′ = β′ + iγ′ be a

zero of L(s, χ) satisfying 1
2
≤ β′ < 1 and |γ′| ≤ T . Then, for ε > 0 arbitrary,

β′ ≤ 1−
log
( cε

(1− β1) log(DK ·Q · T nKeOε(nK))

)
b1 logDK + b2 logQ+ b3nK log T +Oε(nK)

138
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for some absolute effective constant cε > 0, where

(b1, b2, b3) =

(48 + ε, 60 + ε, 24 + ε) if ψ is quadratic,

(24 + ε, 12 + ε, 12 + ε) if ψ is trivial.

The above result is the first explicit variant of its kind. To prove Theorem 1.3.1, we need to
quantify the Deuring–Heilbronn phenomenon for only the Dedekind zeta function ofK, which
is the special case when ψ and χ are both trivial in Theorem 6.1.1. However, we will require
the following more precise version.

Theorem 6.1.2. Let K be an arbitrary number field and T ≥ 1 be fixed. Suppose ζK(s) has a

real zero β1 and let ρ′ = β′ + iγ′ be another zero of ζK(s) satisfying

1
2
≤ β′ < 1 and |γ′| ≤ T. (6.1)

Then, for DK sufficiently large,

β′ ≤ 1−
log
( c

(1− β1) logDK

)
C logDK

,

where c = c(T ) > 0 and C = C(T ) > 0 are absolute effective constants. In particular, one

may take T and C = C(T ) according to the table below.

T 1 3.5 8.7 22 54 134 332 825 2048 5089 12646

C 31.4 32.7 35.0 38.4 42.0 45.9 49.7 53.6 57.4 61.2 65.0

Remark.

(i) This result for general T ≥ 1 follows from [LMO79, Theorem 5.1] but our primary
concern is verifying the table of values for T and C. The choices of T in the given table
are obviously not special; one can compute C for any fixed T by a simple modification
to our argument below. We made these selections primarily for their application in the
proof of Theorem 1.3.1.

(ii) If nK = o(logDK) then one can take C = 24.01 for any fixed T .

(iii) Kadiri and Ng [KN12] alternatively show that if

1− log logDK

13.84 logDK

≤ β′ < 1 and |γ′| ≤ 1 (6.2)
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and DK is sufficiently large then

β′ ≤ 1−
log
( 1

(1− β1) logDK

)
1.53 logDL

.

While the repulsion constant 1.53 is much better than 31.4 given by Theorem 6.1.1, the
permitted range of β′ in (6.1) is much larger than that of (6.2) therefore allowing The-
orem 6.1.2 to deal with Siegel zeros which are extremely close to 1. Thus, to distin-
guish this feature, we refer to Kadiri and Ng’s result as “zero repulsion” whereas Theo-
rem 6.1.2 is “Deuring–Heilbronn” phenomenon. The same type of comment holds true
when comparing Theorem 4.1.3 (zero repulsion) with Theorem 6.1.1 (Deuring–Heilbronn
phenomenon).

If ρ′ is a real zero in Theorem 6.1.2, then one can improve upon the above theorem.

Theorem 6.1.3. Suppose ζK(s) has a real zero β1 and let β′ be another real zero of ζK(s)

satisfying 0 < β′ < 1. Then, for DK sufficiently large,

β′ ≤ 1−
log
( c

(1− β1) logDK

)
16.6 logDK

,

where c > 0 is an absolute effective constant.

Remark. If nK = o(logDK) then 16.6 can be replaced by 12.01.

Applying the above theorem to the zero β′ = 1 − β1 of ζK(s) immediately yields the
following corollary which will play a key role in our proof of Theorem 1.3.1.

Corollary 6.1.4. Suppose ζK(s) has a real zero β1. Then, for DK sufficiently large,

1− β1 � D−16.6
K ,

where the implicit constant is absolute and effective.

Remark. Corollary 6.1.4 makes explicit [LMO79, Corollary 5.2] and so, as remarked therein,
Stark [Sta74] gives a better lower bound for 1− β1 when K has a tower of normal extensions
with base Q. However, if logDK = o(nK log nK) then the above bound is superior to [Sta74].
This condition on logDK holds, for example, when K runs through an infinite `-class field
tower above some fixed number field F 6= Q and for some fixed prime `.
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6.2 Preliminaries

6.2.1 Power sum inequality

We record a power sum inequality and its proof from [LMO79, Theorem 4.2] specialized to
our intended application.

Lemma 6.2.1. Define

P (r, θ) :=
J∑
j=1

(
1− j

J + 1

)
rj cos(jθ).

Then

(i) P (r, θ) ≥ −1
2

for 0 ≤ r ≤ 1 and all θ.

(ii) P (1, 0) = J/2.

(iii) |P (r, θ)| ≤ 3
2
r for 0 ≤ r ≤ 1/3.

Proof. See [LMO79, Lemma 4.1] for details.

Theorem 6.2.2 (Lagarias–Montgomery–Odlyzko). Let ε > 0 and a sequence of complex num-

bers {zn}n be given. Let sm =
∑∞

n=1 z
m
n and suppose that |zn| ≤ |z1| for all n ≥ 1. Define

M :=
1

|z1|
∑
n

|zn|. (6.3)

Then there exists m0 with 1 ≤ m0 ≤ (12 + ε)M such that

Re{sm0} ≥
ε

48 + 5ε
|z1|m0 .

Proof. This is a simplified version of [LMO79, Theorem 4.2]; our focus was to reduce their
constant 24 to 12 + ε by some minor modifications. We reiterate the proof here for clarity.
Rescaling we may suppose |z1| = 1. Write zn = rn exp(iθn) so rn ∈ [0, 1]. Then

SJ :=
J∑
j=1

(
1− j

J + 1

)
Re{sj}(1 + cos jθ1)

=
∞∑
n=1

J∑
j=1

(
1− j

J + 1

)
(cos jθn)(1 + cos jθ1)rjn

=
∞∑
n=1

{
P (rn, θn) + 1

2
P (rn, θn − θ1) + 1

2
P (rn, θn + θ1)

}
.
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Using Lemma 6.2.1, we lower bound the contribution of each term. For n = 1, we obtain a
contribution ≥

(
J+1

4
− r1

)
. Terms n > 1 satisfying rn ≥ 1/3 contribute ≥ −1 ≥ −3rn. Each

of the remaining terms satisfying rn < 1/3 are bounded using Lemma 6.2.1(iii) and therefore
contribute ≥ −3rn. Choosing J = b(12 + ε)Mc, we deduce that

SJ ≥
J + 1

4
− 3M ≥ εM

4
, (6.4)

as J+1 ≥ (12+ε)M . Now, suppose for a contradiction that Re{sj} < ε
48+5ε

for all 1 ≤ j ≤ J .
Then, as (1− j

J+1
)(1 + cos jθ1) is non-negative for all 1 ≤ j ≤ J ,

SJ ≤
ε

48 + 5ε

J∑
j=1

(
1− j

J + 1

)
(1 + cos jθ1) <

ε

48 + 5ε
· 2P (1, 0) =

εJ

48 + 5ε
.

Comparing with (6.4) and noting J ≤ (12 + ε)M , we obtain a contradiction.

6.2.2 Technical estimates for Hecke L-functions

In this subsection, we consider HeckeL-functions and certain sums over their zeros, both trivial
and non-trivial.

Lemma 6.2.3. Let χ (mod q) be a Hecke character. For σ ≥ 2 and t ∈ R,

−Re
{L′
L

(σ + it, χ)
}
≤ −Re

{L′
L

(σ + it, χ∗)
}

+
1

2σ − 1

(
nK + log Nq

)
,

where χ∗ (mod fχ) is the primitive character inducing χ.

Proof. By definition,

L(s, χ) = P (s, χ)L(s, χ∗), where P (s, χ) =
∏
p|q
p-fχ

(
1− χ∗(p)

Nps

)
.

Hence, it suffices to show |P ′
P

(s, χ)| ≤ 1
2σ−1

(nK + log Nq). Observe that

∣∣∣P ′
P

(s, χ)
∣∣∣ =

∣∣∣∑
p|q
p-fχ

∞∑
k=1

χ∗(pk) log Npk

k(Npk)s

∣∣∣ =
∑
p|q

log Np

Npσ − 1
≤ 1

1− 2−σ
· 1

2σ−1

∑
p|q

log Np

Np
.

We bound the remaining sum by taking ε = 1 in Lemma 2.4.4. This yields the desired estimate.
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Lemma 6.2.4. Let χ (mod q) be a Hecke character. For σ > 1 and t ∈ R,

∑
ω trivial

1

|σ + it− ω|2
≤


(

1
2σ

+ 1
σ2

)
· nK if χ is primitive,(

1
2σ

+ 1
σ2

)
· nK +

(
1

2σ
+ 2

σ2 log 2

)
· log Nq unconditionally,

where the sum is over all trivial zeros ω of L(s, χ), counted with multiplicity.

Proof. Suppose χ (mod q) is induced by the primitive character χ∗ (mod fχ). Then

L(s, χ) = P (s, χ)L(s, χ∗), where P (s, χ) =
∏

p|q, p-fχ

(
1− χ∗(p)

Nps

)

for all s ∈ C. Thus, the trivial zeros of L(s, χ) are zeros of the finite Euler product P (s, χ) or
trivial zeros of L(s, χ∗). We consider each separately. From (2.8) and (2.5), observe that

∑
ω trivial

L(ω,χ∗)=0

1

|σ + it− ω|2
≤ a(χ)

∞∑
k=0

1

(σ + 2k)2 + t2
+ b(χ)

∞∑
k=0

1

(σ + 2k + 1)2 + t2

≤ nK

∞∑
k=0

1

(σ + 2k)2
≤
( 1

2σ
+

1

σ2

)
nK .

Now, if χ is primitive then P (s, χ) ≡ 1 and hence never vanishes. Otherwise, notice the
zeros of each p-factor in the Euler product of P (s, χ) are totally imaginary and are given by
aχ(p)i+ 2πiZ

log Np
for some 0 ≤ aχ(p) < 2π/ log Np. Translating these zeros ω 7→ ω+ it amounts

to choosing another representative 0 ≤ bχ(p; t) < 2π/ log Np. Therefore,

∑
ω trivial
P (ω,χ)=0

1

|σ + it− ω|2
≤ 2

∑
p|q
p-fχ

∞∑
k=0

1

σ2 + (2πk/ log Np)2
≤
( 1

2σ
+

2

σ2 log 2

)
log Nq,

as required.

Lemma 6.2.5. Let H be a congruence class group of the number field K. Suppose ψ (modH)

is real and χ (modH) is arbitrary. For σ = α + 1 with α ≥ 1 and t ∈ R,

∑
ρ

ζK(ρ)=0

1

|σ − ρ|2
+

∑
ρ

L(ρ,ψ)=0

1

|σ − ρ|2
+

∑
ρ

L(ρ,χ)=0

1

|σ + it− ρ|2
+

∑
ρ

L(ρ,ψχ)=0

1

|σ + it− ρ|2

≤ 1

α
·
[1

2
log(D3

KQ
2Dψ) +

(
log(α + 2) +

2

α + 1
+

1

2α+1 − 1
− 2 log π

)
nK

+ nK log(α + 2 + |t|) +
2

2α+1 − 1
logQ+

4

α
+

4

α + 1

]
,
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where the sums are over all non-trivial zeros of the corresponding L-functions.

Remark. If ψ is trivial, notice that the left hand side equals

2
( ∑

ρ
ζK(ρ)=0

1

|σ − ρ|2
+

∑
ρ

L(ρ,χ)=0

1

|σ + it− ρ|2
)
.

This additional factor of 2 will be useful to us later.

Proof. Suppose ψ and χ are induced from the primitive characters ψ∗ and χ∗ respectively.
From the identity 0 ≤ (1 + ψ∗(n))(1 + Re{χ∗(n)(Nn)−it}), it follows that

0 ≤ −Re
{ζ ′K
ζK

(σ) +
L′

L
(σ, ψ∗) +

L′

L
(σ + it, χ∗) +

L′

L
(σ + it, ψ∗χ∗)

}
. (6.5)

The first three L-functions are primitive, but ξ := ψ∗χ∗ is not necessarily primitive. Note ξ is
a character modulo [fχ, fψ], the least common multiple of fψ and fχ. Hence, by Lemma 6.2.3,
we deduce that

0 ≤ −Re
{ζ ′K
ζK

(σ) +
L′

L
(σ, ψ∗) +

L′

L
(σ + it, χ∗) +

L′

L
(σ + it, ξ∗)

}
+
nK + log N[fχ, fψ]

2σ − 1
.

Note N[fχ, fψ] ≤ Q2 since ψ and χ are both characters trivial on the congruence subgroup H
and therefore the norms of their respective conductors are bounded by Q. Substituting this
bound into the above, we apply Lemmas 2.2.1 and 2.3.3 to each term. We deduce that

0 ≤ 1
2

log(DKDψDχDξ) +
2

2σ − 1
logQ+ nK log(σ + 1 + |t|) + AσnK

− Re
{ ∑

ρ
ζK(ρ)=0

1

σ − ρ
+

∑
ρ

L(ρ,ψ)=0

1

σ − ρ
+

∑
ρ

L(ρ,χ)=0

1

σ + it− ρ
+

∑
ρ

L(ρ,ψχ)=0

1

σ + it− ρ

}

+
1 + E0(ψ)

α
+

1 + E0(ψ)

α + 1
+ Re

{E0(χ) + E0(χψ)

α + it
+
E0(χ) + E0(χψ)

α + 1 + it

}
,

(6.6)
where Aσ = log(σ+ 1) + 2

σ
+ 1

2σ−1
− 2 log π. Since 0 < β < 1, notice Re{ 1

σ+it−ρ} ≥
α

|σ+it−ρ|2

and Re{ 1
α+it

+ 1
α+1+it

} ≤ 1
α

+ 1
α+1

. Further, Dχ and Dξ are both≤ DKQ as ξ = ψ∗χ∗ induces
the character ψχ (mod q) which is trivial on H . Rearranging (6.6) and employing all of the
subsequent observations gives the desired conclusion.
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6.2.3 Technical estimates for the Dedekind zeta function

In this subsection, we consider the Dedekind zeta function of a number field K and certain
sums over its zeros, both trivial and non-trivial. The estimates are similar to the previous
subsection on Hecke L-functions but, for some applications, we will desire precise numerical
estimates for the special case of the Dedekind zeta function. Recall the notation defined in
Chapter 2, especially Section 2.2.

Lemma 6.2.6. For α > 0 and t ≥ 0,

Re
{γ′K
γK

(α + 1) +
γ′K
γK

(α + 1± it)
}

= G1(α; t) · r1 +G2(α; t) · 2r2,

where

G1(α; t) :=
∆(α + 1, 0) + ∆(α + 1, t)

2
− log π,

G2(α; t) :=
∆(α + 1, 0) + ∆(α + 2, 0) + ∆(α + 1, t) + ∆(α + 2, t)

4
− log π,

(6.7)

and ∆(x, y) = Re{Γ′

Γ
(x+iy

2
)}.

Remark. For fixed α > 0 and j = 1 or 2, observe that Gj(α; t) is increasing as a function of
t ≥ 0 by [AK14, Lemma 2].

Proof. Denote σ = α + 1. As ∆(x, y) = ∆(x,−y), we may assume t ≥ 0. From (2.11), it
follows that

Re
{γ′K
γK

(σ + it)
}

=
1

2

[
(r1 + r2)∆(σ, t) + r2∆(σ + 1, t)− (r1 + 2r2) log π

]
=

1

2

[
r1(∆(σ, t)− log π) + 2r2 · (∆(σ,t)+∆(σ+1,t)

2
− log π)

]
.

Using the same identity for t = 0 gives the desired result.

Lemma 6.2.7. For α ≥ 1 and t ∈ R,∑
ω trivial

1

|α + 1 + it− ω|2
≤ W1(α) · r1 +W2(α) · r2,

where the sum is over all trivial zeros ω of ζK(s),

W1(α) =
∞∑
k=0

1

(α + 1 + 2k)2
, and W2(α) =

∞∑
k=0

1

(α + 1 + k)2
.
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Proof. This follows immediately from (2.13).

Lemma 6.2.8. For α ≥ 1 and t ∈ R,∑
ρ

( 1

|α + 1− ρ|2
+

1

|α + 1 + it− ρ|2
)

≤ 1

α

(
logDK +G1(α; |t|) · r1 +G2(α; |t|) · 2r2

)
+

2

α2
+

2

α + α2
.

(6.8)

where the sum is over all non-trivial zeros ρ of ζK(s) and Gj(α, |t|) are defined by (6.7).

Proof. We combine the inequality

0 ≤ −Re
{ζ ′K
ζK

(α + 1) +
ζ ′K
ζK

(α + 1 + it)
}

with Lemmas 2.2.1 and 6.2.6 to deduce that

0 ≤ logDK +G1(α; |t|) · r1 +G2(α; |t|) · 2r2 + Re
{ 1

α + it
+

1

α + 1 + it

}
−
∑
ρ

Re
{ 1

α + 1− ρ
+

1

α + 1 + it− ρ

}
+

1

α
+

1

α + 1
.

(6.9)

Observe, as β ∈ (0, 1),

Re
{ 1

α + 1 + it− ρ

}
=

α + 1− β
|α + 1 + it− ρ|2

≥ α

|α + 1 + it− ρ|2

and
Re
{ 1

α + it
+

1

α + 1 + it

}
≤ 1

α
+

1

α + 1
.

We rearrange (6.9) and employ these observations to deduce (6.8).

6.3 Proofs of Deuring–Heilbronn phenomenon

6.3.1 Proof of Theorem 6.1.1

RecallH (mod q) is an arbitrary congruence class group of a number fieldK. If H̃ (modm) in-
duces H (mod q), then a character χ (modH) is induced by a character χ̃ (mod H̃). It follows
that

L(s, χ) = L(s, χ̃)
∏
p|q
p-m

(
1− χ̃(p)

Nps

)
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for all s ∈ C. This implies that the non-trivial zeros of L(s, χ) are the same non-trivial zeros
of L(s, χ̃). Therefore, without loss of generality, we may assume H (mod q) is primitive.

We divide the proof according to whether ψ is quadratic or trivial. The arguments in each
case are similar but require some minor modifications.

ψ is quadratic.

Let m be a positive integer, α ≥ 1 and σ = α + 1. From the identity 0 ≤ (1 + ψ∗(n))(1 +

Re{χ∗(n)(Nn)−iγ
′}) and Lemma 2.3.6 with s = σ + iγ′, it follows that

Re
{ ∞∑
n=1

zmn

}
≤ 1

αm
− 1

(α + 1− β1)2m
+ Re

{δ(χ) + δ(ψχ)

(α + iγ′)2m
− δ(χ) + δ(ψχ)

(α + 1 + iγ′ − β1)2m

}
,

(6.10)
where zn = zn(γ′) satisfies |z1| ≥ |z2| ≥ . . . and runs over the multisets

{(σ − ω)−2 : ω is any zero of ζK(s)},

{(σ − ω)−2 : ω 6= β1 is any zero of L(s, ψ∗)},

{(σ + iγ′ − ω)−2 : ω 6= β1 is any zero of L(s, χ∗)},

{(σ + iγ′ − ω)−2 : ω 6= β1 is any zero of L(s, ψ∗χ∗)}.

(6.11)

Note that the multisets includes trivial zeros of the corresponding L-functions and ψ∗χ∗ is a
Hecke character (not necessarily primitive) modulo the least common multiple of fχ and fψ.
With this choice, it follows that

(α + 1/2)−2 ≤ (α + 1− β′)−2 ≤ |z1| ≤ α−2. (6.12)

The right hand side of (6.10) may be bounded via the observation∣∣∣ 1

(α + it)2m
− 1

(α + it+ 1− β1)2m

∣∣∣ ≤ α−2m
∣∣∣1− 1

(1 + 1−β1
α+it

)2m

∣∣∣� α−2m−1m(1− β1),

whence

Re
{ ∞∑
n=1

zmn

}
� α−2m−1m(1− β1). (6.13)
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On the other hand, by Theorem 6.2.2, for ε > 0, there exists some m0 = m0(ε) with 1 ≤ m0 ≤
(12 + ε)M such that

Re
{ ∞∑
n=1

zm0
n

}
≥ ε

50
|z1|m0 ≥ ε

50
(α + 1− β′)−2m0 ≥ ε

50
α−2m0 exp(−2m0

α
(1− β′)),

where M = |z1|−1
∑∞

n=1 |zn|. Comparing with (6.23) for m = m0, it follows that

exp(−(24 + 2ε)M
α

(1− β′))�ε
M
α

(1− β1). (6.14)

Therefore, it suffices to bound M/α and optimize over α ≥ 1.

By (6.11), the quantity M is a sum involving non-trivial and trivial zeros of certain L-
functions. For the non-trivial zeros, we employ Lemma 6.2.5 with Dψ = DKNfψ ≤ DKQ

since ψ is quadratic. For the trivial zeros, apply Lemma 6.2.4 in the “primitive” case for
ζK(s), L(s, ψ∗), L(s, χ∗) and in the “unconditional” case for L(s, ψ∗χ∗). In the latter case,
we additionally observe that, as H (mod q) is primitive, log Nq ≤ 2 logQ by Lemma 2.4.7.
Combining these steps along with (6.22), it follows that

M

α
≤ (α + 1/2)2

α2
·
[
2 logDK +

(3

2
+

2α

2α + 2
+

4α

(α + 1)2 log 2
+

2

2α+1 − 1

)
logQ

+
(

log(α + 2) + log(α + 3) + 2− 2 log π +
4α

(α + 1)2
+

1

2α+1 − 1

)
nK

+ nK log T +
4

α
+

4

α + 1

]
,

(6.15)
for α ≥ 1. Note, in applying Lemma 6.2.5, we used that log(α+ 2 + T ) ≤ log(α+ 3) + log T

for T ≥ 1. Finally, select α sufficiently large, depending on ε > 0, so the right hand side of
(6.15) is

≤ (2 + ε
100

) logDK + (2.5 + ε
100

) logQ+ (1 + ε
100

)nK log T +Oε(nK).

Substituting the resulting bounds in (6.14) completes the proof of Theorem 6.1.1 forψ quadratic.

ψ is trivial.

Begin with the identity 0 ≤ 1 + Re{χ∗(n)(Nn)−iγ
′}. This similarly implies

Re
{ ∞∑
n=1

zmn

}
≤ 1

αm
− 1

(α + 1− β1)2m
+ Re

{ δ(χ)

(α + iγ′)2m
− δ(χ)

(α + 1 + iγ′ − β1)2m

}
(6.16)
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for a new choice zn = zn(γ′) satisfying |z1| ≥ |z2| ≥ . . . and which runs over the multisets

{(σ − ω)−2 : ω 6= β1 is any zero of ζK(s)},

{(σ + iγ′ − ω)−2 : ω 6= β1 is any zero of L(s, χ∗)}.
(6.17)

Following the same arguments as before, we may arrive at (6.24) for the new quantity M =

|z1|−1
∑∞

n=1 |zn|. To bound the non-trivial zeros arising in M , apply Lemma 6.2.5 with Dψ =

DK since ψ is trivial. For the trivial zeros, apply Lemma 6.2.4 in the “primitive” case for both
ζK(s) and L(s, χ∗). It follows from (6.22) that, for α ≥ 1,

M

α
≤ (α + 1/2)2

α2
·
[

logDK +
(1

2
+

1

2α+1 − 1

)
logQ+

1

2
nK log T +

2

α
+

2

α + 1

+
(1

2
log(α + 2) +

1

2
log(α + 3) + 1− log π +

2α

(α + 1)2
+

1/2

2α+1 − 1

)
nK

]
.

(6.18)

Again, we select α sufficiently large, depending on ε > 0, so the right hand side of (6.18) is

≤ (1 + ε
50

) logDK + (0.5 + ε
50

) logQ+ (0.5 + ε
50

)nK log T +Oε(nK).

Substituting the resulting bound into (6.14) completes the proof of Theorem 6.1.1.

Remark. To obtain a more explicit version of Theorem 6.1.1, the only difference in the proof
is selecting an explicit value of α, say α = 18, in the final step of each case. The possible
choice of α is somewhat arbitrary because the coefficients of logDK , logQ and nK in (6.15)
and (6.18) cannot be simultaneously minimized. Hence, in the interest of having relatively
small coefficients of comparable size for all quantities, one could choose the value α = 18.

6.3.2 Proof of Theorem 6.1.2

Let m be a positive integer and α ≥ 1. From [LMO79, Equation (5.4)] with s = α + 1 + iγ′,
it follows that

Re
{ ∞∑
n=1

zmn

}
≤ 1

αm
− 1

(α + 1− β1)2m
+Re

{ 1

(α + iγ′)2m
− 1

(α + iγ′ + 1− β1)2m

}
, (6.19)

where zn satisfies |z1| ≥ |z2| ≥ . . . and runs over the multisets

{(α + 1− ω)−2 : ω 6= β1 is any zero of ζL(s)},

{(α + 1 + iγ′ − ω)−2 : ω 6= β1 is any zero of ζL(s)}.
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If ω is a trivial zero (and hence a non-positive integer by (2.13)) then (α+ 1−ω)−2 ≥ 0. Thus,
for any zn = (α+ 1− ω)−2 in (6.19) corresponding to a trivial zero ω, we have zmn ≥ 0 so we
may discard such zn. It follows that

Re
{ ∞∑
n=1

z̃mn

}
≤ 1

αm
− 1

(α + 1− β1)2m
, (6.20)

where z̃n satisfies |z̃1| ≥ |z̃2| ≥ . . . and runs over the new multisets

{(α + 1− ω)−2 : ω 6= β1 is any non-trivial zero of ζL(s)},

{(α + 1 + iγ′ − ω)−2 : ω 6= β1 is any zero of ζL(s)}.
(6.21)

As ρ′ = β′ + iγ′ belongs to the latter multiset, it follows that

(α + 1− β′)−2 ≤ |z̃1| ≤ α−2. (6.22)

Since∣∣∣ 1

(α + it)2m
− 1

(α + it+ 1− β1)2m

∣∣∣ ≤ α−2m
∣∣∣1− 1

(1 + 1−β1
α+it

)2m

∣∣∣� α−2m−1m(1− β1),

equation (6.20) becomes

Re
{ ∞∑
n=1

z̃mn

}
� α−2m−1m(1− β1). (6.23)

On the other hand, by Theorem 6.2.2, for ε > 0, there exists some m0 = m0(ε) with 1 ≤ m0 ≤
(12 + ε)M such that

Re
{ ∞∑
n=1

z̃m0
n

}
≥ ε

50
|z̃1|m0 ≥ ε

50
(α + 1− β′)−2m0 ≥ ε

50
α−2m0 exp(−2m0

α
(1− β′)),

where M = |z̃1|−1
∑∞

n=1 |z̃n| according to our parameters z̃n in (6.21). Comparing with (6.23)
for m = m0, we have that

exp(−(24 + 2ε)M
α

(1− β′))�ε
M
α

(1− β1). (6.24)
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Therefore, it suffices to bound M/α and optimize over α ≥ 1. By Lemmas 6.2.7 and 6.2.8 and
(6.22), notice that

M

α
≤ (α + 1− β′)2

α
·
{ 1

α
logDK +

(G1(α; |γ′|)
α

+W1(α)
)
· r1

+
(G2(α; |γ′|)

α
+

1

2
W2(α)

)
· 2r2 +

2

α2
+

2

α + α2

} (6.25)

for α ≥ 1. To simplify the above, we note 1 − β′ ≤ 1/2 by assumption and Gj(α; |γ′|) ≤
Gj(α;T ) for j = 1, 2 by the remark following Lemma 6.2.6. Also in (6.25), if a coefficient of
r1 or r2 is positive, we employ an estimate of Odlyzko [Odl77] which implies

(log 60) · r1 + (log 22) · 2r2 ≤ logDK (6.26)

for DK sufficiently large. With these observations, it follows that

M

α
≤ (α + 1/2)2

α

[( 1

α
+ max

{G1(α;T ) + αW1(α)

α log 60
,
G2(α;T ) + 1

2
αW2(α)

α log 22
, 0
})

logDK

+
2

α2
+

2

α + α2

]
.

Seeking to minimize the coefficient of logDK , after some numerical calculations, we choose
α = α(T ) according to the following table:

T 1 3.5 8.7 22 54 134 332 825 2048 5089 12646

α 3.50 3.77 5.39 7.30 8.92 10.17 11.21 12.26 13.22 14.17 15.23

To complete the proof for T = 1, say, the corresponding choice of α = 3.50 implies

M

α
≤ 1.3067 logDK

forDK sufficiently large. Substituting this bound into (6.24) and fixing ε > 0 sufficiently small
yields the desired result since 24× 1.3067 < 31.4. The other cases follow similarly.

Remark. To clarify remark (ii) following Theorem 6.1.2, notice that if nK = o(logDK) then
the coefficients of r1 and r2 in (6.25) can be made arbitrary small for DK sufficiently large
depending on α ≥ 1. Fixing α sufficiently large (depending on T ) gives

M/α ≤ 1.0001 logDK

for DK sufficiently large. As 24× 1.0001 < 24.01 the remark follows.
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6.3.3 Proof of Theorem 6.1.3

The proof is very similar to the above proof for Theorem 6.1.2. Recall β′ 6= β1 is now a real
zero of ζK(s), i.e. γ′ = 0. Arguing as in the proof of Theorem 6.1.2, we deduce that

Re
{ ∞∑
n=1

z̃mn

}
≤ 1

αm
− 1

(α + 1− β1)2m
, (6.27)

where z̃n satisfies |z̃1| ≥ |z̃2| ≥ . . . and runs over the multiset

{(α + 1− ρ)−2 : ρ 6= β1 is any non-trivial zero of ζK(s)}. (6.28)

Note we again discarded the trivial zeros by positivity. Equation (6.22) still holds for z̃1 and
we argue similarly to deduce (6.24) holds forM = |z̃1|−1

∑
n |z̃n|. Thus, by Lemma 6.2.8 with

t = 0, we deduce that

M̃

α
≤ (α + 1− β′)2

2α
·
{ 1

α
logDK +

G1(α; 0)

α
· r1 +

G2(α; 0)

α
· 2r2 +

2

α2
+

2

α + α2

}
(6.29)

for α ≥ 1. Notice, in particular, the additional factor of 2 in the denominator and the lack of
W1(α) and W2(α) terms as compared to (6.25). Continuing to argue analogously, we simplify
the above by noting 1− β′ < 1 and apply Odlyzko’s bound (6.26) to conclude that

M̃

α
≤ (α + 1)2

2α

[( 1

α
+ max

{G1(α; 0)

α log 60
,
G2(α; 0)

α log 22
, 0
})

logDK +
2

α2
+

2

α + α2

]
for DK sufficiently large. Selecting α = 5.8 gives

M̃

α
≤ 0.6881 logDK

forDK sufficiently large. As 24×0.6881 < 16.6, we similarly conclude the desired result.



Chapter 7

Least prime ideal

“Fell deeds awake: fire and slaughter! Spear shall be shaken, shield be
splintered, a sword-day, a red day, ere the sun rises!”

– Théoden, The Lord of the Rings.

Throughout this chapter, let L/F be a Galois extension of number fields with Galois group
G := Gal(L/F ) and let C be a conjugacy class of G. Our aim is to estimate

P (C,L/F ) = min{Np : p degree 1 prime ideal of F unramified in L such that
[L/F

p

]
= C},

where N = NF
Q is the absolute norm of F . Informally speaking, we are bounding the least prime

ideal which occurs in the Chebotarev Density Theorem. This chapter contains the proofs of
Theorems 1.3.1 and 1.3.2, which are two of the main results of this thesis. We will use notation
from Section 2.5.

7.1 Setup

7.1.1 Choice of weight

We will need to select a suitable weight function for counting the prime ideals of the base field
F so we describe our choice and its properties here.

Lemma 7.1.1. For real numbers A,B > 0 and positive integer ` ≥ 1 satisfying B > 2`A,

there exists a real-variable function f(t) = f`(t;B,A) such that:

(i) 0 ≤ f(t) ≤ A−1 for all t ∈ R.

(ii) The support of f is contained in [B − 2`A,B].

153
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(iii) Its Laplace transform F (z) =
∫
R f(t)e−ztdt is given by

F (z) = e−(B−2`A)z
(1− e−Az

Az

)2`

. (7.1)

(iv) Let L ≥ 1 be arbitrary. Suppose s = σ + it ∈ C satisfies σ < 1 and t ∈ R. Write

σ = 1− x
L

and t = y
L

. If 0 ≤ α ≤ 2` and t 6= 0 then

|F ((1− s)L )| ≤ e−(B−2`A)x
( 2

A
√
x2 + y2

)α
≤ e−(B−2`A)x

( 2

A|y|

)α
.

Furthermore, for all t ∈ R,

|F ((1− s)L )| ≤ e−(B−2`A)x and F (0) = 1.

Remark. Heath-Brown [HB92] used the weight f with ` = 1 for his computation of Linnik’s
constant for the least rational prime in an arithmetic progression. Our choice is also motivated
by the work of Weiss [Wei83, Lemma 3.2]. Namely, the weight function f depends on a
parameter ` which will be chosen to be at least of size O(nK). This forces f to be O(nK)-
times differentiable and hence F (a + ib) will decay like |b|−O(nK) for fixed a > 0 and |b| →
∞. This decay rate will be necessary when applying log-free zero density estimates such as
Theorem 7.3.6 to bound the contribution of zeros which are high in the critical strip.

Proof.

• For parts (i)–(iii), let 1S( · ) be an indicator function for the set S ⊆ R. For j ≥ 1, define

w0(t) :=
1

A
1[−A/2,A/2](t), and wj(t) := (w ∗ wj−1)(t).

Since
∫
Rw0(t)dt = 1, it is straightforward verify that 0 ≤ w2`(t) ≤ A−1 and w2`(t) is

supported in [−`A, `A]. Observe the Laplace transform W (z) of w0 is given by

W (z) =
eAz/2 − e−Az/2

Az
= eAz/2 ·

(1− e−Az

Az

)
,

so the Laplace transform W2`(z) of w2` is given by

W2`(z) =
(eAz/2 − e−Az/2

Az

)2`

= e`Az
(1− e−Az

Az

)2`

.

The desired properties for f follow upon choosing f(t) = w2`(t−B + `A).
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• For part (iv), we see by (iii) that

|F ((1− s)L )| ≤ e−(B−2`A)x
∣∣∣1− e−A(x+iy)

A(x+ iy)

∣∣∣2`. (7.2)

To bound the above quantity, we observe that for w = a+ ib with a > 0 and b ∈ R,∣∣∣1− e−w
w

∣∣∣2 ≤ (1− e−a

a

)2

≤ 1.

This observation can be checked in a straightforward manner (cf. Lemma 7.1.2). It
follows that∣∣∣1− e−A(x+iy)

A(x+ iy)

∣∣∣2` =
∣∣∣1− e−A(x+iy)

A(x+ iy)

∣∣∣α · ∣∣∣1− e−A(x+iy)

A(x+ iy)

∣∣∣2`−α ≤ ( 2

A
√
x2 + y2

)α
.

In the last step, we noted |1−e−A(x+iy)| ≤ 2 since x > 0 by assumption. Combining this
with (7.2) yields the desired bound. The additional estimate for |F ((1 − s)L )| follows
similarly. One can also verify F (0) = 1 by straightforward calculus arguments.

Lemma 7.1.2. For z = x+ iy with x > 0 and y ∈ R,∣∣∣1− e−z
z

∣∣∣2 ≤ (1− e−x

x

)2

.

Proof. We need only consider y ≥ 0 by conjugate symmetry. Define

Φx(y) :=
∣∣∣1− e−z

z

∣∣∣2 =
1 + e−2x − 2e−x cos y

x2 + y2
for y ≥ 0,

which is a non-negative smooth function of y. Since Φx(y) → 0 as y → ∞, we may choose
y0 ≥ 0 such that Φx(y) has a global maximum at y = y0. Suppose, for a contradiction, that

Φx(y0) >
(1− e−x

x

)2

. (7.3)

By calculus, one can show (1− e−x)/x ≥ e−x/2 for x > 0. With this observation, notice

Φ′x(y0) =
2e−x · sin y0

x2 + y2
0

− 2Φx(y0) · y0

x2 + y2
0

<
2e−x · sin y0

x2 + y2
0

−
2
(

1−e−x
x

)2 · y0

x2 + y2
0

by (7.3)

≤ 2e−x · sin y0

x2 + y2
0

− 2e−x · y0

x2 + y2
0

≤ 0
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since sin y ≤ y for y ≥ 0. On the other hand, Φx(y) has a global max at y = y0 implying
Φ′x(y0) = 0, a contradiction.

7.1.2 A weighted sum of prime ideals

Recall L/F is a Galois extension of number fields with Galois group G and C is a conjugacy
class of G. Furthermore, recall the notation and discussion in Section 2.5.

Suppose the integer ` ≥ 2 and real numbers A,B > 0 satisfy B − 2`A > 0. Select the
weight function f = f`( · ;B,A) from Lemma 7.1.1 according to these parameters. For L ≥ 1

arbitrary, define

S = S(f) :=
∑

p unramified in L
p degree 1

ΘC(p)
log Np

Np
f
( log Np

L

)
, (7.4)

where the sum is over degree 1 prime ideals p of F which are unramified in L and ΘC(p)

is defined by (2.27). The parameter L is left unspecified because the choice is different in
Section 7.2 compared with Sections 7.3 and 7.4. In any case, if S > 0 then there exists a
degree 1 prime ideal p of F unramified in L with [L/F

p
] = C and Np ≤ eBL ; that is,

S > 0 =⇒ P (C,L/F ) ≤ eBL .

Equivalently, S > 0 implies πC(x, L/F ) ≥ 1 for x ≥ eBL . We may take this observation a bit
further to obtain a better lower bound for πC(x, L/F ), defined by (1.15).

Lemma 7.1.3. In the above notation,

πC(x, L/F ) ≥ Ae−2`ALS
x

log x
,

where x = eBL .

Proof. Since f is supported in [B − 2`A,B] and |f | ≤ A−1 by Lemma 7.1.1, it follows by the
definition of S that

S ≤ A−1 log(BL )

e−(B−2`A)L

∑
p unramified in L

p degree 1

ΘC(p)

= A−1e2`AL log x

x
πC(x, L/F ).

(7.5)

The last line follows from (2.28) and the fact that x = eBL . Rearranging the inequality gives
the lemma.

Now, we wish to transform S into a contour integral by using the logarithmic derivatives
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of certain Artin L-functions. Recalling the discussion in Section 2.4, one is naturally led to
consider the contour

I :=
1

2πi

∫ 2+i∞

2−i∞
ZC(s)F ((1− s)L )ds, (7.6)

where ZC(s) is defined by (2.25) and F (z) =
∫∞

0
f(t)e−ztdt is the Laplace transform of f .

Comparing (7.6) and (2.26), it follows by Mellin inversion that

I = L −1
∑
n

ΘC(n)
ΛF (n)

Nn
f
( log Nn

L

)
, (7.7)

where the sum is over all integral ideals n of F and ΛF (n) is the von Mangoldt Λ-function for
integral ideals of F given by (2.5). Comparing (7.4) and (7.7), it is apparent that the integral
I and quantity L −1S should be equal up to a neglible contribution from: (i) ramified prime
ideals, (ii) prime ideals whose norm is not a rational prime (i.e. not degree 1 over Q), and (iii)
prime ideal powers. In the following lemma, we prove exactly this by showing that the collec-
tive contribution of (i), (ii), and (iii) in (7.7) is bounded by O(A−1L e−

1
2

(B−2`A)L logDL).

Lemma 7.1.4. In the above notation,

L −1S =
1

2πi

∫ 2+i∞

2−i∞
ZC(s)F ((1− s)L )ds+O(A−1L e−

1
2

(B−2`A)L logDL).

Proof. Denote Q1 = e(B−2`A)L and Q2 = eBL .
Ramified prime ideals. Since the product of ramified prime ideals p ⊆ OF divides the relative
different DL/F , it follows that ∑

p⊆OF
ramified in L

log Np ≤ logDL.

Therefore, by Lemma 7.1.1 and (2.27),

∑
p⊆OF

ramified in L

∞∑
m=1

ΘC(pm)
log Np

Npm
f
( log Npm

L

)
� A−1

∑
p⊆OF

ramified in L

log Np
∑
m≥1

Npm>Q1

1

Npm

� A−1
∑
p⊆OF

ramified in L
Np>Q1

log Np

Np

� A−1e−(B−2`A)L logDL.

Prime ideals with norm not equal to a rational prime. For a given integer q, there are at most
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nF prime ideals p ⊆ OF satisfying Np = q. Thus, by Lemma 7.1.1 and (2.27),

∑
p prime

∑
k≥2

∑
p⊆OF
Np=pk

ΘC(p)
log Np

Np
f
( log Np

L

)
� A−1nFL

∑
p prime

∑
k≥2

Q1<pk<Q2

1

pk

� A−1nFLQ
−1/2
1

� A−1L e−
1
2

(B−2`A)L logDL.

Note in the last step we used the fact that nF ≤ nL � logDL by a theorem of Minkowski.
Prime ideal powers. Arguing similar to the previous case, one may again see that

∑
p prime

∑
p⊆OK
Np=p

∑
m≥2

log Np

Npm
f
( log Npm

L

)
·Θ(pm)� A−1L e−

1
2

(B−2`A)L logDL.

The desired result follows after comparing (7.4), (7.6) and (7.7) with the three estimates above.

Equipped with Lemma 7.1.4, the natural next step is to move the contour to the left of
Re{s} = 1. Applying Deuring’s reduction as described in Section 2.5 combined with Lemma 7.1.4
and (2.34) yields the following:

Lemma 7.1.5. LetH be any abelian subgroup ofG such thatH∩C is non-empty. LetK = LH

be the subfield of L fixed by H and let gC ∈ H ∩ C. If S = S(f) is defined by (7.4) and F is

the Laplace transform of f in Lemma 7.1.1 then

L −1S =
|C|
|G|

∑
χ

χ(gC)

2πi

∫ 2+i∞

2−i∞
−L

′

L
(s, χ, L/K)F ((1− s)L )ds

+O(A−1L e−
1
2

(B−2`A)L logDL),

where the sum is over all Hecke characters χ attached to the abelian extension L/K. Here

L(s, χ, L/K) is the (primitive) Hecke L-function attached to χ.

Remark. The number of Hecke characters appearing is precisely #Gal(L/K) = [L : K].

Now, after pulling the contour in Lemma 7.1.5 to the left of Re{s} = 1, we have two op-
tions for estimating the non-trivial zeros of the Hecke L-functions. By (2.20), we can estimate
their contribution as:

(i) the zeros of the Dedekind zeta function ζL(s);
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(ii) or the zeros of Hecke L-functions L(s, χ, L/K) averaged over all Hecke characters χ.

Section 7.2 takes strategy (i) whereas Section 7.3 takes strategy (ii). In each case, the ubiquitous
quantity L will be defined differently.

7.2 Proof of Theorem 1.3.1

7.2.1 Additional preliminaries

For the entirety of Section 7.2, let
L := logDL.

By a classical theorem of Minkowski, we have that nL � L . We shall use this fact often and
without reference. Recall the definitions and quantities related to the Dedekind zeta function
of L described in Section 2.2. We summarize a few key results needed for the main argument.

Let Z be the multiset consisting of zeros of ζL(s) in the rectangle

0 < Re{s} < 1, |Im{s}| ≤ 1. (7.8)

Choose ρ1 ∈ Z such that Re{ρ1} = β1 = 1− λ1
L
∈ (0, 1) is maximal.

Theorem 7.2.1 (Kadiri [Kad12]). Assume DL is sufficiently large. If λ1 < 0.0784 then ρ1 is a

simple real zero of ζL(s).

For Section 7.2 only, we refer to the case λ1 < 0.0784 as the exceptional case. Otherwise,
λ1 ≥ 0.0784 is regarded as non-exceptional. The final arguments will be divided according to
these two cases. Now, select another zero ρ′ ∈ Z of ζL(s) such that ρ′ 6= ρ1 (counting with
multiplicity in Z) and Re{ρ′} = β′ = 1− λ′

L
is maximal. In the exceptional case, ρ1 is a simple

real zero so ρ′ is affected by the zero repulsion emanating from ρ1. This is explicitly quantified
in [KN12, Theorem 4]; we state a slightly weaker version here.

Theorem 7.2.2 (Kadiri–Ng [KN12]). Let η > 0 be arbitrary. If λ1 ≥ η then λ′ ≥ 0.6546 log(1/λ1)

for DL sufficiently large depending on η.

When λ1 ≤ η, we will defer to Theorem 6.1.2 for the Deuring–Heilbronn phenomenon and
its effect on ρ′. Next, we reduce Theorem 1.3.1 to verifying the following lemma.

Lemma 7.2.3. Assume L is sufficiently large. Suppose for every B ≥ 40 there exists a choice

of A and ` for (7.4) satisfying one of:

(i) A ≥ 10−2, `A ≤ 3, and |G||C|L
−1S � 1.
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(ii) A� L −1, `A ≤ 1, and |G||C|L
−1S � λ1.

Then

πC(x, L/F )� 1

D19
L

|C|
|G|

x

log x

for x ≥ D40
L and DL sufficiently large.

Proof. Let B = log x
L

so B ≥ 40. In case (i), we apply Lemma 7.1.3 to deduce that

πC(x, L/F )� e−6L |C|
|G|

x

log x
� 1

D6
L

|C|
|G|

x

log x

as desired. In case (ii), we again apply Lemma 7.1.3 to deduce that

πC(x, L/F )� λ1e
−2L · |C|

|G|
x

log x
.

From Corollary 6.1.4, we have that λ1 � D−17
L . Combining with the above yields the desired

result as e2L = D2
L.

Thus, it suffices to verify the assumptions of Lemma 7.2.3 hold unconditionally.

7.2.2 A sum over low-lying zeros

Now, we begin by shifting the contour in Lemma 7.1.5 and reducing the analysis to a careful
consideration of contribution coming from zeros ρ = β + iγ of ζL(s) which are “low-lying”.

Lemma 7.2.4. Let T ? ≥ 1 be fixed. Keep the notation of Lemma 7.1.5. Then∣∣∣ |G||C|L −1S − F (0)
∣∣∣ ≤ ∑

ρ
|γ|<T ?

|F ((1− ρ)L )|+O
(
L
( 2

AT ?L

)2`

+
L 2

A
e−(B−2`A)L /2

)

+O
(
L
( 1

AL

)2`

e−(B−2`A)L + L
( 2

AL

)2`

e−3(B−2`A)L /2
)
,

(7.9)
where the sum is over non-trivial zeros ρ = β + iγ of ζL(s), counted with multiplicity.

Proof. Consider the contour in Lemma 7.1.5. Since Hecke L-functions are meromorphic in
the entire complex plane, we shift the line of integration to Re{s} = −1

2
. From (2.20), this

picks up exactly the non-trivial zeros of ζL(s), its simple pole at s = 1, and its trivial zero at
s = 0 of order r1 + r2 − 1. For Re{s} = −1/2, we have by (7.1) that

F ((1− s)L )� e−3(B−2`A)L /2 ·
( 2

AL (|s|+ 1)

)2`

(7.10)
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and, from [LO77, Lemma 6.2] and (2.21),

∑
χ

|L
′

L
(s, χ, L/K)| �

∑
χ

{
logDχ + nK log(|s|+ 2)

}
� L + [L : K] · nK log(|s|+ 2)

� L + nL log(|s|+ 2).

It follows that

∑
χ

χ(gC)

2πi

∫ 2+i∞

2−i∞
−L

′

L
(s, χ, L/K)F ((1− s)L )ds� L

( 2

AL

)2`

e−3(B−2`A)L /2,

as nL � L . For the zero at s = 0 of ZC(s), we may bound its contribution using (7.1) to
deduce that

(r1 + r2 − 1)F (L )� L
( 1

AL

)2`

e−(B−2`A)L ,

since r1 + 2r2 = nL � L . These observations and Lemma 7.1.5 therefore yield∣∣∣ |G||C|L −1S − F (0)
∣∣∣ ≤∑

ρ

|F ((1− ρ)L )|+O
(L 2

A
e−

1
2

(B−2`A)L + L
( 1

AL

)2`

e−(B−2`A)L
)

+O
(
L
( 2

AL

)2`

e−
3
2

(B−2`A)L
)
,

(7.11)
where the sum is over all non-trivial zeros ρ = β + iγ of ζL(s). By [LMO79, Lemma 2.1] and
(7.1), we have that

∞∑
k=0

∑
ρ

T ?+k≤|γ|<T ?+k+1

|F ((1−ρ)L )| �
( 2

AL

)2`
∞∑
k=0

L + nL log(T ? + k)

(T ? + k)2`
� L

( 2

AT ?L

)2`

,

as nL � L and ` ≥ 2. The result follows from (7.11) and the above estimate.

For the sum over low-lying zeros in Lemma 7.2.4, we bound zeros far away from the line
Re{s} = 1 using Lemma 7.2.5 below. In the non-exceptional case, this could have been
done in a fairly simple manner but when an exceptional zero exists, we will need to partition
the zeros according to their height. This will amount to applying a coarse version of partial
summation, allowing us to exploit the Deuring–Heilbronn phenomenon more efficiently.

Lemma 7.2.5. Let J ≥ 1 be given and T ? ≥ 1 be fixed. Suppose

2 ≤ R1 ≤ R2 ≤ · · · ≤ RJ ≤ L , 0 = T0 < T1 ≤ T2 ≤ · · · ≤ TJ = T ?.
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Then∑
ρ

|γ|<T ?

|F ((1− ρ)L )| =
∑′

ρ

|F ((1− ρ)L )|+O
(

min
{( 2

A

)2`

,L
}
e−(B−2`A)R1

)

+
J∑
j=2

O
(
L
( 2

ATj−1L

)2`

e−(B−2`A)Rj
)
,

(7.12)

where the marked sum
∑′ indicates a restriction to zeros ρ = β + iγ of ζL(s) satisfying

β > 1− Rj

L
, Tj−1 ≤ |γ| < Tj for some 1 ≤ j ≤ J.

If J = 1 then the secondary error term in (7.12) vanishes.

Remark. To prove Theorem 1.3.1, we will apply the above lemma with J = 10 when an excep-
tional zero exists. One could use higher values of J or a more refined version of Lemma 7.2.5
to obtain some improvement on the final result.

Proof. Recall ` ≥ 2 for our choice of weight f . Let 1 ≤ j ≤ J be arbitrary. Define the multiset

Zj := {ρ : ζL(ρ) = 0, β ≤ 1− Rj

L
, Tj−1 ≤ |γ| < Tj}

and denote Sj :=
∑

ρ∈Zj |F ((1− ρ)L )|. Since

∑
ρ

|γ|<T ?

|F ((1− ρ)L )| =
∑′

ρ

|F ((1− ρ)L )|+
J∑
j=1

Sj,

it suffices to show

S1 � min
{( 2

A

)2`

,L
}
e−(B−2`A)R1 ,

and Sj � L
( 2

ATj−1L

)2`

e−(B−2`A)Rj for 2 ≤ j ≤ J.

Assume 2 ≤ j ≤ J . As Tj ≤ T ? and T ? is fixed, it follows that #Zj � L by [LMO79,
Lemma 2.1]. Hence, by Lemma 7.1.1 and the definition of Zj ,

Sj � e−(B−2`A)Rj
∑
ρ∈Zj

( 2

A|γ|L

)2`

� L
( 2

ATj−1L

)2`

e−(B−2`A)Rj

as desired. It remains to consider S1. On one hand, we similarly have #Z1 � L by [LMO79,
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Lemma 2.1]. Thus, by Lemma 7.1.1 and the definition of S1,

S1 � L e−(B−2`A)R1 . (7.13)

On the other hand, we may give an alternate bound for S1. For integers 1 ≤ m,n ≤ L ,
consider the rectangles

Rm,n :=
{
s = σ + it ∈ C : 1− m+ 1

L
≤ σ ≤ 1− m

L
,

n− 1

L
≤ |t| ≤ n

L

}
.

We bound the contribution of zeros ρ lying inRm,n when m ≥ R1. If a zero ρ ∈ Rm,n then

|F ((1− ρ)L )| � e−(B−2`A)m
( 2

A
√
m2 + (n− 1)2

)2`

,

by Lemma 7.1.1 with α = 2`. Further, by [LMO79, Lemma 2.2],

#{ρ ∈ Rm,n : ζL(ρ) = 0} �
√

(m+ 1)2 + n2 �
√
m2 + (n− 1)2.

The latter estimate follows since m,n ≥ 1. Adding up these contributions and using the
conjugate symmetry of zeros, we find that

S1 �
∑
m≥R1
n≥1

∑
ρ∈Rm,n
ζL(ρ)=0

|F ((1− ρ)L )| �
( 2

A

)2` ∑
m≥R1
n≥1

e−(B−2`A)m
(√

m2 + (n− 1)2
)−2`+1

�
( 2

A

)2`

e−(B−2`A)R1 ,

since ` ≥ 2. Taking the minimum of the above and (7.13) gives the desired bound for S1.

If an exceptional zero exists with λ1 sufficiently small then we shall choose the parameters
in Lemma 7.2.5 so that the restricted sum over zeros is actually empty. Otherwise, Lemma 7.2.5
will be applied with J = 1 and T1 = T ? = 1 so we must handle the remaining restricted sum
over zeros in the final arguments. We prepare for this situation via the following lemma.

Lemma 7.2.6. Let η > 0 and R ≥ 1 be arbitrary. For A > 0 and ` ≥ 1, define

F̃`(z) :=
(1− e−Az

Az

)2`

.

Suppose ζL(s) is non-zero in the region

Re{s} ≥ 1− λ

L
, |Im{s}| ≤ 1
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for some 0 < λ ≤ 10. Then, provided DL is sufficiently large depending on η,R, and A,

∑′

ρ

|F̃`((1−ρ)L )| ≤
(1− e−Aλ

Aλ

)2(`−1)

·
{
φ
(1− e−2Aλ

A2λ

)
+

2Aλ− 1 + e−2Aλ

2A2λ2
+η
}
, (7.14)

where φ = 1
2
(1 − 1√

5
) and the marked sum

∑′ indicates a restriction to zeros ρ = β + iγ of

ζL(s) satisfying

β ≥ 1− R

L
, |γ| ≤ 1.

In particular, as λ→ 0, the bound in (7.14) becomes 2φ
A

+ 1 + η.

Proof. This result is motivated by [HB92, Lemma 13.3]. Define

h(t) :=

A−2 · sinh
(
(A− t)λ

)
if 0 ≤ t ≤ A,

0 if t ≥ A,

so

H(z) =

∫ ∞
0

e−zth(t)dt =
1

2A2

{ eAλ

λ+ z
+
e−Aλ

λ− z
− 2λe−Az

λ2 − z2

}
.

As per the argument in [HB92, Lemma 13.3],

|F̃1(λ+ z)| ≤ 2e−Aλ

λ
· Re{H(z)} (7.15)

for Re{z} ≥ 0. Combining the above with Lemma 7.1.2, it follows that

|F̃`(λ+ z)| ≤
(1− e−Aλ

Aλ

)2(`−1)

· 2e−Aλ

λ
· Re{H(z)}

for Re{z} ≥ 0, since (1−e−x)/x is decreasing for x > 0. Setting σ = 1− λ
L
∈ R, this implies

∑′

ρ

|F̃`((1− ρ)L )| ≤
(1− e−Aλ

Aλ

)2(`−1)

· 2e−Aλ

λ

∑′

ρ

Re{H((σ − ρ)L )},

so it suffices to bound the sum on the RHS. Since h and H satisfy Conditions 1 and 2 of
[KN12], we apply [KN12, Theorem 3] to bound the sum

∑′ on the RHS yielding

∑′

ρ

Re{H((σ − ρ)L )} ≤ h(0)(φ+ η) +H((σ − 1)L )−L −1
∑

N⊆OL

ΛL(N)

(NL
QN)σ

h
( log NL

QN

L

)
≤ h(0)(φ+ η) +H((σ − 1)L ),

for DL sufficiently large depending on η,R and A. Using the definitions of h and H and
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rescaling η approriately, we obtain the desired result.

7.2.3 Non-exceptional case (λ1 ≥ 0.0784)

Recall the definition of ρ1 given in Section 7.2.1. Here we assume λ1 ≥ 0.0784. Choose

` = 2, B ≥ 7.41, and A = 1.5

to give a corresponding f and its Laplace transform F defined by Lemma 7.1.1. Observe that
B − 2`A ≥ 1.41 for the above choices.

Let ε > 0. Apply Lemma 7.2.4 with T ? = 1. Then employ Lemma 7.2.5 with J = 1, T1 =

T ? = 1 and R1 = R = R(ε) sufficiently large so that

|G|
|C|

L −1S ≥ 1−
∑′

ρ

|F ((1− ρ)L )| − ε

for DL sufficiently large depending on ε. Here the restricted sum is over zeros ρ = β + iγ

satisfying

β > 1− R

L
|γ| < 1.

It suffices to prove the sum over zeros ρ is < 1− ε/2 for fixed sufficiently small ε. Observe by
the definition of F̃2 in Lemma 7.2.6 and our choice of ρ1 that∑′

ρ

|F ((1− ρ)L )| =
∑′

ρ

e−1.41λ|F̃2((1− ρ)L )| ≤ e−1.41λ1
∑′

ρ

|F̃2((1− ρ)L )|.

Since λ1 ≥ 0.0784, we may bound the remaining sum using Lemma 7.2.6 with λ = 0.0784.
Hence, the above is

≤ e−1.41λ1 × 1.1166 ≤ e−1.41×0.0784 × 1.1166 = 0.9997 · · · < 1,

as desired. Thus, |G||C|L
−1S � 1. By Lemma 7.2.3, this completes the proof of Theorem 1.3.1

in the non-exceptional case.

7.2.4 Exceptional case (λ1 < 0.0784)

For this subsection, let 0 < η < 0.0784 be an absolute arbitrary parameter which will be
specified to be fixed and sufficiently small at the end of each subcase. Recall by Theorem 7.2.1
that ρ1 = β1 is a simple real zero of ζL(s).
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λ1 small (η ≤ λ1 < 0.0784)

Again, choose the weight function f from Lemma 7.1.1 with

` = 2, B ≥ 2.63, and A = 0.1,

so B − 2`A ≥ 2.23 and `A = 0.2 ≤ 3. The argument is similar to the previous case but we
take special care of the real zero β1. With the same choices as the non-exceptional case, we
deduce

|G|
|C|

L −1S ≥ 1− |F ((1− β1)L )| −
∑′

ρ 6=β1

|F ((1− ρ)L )| − ε (7.16)

for DL sufficiently large depending on ε. Observe that, since ρ1 is real and (1− e−t)/t ≤ 1 for
t > 0,

|F ((1− ρ1)L )| = e−2.23λ1
(1− e−0.1λ1

0.1λ1

)4

≤ e−2.23λ1 .

By our choice of ρ′ in Section 7.2.1 and a subsequent application of Lemma 7.2.6 with λ = 0,
we have that∑′

ρ 6=ρ1

|F ((1− ρ)L )| ≤ e−2.23λ′
∑′

ρ 6=ρ1

|F̃2((1− ρ)L )| ≤ e−2.23λ′ × 6.5279.

As λ1 ≥ η, we apply Theorem 7.2.2 to see that λ′ ≥ 0.6546 log(1/λ1) for DL is sufficiently
large depending on η. Hence, the above is

≤ 6.5279× λ2.23×0.6546
1 ≤ 6.5279× λ1.4597

1 .

Thus, (7.16) becomes

|G|
|C|

L −1S ≥ 1− e−2.23λ1 − 6.5279× λ1.4597
1 − ε

≥
(
2.23− 6.5279× λ0.4597

1 − 2.4865λ1

)
λ1 − ε,

since 1 − e−t ≥ t − t2/2 for t > 0. The quantity in the brackets is clearly decreasing with λ1

so since λ1 < 0.0784, we conclude that the above is

≥
(
2.23− 6.5279× 0.07840.4597 − 2.4865× 0.0784

)
λ1 − ε

≥ 0.0097λ1 − ε
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By taking ε = 10−6η and noting λ1 ≥ η, we have |G||C|L
−1S � λ1 for DL sufficiently large

depending on η. By Lemma 7.2.3, this completes the proof of Theorem 1.3.1 for η ≤ λ1 <

0.0784.

λ1 very small (L −200 ≤ λ1 < η)

Choose the weight function f from Lemma 7.1.1 with

` = 101, B ≥ 32, and A = 1
404
,

so B−2`A ≥ 31.5 and `A ≤ 1 for DL sufficiently large. Applying Lemma 7.2.4 with T ? = 1,
it follows that

|G|
|C|

L −1S ≥ 1− |F ((1− β1)L )| −
∑
ρ6=β1
|γ|<1

|F ((1− ρ)L )|+O(L −201).

Similar to the previous subcase, we have that |F ((1 − β1)L )| ≤ e−31.5λ1 . For the remaining
sum over zeros, we apply Lemma 7.2.5 with J = 1, T? = T1 = 1, and R1 = 1

31.4
log(c1/λ1)

with c1 > 0 absolute and sufficiently small. As λ1 ≥ L −200, we may assume without loss that
R1 <

1
4
L for L sufficiently large1. Therefore,

|G|
|C|

L −1S ≥ 1− e−31.5λ1 −
∑′

ρ 6=β1

|F ((1− ρ)L )|+O
(
L −201 + λ

31.5/31.4
1

)
, (7.17)

where the sum
∑′ is defined as per Lemma 7.2.5. By our choice of parameters T1 and R1, it

follows from Theorem 6.1.2 that the restricted sum over zeros in (7.17) is actually empty. As
1− e−t ≥ t− t2/2 for t > 0, we conclude that

|G|
|C|

L −1S ≥ 31.5λ1 +O(L −201 + λ
31.5/31.4
1 ).

Since L −200 ≤ λ1 < η by assumption and η is sufficiently small, we conclude that the RHS is
� λ1 after fixing η. By Lemma 7.2.3, this completes the proof of Theorem 1.3.1 in this case.

1This implies the zero 1 − β1 is already discarded in the error term arising from Lemma 7.2.5. This minor
point will be relevant when λ1 is extremely small.
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λ1 extremely small (λ1 < L −200)

Choose the weight function f from Lemma 7.1.1 with

` = dL e, B ≥ 35, and A =
0.88

L
,

so B − 2`A ≥ 33.24 and `A ≤ 1 for DL sufficiently large. Applying Lemma 7.2.4 with
T ? = 12646, it follows that∣∣∣ |G||C|L −1S − F (0)

∣∣∣ ≤ ∑
ρ

|γ|<12646

|F ((1− ρ)L )|+O
(
L e

2 log
(

2
0.88×12646

)
L

+ L 3e−
33.24

2
L
)

+O
(
L e−33.24L +2 log

(
1

0.88

)
L + L e−

3
2
×33.24L +2 log

(
2

0.88

)
L
)

≤
∑
ρ

|γ|<12646

|F ((1− ρ)L )|+O(L 3e−16.62L ).

(7.18)
For the remaining sum, we use Lemma 7.2.5 with J = 10 selecting Tj and Rj =

log(cj/λ1)

Cj

according to the table below. Note Cj = C(Tj) > 0 and cj = c(Tj) are the absolute constants
in Theorem 6.1.2.

j 1 2 3 4 5 6 7 8 9 10

Tj 3.5 8.7 22 54 134 332 825 2048 5089 12646

Cj 32.7 35.0 38.4 42.0 45.9 49.7 53.6 57.4 61.2 65.0

Therefore,

|G|
|C|

L −1S ≥ 1− |F ((1− β1)L )| −
∑′

ρ 6=β1,1−β1

|F ((1− ρ)L )| − |F (β1L )|+O(L 3e−16.62L )

+O
(
L λ

33.24/32.7
1

)
+

10∑
j=2

O
(
L e

2 log
(

2
0.88Tj−1

)
L
λ

33.24/Cj
1

)
,

(7.19)
where the sum

∑′ is defined as per Lemma 7.2.5. Since the zeros of ζL(s) are permuted under
the map ρ 7→ 1−ρ, it follows from Theorem 6.1.2 and our choice of parameters Tj and Cj that
the restricted sum over zeros in (7.19) is actually empty2. For the zeros 1− β1 and β1, notice

|F ((1− β1)L )| ≤ e−33.24λ1 ≤ e−33λ1 and F (β1L ) ≤ e−33.24(L−λ1) = O(e−33L ),

2The zero 1 − β1 cannot be discarded via symmetry or Theorem 6.1.2 which is why we must consider its
contribution separately.
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as λ1 < 0.0784. Moreover, as λ1 < L −200 and 33.24
32.7

> 1.016, we observe that

L · λ33.24/32.7
1 � λ

−1/200
1 · λ1.016

1 � λ1.01
1 .

To bound the sum over error terms in the (7.19), notice λ1 � L e−16.6L by Corollary 6.1.4,
which implies that

L e
2 log
(

2
0.88Tj

)
L
λ

33.24/Cj
1 � λ1 ·L 2e

2 log
(

2
0.88Tj−1

)
L +16.6(1−33.24/Cj)L

.

Substituting the prescribed values for Cj and Tj−1, the above is� λ1e
−0.02L for all 2 ≤ j ≤

10. Incorporating all of these observations into (7.19) yields

|G|
|C|

L −1S ≥ 1− e−33λ1 +O
(
λ1.01

1 + λ1e
−0.02L + L 3e−16.62L

)
≥ 33λ1 +O

(
λ1.01

1 + λ1e
−0.02L + L 3e−16.62L

)
,

since 1 − e−t ≥ t − t2/2 for t > 0. Again noting that λ1 � L e−16.6L by Corollary 6.1.4
and λ1 < L −200 by assumption, we finally conclude that the RHS is� λ1 for DL sufficiently
large. By Lemma 7.2.3, this completes the proof of Theorem 1.3.1 in all cases.

Remark. We outline the minor modifications required to justify the remark following Theo-
rem 1.3.1.

• If there is a sequence of fields Q = L0 ⊆ L1 ⊆ · · · ⊆ Lr = L such that Lj is normal
over Lj−1 for 1 ≤ j ≤ r then by [Sta74, Lemmas 10, 11], it follows that λ1 � L e−0.5L .
When λ1 is extremely small (λ1 < L −200), one may therefore select

` = d0.05L e, B = 32, and A =
3

L
,

and apply Lemma 7.2.4 with T ? = 12646. Afterwards, employ Lemma 7.2.5 with Tj
and Rj =

log(cj/λ1)

Cj
chosen according to the table below.

j 1 2 3 4 5 6 7 8 9 10 11

Tj 1 3.5 8.7 22 54 134 332 825 2048 5089 12646

Cj 31.4 32.7 35.0 38.4 42.0 45.9 49.7 53.6 57.4 61.2 65.0

Following the same arguments yields the desired result.

• If nL = o(logDL) then by remark (ii) following Theorem 6.1.2, applied to Corol-
lary 6.1.4, it follows that λ1 � L e−12.01L . Moreover, by remark (ii) following The-
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orem 6.1.2, one can use

J = 1, T1 = T ? = e64, and R1 =
log(c/λ1)

24.01

in the application of Lemmas 7.2.4 and 7.2.5. One may then modify the case when λ1 is
very small to consider L −1000 ≤ λ1 < η and take

` = 1000, B = 24.1, A = 1/106.

Similarly, one may modify the case when λ1 is extremely small to consider λ1 < L −1000

and take
` = d0.1L e, B = 24.1, and A =

0.2

L
.

Following the same arguments yields the claimed result.

• If ζL(s) does not have a Siegel zero then λ1 � 1 so the cases when λ1 < η are unneces-
sary.

Remark. When λ1 is extremely small (λ1 < L −200), the selection of parameters A,B, `,
and Tj was primarily based on numerical experimentation but for the previous cases, one can
choose them roughly optimally.

7.3 Proof of Theorem 1.3.2

7.3.1 Additional preliminaries

From Lemma 7.1.5, recall that we are given an arbitrary abelian subgroupH ofG = Gal(L/F )

satisfying H ∩ C 6= ∅ and K = LH is the fixed field of L by H . Define the max conductor of
L/K by

Q = Q(L/K) := max{NK
Q fχ : χ ∈ ̂Gal(L/K)}, (7.20)

where the K-integral ideal fχ ⊆ OK is the conductor of the Hecke character χ attached to the
abelian extension L/K. For the entirety of Section 7.3, let3

L :=

(1
3

+ δ0) logDK + (19
36

+ δ0) logQ+ ( 5
12

+ δ0)nK log nK if n5nK/6
K ≥ D

4/3
K Q4/9,

(1 + δ0) logDK + (3
4

+ δ0) logQ+ δ0nK log nK otherwise,
(7.21)

3This is the same quantity as defined in (5.3).
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where δ0 > 0 is fixed and sufficiently small. Notice that

L ≥ (1+δ0) logDK+(3
4
+δ0) logQ+δ0nK log nK and L ≥ ( 5

12
+δ0)nK log nK (7.22)

unconditionally. We exhibit a bound on the degree of the extension L/K in terms of L .

Lemma 7.3.1. [L : K]� e4L /3 and nL � L e4L /3.

Proof. Let f = fL/K be the Artin conductor attached to L/K by class field theory. Let I(f)

be the group of fractional ideals of K relatively prime to f. By class field theory, there exists
a homomorphism φ : I(f) → Gal(L/K). Thus I(f)/ kerφ is isomorphic to Gal(L/K). This
induces an isomorphism between their respective character groups and therefore,

Q(L/K) = max{Nfχ : χ ∈ Ĝal(L/K)} = max{Nfχ : χ ∈ ̂I(f)/ kerφ}.

By our previous observations, |I(f)/ kerφ| = |Gal(L/K)| = [L : K]. For ε0 > 0 fixed and suf-
ficiently small, we have by Lemma 2.4.6 that hkerφ = |I(f)/ kerφ| � eOε0 (nK)D

1/2+ε0
K Q1+ε0 �

e4L /3 as desired. To bound nL, observe that nL = [L : K]nK and nK � L .

We will need to carefully analyze the zeros of∏
χ

L(s, χ, L/K), (7.23)

where the product is over all (necessarily primitive) Hecke characters attached to L/K. From
the discussion in Section 2.5, the non-trivial zeros of (7.23) are, counting with multiplicity,
exactly the non-trivial zeros of (3.1) for some congruence class group H of K. In fact, this
correspondence occurs for each L-function appearing in both (7.23) and (3.1). Thus, all the
results of Chapters 3 to 6 regarding the non-trivial zeros of (3.1) can be directly translated to
results about (7.23). The remainder of this subsection is dedicated to recording these translated
results using the quantity L . The differences are primarily notational.

First, we specify some important zeros of (7.23). These zeros will be used for the remainder
of this section. For T? ≥ 1 arbitrary, consider the multiset given by

Z :=
{
ρ ∈ C :

∏
χ

L(ρ, χ, L/K) = 0, 0 < Re{ρ} < 1, |Im(ρ)| ≤ T?

}
. (7.24)

We select three important zeros in Z as follows:

• Choose ρ1 ∈ Z such that Re{ρ1} is maximal. Let χ1 be its associated Hecke character so
L(ρ1, χ1, L/K) = 0. Denote ρ1 = β1 + iγ1 = (1− λ1

L
) + iµ1

L
, where β1 = Re{ρ1}, γ1 =
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Im{ρ1}, λ1 > 0, and µ1 ∈ R.

• Choose4 ρ′ ∈ Z \ {ρ1, ρ1} satisfying L(ρ′, χ1, L/K) = 0 such that Re{ρ′} is maximal
with respect to these conditions. Similarly denote ρ′ = β′ + iγ′ = (1− λ′

L
) + i µ

′

L
.

• Choose ρ2 ∈ Z \ Z1 such that Re{ρ2} is maximal and where Z1 is the multiset of
zeros of L(s, χ1, L/K) contained in Z . Let χ2 be its associated Hecke character so
L(ρ2, χ2, L/K) = 0. Similarly, denote ρ2 = β2 + iγ2 = (1− λ2

L
) + iµ2

L
.

If L is defined by (3.3) with a suitably chosen function ν then by (7.22) it follows that
L ≥ L for L sufficiently large. Thus, the results on the distribution of zeros of Hecke L-
functions, including those from Chapter 4, may be rewritten in the current notation.

Theorem 7.3.2. Assume L is sufficiently large depending on T?. If λ1 < 0.0875 then ρ1 is a

simple real zero of
∏

χ L(s, χ, L/K) and is associated with a real character χ1. Furthermore,

min{λ′, λ2} > 0.2866.

Proof. This is the contents of Theorems 4.1.1 and 4.1.2.

Theorem 7.3.3. Let L be sufficiently large depending on T?. If λ1 < 0.0875, then min{λ′, λ2} >
0.51. If η ≤ λ1 < 0.0875, then min{λ′, λ2} > 0.2103 log(1/λ1).

Proof. Follows from Theorems 4.1.3 and 7.3.2. Note 0.2103 log(1/0.0875) > 0.51.

Theorem 7.3.4. Let T ≥ 1 be arbitrary. Suppose χ1 is a real character and ρ1 is a real zero.

For any character χ of L/K, let ρ = β + iγ 6= ρ1 be a non-trivial zero of L(s, χ, L/K)

satisfying 1/2 ≤ β < 1 and |γ| ≤ T . For L sufficiently large, there exists an absolute

effectively computable constant c1 > 0 such that

β < 1−
log
( c1

(1− β1)(L + nK log T )

)
81L + 25nK log T

.

Proof. This follows immediately from Theorem 6.1.1, since

(48 + ε) logDK + (60 + ε) logQ+Oε(nK) ≤ (80 + 2ε)L

for L sufficiently large depending on ε.

Theorem 7.3.5 (Stark). Unconditionally, λ1 � e−24L /5.
4If ρ1 is real then ρ′ ∈ Z \ {ρ1} instead with the other conditions remaining the same.
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Proof. By Theorem 7.3.2 or its non-explicit predecessor [Wei83, Theorem 1.9], we may as-
sume ρ1 is real and its associated character χ1 is real. By considering cases depending on
whether χ1 is quadratic or principal, the result follows from (7.21), (7.22), and the proof of
[Sta74, Theorem 1′, p.148].

Let χ ∈ Ĝal(L/K) be a Hecke character. Define

N(σ, T, χ) := #{ρ = β + iγ : L(ρ, χ, L/K) = 0, σ < β < 1, |γ| ≤ T}

for 0 < σ < 1 and T ≥ 1. Further denote

N(σ, T ) :=
∑
χ

N(σ, T, χ). (7.25)

We emphasize that the following estimate does not assume L is sufficiently large.

Theorem 7.3.6. For 0 < σ < 1 and T ≥ 1, N(σ, T )� (e162LT 81nK+162)1−σ.

Proof. This follows from Theorem 5.1.1. To remove the condition on T in Theorem 5.1.1, we
used the definition of L in (7.21).

We will also require a more explicit zero density estimate for “low-lying” zeros. Set

T0 := max{n5/6
K D

−4/3nK
K Q−4/9nK , T?}.

Comparing L = LT0,δ0 given by (5.17) with L , we deduce L ≤ L for L sufficiently large
depending on T?. This observation implies that, for λ > 0,

N(1− λ
L
, T, χ) ≤ N(1− λ

L , T, χ). (7.26)

Hence, the results of Chapter 5 can be transferred into the current notation with L . Abusing
notation, define for 0 < λ < L ,

N (λ) = N (λ;T?) :=
∑
χ

N(1− λ
L
, T?, χ). (7.27)

Theorem 7.3.2 states thatN (0.0875) ≤ 1 andN (0.2866) ≤ 2 for L sufficiently large depend-
ing on T?. For larger values of λ, we use the following:

Theorem 7.3.7. Assume L is sufficiently large depending on T?. Let ε0 > 0 be fixed and

sufficiently small. If 0 < λ < ε0L then

N (λ) ≤ e162λ+188.
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The bounds for N (λ) in Table 5.1 are superior when 0 < λ ≤ 1.

Proof. This is the same as Theorem 5.1.3.

Finally, we reduce the proof of Theorem 1.3.2 to verifying the following lemma.

Lemma 7.3.8. Let η > 0 be sufficiently small and arbitrary. Assume L is sufficiently large

depending only on η > 0. Let A = 4/L and ` = bηL c. If every B ≥ 693.5 defining (7.4)
implies |G||C|L

−1S �η min{1, λ1} then

πC(x, L/F )� 1

D5
KQ4n3nK

K

|C|
|G|

x

log x

for x ≥ D694
K Q521 +D232

K Q367n290nK
K and DKQnnKK sufficiently large.

Proof. Let B = log x
L

so B ≥ 693.5 by assumption and the definition of L in (7.21). Fix η > 0

sufficiently small. By Lemma 7.1.3, our assumption on S, and Theorem 7.3.5, it follows that

πC(x, L/F )� min{1, λ1}e−10ηL |C|
|G|

x

log x
� e−( 24

5
+10η)L |C|

|G|
x

log x

as desired. By (7.21), we somewhat crudely bound L to note that e( 24
5

+10η)L � D5
KQ4n3nK

K .
Combining with the above yields the desired result.

Remark. The quality of exponents for D5
KQ4n3nK

K in the lower bound for πC(x, L/F ) can be
easily improved by simple modifications to our bounds in Theorem 7.3.5 and our bound of L

in the above arguments. For simplicity, we did not pursue the optimal exponents.

7.3.2 A sum over low-lying zeros

We again begin by shifting the contour in Lemma 7.1.5 and reducing the analysis to a careful
consideration of contribution coming from zeros of Hecke L-functions which are “low-lying”.
Recall that T? ≥ 1 is arbitrary throughout this section, though we will emphasize it in the
statements of some lemmas.

Lemma 7.3.9. Let T? ≥ 1 be arbitrary, and let ρ1 and χ1 be as in Section 7.3.1. If

B − 2`A > 162, ` >
81nK + 162

4
, A >

1

L
,
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and L is sufficiently large then∣∣ |G|
|C|L

−1S − F (0) + χ1(gC)F ((1− ρ1)L )
∣∣ ≤∑

χ

∑′

ρ

|F ((1− ρ)L )|

+O
(( 2

AT?L

)2`

T 40.5nK+81
? + e−78L

)
where the sum

∑′ indicates a restriction to non-trivial zeros ρ 6= ρ1 of L(s, χ, L/K), counted

with multiplicity, satisfying 0 < Re{ρ} < 1 and |Im{ρ}| ≤ T?.

Proof. Shift the contour in Lemma 7.1.5 to the line Re{s} = −1
2
. For each Hecke character χ

(which is necessarily primitive), this picks up the non-trivial zeros of L(s, χ, L/K), the simple
pole at s = 1 when χ is trivial, and the trivial zero at s = 0 of L(s, χ, L/K) of order r(χ). To
bound the remaining contour, by [LMO79, Lemma 2.2] and Lemma 7.1.1(iv) with α = 2, for
Re{s} = −1/2 we have that

−L
′

L
(s, χ, L/K)� L + nK log(|s|+ 2), and |F ((1− s)L )| � L 2e−

3
2

(B−2`A)L · |s|−2,

since A > 1/L . It follows that

1

2πi

∫ −1/2+i∞

−1/2−i∞
−L

′

L
(s, χ, L/K)F ((1− s)L )ds� L 3e−

3
2

(B−2`A)L .

Moreover, by the conductor-discriminant formula (2.21), our condition on A, (7.21), and
Lemma 7.3.1, we have that

A−1L e−(B−2`A)L /2 logDL � L 2e−(B−2`A)L /2[L : K] log(DKQ)� e−(B−2`A−4)L /2.

Substituting all of these calculations in Lemma 7.1.5 implies∣∣∣ |G||C|L −1S−F (0)+
∑
χ

χ(gC)
∑
ρ

F ((1−ρ)L )
∣∣∣�∑

χ

r(χ)F (L )+e−(B−2`A−4)L /2, (7.28)

where the inner sum over ρ = ρχ is over all non-trivial zeros of L(s, χ, L/K). From (2.5) and
(2.8), notice r(χ) ≤ nK . Thus, by Lemmas 7.1.1 and 7.3.1,∑

χ

r(χ)F (L )� [L : K]nKe
−(B−2`A)L � e−(B−2`A−2)L .
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It follows from (7.28) that

|G|
|C|L

−1S = F (0)−
∑
χ

χ(gC)
∑
ρ

F ((1− ρ)L ) +O
(
e−(B−2`A−4)L /2

)
.

The error term is bounded by O(e−78L ) as B − 2`A > 162. Therefore, it suffices to show

Z :=
∑
χ

∞∑
k=0

∑
ρ

2kT?≤Im{ρ}<2k+1T?

|F ((1− ρ)L )| �
( 2

AT?L

)2`

T 40.5nK+81
? .

From Lemma 7.1.1, writing ρ = β + iγ with β ≥ 1/2, observe that

|F (ρL )|+ |F ((1− ρ)L )| ≤ 2e−(B−2`A)(1−β)L
( 2

A|γ|L

)2`

.

Moreover, from Theorem 7.3.6,

Ñ(σ) = Ñ(σ, T ) :=
∑
χ

N(σ, 2T, χ)�
(
e162LT 81nK+162

)(1−σ)

for 1
2
≤ σ ≤ 1, T ≥ 1, and L sufficiently large. Thus, denoting B′ = B − 2`A, it follows by

partial summation that∑
χ

∑
ρ

T≤|Im{ρ}|≤2T

|F ((1− ρ)L )|

�
( 2

ATL

)2`
∫ 1/2

1

e−B
′(1−σ)L dÑ(σ)

�
( 2

ATL

)2`[
Ñ(1/2)e−B

′L /2 +B′L

∫ 1/2

1

e−(B′−162)(1−σ)LT (81nK+162)(1−σ)dσ
]

�
( 2

ATL

)2`[
e−(B′−162)L /2T 40.5nK+81 + 1

]
�
( 2

AL

)2`

T 40.5nK+81−2`

since B′ > 162. Note we have used that the zeros of
∏

χ L(s, χ, L/K) are symmetric across
the critical line Re{s} = 1/2. Overall, since ` > 81nK+162

4
, we deduce that

Z �
( 2

AL

)2`

T 40.5nK+81−2`
?

∞∑
k=0

(2k)40.5nK+81−2` �
( 2

AT?L

)2`

T 40.5nK+81
? .
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Next, we further restrict the sum over zeros in Lemma 7.3.9 to zeros ρ close to the line
Re{s} = 1. To simplify the statement, we also select parameters ` and A for the weight
function.

Lemma 7.3.10. Let T? ≥ 1, η ∈ (0, 1) and 1 ≤ R ≤ L be arbitrary. Suppose

B − 2`A > 162, A =
4

L
, ` = bηL c. (7.29)

If L is sufficiently large depending only on T? and η then∣∣ |G|
|C|L

−1S − F (0) + χ1(gC)F ((1− ρ1)L )
∣∣ ≤∑

χ

∑?

ρ

|F ((1− ρ)L )|

+O(e−(B−2`A−162)R + (2T?)
−2ηL eηL + e−78L ),

where the marked sum
∑? runs over zeros ρ 6= ρ1 of L(s, χ, L/K), counting with multiplicity,

satisfying 1− R
L
< Re{ρ} < 1 and |Im{ρ}| ≤ T?.

Proof. For L sufficiently large depending on η, the quantities B,A and ` satisfy the assump-
tions of Lemma 7.3.9. Denote B′ = B − 2`A. We claim it suffices to show∑

χ

∑′

Re{ρ}≤1−R/L

|F ((1− ρ)L )| � e−(B′−162)R, (7.30)

where
∑′ is defined in Lemma 7.3.9. To see the claim, we need only show that the error

term in Lemma 7.3.9 is absorbed by that of Lemma 7.3.10. For L sufficiently large, notice
T 40.5nK
? ≤ eηL as nK log T? = o(L ). Hence, for our choices of A and `, we have that( 2

AT?L

)2`

T 40.5nK+81
? ≤

( 1

2T?

)2ηL

eηL .

This proves the claim. Now, to establish (7.30), define the multiset of zeros

Rm(χ) :=
{
ρ : L(ρ, χ) = 0, 1− m+1

L
≤ Re{ρ} ≤ 1− m

L
, |Im(ρ}| ≤ T?

}
for 1 ≤ m ≤ L . By Theorem 7.3.6 and Lemma 7.1.1, it follows that∑

χ

∑
ρ∈Rm(χ)

|F ((1− ρ)L )| ≤ e−B
′m
∑
χ

#Rm(χ)� e−(B′−162)m

for L sufficiently large depending on T?. Summing overm ≥ R yields the desired conclusion.
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Next, we proceed to the final arguments for the proof of Theorem 1.3.2 by dividing into
cases depending on whether λ1 ≥ 0.0875 or not.

7.3.3 Non-exceptional case (λ1 ≥ 0.0875)

For this subsection, we assume λ1 ≥ 0.0875. Thus, we have no additional information as to
whether ρ1 is real or not, or whether χ1 is real or not.

Recall η > 0 is arbitrary and sufficiently small, say η < 10−3 at least. Assume L is suffi-
ciently large, depending only on η; we will frequently use this fact throughout this subsection
without further mention. Suppose

B ≥ 693.5, ` = bηL c, and A =
4

L
.

Thus B, `, and A satisfy (7.36) and B′ := B − 2`A > 693. By Lemma 7.3.8, establishing
Theorem 1.3.2 in the non-exceptional case is therefore reduced to verifying |G||C|L

−1S � 1.
Now, assume the fixed parameter λ? > 0 satisfies

λ? < min{λ′, λ2},

where λ′ and λ2 are defined in Section 7.3.1 with T? = 1. For a non-trivial zero ρ of a Hecke
L-function, as usual, write ρ = β + iγ = (1 − λ

L
) + i µ

L
. Let m(ρ1) = 1 if ρ1 is real and

m(ρ2) = 2 if ρ1 is complex. Thus, from Lemma 7.3.10 with T? = 1 and R = R(η) ≥ 1

sufficiently large, it follows that

|G|
|C|

L −1S ≥ 1−m(ρ1)|F ((1− ρ1)L )| −
∑
χ

∑†

ρ

|F ((1− ρ)L )| − η,

where the marked sum
∑† runs over non-trivial zeros ρ 6= ρ1 (or ρ 6= ρ1, ρ1 if ρ1 is complex)

of L(s, χ), counted with multiplicity, satisfying λ? ≤ λ ≤ R and |γ| ≤ 1. Note we have used
that |F ((1− ρ1)L )| = |F ((1− ρ1)L )|. By Lemma 7.1.1, this implies that

|G|
|C|

L −1S ≥ 1− 2e−B
′λ1 −

∑
χ

∑
λ?≤λ≤R
|γ|≤1

e−B
′λ − η. (7.31)

Let Λ > 0 be a fixed parameter to be specified later. To bound the remaining sum over zeros,
we will apply partial summation using the quantityN (λ), defined in (7.27), over two different
ranges: (i) λ? ≤ λ ≤ Λ and (ii) Λ < λ ≤ R.
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For (i), partition the interval [λ?,Λ] into M subintervals with sample points

λ? = Λ0 < Λ1 < Λ2 < · · · < ΛM = Λ.

By partial summation, we see

∑
χ

∑
λ?<λ≤Λ
|γ|≤1

e−B
′λ =

M∑
j=1

∑
χ

∑
Λj−1<λ≤Λj

e−B
′λ

≤ e−B
′ΛM−1N (ΛM) +

M−1∑
j=1

(
e−B

′Λj−1 − e−B′Λj
)
N (Λj) =: Z1,

say. By Theorem 7.3.2, we may choose λ? = 0.2866. Furthermore, select

Λ = 1, M = 32, Λr =


0.286 + 0.001r 1 ≤ r ≤ 14,

0.300 + 0.025(r − 14) 15 ≤ r ≤ 22,

0.5 + 0.05(r − 22) 23 ≤ r ≤ 32.

By Theorem 7.3.7, we may use Table 5.1 to bound N ( · ), yielding Z1 ≤ 0.9926.

For (ii), apply partial summation along with Theorem 7.3.7. Since B′ ≥ 693 > 162 and
R = R(η) is sufficiently large, it follows that

∑
χ

∑
Λ<λ≤R
|γ|≤1

e−B
′λ ≤

∫ R

Λ

e−B
′λdN (λ)

≤ e−(B′−162)R+188 +

∫ ∞
Λ

B′e−(B′−162)λ+188dλ

≤ B′

B′ − 162
e188−(B′−162)Λ + η =: Z2 + η,

say. Evaluating the right hand side with B′ ≥ 693 and Λ = 1, we deduce Z2 ≤ e−300.
Incorporating (i) and (ii) into (7.31), we see that

|G|
|C|

L −1S ≥ 1− 2e−B
′λ1 − 0.9926− e−300 − 2η ≥ 0.0073− 2η,

as λ1 > 0.0875 and B′ ≥ 693. Since η < 10−3, we conclude |G||C|L
−1S � 1 as desired. This

completes the proof of Theorem 1.3.2 in the non-exceptional case.
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7.3.4 Exceptional case (λ1 < 0.0875)

For this subsection, we assume λ1 < 0.0875, in which case ρ1 is an exceptional real zero
by Theorem 7.3.2. Thus, ρ1 is a simple real zero and χ1 is a real Hecke character. Recall
η > 0 is arbitrary and sufficiently small, say η < 10−3 at least. Assume L is sufficiently
large, depending only on η; we will frequently use this fact throughout this subsection without
further mention. We will proceed in a similar fashion as the non-exceptional case, but need a
less refined analysis due to the strength of the Deuring-Heilbronn phenomenon. Suppose

B ≥ 163, ` = bηL c, and A =
4

L
.

Thus, B, `, and A satisfy (7.36) and B′ := B − 2`A > 162. For the moment, we do
not make any additional assumptions on the minimum size of B and hence B′. To prove
Theorem 1.3.2 when ρ1 is an exceptional zero, it suffices to show, by Lemma 7.3.8, that
|G|
|C|L

−1S �η min{1, λ1} for B ≥ 593 and L sufficiently large depending on η.

For a non-trivial zero ρ of a Hecke L-function, write ρ = β + iγ = (1 − λ
L

) + iγ so by
Lemma 7.1.1, |F ((1 − ρ)L )| ≤ e−B

′λ. From Lemma 7.3.10 with T? ≥ 1 and 1 ≤ R ≤ L

arbitrary, it follows that, if we define

∆ =

η when T? = 1 and R = R(η) is sufficiently large,

O(e−(B′−162)R + e−78L ) when T? = T?(η) is sufficiently large and 1 ≤ R ≤ L ,
(7.32)

then
|G|
|C|

L −1S ≥ 1− χ1(gC)e−B
′λ1 −

∑
χ

∑?

ρ

e−B
′λ −∆, (7.33)

where the restricted sum
∑? is over zeros ρ 6= ρ1, counted with multiplicity, satisfying 0 <

λ ≤ R and |γ| ≤ T?. Suppose the arbitrary parameter λ? > 0 satisfies

λ > λ? for every zero ρ occurring in the restricted sum of (7.33). (7.34)

It remains for us to divide into cases according to the range of λ1 and value of χ1(gC) ∈ {±1}.
In each case, we make a suitable choice for λ?.

Moderate exceptional zero (η ≤ λ1 < 0.0875 or χ1(gC) = −1)

For the moment, we do not make any assumptions on the size of λ1 other than 0 < λ1 < 0.0875.
Select T? = 1 and R = R(η) sufficiently large so ∆ = η according to (7.32). By partial
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summation, our choice of λ? in (7.33), and Theorem 7.3.7, it follows that

∑
χ

∑?

ρ

e−B
′λ ≤

∫ R

λ?
e−B

′λdN (λ) ≤ e−(B′−162)R+188 +

∫ ∞
λ?

B′e−(B′−162)λ+188dλ.

As R = R(η) is sufficiently large and B′ > 162, the above is ≤ B′

B′−162
e188−(B′−162)λ? + η.

Comparing with (7.33), we have that

|G|
|C|

L −1S ≥ 1− χ1(gC)e−B
′λ1 − B′

B′−162
e−(B′−162)λ?+188 − 2η. (7.35)

Finally, we further subdivide into cases according to the size of λ1 and value of χ1(gC) ∈ {±1}.
Recall η > 0 is sufficiently small and arbitrary.

λ1 medium (10−3 ≤ λ1 < 0.0875). Here we assume B ≥ 593 in which case B′ ≥ 592.
Select λ? = 0.44 which, by Theorem 7.3.3, satisfies (7.34) for the specified range of λ1.
Substituting this estimate in (7.35) and noting |χ1(gC)| ≤ 1, we deduce that

|G|
|C|

L −1S ≥ 1− e−592×10−3 − 592

430
e−430×0.44+188 − 2η ≥ 0.032− 2η

for λ ∈ [10−3, 0.0875]. Hence, for η sufficiently small, |G||C|L
−1S � 1 in this subcase, as

desired.

λ1 small (η ≤ λ1 < 10−3). Here we assume B ≥ 297 in which case B′ ≥ 296.5. Select
λ? = 0.2103 log(1/λ1), which, by Theorem 7.3.3, satisfies (7.34). For λ < 10−3, this implies
λ? > 1.45. Applying both of these facts in (7.35) and noting |χ1(gC)| ≤ 1, we see

|G|
|C|

L −1S ≥ 1− e−296.5λ1 − 296

134
e−(134.5−188/1.45)λ? − 2η ≥ 1− e−296.5λ1 − 296

134
λ1 − 2η,

since 4.84× 0.2103 = 1.017 · · · > 1. As 1− e−x ≥ x− x2/2 for x ≥ 0, the above is

≥ 296.5λ1 −
(296.5)2

2
λ2

1 −
296

134
λ1 − 2η ≥ 294.2λ1

(
1− 150λ1

)
− 2η ≥ 250η,

because η ≤ λ1 < 10−3. Therefore, |G||C|L
−1S �η 1 completing the proof of this subcase.

λ1 very small (λ1 < η) and χ1(gC) = −1. Here we also assume B ≥ 163 in which case
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B′ > 162.5. From (7.35), it follows that

|G|
|C|

L −1S ≥ 1 + e−162.5λ1 − 325e−0.5λ?+188 − 2η ≥ 2−O
(
e−0.5λ? + η + λ1

)
.

By Theorem 7.3.4, the choice λ? = 1
81

log(c1/λ1) satisfies (7.34) for some absolute constant
c1 > 0. Since λ1 < η, the above is therefore ≥ 2 − O(η0.5/81 + η) ≥ 2 − O(η1/162). As η
is sufficiently small, we conclude |G||C|L

−1S � 1 as desired. This completes the proof for a
“moderate” exceptional zero.

Truly exceptional zero (λ1 < η and χ1(gC) = 1)

Select T? = T?(η) sufficiently large and let R = 1
80.1

log(c1/λ1), where c1 > 0 is a sufficiently
small absolute constant. By Theorem 7.3.4, it follows that the restricted sum over zeros ρ in
(7.33) is empty and therefore by (7.33) and (7.32),

|G|
|C|

L −1S ≥ 1− e−B′λ1 −O(λ
(B′−162)/80.1
1 + e−78L )

as χ1(gC) = 1. Additionally assuming B ≥ 243 in which case B′ ≥ 242.2 and noting
1− e−x ≥ x− x2/2 for x ≥ 0, we conclude that

|G|
|C|

L −1S ≥ 242.2λ1 −O(λ2
1 + λ

80.2/80.1
1 + e−78L ) ≥ λ1(242.2−O(λ0.001

1 + e−73L )).

In the last inequality, we use that λ1 � e−4.8L by Theorem 7.3.5. As λ1 ≤ η for η > 0

sufficiently small, we conclude |G||C|L
−1S � λ1 as desired.

Comparing all subcases of the exceptional case, we see that the most stringent condition is
B ≥ 593. By Lemma 7.3.8, this completes the proof of Theorem 1.3.2.

Remark. The “truly exceptional” subcase is analogously considered in Chapter 9 in the lan-
guage of ray class groups. In particular, when L/K corresponds to a primitive congruence
class group H of K, this subcase is implied by Theorems 9.1.1 and 9.1.2 which are numeri-
cally much stronger results and use entirely different methods.

7.4 Absolutely bounded degree

In this section, we improve upon Theorem 1.3.2 when nK = [K : Q] is uniformly bounded by
an absolute constant. We will proceed as in Section 7.3 and establish the following theorem.
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Theorem 7.4.1. Let L/F be a Galois extension of number fields with Galois group G and let

C ⊂ G be a conjugacy class. LetH ⊂ G be an abelian subgroup such thatH∩C is nonempty,

K = LH be the fixed field of H , and Q = Q(L/K) be defined by (1.22). If nK ≤ 1049 then

πC(x, L/F )� 1

D5
KQ4

|C|
|G|

x

log x

for x ≥ D455
K Q342 and DKQ sufficiently large. In particular,

P (C,L/F )� D455
K Q342.

Remark. Our primary goal was to minimize the exponents of DK and Q. Our secondary goal
was to allow the largest range of nK possible without sacrificing the exponents of DK and Q.

This section is dedicated to proving Theorem 7.4.1. We will assume all of the contents and
notation from Sections 7.1 and 7.3.

7.4.1 Additional preliminaries

For λ > 0, define N(λ) = N(λ, L/K) to be the number of Hecke characters χ attached to
L/K such that L(s, χ, L/K) has a zero in the region

Re{s} > 1− λ

L
, |Im{s}| ≤ T?.

Recall L is given by (7.21) and T? ≥ 1 is arbitrary. From Theorem 7.3.2, we have that
N(0.0875) ≤ 1 and N(0.2866) ≤ 2. The source of our improvement will be our ability to use
N(λ) in place of N (λ) from Theorem 7.3.7 when λ is small.

Lemma 7.4.2. If L is sufficiently large depending on T? then N(0.569) ≤ 3365.

Proof. This follows from Corollary 4.5.3 since L ≥ L for L sufficiently large. Here, L is
given by (3.3).

We reduce the proof of Theorem 7.4.1 to verifying the following lemma.

Lemma 7.4.3. Let η > 0 be sufficiently small and arbitrary. Assume nK ≤ 1049 and L is

sufficiently large depending only on η > 0. Let A = 1
4`

and ` = d81n+162
4
e + 1. If every

B ≥ 454 defining (7.4) implies |G||C|L
−1S �η min{1, λ1} then

πC(x, L/F )� 1

D5
KQ4

|C|
|G|

x

log x
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for x ≥ D455
K Q342 and DKQ sufficiently large.

Proof. The argument is similar to Lemma 7.3.8.

7.4.2 A sum over low-lying zeros

We will require Lemma 7.3.9 as well as two additional lemmas. One lemma addresses the
low-lying zeros for our new choices of A and `.

Lemma 7.4.4. Let T? ≥ 1, η ∈ (0, 1) and 1 ≤ R ≤ L be arbitrary. Suppose

B − 2`A > 162, A =
1

4`
, ` =

⌈81nK + 162

4

⌉
+ 1. (7.36)

If L is sufficiently large depending only on T? and η then∣∣ |G|
|C|L

−1S − F (0) + χ1(gC)F ((1− ρ1)L )
∣∣ ≤∑

χ

∑?

ρ

|F ((1− ρ)L )|

+OnK (e−(B−2`A−162)R + L −122),

where the marked sum
∑? runs over zeros ρ 6= ρ1 of L(s, χ, L/K), counting with multiplicity,

satisfying 1− R
L
< Re{ρ} < 1 and |Im{ρ}| ≤ T?.

Proof. This result is motivated by Lemma 7.3.10, so the arguments are similar. For L suffi-
ciently large depending on η, the quantitiesB,A and ` satisfy the assumptions of Lemma 7.3.9.
Denote B′ = B− 2`A. First, the bound (7.30) is established exactly as in Lemma 7.3.9. Thus,
we again need only show that the error term in Lemma 7.3.9 is bounded by L−122. For L

sufficiently large depending on T?, notice by our choices of A and ` that( 2

AT?L

)2`

T 40.5nK+81
? �nK

( 1

T?L

)40.5nK+82

T 40.5nK+81
? �nK L −122,

as desired.

The second lemma addresses the sum over zeros for a single Hecke character. There is no
corresponding lemma in Section 7.3.2.

Lemma 7.4.5. Let η > 0, T? ≥ 1 andR ≥ 1 be arbitrary. Let χ be a Hecke character attached

to L/K. For A > 0 and ` ≥ 1 arbitrary, define

F̃`(z) :=
(1− e−Az

Az

)2`

. (7.37)
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Suppose L(s, χ, L/K) is non-zero in the region

Re{s} ≥ 1− λ

L
, |Im{s}| ≤ T?

for some 0 < λ ≤ 10. Then, provided L is sufficiently large depending on η, T?, R, and A,

∑′

ρ

|F̃`((1−ρ)L )| ≤
(1− e−Aλ

Aλ

)2(`−1)

·
{
φ
(1− e−2Aλ

A2λ

)
+

2Aλ− 1 + e−2Aλ

2A2λ2
+η
}

(7.38)

where φ = 1/4 and the marked sum
∑′ indicates a restriction to zeros ρ = β + iγ of ζL(s)

satisfying

β ≥ 1− R

L
, |γ| ≤ T?.

In particular, as λ→ 0, the bound in (7.38) becomes 2φ
A

+ 1 + η.

Proof. This result is motivated by [HB92, Lemma 13.3] and Lemma 7.2.6. The arguments are
analogous except we replace the application of [KN12, Theorem 3] with Proposition 3.4.2.

Lemma 7.4.5 poses two issues whereby we must fix the degree nK to obtain improvements
over Theorem 1.3.2. First, it has a condition that L is sufficiently large depending on A

(amongst other quantities). Second, the quality of the bound in (7.4.5) is O(1/A). Thus, if A
is not uniformly bounded below by an absolute constant, then we cannot apply Lemma 7.4.5
to obtain a degree uniform result like Theorem 1.3.2. However, our arguments seem to force
A � n−1

K . This is because B − 2`A > 162 implies `A � 1 to permit bounded values
of B. Since ` � nK is a seemingly necessary condition due to applications of the log-free
zero density estimate (e.g. Theorem 7.3.6 and its relatives), it follows that one must impose
A � `−1 � n−1

K . If one could circumvent these two issues, then we expect the quality of
exponents in Theorem 7.4.1 to carry over to Theorem 1.3.2. We did not attempt to pursue such
a strategy.

7.4.3 Proof of Theorem 7.4.1

For the entirety of this subsection, assume

1 ≤ nK ≤ 1049.

Recall the definition of ρ1 in Section 7.3.1. From the proof of Theorem 1.3.2 in Sections 7.3.3
and 7.3.4, it follows that we need only consider the cases λ1 large (λ1 ≥ 0.0875) and λ1
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medium (10−3 ≤ λ1 < 0.0875). In all other cases, the values of B are shown to be small
enough. Thus, we assume λ1 ≥ 10−3.

Recall η > 0 is arbitrary and sufficiently small, say η < 10−3 at least. Assume L is suffi-
ciently large, depending only on η; we will frequently use this fact throughout this subsection
without further mention. Suppose

B ≥ 164, ` =
⌈81nK + 162

4

⌉
+ 1, and A =

1

4`
.

Thus B, `, and A satisfy (7.36) and B′ := B − 2`A > 163. For the moment, we do not
make any additional assumptions on the minimum size of B and hence B′. By Lemma 7.4.3,
establishing Theorem 1.3.2 when λ1 ≥ 10−3 is therefore reduced to verifying |G||C|L

−1S � 1.
Now, assume the fixed parameter λ? > 0 satisfies

λ? < min{λ′, λ2},

where λ′ and λ2 are defined in Section 7.3.1 with T? = 1. For a non-trivial zero ρχ of a Hecke
L-function L(s, χ), as usual, write ρχ = ρ = β + iγ = (1− λ

L
) + i µ

L
. Let m(ρ1) = 1 if ρ1 is

real and m(ρ2) = 2 if ρ1 is complex. Thus, from Lemma 7.4.4 with T? = 1 and R = R(η) ≥ 1

sufficiently large, it follows that

|G|
|C|

L −1S ≥ 1−m(ρ1)|F ((1− ρ1)L )| −
∑
χ

∑†

ρχ

|F ((1− ρχ)L )| − η,

where the marked sum
∑† runs over non-trivial zeros ρχ 6= ρ1 (or ρχ 6= ρ1, ρ1 if ρ1 is complex)

of L(s, χ), counted with multiplicity, satisfying λ? ≤ λ ≤ R and |γ| ≤ 1. Note we have used
that |F ((1 − ρ1)L )| = |F ((1 − ρ1)L )|. For each character χ, consider the corresponding
inner sum over zeros. By Lemma 7.1.1 and (7.37), we have that∑†

ρχ

|F ((1− ρχ)L )| ≤
∑†

ρχ

e−B
′λ|F̃`((1− ρχ)L )| ≤ e−B

′λ?
∑†

ρ

|F̃`((1− ρχ)L )|.

Applying Lemma 7.4.5 (using λ→ 0) to the remaining sum, it follows that, for any given χ,∑†

ρχ

|F ((1− ρχ)L )| ≤ (41nK + 84)e−B
′λ? ,

since 2φ
A

+ 1 < 41nK + 84 . For Λ? > 0 fixed, letM(Λ?) be the set of characters χ (including
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the trivial character) with a zero ρ satisfying λ ≤ Λ? and |γ| ≤ 1. Thus, we have shown∑
χ∈M(Λ?)

∑†

ρχ

|F ((1− ρ)L )| ≤ N0(Λ∗) · 166e−B
′λ? ,

where N0(Λ∗) = #M(Λ∗). Observe that

N0(Λ∗) =

N(Λ∗) + 1 if χ0 has a zero ρ satisfying λ ≤ Λ∗ and |γ| ≤ 1,

N(Λ∗) otherwise,

where N( · ) is defined in Section 7.4.1. By Lemma 7.1.1, this implies that

|G|
|C|

L −1S ≥ 1−m(ρ1)e−B
′λ1 − Z0 −

∑
χ 6∈M(Λ∗)

∑
Λ?≤λ≤R
|γ|≤1

e−B
′λ − η, (7.39)

where
Z0 := (41nK + 84)N0(Λ∗)e−B

′λ∗ .

Let Λ ≥ Λ? > 0 be a fixed parameter to be specified later. To bound the remaining sum over
zeros, we follow the proof in Section 7.3.3. Namely, we will apply partial summation using
the quantity N (λ), defined in (7.27), over two different ranges: (i) Λ? < λ ≤ Λ, and (ii)
Λ < λ ≤ R. For (i), partition the interval [Λ?,Λ] into M subintervals with sample points

Λ? = Λ0 < Λ1 < Λ2 < · · · < ΛM = Λ.

By partial summation, we again see

∑
χ 6∈M(Λ∗)

∑
Λ?<λ≤Λ
|γ|≤1

e−B
′λ =

M∑
j=1

∑
χ

∑
Λj−1<λ≤Λj

e−B
′λ

≤ e−B
′ΛM−1N (ΛM) +

M−1∑
j=1

(
e−B

′Λj−1 − e−B′Λj
)
N (Λj) =: Z1,

say. If M = 0, we set Z1 = 0 trivially. For (ii), we similarly apply partial summation along
with Theorem 7.3.7. Since B′ > 163 and R = R(η) is sufficiently large, it follows that

∑
χ 6∈M(Λ∗)

∑
Λ≤λ≤R
|γ|≤1

e−B
′λ ≤ B′

B′ − 162
e188−(B′−162)Λ + η =: Z2 + η,
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say. Incorporating (i) and (ii) into (7.39), we conclude that

|G|
|C|

L −1S ≥ 1−m(ρ1)e−B
′λ1 − Z0 − Z1 − Z2 − η. (7.40)

Finally, we divide into two cases. Recall that we need only consider λ1 ≥ 10−3.

λ1 large (λ1 ≥ 10−2)

Here we assume B ≥ 454 so B′ > 453.5. By Theorem 7.3.2, we may choose5 λ? = 0.2866.
Furthermore, select

Λ? = 0.569, Λ = 1, M = 9, Λr = 0.55 + 0.05r (1 ≤ r ≤ 9).

By Lemma 7.4.2, it follows that

Z0 ≤ (41nK + 84) · 3366 · e−453.5×0.2866 ≤ e−118nK + e−117.

For Z1, we apply Theorem 7.3.7, using Table 5.1 to bound N ( · ), yielding Z1 ≤ 0.9649.
For Z2, we see that Z2 ≤ e−100. If λ1 ≥ 0.0875 then m(ρ1)e−B

′λ1 ≤ 2e−453.5×0.0875 ≤
10−16. Otherwise, if 10−2 ≤ λ1 < 0.0875 then, by Theorem 7.3.2, m(ρ1) = 1 implying
m(ρ1)e−B

′λ1 ≤ e−435.5×0.01 ≤ 0.011. Combining all of these observations into (7.40), we
conclude that

|G|
|C|

L −1S ≥ 1− 0.011− e−118nK − e−117 − 0.9649− e−100 − η

≥ 0.008− η

for nK ≤ 1049 ≤ e114. Since η < 10−3, we conclude |G||C|L
−1S � 1 as desired.

λ1 small (10−3 ≤ λ1 < 10−2)

Here we assume B ≥ 358 so B′ > 357. By Theorem 7.3.2, ρ1 is a simple real zero attached
to a real Hecke character χ1 so m(ρ1) = 1. By Theorem 7.3.3, we may take λ∗ = 0.968 >

0.2103 log(1/0.01). Select

Λ = Λ? = λ? = 0.968, and M = 0.

5One could use Theorem 7.3.3 when 10−2 ≤ λ1 ≤ 0.0875 but this does not seem to lead to any significant
improvements in Theorem 7.4.1.
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With these choices, we see that m(ρ1)e−B
′λ1 ≤ e−357×0.01 ≤ 0.029. Moreover, Z0 ≤ 10−5 for

nK ≤ e320, Z1 = 0 by definition, and Z2 ≤ 0.8562. Thus,

|G|
|C|

L −1S ≥ 1− 0.029− 10−5 − 0− 0.8562− η

≥ 0.11− η.

Since η < 10−3, we conclude |G||C|L
−1S � 1 as desired. This completes the proof of Theo-

rem 7.4.1 in all cases.



Chapter 8

Brun–Titchmarsh

“That is brand new information!”
– Phoebe Buffay, Friends.

Throughout this chapter, let L/F be a Galois extension of number fields with Galois group
G := Gal(L/F ) and let C be a conjugacy class of G. Our aim is to upper bound

πC(x, L/F ) = #{p : Np < x, p prime ideal of F unramified in L,
[L/F

p

]
= C},

where N = NF
Q is the absolute norm of F . This chapter contains the proofs of Theorems 1.3.3

and 1.3.4, which are two of the main results of this thesis. The material here has substan-
tive intersections and connections with Section 7.3 and can be viewed as a complementary
perspective. Again, notation from Section 2.5 will be used throughout this chapter.

8.1 Setup

8.1.1 Choice of weight

Let us define a weight function and describe its properties. It will be used to count prime ideals
with norm between x1/2 and x.

Lemma 8.1.1. For any x ≥ 3, ε ∈ (0, 1/4), and positive integer ` ≥ 1, select

A =
ε

2` log x
.

There exists a real-variable function f(t) = f(t;x, `, ε) such that:

(i) 0 ≤ f(t) ≤ 1 for all t ∈ R, and f(t) ≡ 1 for 1
2
≤ t ≤ 1.

190
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(ii) The support of f is contained in the interval [1
2
− ε

log x
, 1 + ε

log x
].

(iii) Its Laplace transform F (z) =
∫
R f(t)e−ztdt is entire and is given by

F (z) = e−(1+2`A)z ·
(1− e( 1

2
+2`A)z

−z

)(1− e2Az

−2Az

)`
. (8.1)

(iv) Let s = σ + it ∈ C, σ > 0 and α be any real number satisfying 0 ≤ α ≤ `. Then

|F (−s log x)| ≤ eσεxσ

|s| log x
·
(
1 + x−σ/2

)
·
( 2`

ε|s|

)α
.

(v) If s = σ + it ∈ C and σ > 0, then

|F (−s log x)| ≤ eσεxσ.

Moreover,

1/2 < F (0) < 3/4, F (−σ log x) ≤ eεxσ

σ log x
.

(vi) Let s = −1
2

+ it ∈ C. Then

|F (−s log x)| ≤ 5x−1/4

log x

(2`

ε

)`
(1/4 + t2)−`/2.

Remark. This choice of weight can be regarded as a smoothed version of Maynard’s weight
[May13, Equation (5.6)]. It is motivated by the choice of weight in Chapter 7 on the least prime
ideal. See the remark following Lemma 7.1.1 for details.

Proof.

• For parts (i) and (ii), let 1S( · ) be an indicator function for the set S ⊆ R. For j ≥ 1,
define

w(t) :=
1

2A
1[−A,A](t), g0(t) := 1[ 1

2
−`A,1+`A](t), and gj(t) := (w ∗ gj−1)(t).

Since
∫
Rw(t)dt = 1, one can verify that f = g` satisfies (i) and (ii).

• For part (iii), observe the Laplace transform W (z) of w is given by

W (z) =
eAz − e−Az

2Az
= e−Az ·

(1− e2Az

−2Az

)
,
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and the Laplace transform G0(z) of g0 is given by

G0(z) =
e−(1/2−`A)z − e−(1+`A)z

z
= e−(1+`A)z ·

(1− e( 1
2

+2`A)z

−z

)
.

Thus (iii) follows as F (z) = G0(z) ·W (z)`.

• For part (iv), we see by (iii) and the definition of A that

|F (−s log x)| ≤ eσεxσ

|s| log x
·
(
1 + e−σεx−σ/2

)∣∣∣1− e−2As log x

2As log x

∣∣∣`. (8.2)

To bound the above quantity, we observe that∣∣∣1− e−w
w

∣∣∣2 ≤ (1− e−a

a

)2

≤ 1 (8.3)

for w = a + ib with a > 0 and b ∈ R. This observation can be checked in a straightfor-
ward manner (cf. Lemma 7.1.2). Using (8.3), it follows that

∣∣∣1− e−2As log x

2As log x

∣∣∣` =
∣∣∣1− e−2As log x

2As log x

∣∣∣α · ∣∣∣1− e−2As log x

2As log x

∣∣∣`−α ≤ ( 1 + x−2Aσ

2A|s| log x

)α
· 1 ≤

( 2`

ε|s|

)α
.

In the last step, we noted 1 + x−2Aσ ≤ 2 and used the definition of A. Combining this
with (8.2) and observing e−σε ≤ 1, we deduce the desired bound.

• For part (v), we see by (iii) that

|F (−s log x)| ≤
(1

2
+ 2`A

)
eσεxσ ·

∣∣∣1− e−(
1
2

+2`A)s log x

(1
2

+ 2`A)s log x

∣∣∣ · ∣∣∣1− e−2As log x

2As log x

∣∣∣`
≤ eσεxσ,

where the second inequality follows from an application of (8.3) and the observation that
1
2

+ 2`A < 1
2

+ ε < 1. For s = σ > 0, observe that F (−σ log x) is real and positive.
Thus, by (iii) and (8.3),

F (−σ log x) ≤ eσεxσ ·
(1− x−(

1
2

+2`A)σ

σ log x

)
·
(1− x−2Aσ

2Aσ log x

)`
≤ eσεxσ

σ log x
·
(1− x−2Aσ

2Aσ log x

)`
≤ eσεxσ

σ log x
.
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This completes the proof of all cases of (iv).

• For part (vi), we shall argue as in (iv). Rearranging (iii), notice that

|F (z)| =
∣∣∣e(− 1

2
+2`A)z ·

(1− e−( 1
2

+2`A)z

z

)(1− e−2Az

2Az

)`∣∣∣.
If r := Re{z} > 0, then

|F (z)| ≤ e(− 1
2

+2`A)r · 1 + e−( 1
2

+2`A)r

|z|
·
(1 + e−2Ar

2A|z|

)`
≤ 2e(− 1

2
+2`A)r

|z|

( 1

A|z|

)`
.

If we substitute z = −s log x = (1
2
− it) log x, then it follows by the definition of A that

|F (−s log x)| ≤ 2eε/2x−1/4

|1
2

+ it| log x

( 2`

ε|1
2

+ it|

)`
≤ 4eε/2x−1/4

log x

(2`

ε

)`
(1/4 + t2)−`/2.

This yields (vi) since 4eε/2 < 5 for ε < 1/4.

8.1.2 A weighted sum of prime ideals

Recall L/F is a Galois extension of number fields with Galois group G and C is a conjugacy
class of G. Furthermore, recall the notation and discussion in Section 2.5.

For x > 3, ε ∈ (0, 1/4) and integer ` ≥ 1, use the compactly-supported weight f( · ) =

f( · ;x, `, ε) defined in Lemma 8.1.1 and set

S(x) = S`,ε(x) :=
∑
n⊆OF

ΛF (n)ΘC(n)f
( log Nn

log x

)
, (8.4)

where ΘC is given by (2.27). We reduce our estimation of πC(x, L/F ) given by (2.28) to the
smoothed version S(x).

Lemma 8.1.2. Let x0 > e4. Suppose there exist constants a, b ≥ 0 and 0 ≤ c ≤ 1/2, all of

which are independent of x, such that S(x) <
{
a + bx−c

} |C|
|G|x for all x ≥ x0. Then, for all

x ≥ x0,

πC(x, L/F ) <
{
a+ 2bx−c +O

( nL
x1/2

+
nLx0 log x

x

)} |C|
|G|

Li(x).
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Proof. If t > 1, then

ψC(t) =
∑

t1/2≤Nn<t

ΘC(n)ΛK(n) + ψC(t1/2). (8.5)

The sum in (8.5) is bounded by S(t) in (8.4) because of Lemma 8.1.1(i), while the secondary
term in (8.5) is estimated much like (2.33). Thus, we have that

ψC(t) ≤ S(t) +O(nF t
1/2). (8.6)

We substitute (8.6) into Lemma 2.5.1 and deduce that

πC(x, L/F ) ≤ S(x)

log x
+

∫ x

x0

S(t)

t log2 t
dt+O

(nFx1/2

log x
+ nFx0

)
.

From our assumption on S(t) for t ≥ x0, it follows that

πC(x, L/F ) < a
|C|
|G|

Li(x) + b
|C|
|G|

[ x1−c

log x
+

∫ x

x0

t−c

log2 t
dt
]

+O
(nFx1/2

log x
+ nFx0

)
. (8.7)

Note that if 0 ≤ c ≤ 1/2, then t1−c/ log2 t is an increasing function of t for t > e4. Since
x0 > e4 and Li(x) > x

log x
for x > e4, we conclude that

∫ x

x0

t−c

log2 t
dt =

∫ x

x0

t1−c

log2 t

dt

t
≤ x1−c

log2 x

∫ x

x0

dt

t
≤ x1−c

log x
< x−c Li(x). (8.8)

The desired result follows from (8.7), (8.8), and the identity nL = [L : F ]nF = |G|nF .

By Mellin inversion, (8.4), and (2.26), it follows that

S(x) =
log x

2πi

∫ 2+i∞

2−i∞
ZC(s)F (−s log x)ds. (8.9)

To shift the contour, we use Deuring’s reduction with an abelian subgroup H of G such that
H ∩ C is non-empty. This is described in Section 2.5. In particular, using (2.34), this yields
the following lemma.

Lemma 8.1.3. LetH be any abelian subgroup ofG such thatH∩C is non-empty. LetK = LH

be the fixed field of L by H and let gC ∈ H ∩ C. If S = S(x) is defined by (8.4) and F is the
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Laplace transform of f in Lemma 8.1.1 then

S(x) =
|C|
|G|

∑
χ

χ(gC)
log x

2πi

∫ 2+i∞

2−i∞
−L

′

L
(s, χ, L/K)F (−s log x)ds,

where the sum is over all Hecke characters χ attached to the abelian extension L/K. Here

L(s, χ, L/K) is the (primitive) Hecke L-function attached to χ.

Next we shift the contour in Lemma 8.1.3 and bound S(x) in terms of the non-trivial zeros
of Hecke L-functions. Henceforth write S = S(x) for simplicity. Recall f depends on the
arbitrary quantities x > 3, ε ∈ (0, 1/4) and an integer ` ≥ 1.

Lemma 8.1.4. Assume ` ≥ 2. Then

|G|
|C|

S

eεx
≤ 1 +

log x

eεx

∑
χ

∑
ρχ

|F (−ρχ log x)|+O
(
nLx

−1 log x+ x−5/4(2`/ε)` logDL

)
,

(8.10)
where the outer sum is over all Hecke characters χ of the abelian extension L/K and the inner

sum runs over all non-trivial zeros ρχ of L(s, χ, L/K), counted with multiplicity.

Proof. Shift the contour in Lemma 8.1.3 to the line Re{s} = −1
2
. This picks up the non-trivial

zeros of L(s, χ, L/K), the simple pole at s = 1 when χ is trivial, and the trivial zero at s = 0

of L(s, χ, L/K) of order r(χ). Overall, we see that

|G|
|C|

S = log x
[
F (− log x)−

∑
χ

χ(gC)
∑
ρχ

F (−ρχ log x) +O
(∑

χ

r(χ)|F (0)|
)]

+ log x
∑
χ

χ(gC)

2πi

∫ −1/2+i∞

−1/2−i∞
−L

′

L
(s, χ, L/K)F (−s log x)ds,

(8.11)

where the sum over ρ = ρχ is over all non-trivial zeros of L(s, χ, L/K), counted with multi-
plicity. From (2.5) and (2.8), we see that r(χ) ≤ nK . Hence, it follows by Lemma 8.1.1(v)
that

F (− log x) ≤ eεx

log x
, and

∑
χ

r(χ)|F (0)| ≤ [L : K]nK = nL.

For the remaining contour, by [LO77, Lemma 6.2] and the primitivity of χ, we have that

−L
′

L
(s, χ, L/K)� logDχ + nK log(|s|+ 3)
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for Re{s} = −1/2, where Dχ is defined in (2.2). It follows by Lemma 8.1.1(vi) that

log x

2πi

∫ −1/2+i∞

−1/2−i∞
−L

′

L
(s, χ, L/K)F (−s log x)ds

� x−1/4
(2`

ε

)` ∫ ∞
−∞

logDχ + nK log(|t|+ 3)

(1/4 + t2)`/2
dt� x−1/4

(2`

ε

)`
logDχ,

because nK � logDK ≤ logDχ and ` ≥ 2. Summing over χ and using the conductor-
discriminant formula (2.21) yields

log x
∑
χ

χ(gC)

2πi

∫ −1/2+i∞

−1/2−i∞
−L

′

L
(s, χ, L/K)F (−s log x)ds� x−1/4

(2`

ε

)`
logDL.

Taking absolute value of both sides in (8.11), multiplying both sides by (eεx)−1, and combining
all of these observations yields the desired result.

8.1.3 A sum over low-lying zeros

This subsection is dedicated to analyzing the sum in Lemma 8.1.4 over all non-trivial zeros of
all Hecke L-functions L(s, χ, L/K). We will reduce our estimation to a sum over low-lying
zeros by exploiting information about the distribution of zeros of Hecke L-functions. We will
utilize1 the results and notation of Section 7.3.1 for the Hecke L-functions associated to the
abelian extension L/K. In particular, the quantity L in (7.21) and the zeros ρ1, ρ

′, and ρ2 are
defined exactly as in the aforementioned subsection.

We will demonstrate that the contribution of zeros is negligible if the zeros are either high-
lying or far from the line Re{s} = 1. Throughout this chapter (unlike Chapter 7), we assume
1 ≤ B ≤ 1000 is a fixed absolute constant. Recall that x > 3, ε ∈ (0, 1/4), and ` ≥ 1 are
arbitrary parameters used in the definition of S = S(x) given by (8.4). Moreover, any sum

∑
χ

is over all Hecke characters χ attached to L/K. We begin by considering high-lying zeros.

Lemma 8.1.5. Let T? ≥ 1 be arbitrary. Let 0 < E < 2
3
B be fixed. Let

B > 162 + E, ` ≥ 82nK + 162, 1
4
> ε ≥ 4`x−E/(B`). (8.12)

For x ≥ eBL ,
log x

x

∑
χ

∑
ρ

|Im{ρ}|>T?

|F (−ρ log x)| � 1

T?
. (8.13)

1Only Lemma 7.3.8 will be ignored.
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Proof. Write ρ = β + iγ with β = 1− λ
L

. If T ≥ 1, then Lemma 8.1.1(iv) with α = `(1− β)

and our choices of our conditions on ε, `, and x imply that

log x

x
|F (−ρ log x)| ≤ 2eεxβ−1

T

( 2`

εT

)`(1−β)

≤ 4

T
e−(B−E)λ(2T )−(82nK+162)λ/L . (8.14)

Using Theorem 5.1.2 via partial summation, we see that

T log x

x

∑
χ

∑
ρ

T≤|Im{ρ}|≤2T

|F (−ρ log x)|

� e−(B−E−162)L

(2T )nK
+
(
B − E +

nK log(2T )

L

)∫ L

0

e−(B−E−162)λ(2T )−nKλ/L dλ� 1,

since B > 162 + E. Overall, this implies that the LHS of (8.13) is

≤ log x

x

∑
χ

∞∑
k=0

∑
ρ

2kT?≤Im{ρ}<2k+1T?

|F (−ρ log x)| � 1

T?

∞∑
k=0

1

2k
� 1

T?
,

as desired.

As we shall see in the next section, an appropriate combination of Lemmas 8.1.4 and 8.1.5
and Theorem 5.1.2 suffices to establish Theorem 1.3.3. For Theorem 1.3.4, we must also show
low-lying zeros far to the left of Re{s} = 1 contribute a negligible amount.

Lemma 8.1.6. Let 0 ≤ R ≤ 1
2
L be arbitrary. Assume (8.12) holds. For x ≥ eBL ,

log x

x

∑
χ

∑′

ρ

|F (−ρ log x)| � x−(B−E−162)R/BL ,

where the marked sum
∑′ runs over zeros ρ = β + iγ of L(s, χ, L/K), counting with multi-

plicity, satisfying 0 < β ≤ 1−R/L and |γ| ≤ ε−1.

Proof. From our choices of ε, ` in (8.12) and Theorem 5.1.2, it follows that

N(1− λ
L
, ε−1)� e162λ(1/ε)(81nK+162)λ/L � e162λxEλ/BL � x(162+E)λ/BL

for 0 < λ < L , where N(σ, T ) is given by (7.25). Write ρ = β + iγ with β = 1 − λ
L

for
some non-trivial zero ρ appearing in the marked sum. By Lemma 8.1.1(iv) with α = 0 and
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Lemma 8.1.1(v), it follows that

log x

x
|F (−ρ log x)| �

x−λ/L for |ρ| ≥ 1/4,

x−3/4 log x for |ρ| ≤ 1/4.
(8.15)

To clarify the second inequality, we observe by Lemma 8.1.1(v) that |F (−ρ log x)| � xβ �
x1/4 for |ρ| ≤ 1/4. Thus, by (8.15) and partial summation, we have that

log x

x

∑
χ

∑′

|ρ|≥1/4

|F (−ρ log x)| � x
−(B−E−162)

B +
log x

L

∫ L

R

x
−(B−E−162)λ

BL dλ

� x−(B−E−162)R/BL .

Moreover, by (8.15), a crude application of [LMO79, Lemma 2.1], and Lemma 7.3.1, it follows
that

log x

x

∑
χ

∑′

ρ
|ρ|≤1/4

|F (−ρ log x)| � [L : K]L x−3/4 log x� x−3/4e2L log x� x−
3
4

+ 3
B .

Combining these estimates yields the desired result since, by our assumptions on B and R,
x−(B−E−162)R/BL � x−(B−E−162)/2B � x−1/2 � x−3/4+3/162 � x−3/4+3/B.

We package these lemmas into the following convenient proposition.

Proposition 8.1.7. Let 0 ≤ R ≤ 1
2
L be arbitrary. Let 0 < E < 2

3
B be fixed. Assume that

B > 162 + E, ` ≥ 82nK + 162, 1
4
> ε ≥ 4`x−E/(B`). (8.16)

If x ≥ eBL and S(x) is given by (8.4), then

|G|
|C|

S(x)

eεx
≤ 1 +

log x

eεx

∑
χ

∑?

ρ

|F (−ρ log x)|+O
(
ε+ x−(B−E−162)R/BL

)
, (8.17)

where the sum
∑? indicates a restriction to non-trivial zeros ρ of L(s, χ, L/K), counted with

multiplicity, satisfying 1−R/L < Re{ρ} < 1 and |Im{ρ}| ≤ ε−1.

Proof. Let T? = 1/ε. It follows from our hypothesis (8.16) along with Lemmas 7.3.10, 8.1.4
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and 8.1.5 that

|G|
|C|

S

eεx
≤ 1 +

log x

eεx

∑
χ

∑?

ρ

|F (−ρ log x)|

+O
(
ε+ x−(B−E−162)R/BL + nLx

−1 log x+ x−5/4(2`/ε)` logDL

)
.

(8.18)

It remains to bound the third and fourth expressions in the error term by ε. Since E < B and
` ≥ 244, we see that

ε > x−E/B` > x−1/` > x−1/244.

Moreover, nL = nK [L : K] � L e2L � x3/162 by Lemma 7.3.1 and (7.22). Similarly, since
logDL =

∑
χ logDχ ≤ [L : K] log(DKQ), it follows that

(2`/ε)` logDL � xE/BL [L : K]� x2/3L e2L � x2/3+3/162.

Applying these estimates in (8.18) yields (8.17).

8.2 Proofs of Brun–Titchmarsh

Finally, we have arrived at the proofs of Theorems 1.3.3 and 1.3.4. In comparison to Theo-
rem 1.3.4, the proof of Theorem 1.3.3 is quite simple, requiring only the log-free zero density
estimate of Hecke L-functions given by Theorem 7.3.6. Recall this result is uniform over all
extensions L/F and therefore we do not assume L is sufficiently large in the proof of Theo-
rem 1.3.3.

The proof of Theorem 1.3.4 is divided into cases depending on how close the zero ρ1,
defined in Section 7.3.1, is to Re{s} = 1. Namely, for η > 0 arbitrary and sufficiently small, if
λ1 < η then we refer to ρ1 as an η-Siegel zero. The cases depend on whether an η-Siegel zero
exists. The main steps are similar to the proof for Theorem 1.3.3 but we need a more refined
analysis involving zero-free regions and Deuring–Heilbronn phenomenon.

8.2.1 Proof of Theorem 1.3.3

Select

B = 244.5, E = 82.1, ` = 82nK + 162, ε = 1/8, and R = 0. (8.19)
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Let M0 > 0 be a sufficiently large absolute constant. For x ≥ x0 := e244.5L +M0n
244.5nK
K , we

claim these are valid choices to invoke Proposition 8.1.7. It suffices to check ε = 1
8
≥ 4`x−E/B`

for x ≥ x0. We need only show (32`)B`/E ≤ x0. This is visible from the fact that

(32`)B`/E � n
244.5
82.1

(82nK+162)

K eO(nK) � n244.5nK
K ≤ x0,

after enlarging M0 if necessary. This proves the claim.

Therefore, by Proposition 8.1.7, we have that S(x) � |C|
|G|x for x ≥ x0, because the

corresponding restricted sum
∑? is empty whenever R = 0. Let M ≥ 1 denote the im-

plicit absolute constant in the above estimate for S(x). Thus, by Lemma 8.1.2 with x0 =

e244.5L +M0n
244.5nK
K , a = M and b = c = 0, we have that

πC(x, L/F ) <
{
M +O

(
nLx

−1/2 +
nL log x

x
(e244.5L + n244.5nK

K )
)} |C|
|G|

Li(x)

for x ≥ x0. By Lemma 7.3.1 and (7.21), notice that nL � e4L /3 � D2
KQ2nnKK . Thus, the

desired result follows for x� e245.9L +D2
KQ2n246nK

K , completing the proof.

Remark.

1) If one wishes to minimize the value of B and hence minimize the exponents of DK and Q
in (1.31) then one may alternatively select

B = 162.01, E = 0.95, ` = 82nK + 162, ε = 1/8, and R = 0

in place of (8.19). Taking x0 = e162.01L +M0n
13,999nK
K , it follows that

(32`)B`/E � n
162.01
0.95

(82nK+162)

K eO(nK) � n13,999nK
K ≤ x0.

Arguing as above, one deduces πC(x, L/F )� |C|
|G|Li(x) for x� e163.5L +D2

KQ2n14,000nK
K

as claimed in the remark following Theorem 1.3.3 based on (7.21).

2) Similarly, to minimize the exponents of nnKK in (1.31), one may alternatively select

B = 359.5, E = 197, ` = 82nK + 162, ε = 1/8, and R = 0

in place of (8.19). Taking x0 = e359.5L , it follows by (7.22) that

(32`)B`/E � n
359.5
197

(82nK+162)

K eO(nK) � n149.65nK
K ≤ x0,
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since 359.5 × 5
12
> 149.7. Arguing as above, one deduces πC(x, L/F ) � |C|

|G|Li(x) for
x� e360.9L ≥ e4L /3e359.5L as claimed in the remark following Theorem 1.3.3.

8.2.2 Proof of Theorem 1.3.4: η-Siegel zero does not exist

Let η > 0 be arbitrary and sufficiently small and let L be sufficiently large depending only
on η. We will frequently use these properties without further mention. Recall that the proof of
Theorem 1.3.4 is divided according whether ρ1 is an η-Siegel zero or not.

In this subsection, we assume an η-Siegel zero does not exist; that is, λ1 ≥ η. We will show
Theorem 1.3.4 holds with no error term. Assume λ? > 0 satisfies

λ? < min{λ′, λ2}, (8.20)

where λ′ and λ2 are defined in Section 7.3.1 with T? = η−2. Select

B > 360, E = 198, ` = 82nK + 162, ε = η2, (8.21)

and let R = R(η) be sufficiently large. We claim these choices satisfy the assumptions of
Proposition 8.1.7. Since L is sufficiently large depending only on η, it suffices to show, for
x ≥ eBL , that 4`x−E/B` = o(1) as L → ∞. If nK is bounded while L → ∞ then this
is immediate, so we may assume nK → ∞. By (7.22), notice that ` = 82nK + 162 ≤
{196.8 + o(1)} L

lognK
≤ 197 L

lognK
for nK sufficiently large. Thus, for nK sufficiently large and

x ≥ eBL , we have that

4`x−E/B` � nKe
−198L /` � nKe

− 198
197

lognK � n
−1/197
K .

Hence, 4`x−E/B` = o(1) for x ≥ eBL , as nK →∞. This proves the claim.

Therefore, by Proposition 8.1.7, it follows that

|G|
|C|

S(x)

eεx
≤ 1 +

log x

eεx

∑
χ

∑?

ρ

|F (−ρ log x)|+O(η2)

for x ≥ eBL , where the sum
∑? runs over non-trivial zeros ρ of L(s, χ), counted with multi-

plicity, satisfying β > 1−R/L and |γ| ≤ η−2. For a non-trivial zero ρ of a Hecke L-function,
write ρ = β + iγ = 1− λ

L
+ i µ

L
. By Lemma 8.1.1, we see that

log x

eεx
|F (−ρ log x)| ≤ x−(1−β) ≤ e−Bλ,
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since x ≥ eBL . Extracting ρ1 and ρ1 (or simply ρ1 if ρ1 is real) from
∑?, we deduce by our

choice of λ? in (8.20) that

|G|
|C|

S(x)

eεx
≤ 1 +m(ρ1)e−Bλ1 +

∑
χ

∑
λ?≤λ≤R
|γ|≤η−2

e−Bλ +O(η2), (8.22)

where m(ρ1) = 2 if ρ1 is complex and m(ρ1) = 1 if ρ1 is real. To bound the remaining
quantities2, we must select λ? for which we further subdivide into cases.

λ1 small (η ≤ λ1 < 10−3)

By Theorem 7.3.2, ρ1 is a simple real zero attached to a real character χ1, implyingm(ρ1) = 1.
Select B = 361 and choose λ? = 0.2103 log(1/λ1), which satisfies (8.20) by Theorem 7.3.3
with T? = η−2. Arguing as in3 Section 7.3.4 (with T? = η−2 instead) and using Theorem 7.3.7,
we may conclude by (8.22) that

S(x) < {2− η +O(η2)}|C|
|G|

x

for x ≥ e361L . By Lemmas 7.3.1 and 8.1.2, we conclude that

πC(x, L/F ) < {2− η +O
(
η2 + L e1.4L (x−1/2 + e361L x−1 log x)

)
}|C|
|G|

Li(x)

for x ≥ e361L . Hence, in this subcase, Theorem 1.3.4 (with no error term) follows for x ≥
e363L after fixing η > 0 sufficiently small and recalling L is sufficiently large.

λ1 medium (10−3 < λ1 ≤ 0.0875)

One argues similar to the previous case with some minor changes. Namely, select B = 593

and choose λ? = 0.44. Following the corresponding subcase in Section 7.3.4 (using T? = η−2

instead) allows us to deduce Theorem 1.3.4 for x ≥ e595L .

λ1 large (λ1 ≥ 0.0875)

Select B = 693 and λ? = 0.2866 as per Theorem 7.3.2 with T? = η−2. Noting m(ρ1) ≤ 2

unconditionally, one may argue similarly as per the previous cases and follow Section 7.3.3

2At this stage, one may wish to compare (8.22) with its “least prime” counterparts (7.33) and (7.31). It is
apparent that the arguments will be very similar.

3Observe 361 > 297 so the same estimates hold.
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(using T? = η−2 instead) to deduce Theorem 1.3.4 for x ≥ e694.9L . As δ0 in (7.21) is suffi-
ciently small, this yields the desired range of x in Theorem 1.3.4, completing the proof in all
cases when an η-Siegel zero does not exist.

8.2.3 Proof of Theorem 1.3.4: η-Siegel zero exists

For this subsection, we consider the case when λ1 < η. By Theorem 7.3.2, it follows that
ρ1 = β1 = 1− λ1

L
is a simple real zero and χ1 is a real Hecke character. Suppose

B = 692, E = 344, ` = 82nK + 162, 4`x−344/692` ≤ ε < 1/4. (8.23)

With these choices, we claim for x ≥ e692L that 4`x−344/692` = o(1) as L → ∞. If nK is
uniformly bounded while L → ∞ then this is immediate, so we may assume nK → ∞. By
(7.22), notice that ` = 82nK + 162 ≤ {196.8 + o(1)} L

lognK
≤ 197 L

lognK
for nK sufficiently

large. Thus, for nK sufficiently large and x ≥ e692L , we have that

4`x−344/692` � nKe
−344L /` � nKe

−344
197

lognK � n−0.7
K .

Hence, 4`x−344/692` = o(1) as nK → ∞. This proves the claim, which implies the condition
on ε in (8.23) is non-empty for L sufficiently large.

Now, let 1 ≤ R ≤ 1
2
L be arbitrary. By Proposition 8.1.7, for x ≥ e692L , we have that

|G|
|C|

S(x)

eεx
≤ 1 +

x−(1−β1)

β1

+
log x

eεx

∑
χ

∑?

ρ 6=ρ1

|F (−ρ log x)|+O
(
ε+ x−186R/692L

)
, (8.24)

where
∑? runs over non-trivial zeros ρ 6= ρ1 of L(s, χ), counted with multiplicity, satisfying

1−R/L < Re{ρ} < 1, |Im{ρ}| ≤ ε−1.

Note that the β1 term in (8.24) arises from bounding F (−σ log x) in Lemma 8.1.1(v) with
σ = β1. We further subdivide our arguments depending on the range of λ1.

λ1 very small (2ηL
log x
≤ λ1 < η)

Here select ε = η2 and R = min{ 1
82

log(c1/λ1), 1
2
L } for some fixed sufficiently small c1 > 0.

Since 4`x−344/692` = o(1) as L → ∞, it follows that this choice of ε satisfies (8.23) for L

sufficiently large depending only on η.

Hence, by Theorem 7.3.4 with T? = η−2, these choices imply that the restricted sum
∑? in
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(8.24) is empty for L sufficiently large depending only on η. Moreover, we see that

x−186R/693L ≤ e−
186
82

log(c1/λ1) � λ2
1 � η2,

as x ≥ e692L and 186/82 > 2. Further, we have that

x−(1−β1)

β1

= e−λ1 log x/L {1 +O(λ1/L )} < 1− η +O(η2),

since 2ηL
log x
≤ λ1 < η and e−t < 1− t/2 for 0 ≤ t ≤ 1. Overall, we conclude that

S(x) < {2− η +O(η2)}|C|
|G|

x

for x ≥ e692L . By Lemmas 7.3.1 and 8.1.2, we conclude that

πC(x, L/F ) < {2− η +O
(
η2 + L e1.4L (x−1/2 + e693L x−1 log x)

)
}|C|
|G|

Li(x)

for x ≥ e692L . Hence, in this subcase, Theorem 1.3.4 (with no error term) follows for x ≥
e694.5L after fixing η > 0 sufficiently small and recalling L is sufficiently large.

λ1 extremely small (λ1 <
2ηL
log x
≤ η)

Here select

ε = 4`x−344/692` and R = min
{ L

81L + 25nK log(1/ε)
log
( c1

λ1
· L

L + nK log(1/ε)

)
,
1

2
L
}

for some sufficiently small c1 > 0. Again, since 4`x−344/692` = o(1) as L → ∞, it follows
that ε < 1/4 for L sufficiently large so this choice of ε satisfies (8.23).

Now, from our choice of R and Theorem 7.3.4, the restricted sum in (8.24) is empty. For
the main term, observe for L sufficiently large and η > 0 sufficiently small that

x−(1−β1)

β1
<
(

1− λ1 log x

2L

)(
1 +

λ1

L

)
≤ 1− λ1 log x

3L
,

as λ1 <
2ηL
log x

and e−t < 1− t/2 for 0 ≤ t ≤ 1. To bound the error term in (8.24), notice that

81L + 25nK log(1/ε) ≤ 81

692
log x+

344 · 25nK
692(82nK + 162)

log x <
185.9

692
log x,

by our choice of ε and ` and since x ≥ e693L . Consequently, R ≥ 692L
185.9 log x

log(
c′1L

λ1 log x
) for
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some sufficiently small c′1 > 0, implying

x−186R/692L �
(λ1 log x

L

) 186
185.9 � η1/2000

(λ1 log x

L

)
,

since λ1 <
2ηL
log x

and 0.1
185.9

< 1
2000

. Combining these observations into (8.24) implies that

|G|
|C|

S(x)

eεx
< 2− λ1 log x

3L
+O

(
ε+ η1/2000 · λ1 log x

L

)
< 2− 100λ1 +O(ε),

as η is sufficiently small. Rearranging and substituting the choice of ε and `, we see that

S(x) <
{

2− 100λ1 +O
(
nKx

− 1
166nK+327

)} |C|
|G|

x

for x ≥ e692L . Now, if x ≥ e694.9L then, by Lemma 7.3.1, we have that

nLe
692L x−1 log x� nKe

693.4L x−1 log x� nKx
−1.5/694.9 log x� nKx

−1/(166nK+327).

Similarly, nLx−1/2 � nKx
−1/(166nK+327). Thus, by the previous inequality and Lemma 8.1.2,

it follows that
πC(x, L/F ) <

{
2− 100λ1 +O

(
nKx

− 1
166nK+327

)} |C|
|G|

Li(x) (8.25)

for x ≥ e694.9L . As δ0 in (7.21) is sufficiently small, this completes the proof of Theorem 1.3.4 in all

cases.

Remark.

1) In (8.23), we could instead take B = 502 and E = 198 to establish (8.25) except with an error term

ofO(nKx
−1/(208nK+411)). To improve the error term, we chose the largest values ofB andE which

did not reduce the valid range of x in Theorem 1.3.4. This range of x is limited by the λ1 ≥ 0.0875

case addressed in Section 8.2.2.

2) As stated in Theorem 1.3.4, we obtain the sharper bound πC(x, L/F ) < 2 |C||G|Li(x) from (8.25) with

good effective lower bounds for λ1. To see this, notice the error term in (8.25) is� λ1.001
1 provided

x�
( c1nK
λ1.001

1

)166nK+327
=: x1,

where c1 > 0 is some absolute constant. If the above holds then (8.25) becomes

πC(x, L/F ) <
{

2− 100λ1 +O(λ1.001
1 )

} |C|
|G|

Li(x).

As λ1 ≤ η, this implies πC(x, L/F ) < 2 |C||G|Li(x) by fixing η sufficiently small. Hence, any effective
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upper bound on x1 translates to a range of x where the sharper bound for πC(x, L/F ) holds. From

the proof of Theorem 1’ in Stark [Sta74], we have that λ1 � min{g(nK)−1, D
−1/nK
K Q−1/2nK},

where g(nK) equals 1 if K has a normal tower over Q and equals (2nK)! otherwise. If nK ≤ 10

and DKQ is sufficiently large then we have that

x1 � (1/λ1)167nK+328 � D
167+328/nK
K Q84+164/nK � D495

K Q248 � x,

for x satisfying (1.33), as desired. Thus, we may assume nK ≥ 10 in which case we have that

x1 � n167nK
K (1/λ1)167nK+328

� D
167+328/nK
K Q84+164/nKn167nK

K + n167nK
K g(nK)167nK+328

� D200
K Q101n167nK

K + n167nK
K g(nK)167nK+328.

Therefore, if K has a normal tower over Q or (2nK)!� D
1/nK
K Q1/2nK then

x1 � D200
K Q101n167nK

K eO(nK) � D200
K Q101n168nK

K � x,

for x satisfying (1.33) and DKQnnKK sufficiently large. Otherwise, g(nK) ≤ (2nK)! ≤ (2nK)2nK

which implies that

x1 � D200
K Q101n167nK

K + n
333n2

K
K

unconditionally. Thus, imposing x � n
334n2

K
K in addition to (1.33) also yields the sharper estimate

for πC(x, L/F ) claimed in the remark after Theorem 1.3.4.

3) Just as Theorem 7.4.1 improves over Theorem 1.3.2 when nK is absolutely bounded, one could

likely improve Theorem 1.3.4 via the same arguments. We have omitted such an argument for the

sake of brevity.



Chapter 9

Siegel zeros and the least prime ideal

“Once you do something, you never forget. Even if you can’t remember.”

– Zeniba, Spirited Away.

In this chapter, we establish a bound (in an exceptional case when a so-called Siegel zero exists) for

the prime ideal of least norm in a ray class of a number fieldK. The proof techniques are based on sieve

methods and are completely different than those found in Chapter 7. Furthermore, the exposition will be

in the language of ray class groups though one can translate the main theorems into a Chebotarev variant

like Theorem 1.3.2. For these reasons, we keep this chapter almost entirely self-contained aside from

the notation and results of Chapter 2. Moreover, we will repeat some contents and historical information

of Chapter 1 in the language of ray class groups for the sake of clarity.

9.1 Introduction

Let K be a number field, O = OK be its ring of integers, and q ⊆ O be an integral ideal. Let

H (mod q) be a congruence class group of K. Define the (narrow) ray class group of K modulo H ,

denoted Cl(H), to be the quotient of fractional ideals of K relatively prime to q and H . In other words,

Cl(H) := I(q)/H . If H = Pq is the group of principal ideals (α) such that α ≡ 1 (mod q) and α

is totally positive then Cl(Pq) = Cl(q) is the usual narrow ray class group of K modulo q. Recall

Q = QH = max{NK
Q fχ : χ (modH)}.

For any class C ∈ Cl(H), it has long been known that there are infinitely many prime ideals p ∈ C.

Therefore, it is natural to ask:

What is the least norm of a prime ideal p ∈ C?

We refer to this question as the least prime ideal problem. The Generalized Riemann Hypothesis (GRH)

for Hecke L-functions implies for δ > 0,

Np�δ (DKQ)δ · h2+δ
H , (9.1)

207
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where DK = |disc(K/Q)| is the absolute discriminant of K, N = NK
Q is the absolute norm of K, and

hH = #Cl(H) is the size of the ray class group. Fogels [Fog62b] was the first to give an unconditional

answer when H = Pq (and hence Q = Nq)) showing

Np�nK (DKQ)c(nK),

where nK = [K : Q] is the degree of K over Q and c(nK) > 0 is a constant depending only on nK .

This bound is not entirely satisfactory because the implied constant and exponent depend on nK in an

unspecified manner. In his Ph.D. thesis work, Weiss [Wei83] proved a K-uniform version of Fogels’

result; that is, unconditionally for any congruence class group H of K

Np� nAnKK ·DB
K ·QC , (9.2)

where A,B,C > 0 are absolute constants. Assuming GRH as in (9.1) and estimating hH using

Lemma 2.4.6, one may take (A,B,C) = (δ, 1 + δ, 2 + δ) for δ > 0. The focus of this chapter is,

in an exceptional case, to exhibit a bound like (9.2) with explicit exponents.

Specializing to K = Q, q = (q) and H = Pq = {(n) : n ≥ 1, n ≡ 1 (mod q)}, the least prime

ideal problem naturally corresponds to the least prime p in an arithmetic progression a (mod q). Linnik

[Lin44a] famously showed unconditionally that

p� qL

for some absolute constant L > 0 known as “Linnik’s constant” and where the implicit constant is

effective. Conjecturally, L = 1 + δ for any δ > 0 is admissible and GRH implies L = 2 + δ is

acceptable. The current world record is L = 5 by Xylouris [Xyl11b] building upon suggestions of

Heath-Brown [HB92].

Thus far, a crucial ingredient to all proofs computing Linnik’s constant is the handling of a putative

real zero

β = 1− 1

η log q

of a Dirichlet L-function attached to a quadratic Dirichlet character ψ (mod q). If η ≥ 3 we refer to this

scenario as the exceptional case and the zero β as an exceptional zero. If additionally 1/η = o(1), then

we call β a Siegel zero which conjecturally does not exist. Most authors adapted Linnik’s original proof

and established a quantitative Deuring–Heilbronn phenomenon which is a strong form of zero repulsion

for β. However, in the exceptional case, the best bound thus far on Linnik’s constant involves sieve

methods and was pioneered by Heath-Brown [HB90]. He showed, with effective implicit constants, that

L = 3 + δ is an admissible value provided η ≥ η(δ) which bests the aforementioned unconditional

L = 5. Even more astonishingly, Heath-Brown showed that the GRH bound L = 2 + δ is an admissible

value provided η ≥ η(δ) although the implied constants are ineffective. Sieve techniques are indeed

very advantageous in the exceptional case. To further emphasize this point, we remark that Friedlander
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and Iwaniec [FI03] proved, under some additional technical assumptions, that L = 2− 1
59 is admissible

when a Siegel zero exists. This surpasses GRH!

Now, let us describe the exceptional case in the context of the least prime ideal problem for a

congruence class group H (mod q) for a number field K. Let χ (modH) be a Hecke character and

recall its associated Hecke L-function is given by

L(s, χ) =
∑
n⊆O

χ(n)(Nn)−s =
∏
p

(
1− χ(p)

(Np)s

)−1

for σ > 1, where s = σ + it. Recall that L(s, χ) possesses a (nearly) zero-free region of the form

σ ≥ 1− c1

log(nnKK DKQ)
, |t| ≤ 1,

where c1 > 0 is an absolute constant. However, just as with Dirichlet L-functions, exactly one real

zero β attached to a real Hecke character ψ (modH) cannot be eliminated from this region – no matter

how small c1 is chosen. Note that Theorem 4.1.1 implies c1 = 0.0875 is admissible for nnKK DKQ

sufficiently large. We emphasize that ψ may be quadratic or principal.

For the remainder of this chapter, suppose H (mod q) is a primitive congruence class group of K

and ψ (modH) is a real Hecke character with a real zero

β = 1− 1

η log(nnKK DKQ)
, (9.3)

where η ≥ 20; that is, β is an exceptional zero of the exceptional character ψ. If 1/η = o(1) then we

shall call β a Siegel zero. Note that we did not attempt to relax the assumption that H is primitive; it is

conceivable that one could obtain similar results without this condition.

For a ray class C ∈ Cl(H) satisfying ψ(C) = 1, we establish an explicit effective field-uniform

bound for the size of the least prime ideal p ∈ C provided β is a Siegel zero.

Theorem 9.1.1. Let H (mod q) be a primitive congruence class group of a number field K. Suppose

ψ (modH) is a real Hecke character such that L(s, ψ) has a real zero β as in (9.3). Let C ∈ Cl(H)

satisfy ψ(C) = 1 and δ > 0 be given. Then there exists a prime ideal p ∈ C satisfying

Np�δ

{
nAnKK ·DB

K ·QC · h2
H

}1+δ

provided η ≥ η(δ), where

(A,B,C) =

(16, 6 + 5
nK
, 5 + 2

nK
) if ψ is quadratic,

(6, 3 + 4
nK
, 3) if ψ is principal.

(9.4)

All implicit constants are effective.
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Remark.

1) The factor of h2
H is natural in light of (9.1) but one may prefer a bound similar to (9.2). Using

Lemma 2.4.6 allows us to give the alternative bound

Np�δ

{
nA
′nK

K ·DB′
K ·QC

′}1+δ
,

where

(A′, B′, C ′) =

(16, 7 + 5
nK
, 7 + 2

nK
) if ψ is quadratic,

(6, 4 + 4
nK
, 5) if ψ is principal.

Even more simply, (A′, B′, C ′) = (16, 9.5, 9) is admissible in all cases.

2) For a point of reference, consider the estimate in the special case K = Q and q = (q). If there exists

a quadratic Dirichlet character ψ (mod q) with real zero β = 1− 1
η log q and ψ(a) = 1 for (a, q) = 1,

then Theorem 9.1.1 implies there exists a prime p ≡ a (mod q) such that

p�δ q
9+δ

provided η ≥ η(δ). The exponent L = 9 + δ is comparable to the unconditional L = 5 [Xyl11b]

and to the effective Siegel zero case L = 3 + δ [HB90].

3) By a straightforward modification, one can improve Theorem 9.1.1 by appealing to the Brauer-Siegel

Theorem (see Theorem 9.3.4) from which it follows that

(A,B,C) =

(6, 6, 5) if ψ is quadratic,

(2, 3, 3) if ψ is principal,

or as in Remark 1,

(A′, B′, C ′) =

(6, 7, 7) if ψ is quadratic,

(2, 4, 5) if ψ is principal,

but the implicit constants are ineffective.

Theorem 9.1.1 is a straightforward consequence of the following quantitative lower bound for the

number of prime ideals in a given ray class. Here κK is the residue at s = 1 of the Dedekind zeta

function ζK(s) and

ϕK(q) = #(O/q)× = Nq
∏
p|q

(
1− 1

Np

)
is the generalized Euler ϕ-function of K.

Theorem 9.1.2. Let H (mod q) be a primitive congruence class group of a number field K. Suppose

ψ (modH) is a real Hecke character such that L(s, ψ) has a real zero β as in (9.3). Let C ∈ Cl(H)
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satisfy ψ(C) = 1. For δ > 0, assume η ≥ η(δ) and Mδ > 0 is sufficiently large. Further assume

Mδ ·
{
nAnKK ·DB

K ·QC · h2
H

}1+δ ≤ x ≤Mδ · (nnKK DKQ)100, (9.5)

where (A,B,C) are given by (9.4). Then

#{p ∈ C prime : Np < x} ≥ cψ∆ψ · κK
ϕK(q)

Nq
· x
hH

(9.6)

where

∆ψ =


L(1, ψ)

∏
ψ(p)=1

(
1− 3

Np2
+

2

Np3

) ∏
ψ(p)=−1

(
1− 1

Np2

)
if ψ is quadratic,

∏
p-q

(
1− 1

Np2

)
if ψ is principal,

and

cψ =

0.00466 if ψ is quadratic,

0.0557 if ψ is principal.

All implicit constants are effectively computable.

Remark.

1) Bounding hH by Lemma 2.4.6, we see that (9.5) contains the interval

M ′δ
{
nA
′nK

K ·DB′
K ·QC

′}1+2δ ≤ x ≤Mδ(n
nK
K DKQ)100.

where (A′, B′, C ′) are given by Remark 1 following Theorem 9.1.1 andM ′δ > 0 is sufficiently large.

2) According to Remark 3 following Theorem 9.1.1, one can widen the lower bound of interval (9.5)

using the ineffective Brauer-Siegel Theorem.

3) By obvious modifications to the proof, one can easily obtain an upper bound of the same form as

(9.6). That is, for the same range as (9.5), one can show

#{p ∈ C prime : Np < x} ≤ c̃ψ∆ψ · κK
ϕK(q)

Nq
· x
hH

where

c̃ψ =

8.62 if ψ is quadratic,

4.02 if ψ is principal.

Upper bounds for even wider ranges of x could potentially also be established by allowing for a

constant larger than c̃ψ.
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4) The constant cψ is likely subject to improvement which we do not seriously pursue here as that is

not our aim.

5) One can also establish a variant of Theorem 9.1.2 which holds for larger values of x. For instance,

one could instead assume

(Mδ · nnKK DKNq)` ≤ x ≤ (Mδ · nnKK DKNq)100`

for any integer ` ≥ 20, say. Adapting the argument in Section 9.5.2, one can deduce the same lower

bound with

cψ =

0.0275−O( e
`

`! ) if ψ is quadratic,

0.0749−O( e
`

`! ) if ψ is principal,

provided η ≥ η(δ, `).

The primary objective of this chapter is to prove Theorem 9.1.2. The arguments involved are moti-

vated by the sieve-based techniques employed for the classical case K = Q, including Heath-Brown’s

aforementioned foundational paper [HB90] and an elegant modern proof by Friedlander and Iwaniec

[FI10, Chapter 24]. To be more specific, let us sketch the main components and, for concreteness,

temporarily suppose that ψ (modH) is quadratic. First, we establish the Fundamental Lemma (Theo-

rem 9.2.1) for zero-dimensional sieves in number fields and aim to apply it a sequence {an}n⊆O, where

an ≈ µ2
K(n)1{n ∈ C} ·

∑
d|n

ψ(d),

µK( · ) is the Möbius function defined by (9.7), and 1{ · } is an indicator function. Roughly speaking, the

sum
∑

d|n ψ(d) pretends to be an indicator function for integral ideals n satisfying p | n =⇒ ψ(p) = 1.

After computing local densities, we show that our sieve problem is zero-dimensional because ψ(C) = 1

and a Siegel zero is assumed to exist. Then we use a Buchstab identity and apply the Fundamental

Lemma to lower bound terms with no small prime ideal factors and upper bound terms with large prime

ideal factors. An appropriate choice of the relevant sieve parameters and a Tauberian-type argument

finishes the proof.

The numerical values in (9.4) and corresponding bounds in Theorem 9.1.1 are ultimately based on

estimates for Hecke L-functions inside the critical strip. Similarly, in the classical case, Heath-Brown

[HB90] uses Montgomery’s mean value theorem for Dirichlet L-functions [Mon71] and bounds for their

fourth moments inside the critical strip. As far as the author is aware, a suitable mean value theorem for

Hecke L-functions with complete uniformity over all number fields has not yet been established. We

instead employ Rademacher’s convexity estimate [Rad60] for Hecke L-functions due to its complete

uniformity in all aspects. In certain cases, such as the narrow class group for imaginary quadratic fields,

one could improve on the numerical values in (9.4) using subconvexity estimates for Hecke L-functions

contained, for example, in the deep works of Fouvry and Iwaniec [FI01] and Duke, Friedlander, and
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Iwaniec [DFI02].

Proving a version of Theorem 9.1.2 for the non-residue case ψ(C) = −1 would certainly be desir-

able but it is not immediately clear how to do so by sieve-based techniques. In the classical caseK = Q,

the corresponding sieve problem is one-dimensional leading to an excellent value for Linnik’s constant

which was first established by Heath-Brown [HB90]. For a general number field K of degree nK , if

most small rational primes split then the sieve problem could at worst have dimension nK . Since we

seek a bound like (9.2) with absolute exponents, this high dimension issue therefore poses a difficulty

when ψ(C) = −1.

Finally, we summarize the organization of this chapter. Section 9.2 sets up a sieve in number fields

and proves the Fundamental Lemma for zero-dimensional sieves. The discussion therein is a close

adaptation of [FI10, Chapters 5 & 6] but is included for completeness as many variations of number

field sieves exist. Section 9.3 consists of notation and elementary estimates related to the exceptional

character ψ. Section 9.4 computes the key components of our sieve problem – local densities and

dimension – and estimates terms with small prime factors and large prime factors. Section 9.5 contains

the proof of Theorem 9.1.2.

9.2 Sieve theory in number fields

9.2.1 Notation

Begin with a sequence A = {an}n⊆O of non-negative real numbers such that

|A| :=
∑
n⊆O

an

converges1. For an integral ideal d ⊆ O, define

Ad = {an : d | n}, |Ad| :=
∑
d|n

an,

and suppose

|Ad| = g(d)X + rd

for some multiplicative function g(d) called the density function and remainders rd. The local densities

g(d) satisfy

0 ≤ g(p) < 1

1For instance, one could take an = e−Nn/x with x ≥ 1.
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for all prime ideals p of O. Given a set of prime ideals P and sifting level z ≥ 2, define

P = P(z) :=
∏
p∈P

Np<z

p, V (z) :=
∏
p∈P

Np<z

(1− g(p)),

and

S(A,P, z) = S(A, z) :=
∑

(n,P(z))=1

an,

where we suppress the dependence on P or z when it is understood. Recall the Möbius function µK( · )
on integral ideals is defined by

µK(n) =

(−1)r if n = p1 · · · pr where pi are distinct prime ideals,

0 otherwise,
(9.7)

or equivalently ∑
d|n

µK(d) =

1 if n = (1),

0 otherwise.
(9.8)

Sifting A according to P amounts to estimating S(A, z). It is therefore natural to introduce a

function, called the sieve weight,

Λ = (λd)d, for d | P(z) and Nd < D,

which acts as a finite approximation to the Möbius function with level of distribution D. From (9.8),

one can easily see that

S(A, z) =
∑

d|P(z)

µ(d)|Ad|,

so our approximation takes the form

SΛ(A, z) :=
∑
d

λd|Ad| =
∑
n

an

(∑
d|n

λd

)
.

Of special importance are weights Λ+ = (λ+
d ) and Λ− = (λ−d ) satisfying∑

d|n

λ−d ≤
∑
d|n

µK(d) ≤
∑
d|n

λ+
d (9.9)

and therefore implying

S−(A, z) ≤ S(A, z) ≤ S+(A, z), (9.10)

where the lower bound sieve S− and the upper bound sieve S+ correspond to Λ− and Λ+ respectively.
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In keeping with notation, we naturally define the main term sums by

V +(D, z) =
∑

d|P(z)
Nd<D

λ+
d g(d), V −(D, z) =

∑
d|P(z)
Nd<D

λ−d g(d),

and remainder terms by

R+(D, z) =
∑

d|P(z)
Nd<D

λ+
d rd, R−(D, z) =

∑
d|P(z)
Nd<D

λ−d rd.

The conditions under the sums may be dropped in light of the definition of the sieve weights, but we

include them for emphasis and clarity.

We will be concerned with sieves satisfying

V (w)

V (z)
=

∏
w≤Np<z

(
1− g(p))−1 ≤ C

( log z

logw

)κ
for 2 ≤ w < z, (9.11)

where C > 1 is a constant and κ ≥ 0 is the sieve dimension.

9.2.2 Buchstab iterations

Fix a norm-based total ordering “≺” of prime ideals of O; that is, for prime ideals p and p′,

p ≺ p′ =⇒ Np ≤ Np′.

Abusing notation, for y ∈ R, write y ≺ p (resp. p ≺ y) if y < Np (resp. Np < y). Similarly, write

y � p (resp. p � y) if y ≤ Np (resp. Np ≤ y). Observe that

Np � p and p � Np, but Np 6≺ p and p 6≺ Np (9.12)

with this choice. Further abusing notation, for a prime ideal m, define

P(m) :=
∏
p∈P
p≺m

p, V (m) :=
∏
p∈P
p≺m

(1− g(p)),

and

S(A,m) :=
∑

(n,P(m))=1

an.

Comparing with notation from the previous subsection and using (9.12), notice that

P(Nm) | P(m), V (m) ≤ V (Nm), and S(A,m) ≤ S(A,Nm).
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Note that the results herein are independent of the choice of ordering.

Now, choose sieve weights Λ+ = (λ+
d ) and Λ− = (λ−d ) defined to be the Möbius function truncated

to sets of the type
D+ := {d = p1 · · · p` : pm ≺ ym for m odd}

D− := {d = p1 · · · p` : pm ≺ ym for m even}
(9.13)

where d is written as a product of distinct prime ideals enumerated in decreasing order,

d = p1 · · · p` with z � p1 � · · · � p`.

By convention, D+ and D− both contain d = (1). The real numbers ym are truncation parameters and

by inclusion-exclusion, (9.9) is satisfied regardless of the choices for ym.

Following the discussion on Buchstab iterations in [FI10, Section 6.2], one may similarly deduce

S(A, z) = S+(A, z)−
∑
n odd

Sn(A, z), (9.14)

S(A, z) = S−(A, z) +
∑
n even

Sn(A, z), (9.15)

where

Sn(A, z) =
∑
· · ·
∑

yn�pn≺···≺p1
pm≺ym,m<n,m≡n(2)

S(Ap1···pn , pn). (9.16)

Moreover, by the same procedure,

V (z) = V +(D, z)−
∑
n odd

Vn(z), (9.17)

V (z) = V −(D, z) +
∑
n even

Vn(z), (9.18)

where

Vn(z) =
∑
· · ·
∑

yn�pn≺···≺p1≺z
pm≺ym,m<n,m≡n(2)

g(p1 · · · pn)V (pn). (9.19)

From (9.14) and (9.15),

S(A, z) ≤ S+(A, z) = XV +(D, z) +R+(D, z),

S(A, z) ≥ S−(A, z) = XV −(D, z) +R−(D, z).

Thus, to prove the “Fundamental Lemma” for a certain choice of truncation parameters ym, it suffices

to upper bound Vn(z) in light of (9.17) and (9.18).
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9.2.3 Fundamental Lemma for zero dimensional sieves

We assume the sieve dimension is zero, i.e. κ = 0 in (9.11). For the sets defined in (9.13), choose the

truncation parameters

ym =
D

N(p1 · · · pm)
,

which is an instance of the beta-sieve independently due to Iwaniec and Rosser. Thus, λ±d is a combina-

torial weight truncated to D± with level of support D. Define the sifting variable

τ :=
logD

log z
.

As previously remarked, it remains to upper bound Vn(z) as defined in (9.19).

Suppose n ≤ τ−1. By our choice of truncation parameters, the condition yn � pn in (9.19) implies

that D ≤ (Np1)n+1 < zn+1 ≤ zτ = D, a contradiction. Thus,

Vn(z) = 0 for n ≤ τ − 1.

Now, suppose n > τ − 1. Since the terms of Vn(z) are non-negative and V (pn) ≤ 1, we deduce that

Vn(z) ≤
∑
· · ·
∑

pn≺···≺p1≺z
g(p1 · · · pn) ≤ 1

n!

(∑
p≺z

g(p)
)n
≤ 1

n!

∣∣ log V (z)
∣∣n.

Using (9.11) with κ = 0, observe that

Vn(z)

V (z)
≤ C(logC)n

n!
for n > τ − 1.

Summing over all n of the same parity and using the power series for hyperbolic sine and cosine, observe

∑
n odd

Vn(z) ≤ V (z) ·
∑

n>τ−1
n odd

C(logC)n

n!
= V (z) ·

[C2 − 1

2
− C

∑
1≤n<n1(τ)

n odd

(logC)n

n!

]
,

∑
n even

Vn(z) ≤ V (z) ·
∑

n>τ−1
n even

C(logC)n

n!
= V (z) ·

[C2 + 1

2
− C

∑
0≤n<n0(τ)
n even

(logC)n

n!

]
,

where n1(t) is the least odd integer > t − 1, and n0(t) is the least even integer > t − 1. We have

therefore established the following theorem.

Theorem 9.2.1 (Fundamental Lemma for zero dimensional sieves). Let D ≥ 1 and z ≥ 2. Suppose

(9.11) holds with κ = 0 for all w with 2 ≤ w < z and some C > 1. Then

S(A, z) ≤ XV (z)
{

1 + E1(C; τ)
}

+R+(D, z),

S(A, z) ≥ XV (z)
{

1− E0(C; τ)
}

+R−(D, z),
(9.20)
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where τ = logD
log z , n1(t) is the least odd integer > t− 1, n0(t) is the least even integer > t− 1,

E1(C; τ) =
C2 − 1

2
− C

∑
1≤n<n1(τ)

n odd

(logC)n

n!
,

E0(C; τ) =
C2 + 1

2
− C

∑
0≤n<n0(τ)
n even

(logC)n

n!
,

and R±(D, z) are the remainders given by

R±(D, z) =
∑

d|P(z)
Nd<D

λ±d rd with |λ±d | ≤ 1.

Remark. Of course, one could replace E0(C; τ) and E1(C; τ) by simpler expressions using Taylor’s

theorem but this results in slightly worse constants.

9.3 Exceptional character

In this section, we setup notation related to the central object of our study – the exceptional character

ψ – and subsequently prove various estimates by standard methods. Let ψ (modH) be a real character

with real zero

β = 1− 1

η log(nnKK DKQ)
with η ≥ 20. (9.21)

For integral ideals n ⊆ O, define

λ(n) :=


∑
m|n

(m,q)=1

ψ(m) if ψ is quadratic,

χ0(n) if ψ is principal,

(9.22)

and

ρ(n) := µ2
K(n)λ(n), (9.23)

where µK( · ) is defined by (9.7) and χ0 (modH) is the principal Hecke character. That is, χ0(n) = 1

for all (n, q) = 1 and equals zero otherwise. Recall that ψ(m) = 0 for (m, q) 6= 1. Hence, restricting

the sum in (9.22) to ideals m coprime to q is superfluous but added for clarity. Now, we first collect

some simple observations about these functions which we state without proof.

Lemma 9.3.1. Define λ(n) and ρ(n) as in (9.22) and (9.23) respectively. Then:

(i) ρ(n) and λ(n) are multiplicative functions of n.

(ii) ρ(p) = λ(p) = 1 or 2 if ψ(p) = 1 and ψ is principal or quadratic respectively.
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(iii) ρ(n) = 0 if there exists a prime ideal p | n such that ψ(p) = −1.

(iv) 0 ≤ ρ(n) ≤ λ(n).

Next, define

Fψ(s) :=
∑
n⊆O

λ(n)

(Nn)s
for Re{s} > 1. (9.24)

We highlight some basic properties of Fψ(s) in the following lemma.

Lemma 9.3.2. Define Fψ(s) as in (9.24). Then:

(i) Fψ(s) extends meromorphically to all of C with only a simple pole at s = 1.

(ii) Fψ(β) = 0 where β is the real zero associated to ψ (mod q).

(iii) For δ ∈ (0, 1
2) and s = σ + it,

Fψ(s) ≤

Qδ
{
D2
KQ(2 + |t|)2nK

}(1−σ+δ)/2
eOδ(nK) if ψ is quadratic,

Qδ
{
DK(2 + |t|)nK

}(1−σ+δ)/2
eOδ(nK) if ψ is principal,

uniformly in region δ ≤ σ ≤ 1 + δ with |s− 1| ≥ δ.

Proof. By (9.22),

Fψ(s) =

L(s, χ0)L(s, ψ) if ψ is quadratic,

L(s, χ0) if ψ is principal.

From this factorization, (i) follows from well-known properties of Hecke L-functions and (ii) is implied

by L(β, ψ) = 0. For (iii), use Lemma 2.4.5 with a = δ/2 for the “imprimitive” part of Fψ(s), i.e. Euler

factors corresponding to p | q. This is bounded by (Nq)δ/2eOδ(nK). As H (mod q) is primitive, we have

by Lemma 2.4.7 that NfH = Nq ≤ Q2. Hence, the “imprimitive” part of Fψ(s) contributes at most

QδeOδ(nK). Second, apply Lemma 2.3.2 to the “primitive” part of Fψ(s) and note ζQ(1 + δ) �δ 1.

Also observe that Dχ = DKNfχ ≤ DKQ by the definition of Q in (2.2). Combining these estimates

yields the claimed bound.

In light of Lemma 9.3.2, we define some naturally-occurring quantities. First,

κψ = Res
s=1

Fψ(s) =


ϕK(q)

Nq
κKL(1, ψ) if ψ is quadratic,

ϕK(q)

Nq
κK if ψ is principal,

(9.25)

where κK is the residue of the Dedekind zeta function ζK(s) at s = 1 and

ϕK(q) = #(O/q)× = Nq
∏
p|q

(
1− 1

Np

)
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is the generalized Euler ϕ-function. Further, denote

Wψ =

n
2nK
K D2

KQ if ψ is quadratic,

nnKK DK if ψ is principal.
(9.26)

For the remainder of this section, we collect various well-known lower and upper bounds for κψ
and establish other relevant estimates involving λ(n). The arguments are straightfoward with standard

applications of Mellin inversion.

Theorem 9.3.3 (Stark). For δ > 0,

1

κψ
�δ

n
(2+δ)nK
K D

1/nK
K Q1/2nK+δ if ψ is quadratic,

n
(1+δ)nK
K D

1/nK
K Qδ if ψ is principal,

where all implicit constants are effective.

Proof. This is a weak rephrasing of [Sta74, Theorem 1] to our context. If ψ is principal then κψ =
ϕK(q)

Nq κK so the result follows from [Sta74, Theorem 1] and by noting Nq
ϕK(q) � eOδ(nK)(Nq)δ/2 �δ

nδnKK Qδ from Lemmas 2.4.5 and 2.4.7. If ψ is quadratic, then consider the quadratic extension of K

given by M = K(ψ) implying κM = κKL(1, ψ∗) where ψ∗ is the primitive character inducing ψ.

Since L(1, ψ) ≥ ϕ(q)
Nq L(1, ψ∗), it follows that κψ ≥

(ϕK(q)
Nq

)2
κM so we again apply [Sta74, Theorem

1] and Lemmas 2.4.5 and 2.4.7 to prove the claim.

Theorem 9.3.4 (Brauer–Siegel). For δ > 0,

1

κψ
�δ (nnKK DKQ)δ,

where the implicit constant is ineffective.

Proof. Similar to Theorem 9.3.3 but instead of using [Sta74, Theorem 1] to bound the residues of

Dedekind zeta functions, we apply the celebrated Brauer-Siegel theorem:

κM �ε d
−ε
M

for any number field M , where the implicit constant is ineffective. See [Bra47] for details.

Theorem 9.3.4 is the only result with ineffective constants so we reiterate that, unless otherwise

stated, all implicit constants are effective and absolute.

Lemma 9.3.5 (Stark). For δ > 0 arbitrary, κψ �δ (1− β)(nnKK Q)−δ.

Proof. Arguing as in Theorem 9.3.3, this is an analogous rephrasing of [Sta74, Lemma 4] to our context.
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Lemma 9.3.6. For δ > 0,

∑
n

λ(n)

(Nn)β
e−Nn/y = κψΓ(1− β)y1−β{1 +O(δ)

}
,

provided

y ≥MδW
1/2+δ
ψ Qδ (9.27)

for some sufficiently large constant Mδ ≥ 1.

Proof. We apply Mellin inversion to see

S :=
∑
n

λ(n)

(Nn)β
e−Nn/y =

1

2πi

∫ 2+i∞

2−i∞
Fψ(s+ β)Γ(s)ysds.

Shift the line of integration to Re{s} = 1/2− β, pick up the pole s = 1− β, and bound the remaining

integral using Lemma 9.3.2(iii) and (2.14). Therefore,

S =
{
κψΓ(1− β) +Oδ

(W 1/4+δ/8
ψ Qδ/8eOδ(nK)

y1/2

)}
y1−β.

Note W 1/4+δ/8
ψ eOδ(nK) �δ W

1/4+δ/4
ψ from the nnKK factor in the definition of Wψ. Thus, by condition

(9.27),

S =
{
κψΓ(1− β) +Oδ

( 1

M
1/2
δ (nnKK DKQ)δ/8

)}
y1−β.

From Lemma 9.3.5, it follows that the main term dominates the error provided Mδ is sufficiently large.

This yields the desired result.

Lemma 9.3.7. For δ > 0 and y2 ≥ 3y1,

∑
n

λ(n)

Nn

(
e−Nn/y2 − e−Nn/y1

)
� κψ log(y2/y1),

provided

y1 ≥Mδ · κ−1−δ
ψ W

1/2+δ
ψ Qδ

for some sufficiently large constant Mδ ≥ 1.

Proof. By Mellin inversion,

S′ :=
∑
n

λ(n)

Nn

(
e−Nn/y2 − e−Nn/y1

)
=

1

2πi

∫ 2+i∞

2−i∞
Fψ(s+ 1)Γ(s)

{
ys2 − ys1}ds.

Shift the line of integration to Re{s} = −1 + δ, pick up the simple pole at s = 0, and bound the
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remaining integral using Lemma 9.3.2(iii) and (2.14). Thus, for δ > 0,

S′ = κψ log(y2/y1) +Oδ

(W 1/2+δ/8
ψ Qδ/8eOδ(nK)

y1−δ
1

)
.

Since W 1/2+δ/8
ψ eOδ(nK) �δ W

1/2+δ/4
ψ and log(y2/y1) � 1, the result follows from the condition on

y1.

9.4 Application of the sieve

9.4.1 Sieve sequence

Let C ∈ Cl(H) be any ray class satisfying ψ(C) = 1 and retain the notation of Section 9.3. Recall that

the Hecke L-function L(s, ψ) is assumed to have a real zero

β = 1− 1

η log(nnKK DKNq)

with η ≥ 20. Let 2 ≤ z ≤ x. During the course of our arguments, the parameter z will be chosen and

the valid range of x will be specified. We wish to apply the sieve to the sequence

A = A(x) = {an}n⊆O with an = ρ(n)e−Nn/x · 1C(n), (9.28)

where ρ(n) is defined in (9.23) and 1C(n) is an indicator function for C. The choice of the smoothing

weight e−Nn/x for an was made for the sake of simplicity and without any claim to optimality for the

resulting constants in (9.4). Other sufficiently smooth weights, such as e−(Nn/x)2 or
(
1− Nn

x

)2nK , could

also potentially be used although we did not investigate these possibilities. However, for any suitable

choice of weight, we expect the factor of nAnKK to appear in Theorem 9.1.1 with a possibly different

value for A.

Now, choose the set of prime ideals to be

P = {p ⊆ O prime : ψ(p) = 1} (9.29)

and denote

D = {d ⊆ O square-free : p | d =⇒ ψ(p) = 1}. (9.30)



CHAPTER 9. SIEGEL ZEROS AND THE LEAST PRIME IDEAL 223

9.4.2 Local densities

Lemma 9.4.1. Let d ∈ D. Then, for any δ > 0,

|Ad| =
∑
n∈C
d|n

ρ(n)e−Nn/x = g(d)X + rd

with X = bψκψ ·
x

hH
, where if ψ is quadratic then

bψ = 2
∏

ψ(p)=1

(
1− 3

Np2
+

2

Np3

) ∏
ψ(p)=−1

(
1− 1

Np2

)
,

g(p) =
2

Np + 2
for p ∈ P,

|rd| �δ
x1/2+δ

(Nd)1/2
· (nnKK DKQ)(1+δ)/2,

and if ψ is principal then

bψ =
∏
p-q

(
1− 1

Np2

)
,

g(p) =
1

Np + 1
for p ∈ P,

|rd| �δ
x1/2+δ

(Nd)1/2
· (nnKK DKQ)(1+δ)/4.

Remark. If d 6∈ D, then |Ad| = 0 by Lemma 9.3.1. Thus, for prime ideals p 6∈ P , set g(p) = 0 and

multiplicatively extend the function g to all integral ideals of O.

Proof. We adapt the proof of [HB90, Lemma 1] with some modifications when bounding the remainder

terms rd. Write

f(s, χ) :=
∑
n⊆O
d|n

ρ(n)χ(n)(Nn)−s for Re{s} > 1

so, by orthogonality and Mellin inversion,

∑
n∈C
d|n

ρ(n)e−Nn/x =
1

hH

∑
χ (modH)

χ(C) 1

2πi

∫ 2+i∞

2−i∞
f(s, χ)Γ(s)xsds. (9.31)

Alternatively, we may write f(s, χ) as an Euler product to see that

f(s, χ) = ρ(d)χ(d)(Nd)−s ×
∏
p-d

ψ(p)=1

(
1 + ρ(p)

χ(p)

(Np)s

)
×

∏
p-d

ψ(p)=−1

1.

Note that prime ideals p | d do not appear in the Euler product since ρ(n) = 0 for n not square-free.
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Including these analogous factors, we may write

f(s, χ) =
∏

ψ(p)=1

(
1 + ρ(p)

χ(p)

(Np)s

)
×

∏
ψ(p)=−1

1× gd(s, χ), (9.32)

where

gd(s, χ) = ρ(d)χ(d)(Nd)−s
∏
p|d

ψ(p)=1

(
1 + ρ(p)

χ(p)

(Np)s

)−1
.

On the other hand,

L(s, χ)L(s, χψ) =
∏

ψ(p)=1

(
1− 2

χ(p)

(Np)s
+

χ2(p)

(Np)2s

)−1
×

∏
ψ(p)=−1

(
1− χ2(p)

(Np)2s

)−1
,

L(s, χ) =
∏
p-q

(
1− χ(p)

(Np)s

)−1
.

Upon comparing with (9.32), we deduce

f(s, χ) = gd(s, χ)g(s, χ)G(s, χ), (9.33)

where

g(s, χ) =


∏

ψ(p)=1

(
1− 3

χ2(p)

(Np)2s
+ 2

χ3(p)

(Np)3s

)
×

∏
ψ(p)=−1

(
1− χ2(p)

(Np)2s

)
if ψ is quadratic,

∏
p-q

(
1− χ2(p)

(Np)2s

)
if ψ is principal,

and

G(s, χ) =


L(s, χ)L(s, χψ) if ψ is quadratic,

L(s, χ) if ψ is principal.

Therefore, f(s, χ) has meromorphic continuation to C and is analytic in Re{s} > 1/2, except

possibly for a pole at s = 1 when χ or χψ is principal.
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Furthermore, we claim

gd(s, χ)�δ e
Oδ(nK)(Nd)−1/2, (9.34)

g(s, χ)�δ e
Oδ(nK), (9.35)

uniformly in the region Re(s) ≥ 1/2 + δ for any δ > 0. Here we ignore s in neighborhoods of

poles arising from local factors of gd(s, χ) with Np < 4. To see the claim, notice (9.35) follows from

Lemma 2.4.5(i). Estimate (9.34) follows from Lemma 2.4.5(iii) with a = 1/2 combined with the

observation that

ρ(d)�
∑
p|d

1� log Nd�δ (Nd)δ.

This proves the claim.

Now, we move the line of integration in (9.31) from Re{s} = 2 to Re{s} = 1
2 + δ. This yields a

main term of

R =
x

hH

∑
χ (modH)

χ(C) Res
s=1

f(s, χ).

Before computing R, observe that since ψ(C) = 1 and ψ2 = χ0

f(s, χ0) = f(s, ψ), G(s, χ0) = Fψ(s),

g(1, χ0) = g(1, ψ), gd(1, χ0) = gd(1, ψ) = g(d),

where Fψ(s) and g(d) are defined in (9.24) and the statement of Lemma 9.4.1 respectively. Therefore,

if ψ is quadratic, the main term R picks up residues for χ = χ0 and χ = ψ. Namely,

R =
x

hH

[
Res
s=1

f(s, χ0) + ψ(C) Res
s=1

f(s, ψ)
]

=
x

hH
· g(1, χ0)g(d) ·

[
2 Res
s=1

Fψ(s)
]

=
x

hH
· g(1, χ0)g(d) · 2κψ

= g(d)X,

since bψ = 2g(1, χ0) when ψ is quadratic. If ψ is principal, the main term R picks up a residue for

χ = χ0 only. In other words,

R =
x

hH
· Res
s=1

f(s, χ0)

=
x

hH
· g(1, χ0)g(d) · Res

s=1
L(s, χ0)

=
x

hH
· g(1, χ0)g(d) · κψ

= g(d)X,
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since bψ = g(1, χ0) when ψ is principal.

Thus far, we have shown

|Ad| = g(d)X + rd,

where

rd =
1

hH

∑
χ (modH)

χ(C) 1

2πi

∫ 1/2+δ+i∞

1/2+δ−i∞
f(s, χ)Γ(s)xsds.

To bound the remainder, we factor f(s, χ) via (9.33) and apply the estimates (9.34), (9.35), and (2.14).

This yields

|rd| �δ
x

1
2 +δeOδ(nK)

hH(Nd)1/2

∑
χ (modH)

∫ ∞
−∞
|G(1

2 + δ + it, χ)|e−|t|dt.

Hence, the desired result follows from the convexity bound for Hecke L-functions (Lemma 2.3.2),

Lemmas 2.4.5 and 2.4.7, and observing as usual that eOδ(nK) �δ n
δnK
K .

Motivated by the bounds on the remainder terms rd in Lemma 9.4.1, we define

Uψ =

(nnKK DKQ)1/2 if ψ is quadratic,

(nnKK DKQ)1/4 if ψ is principal,
(9.36)

so more simply

|rd| �
x1/2+δ

(Nd)1/2
U1+δ
ψ .

9.4.3 Sieve dimension

We prove our sieve problem is zero-dimensional.

Lemma 9.4.2. For δ > 0, ∑
Np<z
ψ(p)=1

1

Np
≤ 1 + δ,

provided η ≥ η(δ) and z ≤ (nnKK DKQ)Oδ(1).

Proof. According to Lemma 9.3.6, set

y = MδW
1/2+δ
ψ Qδ,

whereWψ is defined in (9.26). Using λ(n) defined in (9.22) and its properties described in Lemma 9.3.1,

one can verify that λ(n) ≤ λ(np) for ψ(p) = 1 and n ⊆ O. Thus,

( ∑
Np<z
ψ(p)=1

1

(Np)β

)(∑
n

λ(n)

(Nn)β
e−Nn/y

)
≤
∑
n

λ(n)

(Nn)β
e−Nn/yz, (9.37)
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which we write as S1S2 ≤ S3, say. It suffices to show S1 ≤ 1 + δ. By our choice y, we may apply

Lemma 9.3.6 to S2 and S3 deducing

S1 ≤ z1−β{1 +O(δ)}.

Since z ≤ (nnKK DKQ)Oδ(1) by assumption, we conclude that

S1 ≤ 1 +O(δ) +Oδ(η
−1),

whence the result follows after rescaling δ.

Corollary 9.4.3. Let g(d) be the multiplicative function defined in Lemma 9.4.1 and δ > 0 be arbitrary.

Then, provided η ≥ η(δ),

V (w)

V (z)
=

∏
w≤Np<z

(
1− g(p)

)−1
≤ Cψ :=

e2+δ if ψ is quadratic,

e1+δ if ψ is principal,

for all 2 ≤ w ≤ z ≤ (nnKK DKQ)Oδ(1). In particular, (9.11) holds with C = Cψ and κ = 0.

9.4.4 Small prime ideal factors

With the local densities and dimension computed, we may now apply the Fundamental Lemma and

sieve out small primes. Before doing so, we restrict the choice of sieve parameters for the remainder of

the section. For δ > 0, suppose

Bδ · {κ−1
ψ + 1}1+δ ·W 1/2+δ

ψ Qδ ≤ z ≤ (nnKK DKQ)Oδ(1) (9.38)

for some sufficiently large constant Bδ > 0. Define

D =
x1−4δ

h2
HU

2+2δ
ψ

, τ =
logD

log z
, (9.39)

where κψ,Wψ, Uψ are defined in (9.25), (9.26), and (9.36) respectively.

Proposition 9.4.4. For δ > 0, suppose the sifting level z satisfies (9.38) and define the level of distribu-

tion D and sifting variable τ as in (9.39). Assume η ≥ η(δ) and

x ≥Mδ

{
(κ−1
ψ + 1)W

1/4
ψ Uψ · hH

}2+20δ (9.40)
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for Mδ > 0 sufficiently large. Then

S(A, z) ≤ XV (z)
{

1 + E1(Cψ; τ) +Oδ
( 1

log x

)}
,

S(A, z) ≥ XV (z)
{

1− E0(Cψ; τ) +Oδ
( 1

log x

)}
,

(9.41)

where E0 and E1 are defined in Theorem 9.2.1, and Cψ is defined in Corollary 9.4.3.

Proof. We only prove the lower bound; the upper bound follows similarly. With the described choice

of parameters, we employ the Fundamental Lemma for zero-dimensional sieves (Theorem 9.2.1) in

conjunction with Lemma 9.4.1 and Corollary 9.4.3, yielding

S(A, z) ≥ XV (z)
{

1− E0(Cψ; τ)
}

+R−(A, D). (9.42)

Since the sequence A = {an}n is only supported on the set D (defined in Section 9.4.1),

R−(A, D)�
∑

Nd<D
d∈D

|rd|.

From Lemma 9.3.1, it follows 1{d ∈ D} ≤ λ(d) so by Lemma 9.4.1,

R−(A, D)�δ x
1/2+δU1+δ

ψ

∑
Nd<D

λ(d)(Nd)−1/2

�δ x
1/2+δU1+δ

ψ

∑
d

λ(d)(Nd)−1/2e−Nd/D.
(9.43)

By Mellin inversion, the sum over d equals

1

2πi

∫ 1+i∞

1−i∞
Fψ(s+ 1

2)Γ(s)Dsds.

Pulling the contour to Re{s} = δ/8, we pick up a main term of κψΓ(1/2)D1/2 and bound the resulting

integral using Lemma 9.3.2 and (2.14). Applying these estimates in (9.43), we find

R−(A, D)�δ x
1/2+δU1+δ

ψ

(
κψD

1/2 +W
1/4+δ/8
ψ Qδ/8eOδ(nK)Dδ/8

)
By (9.40), the first term in the parentheses dominates whence

R−(A, D)�δ κψU
1+δ
ψ x1/2+δD1/2 �δ

κψx
1−δ

hH
.

Since z satisfies the upper bound in (9.38), it follows from Corollary 9.4.3 and the definition of X in

Lemma 9.4.1 that

XV (z)�δ
κψx

hH
· 1

eOδ(nK)
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for η ≥ η(δ). By these two observations, we conclude that

R−(A, D)�δ XV (z)x−δ/2 �δ
XV (z)

log x

provided x ≥ eOδ(nK). This latter condition on x is clearly implied by assumption (9.40). Substituting

this estimate into (9.42) yields the desired result.

9.4.5 Large prime ideal factors

Lemma 9.4.5. Suppose p ∈ P satisfies z ≤ Np < x1/2 and assume z satisfies (9.38). Then for δ > 0,

S(Ap, p)�δ
XV (z)

Np
,

provided η ≥ η(δ) and

Mδ

{
(κ−1
ψ + 1)W

1/4
ψ Uψ · hH

}4+50δ ≤ x ≤Mδ(n
nK
K DKQ)100 (9.44)

for Mδ > 0 sufficiently large.

Proof. From Section 9.2, recall S(Ap, p) ≤ S(Ap,Np) so it suffices to bound the latter. Using

Lemma 9.4.1 and Corollary 9.4.3, we apply the upper bound sieve from Theorem 9.2.1 to the sequence

Ap with level of distribution D′ = D/Np, sifting level z′ = Np, and sifting variable τ ′ = logD′

log z′ . This

application therefore yields

S(Ap,Np)� g(p)XV (z) +
∑

d|P(z′)
Nd<D′

|rpd|

since V (Np) ≤ V (z) for Np ≥ z. As g(p) � (Np)−1 by Lemma 9.4.1, it suffices to bound the

remainder sum. Following the same argument as in Proposition 9.4.4, we see that

∑
d|P(z′)
Nd<D′

|rpd| �δ
x1/2+δ

(Np)1/2
U1+δ
ψ

∑
d

λ(d)

(Nd)1/2
e−Ndp/D

�δ
x1/2+δ

(Np)1/2
U1+δ
ψ

(
κψ
( D

Np

)1/2
+W

1/4+δ/8
ψ Qδ/8eOδ(nK)

( D
Np

)δ/8)
�δ

1

Np
· κψx1/2+δU1+δ

ψ D1/2

provided (9.44) holds. One can similarly show that the above is�δ XV (z)(Np)−1 since z satisfies the

upper bound in (9.38) and η ≥ η(δ).
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Lemma 9.4.6. Let δ > 0 and assume z satisfies (9.38). For x > 2z,∑
z≤Np<x
ψ(p)=1

1

Np
�δ (1− β) log x

provided η ≥ η(δ).

Proof. From Lemma 9.3.1 and the condition x > 2z, notice

∑
z≤Np<x
ψ(p)=1

1

Np
�

∑
z≤Np<x

λ(p)

Np

{
e−Np/x − e−Np/z

}
= S1,

say, so we estimate S1. Observe that

S2 :=
∑
n

λ(n)

(Nn)β
e−2Nn/z =

∑
n

λ(n)

Nn
e−Nn/z ·H1−β

(Nn

z

)
z1−β,

where Hε(t) = tεe−t for ε > 0 and t > 0. By calculus, Hε(t) is maximized at t = ε and Hε(ε)→ 1 as

ε→ 0+. Moreover, z1−β = 1 +O((1− β) log z). Therefore, by (9.38),

S2 �δ

∑
n

λ(n)

Nn
e−Nn/z

for η ≥ η(δ). Hence, using Lemma 9.3.1, we see that

S1S2 �
( ∑
z≤Np<x

λ(p)

Np

{
e−Np/x − e−Np/z

})(∑
n

λ(n)

Nn
e−Nn/z

)
�
∑
n

λ(n)

Nn

{
e−Nn/xz − e−Nn/z

}
= S3,

say. By both the lower and upper bound of (9.38), we may lower bound S2 using Lemma 9.3.6 and

upper bound S3 using Lemma 9.3.7. Combining these estimates and noting z1−β ≥ 1 yields the desired

bound for S1 provided η ≥ η(δ).

9.5 Proof of Theorem 9.1.2

We claim Theorem 9.1.2 is a consequence of the following result.

Theorem 9.5.1. Let H (mod q) be a primitive congruence class group of a number field K. Suppose

ψ (modH) is an real Hecke character of the number field K with associated real zero β as in (9.3). Let

C ∈ Cl(H) satisfy ψ(C) = 1 and δ > 0 be given. Denote X as per Lemma 9.4.1. Assume x satisfies
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both of the following

x ≤Mδ · (nnKK DKQ)100, (9.45)

x ≥Mδ · {(κ−1
ψ + 1)4WψU

4
ψh

4
H}1+50δ, (9.46)

for Mδ > 0 sufficiently large. If ψ is quadratic then∑
Np<x
p∈C

ρ(p) ≥ 0.00466 ·X

provided η ≥ η(δ) and additionally

x ≥Mδ · {(κ−1
ψ + 1)5W

5/2
ψ U2

ψh
2
H}1+50δ. (9.47)

Otherwise, if ψ is principal then ∑
Np<x
p∈C

ρ(p) ≥ 0.0557 ·X

provided η ≥ η(δ) and additionally

x ≥Mδ · {(κ−1
ψ + 1)3W

3/2
ψ U2

ψh
2
H}1+50δ. (9.48)

Remark. Recall κψ,Wψ, Uψ are defined in (9.25), (9.26), and (9.36) respectively.

This section is dedicated to the proofs of Theorems 9.1.2 and 9.5.1.

9.5.1 Proof of Theorem 9.1.2 from Theorem 9.5.1

By comparing notation2, one can verify that it suffices show that (9.5) is implied by (9.46) and (9.47)

when ψ is quadratic and similarly is implied by (9.46) and (9.48) when ψ is principal. If ψ is quadratic,

then by Theorem 9.3.3 and Lemma 2.4.6,

(κ−1
ψ + 1)4WψU

4
ψh

4
H �δ

{
n12nK
K D

5+
4
nK

K Q
5+

2
nK · h2

H

}1+δ
,

(κ−1
ψ + 1)5W

5/2
ψ U2

ψh
2
H �δ

{
n16nK
K D

6+
5
nK

K Q
3.5+

2.5
nK · h2

H

}1+δ
.

2Note that ρ(p) = 1 and ∆ψ = bψ if ψ is principal, and ρ(p) = 2 and ∆ψ = L(1, ψ)bψ/2 if ψ is quadratic.
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One can therefore see by inspection that (9.46) and (9.47) indeed imply (9.5). If ψ is principal, then

similarly

(κ−1
ψ + 1)4WψU

4
ψh

4
H �δ

{
n6nK
K D

3+
4
nK

K Q3 · h2
H

}1+δ
,

(κ−1
ψ + 1)3W

3/2
ψ U2

ψh
2
H �δ

{
n5nK
K D

2+
3
nK

K Q0.5 · h2
H

}1+δ
.

Again, one can see by inspection that (9.46) and (9.48) imply (9.5). �

9.5.2 Proof of Theorem 9.5.1

Let y ∈ [1, 10] be a parameter which is to be optimized later. Consider the sequence3

A(y) = {a(y)
n }n given by a

(y)
n = ρ(n)e−yNn/x · 1C(n),

where ρ(n) is defined in (9.23). For Bδ > 0 sufficiently large, choose

z = Bδ · {κ−1
ψ + 1}1+δ ·W 1/2+δ

ψ Qδ,

so z indeed satisfies (9.38). Analogous to (9.39), define

Dy =
(x/y)1−4δ

h2
HU

2+2δ
ψ

, τy =
logDy

log z
.

Furthermore, according to the notation of Lemma 9.4.1, denote

X = bψκψ
x

hH
, V (z) =

∏
Np<z

(1− g(p)).

Now, by Lemma 9.3.1, A(y) is supported on n satisfying p | n =⇒ ψ(p) = 1. Thus, we have the

following Buchstab identity:

S(A(y),
√
x) = S(A(y), z)−

∑
z≤Np<

√
x

ψ(p)=1

S(A(y)
p , p). (9.49)

Noting a(y)
n ≤ a

(1)
n , it follows S(A(y)

p , p) ≤ S(A(1)
p , p). Moreover, (1 − β) log x �δ η

−1 by (9.45).

Thus, from (9.46) and Lemmas 9.4.5 and 9.4.6, it follows that∑
z≤Np<

√
x

ψ(p)=1

S(A(y)
p , p)�δ η

−1 ·XV (z) (9.50)

3Comparing with the notation of (9.28), notice A(x/y) = A(y).



CHAPTER 9. SIEGEL ZEROS AND THE LEAST PRIME IDEAL 233

provided η ≥ η(δ). Assumption (9.46) allows us to apply Proposition 9.4.4 to S(A(y), z) so, combined

with (9.49) and (9.50), we deduce that

S(A(y),
√
x) ≥ 1

y

{
1− E0(Cψ; τy) +O(δ) +Oδ

( 1

log x

)}
·XV (z) (9.51)

provided η ≥ η(δ). It remains to convert the “exponentially-weighted sieve” to the usual “cutoff sieve”.

Observe that
S(A(y),

√
x) =

∑
p∈C√

x≤Np<x

ρ(p)e−yNp/x +
∑
n∈C

(n,P(
√
x))=1

Nn≥x

ρ(n)e−yNn/x,

= S1 + S2

(9.52)

say. To complete the proof, it suffices to lower bound S1 so we require an upper bound on S2. As

y ≥ 1, z ≤
√
x and x satisfies (9.46), it follows by Proposition 9.4.4 that

S2 ≤ e−y+1S(A(1), z) ≤ e−y+1
{

1 + E1(Cψ; τ1) +O(δ) +Oδ
( 1

log x

)}
·XV (z).

Using the above, (9.51), and (9.52), we conclude for η ≥ η(δ) that

S1 ≥
1

Cψ

{1

y

(
1− E0(Cψ; τy)

)
− e−y+1

(
1 + E1(Cψ; τ1)

)
+O(δ) +Oδ

( 1

log x

)}
·X (9.53)

after bounding V (z) by Corollary 9.4.3. Finally, we consider cases.

ψ quadratic

Then (9.47) and our choice of z imply τ1 ≥ τy > 5, so n0(τy) ≥ 6 and n1(τ1) ≥ 5. Hence, by the

definitions in Theorem 9.2.1,

E0(Cψ; τy) ≤
(

1
2e

4 − 11
3 e

2 + 1
2

)
{1 +O(δ)},

E1(Cψ; τ1) ≤
(

1
2e

4 − 10
3 e

2 − 1
2

)
{1 +O(δ)},

since Cψ = e2+δ by Corollary 9.4.3. Substituting these bounds into (9.53), choosing roughly optimally

y = 7.37, and rescaling δ appropriately completes the proof of Theorem 9.5.1 when ψ is quadratic.

ψ principal

Then (9.48) and our choice of z imply τ1 ≥ τy > 3, so n0(τy) ≥ 4 and n1(τ1) ≥ 3. Hence, by the

definitions in Theorem 9.2.1,

E0(Cψ; τy) ≤
(

1
2e

2 − 3
2e+ 1

2

)
{1 +O(δ)},

E1(Cψ; τ1) ≤
(

1
2e

2 − e− 1
2

)
{1 +O(δ)},
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since Cψ = e1+δ by Corollary 9.4.3. Substituting these bounds into (9.53), choosing roughly optimally

y = 4.54, and rescaling δ appropriately completes the proof of Theorem 9.5.1 when ψ is principal.



Chapter 10

Elliptic curves and modular forms

“It is a lovely language, but it takes a very long time saying anything in it, because we
do not say anything in it, unless it is worth taking a long time to say, and to listen to.”

– Treebeard, The Lord of the Rings.

In this chapter, we present the proofs for the applications to elliptic curves and modular forms found

in Section 1.4. Background on elliptic curves and modular forms can be found in [ST94, Sil09] and

[DS05, MM06, Ono04] respectively. Aside from basic definitions in Chapters 1 and 2, the notation here

will be self-contained.

10.1 Reformulating Theorems 1.3.2 and 1.3.3

First, we state slightly weaker (but more convenient) reformulations of Theorems 1.3.2 and 1.3.3. For an

abelian extension L/K, the max conductor quantityQ = Q(L/K), defined by (1.22), and discriminant

DK measures the ramification occurring in L/K and K/Q respectively. However, it can be somewhat

cumbersome to use these in certain arithmetic applications. To measure the ramification of L/K, we

will therefore avoid using Q and instead use the set

P(L/K) = {p prime : p prime ideal of K with p | (p) and p ramifies in L}. (10.1)

The following proposition allows us to reformulate our main results in terms of P(L/K).

Proposition 10.1.1 (Murty–Murty–Saradha). If L/K is an abelian extension of number fields then

Q(L/K) ≤
(

[L : K]
∏

p∈P(L/K)

p
)2nK

.

Proof. See [MMS88, Proposition 2.5], which proves a more general result.

Next, we record an alternate bound for DK = |disc(K/Q)| using nK = [K : Q] and the squarefree

part of DK . For positive integers n, let ω(n) = #{p : p | n} and rad(n) =
∏
p|n p.

235
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Proposition 10.1.2 (Serre). For any number field K,

DK ≤ (nK)nKω(DK)rad(DK)nK−1.

If K is Galois over Q then ω(DK) may be replaced by 1.

Proof. See [Ser81, Proposition 6].

Combining these two propositions yields the following lemma.

Lemma 10.1.3. Let A,B,C ≥ 0. If L/K is an abelian extension of number fields with max conductor

Q = Q(L/K) defined by (7.20) then

DA
KQB(nnKK )C ≤

[
[L : K]Bn

Aω(DK)+C
K rad(DL)A+2B

]nK
.

Proof. Since every prime p ∈ P(L/K) divides the discriminant of L/Q, we have that
∏
p∈P(L/K) p ≤

rad(DL). Furthermore, rad(DK) ≤ rad(DL) since DK | DL. Combining these observations with

Propositions 10.1.1 and 10.1.2 yields the desired result.

We may now reformulate two of our main theorems.

Theorem 10.1.4. Let L/F be a Galois extension of number fields with Galois group G, and let C be

any conjugacy class of G. Let H be an abelian subgroup of G such that H ∩ C is nonempty, and let

K 6= Q be the subfield of L fixed by H . Then

πC(x, L/F )� 1(
[L : K]4rad(DL)13n

5ω(DK)+3
K

)nK · |C||G| x

log x
.

for x ≥
{

[L : K]521rad(DL)1736n
694ω(DK)+290
K

}nK and ([L : K]nKrad(DL))nK sufficiently large. In

particular,

P (C,L/F )�
{

[L : K]521rad(DL)1736n
694ω(DK)+290
K

}nK .
Proof. Aside from the “sufficiently large” condition, this is an immediate consequence of Theorem 1.3.2

and Lemma 10.1.3. It remains to show that DKQnnKK →∞ if and only if ([L : K]nKrad(DL))nK →
∞. The “only if” direction follows from Lemma 10.1.3. Now consider the“if” direction. If nK → ∞
or rad(DK) → ∞ then we are done. By Lemma 7.3.1, if [L : K] → ∞ then we are done. Thus, we

may assume that
∏

p∈P(L/K)
p-DK

p → ∞, where P(L/K) is given by (10.1). By the conductor-discriminant

formula (2.21) and the definition of Q in (7.20), any prime p ∈ P(L/K) with p - DK must divide the

norm of a conductor fχ for some Hecke character χ attached to L/K. By the definition of Q in (7.20),

this implies that ∏
p∈P(L/K)
p-DK

p ≤
∏
p≤Q

p.
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Thus, if the former quantity is unbounded then so is the max conductor Q. This completes the verifica-

tion of the “sufficiently large” condition.

Remark.

• For comparison, if one uses [Ser81, Proposition 6] to bound DL, then Theorem 1.3.1 implies that

P (C,L/F ) � (n
ω(DL)
L rad(DL))40nL . Thus, the above theorem gives an asymptotic improve-

ment when |H| = [L : K] is large.

• The arguments in the above proof may be used to quantify the “sufficiently large” condition in

terms of DKQnnKK . We omit these details for brevity.

Theorem 10.1.5. Let L/F be a Galois extension of number fields with Galois group G, and let C be

any conjugacy class of G. Let H be an abelian subgroup of G such that H ∩C is non-empty, and let K

be the subfield of L fixed by H . Define

M(L/K) = [L : K]D
1/nK
K

∏
p∈P(L/K)

p. (10.2)

If log x� nK log(M(L/K)nK) then

πC(x, L/F )� |C|
|G|

Li(x).

Remark. Theorems 1.3.2 and 10.1.4 can be restated using M(L/K) as well; that is,

P (C,L/F )� (nKM(L/K))1050nK ,

since 1050 > max{694, 521 · 2, 290}.

Proof. Using the definition of M(L/K), by Proposition 10.1.1, we see that (1.31) is

� (DKQ(L/K)nnKK )246 � (nKM(L/K))500nK .

The claimed result now follows immediately from Theorem 1.3.3.

10.2 Proofs of Theorems 1.4.5 to 1.4.7

GL2 extensions

We will now review some facts about GL2 extensions of Q and class functions to prove Theo-
rems 1.4.5 to 1.4.7. Let f(z) =

∑∞
n=1 af (n)e2πinz ∈ Z[[e2πiz]] be a non-CM newform of even

weight k ≥ 2 and level N ≥ 1. By Deligne [Del71], there exists a representation

ρf,` : Gal(Q/Q)→ GL2(F`)
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with the property that if p - `N and σp is a Frobenius element at p in Gal(Q/Q), then ρf,`
is unramified at p, tr ρf,`(σp) ≡ af (p) (mod `), and det ρf,`(σp) ≡ pk−1 (mod `). If ` is
sufficiently large (depending on f ) then the representation is surjective. Let L = L` be the
subfield of Q fixed by the kernel of ρf,`. Then L/Q is a Galois extension unramified outside
`N whose Galois group is ker ρf,`, which is isomorphic to a subgroup of

G = G` = {A ∈ GL2(F`): detA is a (k − 1)-th power in F×` }.

If `�f 1 then the representation is surjective, in which case

ker ρf,` ∼= G. (10.3)

When k = 2 and the level is N , f is necessarily the newform of a non-CM elliptic curve E/Q
of conductor N . In this case, we write ρf,` = ρE,`, and L is the `-division field Q(E[`]). It is
conjectured that ker ρ̃E,` ∼= GL2(F`) for all ` > 37. When E/Q is non-CM and has squarefree
level, it follows from the work of Mazur [Maz78] that ker ρ̃E,` ∼= GL2(F`) for all ` ≥ 11.

Lemma 10.2.1. Let L/Q be a GL2(F`) extension which is unramified outside of `N for some

N ≥ 1. Let C ⊂ GL2(F`) be a conjugacy class intersecting the subgroup D of diagonal

matrices. There exists a prime p - `N so that [L/Q
p

] = C and

p�
{
`2778rad(N)1736(`(`+ 1))694ω(N)+984

}`(`+1)
.

Proof. If K = LD is the subfield of L fixed by D, then [L : K] = (` − 1)2 and [K : Q] =

`(` + 1). Moreover, rad(DL) | ` rad(N) and ω(DK) ≤ ω(DL) ≤ 1 + ω(N). The result now
follows immediately from Theorem 10.1.4.

Proof of Theorem 1.4.5

It follows from the proof of [Mur94, Theorem 4] and Mazur’s torsion theorem [Maz78] that it
suffices to consider ` ≥ 11. Let L = Q(E[`]) be the `-division field of E/Q. For p - `NE , we
have that E(Fp) has an element of order ` if and only if

tr ρ`,E(σp) ≡ det ρ`,E(σp) + 1 (mod `), (10.4)

where σp is Frobenius automorphism at p in Gal(Q/Q). If Gal(L/Q) ∼= GL2(F`), then the
ρ`,E(σp) ∈ GL2(F`) which satisfy (10.4) form a union of conjugacy classes in GL2(F`) which
includes the identity element. The subgroup D of diagonal matrices is a maximal abelian
subgroup of GL2(F`). Thus π{id}(x, L/Q) is a lower bound for the function that counts the
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primes p ≤ x such that p - `NE and ` | #E(Fp). Since rad(DL) | ` rad(N), Lemma 10.2.1
exhibits a prime p with the desired arithmetic properties satisfying

p�
{
`2778rad(N)1736(`(`+ 1))694ω(N)+984

}`(`+1)
.

Since ` ≥ 11, we have that `(`+ 1) ≤ `2.04 and `(`+ 1) ≤ 12
11
`2. Appropriately applying both

of these facts to the above bound yields the desired result.

Suppose now that Gal(L/Q) is not isomorphic to GL2(F`). The possible cases are de-
scribed in the proof of [Mur94, Theorem 4]. Applying similar analysis to all of these cases,
one sees that the above case gives the largest upper bound for the least prime p such that
` | #E(Fp). This completes the proof.

Class functions

Next, we require some basic results on class functions (cf. [Ser81, Zyw15]) for the proof of
Theorem 1.4.7. Let L/F be a Galois extension of number fields with Galois group G, and let
φ : G → C be a class function. For each prime ideal p of F , choose any prime ideal P of L
dividing p. Let DP and IP be the decomposition and inertia subgroups of G at p, respectively.
We then have a distinguished Frobenius element σP ∈ DP/IP. For each m ≥ 1, define

φ(Frobmp ) :=
1

|IP|
∑
g∈DP

gIP=σmP∈DP/IP

φ(g).

Note that φ(Frobmp ) is independent of the aforementioned choice of P. If p is unramified in L,
this definition agrees with the value of φ on the conjugacy class Frobp of G. For x ≥ 2, we
define

πφ(x) =
∑

p unramified in L
NF/Q p≤x

φ(Frobp), π̃φ(x) =
∑

p unramified in L
NF/Q pm≤x

1

m
φ(Frobmp ).

LetC ⊂ G be stable under conjugation, and let 1C : G→ {0, 1} be the class function given
by the indicator function ofC. Now, define1 πC(x, L/F ) = π1C (x) and π̃C(x, L/F ) = π̃1C (x).
Serre [Ser81, Proposition 7] proved that if x ≥ 2, then

|πC(x, L/F )− π̃C(x, L/F )| ≤ 4nF ((logDL)/nL +
√
x). (10.5)

1This agrees with our usual definition of πC(x, L/F ) in (1.15).
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Proof of Theorem 1.4.6

This is an immediate consequence of Theorem 1.4.7 in the case kf = 2.

Proof of Theorem 1.4.7

Let ` be an odd prime such that (10.3) is satisfied. Assuming gcd(k − 1, ` − 1) = 1, we have
G ∼= GL2(F`). To prove the theorem, we consider

πf (x; a, `) := #{p ≤ x: p - `N , af (p) ≡ a (mod `), ` splits in Q((af (p)
2 − 4pk−1)1/2)}.

Note that for p - `N , af (p)2 − 4pk−1 = tr(ρf,`(σp))− 4 det(ρf,`(σp))
2, where σp is Frobenius

at p in Gal(Q/Q). The subset C ⊂ G given by

C = {A ∈ G: tr(A) ≡ a (mod `), tr(A)2 − 4 det(A) is a square in F×` }

is a conjugacy-invariant subset ofG, so we bound π̃C(x, L/Q). LetB ⊂ G denote the subgroup
of upper triangular matrices; the condition that tr(A)2 − 4 det(A) is a square in F×` means that
σp is conjugate to an element in B. If Γ is a maximal set of elements γ ∈ B which are non-
conjugate in G with tr(γ) ≡ a (mod q), then C =

⊔
γ∈ΓCG(γ), where CG(γ) denotes the

conjugacy class of γ in G. Since B is a subgroup of G with the property that every element of
C is conjugate to an element of B, it follows from [Zyw15, Lemma 2.6] that

π̃C(x, L/Q) =
∑
γ∈Γ

π̃CB(γ)(x, L/L
B)

[CentG(γ) : CentB(γ)]
,

where CentG(γ) is the centralizer of γ inG (and similarly forB). IfC1 =
⊔
γ ∈ Γ non-scalar CB(γ),

then it follows that π̃C(x;L/Q) ≥ 1
|G| π̃C1(x, L/L

B) for all x ≥ 2.

Case 1: `N sufficiently large, a 6≡ 0 (mod `)

Let U be the normal subgroup of B consisting of the matrices whose diagonal entries are
both 1. We observe that U · C1 ⊂ C1; therefore, using arguments from [Zyw15, Lemma 2.6],
we have that π̃C1(x, L/L

B) = π̃C2(x, L
U/LB) for x ≥ 2, where C2 is the image of C1 ∩ B

in B/U . It follows from (10.5) and Theorem 10.1.4 that if `N is sufficiently large and x is
bounded below as in Theorem 10.1.4, then

π̃C2(x, L
U/LB) > 0 if and only if πC2(x, L

U/LB) > 0. (10.6)

It is straightforward to compute nLB = ` + 1 and [LU : LB] = (` − 1)2. Since LU/LB is
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abelian and all of primes p ramifying in LU divide `N , we therefore obtain a prime p from
Theorem 10.1.4 with the desired arithmetic properties and which satisfies

p�
{
`1042(` rad(N))1736(`+ 1)694ω(N)+984

}`+1
.

For ` ≥ 3, we have ` + 1 ≤ `1.27. Appropriately applying this fact to the above yields the
desired bound.

Case 2: `N sufficiently large, a ≡ 0 (mod `)

Let H be the normal subgroup of B consisting of matrices whose eigenvalues are both
equal. We have that H · C1 ⊂ C1 since multiplying a trace zero matrix by a scalar does not
change the trace. Let C3 be the image of C1 ∩B in B/H . The arguments are now the same as
in the previous case, with LH replacing LU . In fact, since B/H ∼= F×` is abelian of order `− 1

and C3 is a singleton, we obtain a slightly better exponent than what is stated in Theorem 1.4.7
when a ≡ 0 (mod `).

Case 3: `N not sufficiently large

Let A2 = U and A3 = H . When `N is not sufficiently large (in which case `N � 1),
then the lower bound for πCi(x, L

Ai/LB) (i = 2 or 3) in Theorem 10.1.4 may have an implied
constant that is so small that (10.6) becomes false in the range of x given by Theorem 10.1.4.
For these finitely many exceptional cases, we use Weiss’ lower bound on πCi(x, L

Ai/LB) that
follows [Wei83, Theorem 5.2], which holds uniformly for all choices of N and `. Continuing
the proof as in Case 1 (this requires us to take c10 sufficiently small and c11 to be sufficiently
large in [Wei83, Theorem 5.2]), we see that the least prime p - `N such that af (p) ≡ a (mod `)

is absolutely bounded in all of the finitely many exceptional cases. This proves Theorem 1.4.7.

10.3 Lang–Trotter conjectures

For this subsection, fix a newform

f(z) =
∞∑
n=1

af (n)e2πinz

of even integral weight kf ≥ 2, level Nf , and trivial nebentypus with integral Fourier coef-
ficients. For each prime p, we define ωp = (af (p)

2 − 4pkf−1)1/2. From Deligne’s proof of
the Weil conjectures, we have that |af (p)| ≤ 2p(kf−1)/2 for all p, so Q(ωp) is an imaginary
quadratic extension of Q.
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For a fixed integer a ∈ Z and fixed imaginary quadratic field k, we will estimate

πf (x, a) := #{p ≤ x: p - NE , af (p) = a},

πf (x, k) := #{p ≤ x: p - NE , Q(ωp) ∼= k}.

The arguments found in this subsection closely follow the prior works of [MMS88, Mur97]
and especially [Zyw15]. We begin by giving an upper bound for πf (x, a).

Proof of Theorem 1.4.8

For any prime ` ≥ 3, set

πf (x, a; `) := #{p ≤ x: af (p) ≡ a (mod `) and ` splits in Q(ωp)}.

Let `1 < `2 < · · · < `t be any t odd primes, each less than exp( log x
2t

). By [Wan90, Corollary
4.2], if t ∼ 4

log 2
log log x, then

πf (x, a)�
t∑

j=1

πf (x, a; `j) +
x

(log x)2
� (log log x) max

1≤j≤t
πf (x, a; `j) +

x

(log x)2
. (10.7)

We proceed to bound πf (x, a; `), where ` ≤ exp((log 2)(log x)/(8 log log x)).

Let ` be prime, let F` be the field of ` elements, and let Frobp be the Frobenius automor-
phism of Gal(Q/Q) at p. For each `, there is a representation

ρf,` : Gal(Q/Q)→ GL2(F`) (10.8)

unramified outside Nf`, such that for all primes p - Nf`, we have that tr(ρf,`(Frobp)) ≡
af (p) (mod `) and det(ρf,`(Frobp)) ≡ pkf−1 (mod `). We have that ρf,` is surjective for all but
finitely many `. Let L = L` be the subfield of Q fixed by ker ρf,`. If ` is sufficiently large,
then L/Q is a Galois extension, unramified outside of Nf`, whose Galois group is G = {g ∈
GL2(F`) : det g ∈ (F×` )kf−1}.

Define C = {A ∈ G: tr(A) ≡ a (mod `) and tr(A)2 − 4 det(A) ∈ F` is a square}. Let B
denote the upper triangular matrices in GL2(F`) ∩ G, and let LB be the subfield of L fixed by
B. Let U be the unipotent elements of B, and let LU be the subfield of L fixed by U . Note that
U is a normal subgroup of B and that B/U ∼= Gal(LU/LB) is abelian. Let C ′ be the image of
C ∩B in B/U . If x is sufficiently large, then by [Zyw15, Lemmas 2.7 and 4.3],

πf (x, a; `)� πC′(x, L
U/LB) + nLB

( √x
log x

+ logM(LU/LB)
)
.
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Applying Theorem 10.1.5 to the Chebotarev prime counting functions for each conjugacy class
in C ′, we have that if log x� nLB log(M(LU/LB)nLB), then

πf (x, a; `)� |C ′|
|B/U |

x

log x
+ nLB

( √x
log x

+ logM(LU/LB)
)
.

By [Zyw15, Lemma 4.4], we have |C ′|/|B/U | � 1/`, nLB � `, and logM(LU/LB) �Nf

log `. Combining all of our estimates, we find that

πf (x, a; `)� 1

`

x

log x
+
`
√
x

log x
+ ` logNf `, log x� ` logNf `. (10.9)

Thus, taking ` ∼ c′ log x/ log(Nf log x) for some sufficiently small absolute constant c′ > 0,

πf (x, a; `)�
x log(Nf log x)

(log x)2
. (10.10)

Now, as before, let t ∈ Z satisfy t ∼ 4
log 2

log log x, and let `1 < `2 < · · · < `t be t consecutive
primes with `1 ∼ c′ log x/ log(Nf log x). By the Prime Number Theorem, `j ∈ [`1, 2`1] for all
1 ≤ j ≤ t. Therefore, if c′ is made sufficiently small, we have that

max
1≤j≤t

πf (x, a; `j)�
x log(Nf log x)

(log x)2
. (10.11)

Theorem 1.4.8 now follows from inserting the inequality (10.11) into the inequality (10.7).

Remark. The source of our improvement over [Mur97] stems solely from the application of
Theorem 10.1.5. See the end of Section 9.1 in [TZ17a] for further discussion.

Proof of Theorem 1.4.9

In this case, we are estimating πf (x, k) for a fixed imaginary quadratic field k. The proof of
Theorem 1.4.9 is nearly identical to the proof of [Zyw15, Theorem 1.3(ii)] except that we use
Theorem 10.1.5 to bound the ensuing Chebotarev prime counting function instead of using
[Zyw15, Theorem 2.1(ii)]. The analytic details are very similar to the above proof of Theo-
rem 1.4.8, but the particular Galois extension to which Theorem 1.3.3 is applied is different.
Following [Zyw15, Section 5.2], we apply Theorem 1.3.3 instead of [Zyw15, Theorem 2.1(ii)],
which allows us to choose

y =
c

hk

log x

log(Dk
hk

log x)

for some sufficiently small absolute constant c > 0. Here Dk is the absolute discriminant of k
and hk is the (broad) class number of k. This yields the claimed result.
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[FI01] É. Fouvry and H. Iwaniec. A subconvexity bound for Hecke L-functions. Ann. Sci.
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J., 29(2):209–216, 1977.

[Ono04] K. Ono. The Web of Modularity: Arithmetic of the Coefficients of Modular Forms

and Q-series. Number no. 102 in Regional conference series in mathematics. Amer-
ican Mathematical Society, 2004.

[OS97] K. Ono and K. Soundararajan. Ramanujan’s ternary quadratic form. Invent. Math.,
130(3):415–454, 1997.

[oST] National Institute of Standards and Technology. Digital library of mathematical
functions. Version 1.0.5, October 1, 2012.

[Pan57] C. D. Pan. On the least prime in an arithmetical progression. Sci. Record (N.S.),
1:311–313, 1957.

[Rad60] H. Rademacher. On the Phragmén-Lindelöf theorem and some applications. Math.

Z, 72:192–204, 1959/1960.

[Sch70] W. Schaal. On the large sieve method in algebraic number fields. J. Number Theory,
2:249–270, 1970.

[Ser81] J.-P. Serre. Quelques applications du théorème de densité de Chebotarev. Inst.
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