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Asif Ali Zaman
Doctor of Philosophy
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2017

In this thesis, we study the distribution of prime ideals within the Chebotarev Density The-
orem. The theorem states that the Artin symbols attached to prime ideals are equidistributed
within the Galois group of a given Galois extension.

We exhibit field-uniform unconditional bounds with explicit constants for the least prime
ideal in the Chebotarev Density Theorem, that is, the prime ideal of least norm with a specified
Artin symbol. Moreover, we provide a new upper bound for the number of prime ideals with a
specified Artin symbol which is valid for a wide range and sharp, short of precluding a putative
Siegel zero. To achieve these results, we establish explicit statistical information on the zeros
of Hecke L-functions and the Dedekind zeta function. Our methods were inspired by works of
Linnik, Heath-Brown, and Maynard in the classical case and the papers of Lagarias—Odlyzko,
Lagarias—Montgomery—Odlyzko, and Weiss in the Chebotarev setting.

We include applications for primes represented by certain binary quadratic forms, con-
gruences of coefficients for modular forms, and the group structure of elliptic curves reduced
modulo a prime. In particular, we establish the best known unconditional upper bounds for
the least prime represented by a positive definite primitive binary quadratic form and for the

Lang—Trotter conjectures on elliptic curves.
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Chapter 1

Introduction

“Of course it is happening inside your head... but why on earth should that

mean that it is not real?”
— Albus Dumbledore.

1.1 Primes in an arithmetic progression

In his breakthrough 1837 manuscript, Dirichlet proved that there are infinitely many primes in
any given arithmetic progression. Riemann, in his seminal 1859 paper, proceeded to outline a
remarkable strategy to asymptotically count such primes and, by the end of the 19th century,
the Prime Number Theorem (PNT) for Arithmetic Progressions (APs) was established with the
works of Hadamard and de la Vallée—Poussin. It states that primes are equidistributed amongst

arithmetic progressions; that is, for (a, q) = 1, the prime counting function defined by

m(x;q,a) =#{p <z:p=a(modq)}

satisfies

Li(z) (1.1)

i g,a) ~ ©(q)

as v — oo, where ¢(q) = #(Z/qZ)* is the Euler totient function and Li(z) = [, - dt is the
logarithmic integral. Recall Li(z) ~ 5= as . — oo.

The remarkable arguments leading to and its predecessors relied on a deep analytic
understanding of functions associated to Dirichlet characters and their zeros. A Dirichlet char-
acter y (mod q) is a completely multiplicative ¢-periodic function on the integers n € Z taking

complex roots of unity as values for (n, g) = 1 and zero otherwise. Given a Dirichlet character
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X (mod g), the Dirichlet L-function associated to it is given by

L(s,x) = ix(n)n‘s STI( -2 (1.2)

» p

for Re{s} > 1. Here the product is over all primes p. Of special importance is the principa][]
character x = xo which satisfies yo(n) = 1 for all (n,q) = 1 and equals 0 otherwise. In the
special case ¢ = 1, the principal character Y is identically unity and its Dirichlet L-function is

the famous Riemann zeta function given by

(s) = gn—s “T1 (1 _ ]%>_1 (1.3)

for Re{s} > 1. It is well-known that Dirichlet L-functions L(s, y) can be analytically con-
tinued to the entire complex plane, except for a simple pole at s = 1 when x = Y, is trivial.
In fact, they satisfy a functional equation relating L(s, x) to L(1 — s,) which yields a sym-
metry of their zeros about the critical line Re{s} = 1/2. As demonstrated by Dirichlet and
many others, the distribution of their zeros is intimately related to the distribution of primes
in arithmetic progressions. The zeros of Dirichlet L-functions either lie in the critical strip
0 < Re{s} < 1 (which are referred to as non-trivial zeros) or at certain non-positive integers
(which are referred to as trivial zeros). It is the non-trivial zeros which are deeply mysterious
and dictate the behaviour of 7(x; ¢, a).

With a more refined understanding of these zeros, the Siegel-Walfisz theorem (1936) quan-
tifies the error term in (I.I]) asserting that, for any ¢ > 0 and > exp(O.(¢°)),

L.
m(x;q,a) = 0 Li(z) + O(z exp(—+/c1 logz)) (1.4)

for some constant ¢; = c¢;(€) > 0. However, for any ¢ < 1/2, the constant ¢; and implied
constants depending on € are ineffective; that is, they are not effectively computable. The
source of this drawback is a putative real zero [3; of a Dirichlet L-function L(s, x;) attached
to the quadratic Dirichlet character x; (mod ¢) and this zero could conceivably be exceedingly
close to s = 1. We refer to the zero [3; as an exceptional zerﬂ In general, if many zeros
of a Dirichlet L-function happen to live near the edge of the critical strip at Re{s} = 1, then
m(x; q,a) could behave erratically. Given the symmetry of zeros about the critical line, the

ideal conjectured scenario is the Generalized Riemann Hypothesis (GRH) which states that all

Tt is also referred to as the trivial character.
2Other sources may refer to it as a Siegel zero (or Landau—Siegel zero), but we will later make a distinction
with this terminology.
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the non-trivial zeros p of a Dirichlet L-function satisfy Re{p} = 1/2. Assuming GRH, the

1/2]og x) with an effective implied constant and

error term in (1.4)) drastically improves to O(x
the asymptotic for 7(z; ¢, a) is valid for x > ¢> log® ¢. This strong conditional range suggests
there is much left to be desired from the unconditional range in (1.4) which is both exponential
in the modulus ¢ and ineffective. Furthermore, the range of validity in is prohibitive for
many applications. Unfortunately, since 1936, there has been little progress towards improving
the valid range of x in while maintaining the asymptotic for 7(z; g, a).

One may seek to relax the precision of our estimate for 7(z; ¢, @) in hopes of enhancing the

range of z. For example, an estimate of the form

Li(z) < 7(z;q,0) < Li(x)

©(q) ©(q)

for a range of = which is polynomial in ¢ would be tremendously useful; roughly speaking, for
smaller values of x, can one bound 7(x; ¢, a) within a constant factor of its asymptotic size?
As we shall see, the desired lower bound is overly optimistic and unattainable with current
methods (due to the possible existence of an exceptional zero) but we can obtain a weaker

variant of it. The upper bound, on the other hand, has been established in a very precise form.

Linnik’s theorem

A lower bound for 7(x; ¢, a) is intimately related to bounding the least prime in an arithmetic

progression a (mod ¢). For (a, q) = 1, define
P(a,q) = min{p prime : p = a (mod q)}. (1.5)

The best known lower bounds for max P(a, q) are due to Granville and Pomerance [GP90].
For upper bounds, (1.4)) trivially gives an ineffective unconditional estimate for P(a, ¢) which
is exponential in ¢. In a spectacular breakthrough, Linnik [Lin44a, [Lin44b] established the first

non-trivial unconditional upper bound on P(a, ¢) which is polynomial in q.
Theorem (Linnik). Let (a,q) = 1. For some absolute constant L > 0,

P(a,q) <", (1.6)
where the implied constant is absolute and effectively computable.

The constant L is known as Linnik’s constant. The Generalized Riemann Hypothesis im-
plies any fixed L. > 2 is admissible in (1.6) and conjecturally L > 1 holds. Recently, Lamzouri,
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Li, and Soundararajan [LLS15] made this GRH bound explicit, showing that

P(a,q) < ((q)log q)? (1.7)

for ¢ > 4. Unconditional bounds for Linnik’s constant have a long history beginning with Pan
[Pan57]] at L = 10,000 and the current world record sitting at . = 5 by Xylouris [Xyl11b]
based on suggestions in the landmark paper of Heath-Brown [HB92] (see the references therein
for a detailed list of prior works). While elementary proofs of Linnik’s theorem exist [EF110,
GHSJ], the records for L have thus far been based on Linnik’s original proof which revolves
around deep statistical information on the zeros of Dirichlet L-functions.

We recall the modern approach to proving Linnik’s bound on the least prime in an arith-
metic progression. In order to obtain small explicit values of L in (1.6]), one typically requires
three principles [IKO4, Chapter 18]; we cite explicit versions which are recorded in [HB92,
Section 1]:

1) A zero-free region: If ¢ is sufficiently large, then the product [T, (04, L(s, x) has at most

one zero in the region

0.10367

= logla+ ) "

s =0+ it, o

If such an exceptional zero exists, then it is real and simple and it corresponds with a non-

trivial real character.

2) A “log-free” zero density estimate: If ¢ is sufficiently large, ¢ > 0, and we define
N(o,T,x) =#{p=B+iv: L(p,x) =0,|y| <T,8 > o}, then

S N Tx) < (qn) 590 7>, (1.9)

X (mod q)

3) Deuring—Heilbronn phenomenon: If g is sufficiently large, A\; > 0 is sufficiently small,
e > 0, and the exceptional zero f; in the region (I.8) exists and equals 1 — A,/ log g, then

I1, (modq) L(s, x) has no other zeros in the region

(2 — o) log(1/A)
7 os@ )

(1.10)

As mentioned earlier, upper bounds for P(a, ¢) are connected with lower bounds for 7(z; ¢, a).

The most recent such estimate is due to Maynard [May13] who showed for z > ¢® and ¢
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sufficiently large that

Vi »(q)

where the implied constant is effectively computable. As with prior versions of (1.11)), the

1 1
084 Li(z), (1.11)

m(x;q,a) >

valid range of « constitutes a significant improvement over the range of x in (I.4). Linnik’s
theorem with L. = 5 and ((1.11) represent the best available unconditional lower bounds for

m(x; q,a) with current techniques.
Brun-Titchmarsh theorem
Now, we turn to upper bounds for 7(z; g, a). Titchmarsh [Tit30] made the first major develop-

1984 that
logz

ment by using Brun’s sieve to show for z > g and § =

1 1
m(x;q,0) K ————Li(z). (1.12)
( ) 1—9¢@)()
The implied constant can be made precise and has been estimated by many authors. Using the
large sieve, Montgomery and Vaughan [MV73] established the strongest such result uniform

over all x > ¢ and obtained the following:

Theorem (Brun—Titchmarsh theorem). Let 6 = %. Forx > g,

m(z;q,a) < C(0) Li(z), (1.13)

v(9)
where C'(0) =2/(1 — 0).

The range of x > ¢ is best possible since trivially 7(x; ¢, a) < 1 for x < ¢. The constant
2 in C'(0) is also best possible, short of precluding an exceptional zero. Thus, subsequent au-
thors have instead improved the 1/(1 — #) factor for various ranges of # including, for example,
Motohashi [Mot74], Goldfeld [|Gol75]], Iwaniec [Iwa82], and Friedlander—Iwaniec [FI97]]. The
aforementioned works made progress on from advances in sieve theory and exponen-
tial sums. However, the recent work of Maynard [May13] avoids sieve methods entirely and
relies on information about Dirichlet L-functions inspired by the three principles of Linnik’s

approach.

Theorem (Maynard). For z > ¢® and q sufficiently large,

m(x;q,a) < Li(x). (1.14)

©(q)

Equivalently, C(0) = 2for0 <6 < 1/8.



CHAPTER 1. INTRODUCTION 6

His proof builds on Heath-Brown’s analysis in [HB92]], using a log-free zero density es-
timate for Dirichlet L-functions and a delicate analysis of exceptional zeros. This alternate
approach will be crucial for our purposes. Ultimately, the range of = in the Brun-Titchmarsh
theorem (and its descendants) constitutes a substantial improvement over the Siegel-Walfisz

theorem (1.4)). It remains the best upper bound of 7(x; ¢, a) for small x.

1.2 Primes in the Chebotarev Density Theorem

The setting of this thesis will be a vast generalization of the Prime Number Theorem for
Arithmetic Progressions. Let L/F be a Galois extension of number fields with Galois group
G := Gal(L/F). For a prime ideal p of F' unramified in L, let [L/TF] denote the conjugacy
class of Frobenius automorphisms in G above p; we refer to it as the Artin symbol of p. For a
conjugacy class C' C G, define for z > 1

oz, L) F) = #{p . NEp < 2, p prime ideal of F' unramified in I, [L]/TF} — C}, (1.15)

where Nfo is the absolute norm of F' over Q. We are interested in the growth of the prime
counting function 7 (x, L/ F). Established in 1926 [Tsc26]], the Chebotarev Density Theorem
(CDT) states that the Artin symbols of primes ideals of F’ are equidistributed in GG; namely,
wo(z, L/ F) ~ %Li(:c) (1.16)
as © — oo. The special case F = Q and L = Q(e?""/4) reduces to the Prime Number Theorem
for Arithmetic Progressions in the form of (I.1). The CDT is tremendously powerful in a wide
variety of applications such as the distribution of primes ideals, binary quadratic forms, elliptic
curves, (-adic representations, and modular forms.
Analogous to the PNT for APs, proving the CDT requires knowledge about the distributions
of zeros of L-functions attached to the extension L/F. In particular, for the number field L,

one must analyze the Dedekind zeta function of L given by
SOEDTTIRE | [(R——" (1.17)
L(s) = = — .
e LU Ny

for Re{s} > 1. Here the sum is over integral ideals 9t of L and the product is over prime
ideals B of L. As with Dirichlet L-functions, the Dedekind zeta function (;(s) satisfies a
functional equation and has analytic continuation to the entire complex plane with a simple

pole at s = 1. Further, its non-trivial zeros lie in the critical strip 0 < Re{s} < 1 and its
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trivial zeros are at certain non-positive integers. The Dedekind zeta function also suffers from
a putative exceptional zero; that is, we cannot eliminate the existence of a real non-trivial zero
B1 which is exceedingly close to s = 1. Conjecturally, such zeros do not exist and, moreover,
the Generalized Riemann Hypothesis posits that all of the non-trivial zeros lie on the critical
line Re{s} = 1/2.

Lagarias and Odlyzko [LO77|] gave an unconditional field-uniform version of the CDT with
an error term, which generalizes the Siegel-Walfisz theorem (1.4)). In particular,

C]

o, L/ F) = 1gLile) + O(x exp ( — e 1?1ng>> (1.18)

for x > exp(10nz(log Dr)?), where ny, = [L : Q) is the degree of L/Q and Dy, = |disc(L/Q)|
is the absolute value of the absolute discriminant of L. In the above form, the implied constants
in (1.18)) are ineffective but can be made effective and absolute by using results of Stark [Sta74]
and enlarging the range of . Assuming GRH, Lagarias and Odlyzko also showed that the
error term in may be significantly improved to O(z'/?log(Da")) for 2 > (log Dy)?.
While (1.18)) is unsurprisingly far from this expected truth, like (1.4), its range of validity can
be restrictive in many applications. For instance, in the special case of PNT for APs, (1.18))

o(

implies 7(z; ¢, a) attains its asymptotic for z > e ¢°1og”0) which is far worse than Siegel-

Walfisz ((1.4)). This predicament underlies the motivating question of this thesis:

Can one estimate 7 (x, L/ F') within an absolute constant of its asymptotic size %Li(m) fora

range of x© which is superior to (I.18)?

For example, an estimate of the form

1l
|G

: Cl. .
Li(z) < me(z, L/ F) < %Ll($),
for small values of x (polynomial in Dy, say) would be extremely desirable. As we shall see,
there has already been some progress towards answering this question. However, just as with
m(x;q,a), the quoted lower bound is overly optimistic (we will settle for a slightly weaker
variant) whereas a suitable upper bound is attainable. We will first review the surrounding

literature and then state our main results in Sections and

Least prime ideal

First, we consider lower bounds for 7¢(x, L/F). In analogy with (1.5)), these are intimately

related to bounding the prime ideal of least norm with Artin symbol equal to the conjugacy
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class C'. In other words, if we define
P(C,L/F) :=min {NQp : p degree 1 prime ideal of F unramified in L, [—] = C’},
(1.19)
then we are interested in providing an upper bound for P(C, L/F'). We sometimes refer to this
quantity as the least prime ideal. Note the condition that p is degree 1 (equivalently, N(gp isa
rational prime) is unnecessary but interesting for certain applications. Assuming GRH for the
Dedekind zeta function of L, Lagarias and Odlyzko [LO77] showed that

P(C,L/F) < (log Dp,)*. (1.20)

Bach and Sorenson [BS96] have since provided an explicit version of this bound. These esti-
mates specialize to (1.7) up to quality of the implied constant. Additionally assuming Artin’s
holomorphy conjecture, V.K. Murty [Mur0O] proved a further refinement of (1.20]) which nicely

depends on the size of the conjugacy class C'.

The first non-trivial unconditional upper bound for P(C, L/ F') is due to Lagarias—Montgomery—
Odlyzko [LMO79], wherein they showed

P(C,L/F) < D (1.21)

for some absolute effectively computable constant 5; > 0. Compared with what is implied
by (I.18), this is a remarkable improvement. Their proof was modelled after Linnik’s classical
approach but the analysis of the Dedekind zeta function of L only required two of the three
principles: a zero-free region and Deuring—Heilbronn phenomenon. The establishment of the
latter was through a pioneering application of power sums. However, unlike Linnik’s constant
for arithmetic progressions and (I.T1) for m(z; ¢, a), no explicit value of B; > 0 has been
computed before and no corresponding quantitative lower bound has yet been established for
mo(z, L/ F) in the range 2 > DP*. Furthermore, implies P(a, ¢) < ¢"'? which is a far
cry from Linnik’s theorem (I.6)); in fact, the bound implied by Siegel-Walfisz (1.4)) is better.
By exploiting some class field theory within L/ F’, one can obtain further improvement over
in many cases and also recover Linnik’s theorem. Let # C ' be an abelian subgroup
such that H N C is non-empty. Let K = L* be the subfield of L fixed by H. By class field
theory, the characters of H = Gal(L/K) are Hecke characters y of K and therefore have an

associated K -integral ideal f, called the conductor of x. Thus, we may define the maximum
conductor of L/ K to be

Q = Q(L/K) = max{NXFf, : x € Gal(L/K)}. (1.22)
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Roughly speaking, Q is a measure of the ramification occurring in the abelian extension L/ K.
For example, @ = 1 implies L is an unramified extension of K. The first result on P(C, L/F)
utilizing Q followf] from the works of Fogels [Fog62b, |[Fog62c, Fog62al; namely,

P(C,L/F) < (DgQ)C), (1.23)

where C'(ng) > 0 is some constant depending only on nyx = [K : Q]. The main drawback
of this bound is its lack of complete field-uniformity, especially its unclear and unsatisfactory
dependence of the exponent on the degree of K over Q. A couple of decades later, Weiss

[Wei83, Wei80] amended these issues and proved
P(C,L/F) < (n}X Dy Q)" (1.24)

for some absolute and effectively computable constant By > 0. As with (I.2I]), no explicit
value of By > 0 has yet been calculated. This gap is one of the major objectives of this thesis.
To see how ({1.24) compares to (1.21)), observ that if H is a cyclic subgroup of G, then

pYIHl < g < pY/elih.

Therefore, if the n* term is negligible in then a large cyclic subgroup H intersecting
the conjugacy class C' is expected to yield savings in (I.24) over (I.21). We will elaborate
further on this comparison of (L.21]) and (1.24) following Theorem[I.3.2] As one last example,
if F = Qand L = Q(e?"/%), then one may take H to be the full Galois group G = (Z/qZ)*,
in which case K = F' = Q and Q(L/K) = q. Thus, Weiss proves a bound on P(C, L/F)
which provides a “continuous transition” from (I.6) to (I.21)). In particular, Linnik’s theorem
follows from (1.24)).

The proof of is again fundamentally motivated by Linnik’s approach in the case of

arithmetic progressions, requiring an intense study of Hecke L-functions and their zeros. For

a Hecke character x of K, the Hecke L-function of x is given by

Lis, v, K) =] (1 _ ggp)s)_l (1.25)
p

for Re{s} > 1, where the product is over prime ideals p of K. In the case K = Q, these

are precisely Dirichlet L-functions. They satisfy the same type of analytic properties with all

3Fogels actually bounds P(C, L/K) when L/K is abelian, but his results can be used to give the claimed
estimate.

4See [BS96, Lemma 4.2] for a proof of the upper bound; the lower bound holds for all H and follows from
the conductor-discriminant formula.



CHAPTER 1. INTRODUCTION 10

their non-trivial zeros lying in the critical strip 0 < Re{s} < 1. By class field theory, our
understanding of the distribution of Artin symbols in L/F' is dictated by our knowledge of
the distribution of the zeros of Hecke L-functions of K (see Section [2.5]for details). To prove
(1.24), Weiss utilized non-explicit analogues of Linnik’s three principles for Hecke L-functions
and, most importantly, proved a field-uniform log-free zero density estimate for Hecke L-

functions. To be specific, he appliecﬂ:

1) A zero-free region: The product [[, L(s,x, K) over Hecke characters x attached to L/K

have at most one zero in the region

1

s =0 +1it, c>1-— — ,
log(Dg OniX) + nk log(2 + |t])

(1.26)

for some absolute constant ¢; > 0. If such an exceptional zero exists, then it is real and

simple and it corresponds with a (possibly trivial) real character.

2) A “log-free” zero density estimate: For a Hecke character y, if we define N (o, T, x) =
#{p=pP+iv: Lip,x,K)=0,|y| <T,5 > o} then, for some absolute constant ¢y > 0,

> N(o,T.x) < (D QnprT<)20=2) T >1, (1.27)
X

where the sum is over Hecke characters y attached to L/ K.
3) Deuring—Heilbronn phenomenon: If \; > 0 is sufficiently small and the exceptional

zero (3 in the region (1.26) exists and equals 1 — \;/log(DxQOn}X), then the product
[1, L(s, x, K) over Hecke characters x attached to /K has no other zeros in the region

o> 1— czlog(1/A1)
— log(DrQnif) + nk log(2 + [t]))

(1.28)

for some absolute constant ¢35 > 0.

Weiss established (1.27)) and (1.28)) while (1.26)) is contained in [LMO79]. He actually proved
estimates [Wei83, Theorem 5.2] which imply a quantitative lower bound for ¢ (z, L/F') (see

Theorem [1.3.2] for an explicit variant). In summary, we have adequate field-uniform lower
bounds for 7 (z, L/F) but, in contrast with Linnik’s theorem and primes in arithmetic pro-

gressions, none of the existing results have explicit versions.

>The appearance of nX is not actually necessary for principles 1 and 3 but we keep it for simplicity.
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Brun-Titchmarsh analogues

Next, we consider upper bounds for 7¢(x, L/ F') which extend the range of (1.18)). Here far less
is known. There are a number of results estimating variants or special cases of 7¢(x, L/F),
such as [Hux68| [Sch70] for counting prime integers in the ring of integers of a number field
and [HL94] for counting prime ideals lying in ray classes, but these lack complete field-
uniformity or do not directly estimate the distribution of Artin symbols. It seems the only
existing field-uniform upper bound for 7o (z, L/F) comes from the foundational paper of
Lagarias—Montgomery—Odlyzko [LMO79]] in which they showed

mo(z, L/F) < %Li(m) (1.29)
forlog z >> log Dy, loglog Dy, logloglog(e?** Dy ). The proof avoids sieve methods and uses ba-
sic information about the zeros of the Dedekind zeta function of L. While is a significant
refinement over the range log z > ny(log Dy)? provided by the effective Chebotarev Density
Theorem (I.18)), it remains prohibitive for use in applications. For example, in the case of arith-
metic progressions, it implies the Brun-Titchmarsh theorem ([.12)) for x > exp(O(qlog® q)).
This is worse than the effective asymptotic given by Siegel-Walfisz. Moreover, there has been
no explicit computation of the implied constant in (1.29). One expects it to be close to 2 due to
the possibility of a real exceptional zero, just as in (I.13). These deficiencies suggest there is
much left to be desired for upper bounds of 7 (x, L/ F') beyond (1.29).

1.3 Analytic estimates
We may now state the main results of this thesis. Recall
ny=[L:Q],  Dp=ldisc(L/Q)l,

and Q = Q(L/K) is defined by (1.22).

1.3.1 Primes in the Chebotarev Density Theorem

We begin with lower bounds for 7o (x, L/F). We establish the first explicit value of B; in

(I.21)) and a corresponding quantitative lower bound for 7o (z, L/ F').

Theorem 1.3.1. Let L/ F' be a Galois extension of number fields with Galois group G and let
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C C G be a conjugacy class. Then

1 |C,.
Wc(x,L/F) > D—?@Ll(:ﬁ)

for x > D¥ and Dy, sufficiently large. In particular,
P(C,L/F) < D?¥.

Remark.

e In several cases, one can reduce the exponent B; = 35 by straightforward modifications.

For example, one can take

32 if L has a tower of normal extensions with base Q,

By =1424.1 ifny = o(log D) as Dy, — oo,

A1
log Dy,

7.5 if {1 (s) does not have a real zero 3; = 1 — satisfying \; = o(1),

where (/,(s) is the Dedekind zeta function of L. See the remark at the end of Section([7.2.4]

for details.

e Note Theorem [[.3.T]improves over [Zam17] wherein the constant B; = 40 is shown to
be admissible. This improvement stems from a minor adjustment which can be found in
the proof of Theorem ; namely, we discard some of the real non-trivial zeros in a

certain power sum estimate.

Theorem [1.3.1] is an explicit variant of [LMO79, Theorem 1.1] though the quantitative
lower bound in Theorem [I.3.1] is not contained in [LMO79]. Its proof is motivated by its
predecessor in conjunction with the powerful techniques pioneered by Heath-Brown [HB92]|
in the classical case of arithmetic progressions. In particular, we required explicit versions of
the zero-free region for the Dedekind zeta function (due to Kadiri [Kad12]) and the Deuring—
Heilbronn phenomenon. For the latter principle, we use an explicit variant due to Kadiri-Ng
[KN12] but their result is not intended to repel zeros deep into the critical strip. Hence, we
carefully used the power sum method founded in [LMO79]] to obtain a fully equipped Deuring—
Heilbronn phenomenon for the Dedekind zeta function. See Chapter [6] for details. After the
Completimﬁ of Theorem the author was infonnecﬂ by Kadiri and Ng of their unpublished
work [KN] in the case F' = Q in which they obtain an upper bound of D7° for P(C, L/Q).

® An earlier version of [Zam17] was posted to the arXiv in August 2015.
"private communication, January 2016.
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In joint work with Jesse Thorner, our second main result is the first explicit value of B in

(T.24) and a corresponding quantitative lower bound for 7o (z, L/F').

Theorem 1.3.2 (Thorner-Z.). Let L/F be a Galois extension of number fields with Galois
group G and let C' C G be a conjugacy class. Let H C G be an abelian subgroup such that
H N C is nonempty, K = L be the subfield of L fixed by H, and Q = Q(L/K) be defined by

(L.22). Then
1 (&

Li(z)

mo(x, L/F)>» —————Li

for x > DS4Q52! D22 Q36729 gnd Dy Qn'iX sufficiently large. In particular,

P(C,L/F) < D$*Q%! 1 D232 Q367200mx (1.30)

Remarks.

e Theorem immediately implies that P(a,q) < ¢°*'. For historical context, this is
slightly better than Jutila’s bound [Jut70] on P(a, q) established in 1970, which was over
25 years after Linnik’s original theorem.

o If ng < 2(log Dx)/loglog Dy, then P(C, L/F) < D$*Q5%. Situations where nyx >
2(log Dk)/loglog Dy are rare; the largest class of known examples involve infinite p-

class tower extensions, which were first studied by Golod and Shafarevich [GS64].
e If /K is unramified, then Q@ = 1 and Dy = Di/lH‘. Thus,
P(C,L/F) < DS/ p32/IH] 200
If additionally nx < 2(log D)/ loglog D, this gives
P(C,L/F) < D/
which improves over Theorem when |H| > 18.

e Inindependent work of the author, we consider the case when the degree n  is absolutely

bounded. For nx < 10*, we obtain a further numerical improvement on the exponents

in (I.30). See Theorem [7.4.1]for details.

e See Theorem for an alternate formulation.



CHAPTER 1. INTRODUCTION 14

Theorem|1.3.2]is an explicit variant of [We183, Theorem 5.2]. The quantitative lower bound
in Theorem [I.3.2] could conceivably be sharpened to match [Wei83| Theorem 5.2] with some
additional effort. The proof is inspired by Weiss’s approach combined with the innovations
of Heath-Brown [HBO92] in the classical case of arithmetic progressions. We naturally re-
quired explicit versions of Linnik’s three principles (namely, (1.26), (1.27), (1.28)) for Hecke
L-functions. Some information about their zero-free regions is due to Ahn and Kwon [AK14]

and Kadiri [Kad12], but this limited scope is the extent of pre-existing results. Thus, another
major contribution of this thesis is the explicit estimates for the zeros of Hecke L-functions.
See Section [[.3.2] for an overview and the beginnings of Chapters [] to [f] for details on these
new results.

Now, in comparison with the world record value for Linnik’s constant in (1.6)), the expo-
nents appearing in (1.30) may seem unusually large. This difference chiefly originates from
the log-free zero density estimate and its proof which uses Turdn power sums. This method is
numerically less efficient than those employed in the classical case of arithmetic progressions,
but it has seemingly been the only way to obtain the desired field uniformity. See Section
especially Section[5.1.] for a more detailed explanation of this numerical deficiency.

Next, we direct our attention to new upper bounds of 7¢(x, L/ F) established in joint work

with Jesse Thorner. Using the log-free zero density estimates in Chapter [5] we prove:

Theorem 1.3.3 (Thorner-Z.). Let L/F be a Galois extension of number fields with Galois
group G. Let C be any conjugacy class of G and let H be an abelian subgroup of GG such that
H N C is non-empty. If K is the subfield of L fixed by H and Q = Q(L/K) is given by (1.22),
then

C
mo(x, L/F) < %Li(x),
provided that
x> DH6QIS 4 DB2QIs0y,2ioni, (1.31)
Remarks.

e For the valid range of =, one can minimize the exponents of Dy and Q at the expense of
a less desirable dependence on n3* and vice versa. In particular, the same upper bound
for m¢(x, L/ F') holds when

> D}(G4Q123 _{_D?(BQS'?TL?{BNK + D%(QQ’I’LKMLOOO”K. (132)

See the remarks at the end of Section for details.

e See Theorem for an alternate formulation.
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Our result always gives an improvement over (1.29). Choosing H to be the cyclic group
generated by a fixed element of C, we have that D}J/ ] < DO < Di/ el H1) (see [We183,
Section 6]). Moreover, by the classical work of Minkowski and the conductor-discriminant
formula , we have that ng < log D < il H‘ log Dy,. Therefore, Theorem m holds
) H\) (log Dp)(loglog Dy). This improves especially when H is a large.
One usually obtalns further savings. For most fields /K, it seems reasonable to expect nx <
(log D)/ loglog D holds in light of Minkowski’s bound for ny. In this case, Theorem[1.3.3]
holds for log x > log(D Q) or rather log z >

when log T >

(D] HI log Dy.
Building on [May13|], we obtain an imphed constant that is essentially sharp (short of

precluding the existence of an exceptional zero) when  is sufficiently large in terms of L/F.

Theorem 1.3.4 (Thorner-Z.). Let L/F be a Galois extension of number fields with Galois
group G and let C' be any conjugacy class of G. Let H be an abelian subgroup of G such that
H N C is non-empty. If K is the subfield of L fixed by H and Q = Q(L/K) is given by (1.22)),
then ) . cl

(e, L) F) < {2 + O(nKx —166m<+327) }au(x)

for
T >> D695 522 + D?Q Q367n§?0n}(7 (133)

provided that D On3X is sufficiently large. If any of the following conditions also hold, then

the error term can be omitted:
e K has a tower of normal extensions over Q.

® (an)%ﬁ( <K DKQ1/2.

334n2
o T >mn, -

The source of our improvements in Theorems [1.3.3| and [1.3.4] over (1.29)) stem from fur-
ther exploiting the decomposition of the Dedekind zeta function of L as a product of Hecke

L-functions of K. This allows us to apply the powerful log-free zero density estimate and more
efficiently estimate certain sums over non-trivial zeros. The proofs are inspired by Maynard’s
[May13] L-function and “Linnik-type” approach to the Brun-Titchmarsh theorem. Conse-
quently, we carefully apply the same explicit estimates for Hecke L-functions used in the proof

of Theorem|1.3.2]and perform a similarly delicate analysis in the case of an exceptional zero.

1.3.2 Distribution of zeros of Hecke L-functions

We summarize the key results on the zeros of Hecke L-functions in this thesis which make
explicit principles (1.26)), (1.27)), and (1.28)). Additional results and a more detailed discussion
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for each principle can be found at the beginning of Chapters 4] to [6]

Theorem 1.3.5. Suppose L/K is an abelian extension and Q = Q(L/K) is given by (1.22).
If D Qni is sufficiently large then the product of Hecke L-functions [], L(s, x, K) of Hecke

characters x attached to L/ K has at most one zero, counting with multiplicity, in the rectangle

0.0875

A L — <1,
— log(DkQnir) d

where s = o + it € C. If this exceptional zero exists, then it is a simple real zero and its

associated character is real.

Corollary 1.3.6. Suppose DxnX is sufficiently large. The Dedekind zeta function (x(s) has

at most 1 zero, counting with multiplicity, in the rectangle

0.0875
oc>1

- t <1
- log(Dgn'X)’ [# <1,

where s = o + it. If this exceptional zero exists, it is real.

Theorem|I.3.5|and Corollary[[.3.6]are both improvements over [AK14]Kad12] when ny =
o(log Dy /loglog D), which is often a mild assumption as nx = O(log D) unconditionally.
See Section [4.1] for a stronger theorem (cf. Theorem {.1.1)) and additional details. Next, for a
Hecke character y of a number field K, define

N(o,T,x)=#{p=8+1iv: L(p,x,K)=0,17| < T, > o}.

We prove the first explicit version of a “log-free” zero density estimate for Hecke L-functions.

Theorem 1.3.7 (Thorner-Z.). Suppose L/K is an abelian extension and Q = Q(L/K) is
given by (1.22). ForT > 1and (0 <o <1,

ZN(O, T, x) < (DKQn?{KTnKH)lﬁQ(pg)_

X

where the sum is over Hecke characters x attached to L] K.

See Sections [5.1 and for a stronger theorem (cf. Theorem [5.1.1and Theorem

and further discussion. Finally, we prove an explicit version of Deuring—Heilbronn phenomenon

for Hecke L-functions.

Theorem 1.3.8 (Thorner—Z.). Suppose L/K is an abelian extension, Q = Q(L/K) is given
by (1.22), and Dy Qn3¥ is sufficiently large. Assume a real Hecke character i) of L/ K has a
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real zero % < 1 < 1. Then the product Hx L(s, x, K) over Hecke characters x attached to

L/K has no other zeros in the region

C3
o8 (T ogt D0 7))

>1-
7= 61 log(D g QnylTmx) ’

where c3 > 0 is an absolute effective sufficiently small constant.

See Section [6.1|for a stronger theorem (cf. Theorem which has no n}* dependence)
and further discussion. See also Section4.1|(cf. Theorem4.1.3) for other variants of Deuring—

Heilbronn which we refer to as “zero repulsion”.

1.4 Applications

Finally, we list the key applications of the results from Section[I.3]

1.4.1 Binary quadratic forms

Let us review the classical theory of primitive (integral) binary quadratic forms with negative
discriminant and their connections with the Chebotarev Density Theorem. The results from
Section allow us to deduce new consequences for such forms. We follow much of the
notation and conventions of [[Cox&9]|.

Let D > 1 be a positive integer. Let Q(X,Y) = aX? +bXY +cY? € Z[X, Y] be a binary
quadratic form with discriminant b?> —4ac = — D. The form is primitive if its coefficients a, b, c

are relatively prime. A matrix g = (2 ?) € G Ly(Z) naturally acts on such forms via

This gives an equivalence relation between primitive binary quadratic forms with discriminant
—D. Two forms are said to be equivalent if they differ by a transformation in GLy(Z). Two
forms are said to be properly equivalen if they differ by a transformation in SLy(7Z). By the
beautiful composition laws and genus theory of Gauss, the set of such forms, up to proper
equivalence, form a finite abelian group, say Cl(—D). Let h(—D) be the size of this group;
that is, h(—D) is the number of primitive binary quadratic forms with discriminant — D, up to

proper equivalence.

8Sometimes we may refer to this as SLo-equivalence.
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We say that an integer m is represented by Q(X,Y') if there exists (X,Y) € Z? such that
Q(X,Y) = m. Our central focus is on primes p represented by Q(X,Y"). For z > 1, define

o(x) =#{p < x:pt D, pisrepresented by Q(X,Y)}.

Amazingly, mo(z) is an instance of a Chebotarev prime counting function m¢(x, L/Q) for a

particular number field L.

Theorem. Let D > 1 be a positive integer. Let Q(X,Y) = aX? + bXY + cY? € Z[X, Y] be
a primitive binary quadratic form with discriminant —D. Let K = Q(v/—D) and write D =

f?Dy. There exists a number field L, called the ring class field of the order of discriminant
—D in K, such that:

(i) L is abelian over K and Galois over QQ.
(ii) Q = Q(L/K) < f where the maximum conductor Q is given by (1.22).
(iii) ¢ : Cl(—D) = Gal(L/K) is an isomorphism.
(iv) Let C be the conjugacy class in Gal(L/Q) containing the class of Q(X,Y) mapped
under . Then #C = 1if Q(X,Y) is properly equivalent to its opposite Q(X, —Y') and
#C' = 2 otherwise.

(v) A prime p{ D is represented by Q(X,Y") if and only lf[L]/T@} = C. In particular,

7TQ(.Z‘) = Wc(x,L/Q).

(vi) [L: Q] = 2h(—D) and D;, < D"=P)
(vii) h(—D) <. DY?* for e > 0.

Proof. This celebrated theorem is the culmination of many classical results; parts (i)—(v) can
be deduced from the arguments in [[Cox89, Theorem 9.12], for example. For (vi), note that
L : K] = h(—D) since h(—D) = #Cl(—D) = #Gal(L/K) = [L : K] by (iii). Moreover,
by the conductor-discriminant formula and (i1), we have that

log D, = Y "log Dy < [L: K]log(Dx Q) < h(—D)log D.

X
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For (vii), let hx denote the (broad) class number of K so, by classical estimates involving the
class number formula, we have that h < D}(/QH. Thus, by [Cox89, Theorem 7.24],

1
h(—D) < hKfH (1 + 2_)> < (DrfHYV* <, Dl/2+e
plf

We will use the above well-known theorem repeatedly without reference. Now, by the

Chebotarev Density Theorem, it follows that

role) ~ 55

Li(z) (1.34)

as x — 0o, where g = 1/2if () is properly equivalent to its opposite and dy = 1 otherwise.
Under the effective Chebotarev Density Theorem, holds for log z > (log D)? provided
the Dedekind zeta function (; (s) does not have a real exceptional zero; otherwise, the effective
range is even worse. On the Generalized Riemann Hypothesis (GRH), the asymptotic (1.34))
holds for x > D'*e,

There have been a few results in the literature on 7 () beyond (1.34). As a consequence
of Weiss’s result [Wei83, Theorem 5.2], it is known that

1 1

WQ(I) > m ' —h<—D)

Li(z) (1.35)
for logz > log D or equivalently for z > DM Thus, the least prime p represented by
Q(X,Y) satisfies p < DW; this result was originally proven by Fogels [Fog62b] and was
also observed by Kowalski and Michel [KMO02]. There has been no explicit constant in place
of the O(1), unlike the many works on Linnik’s theorem for the least prime in an arithmetic

progression.

Recently, Ditchen [Dit13] established very strong estimates for 7 () on the average distri-
bution of primes represented by binary quadratic forms. His results emulate the spectacular the-
orems of Bombieri—Vinogradov and Barban—-Davenport—Halberstam on primes in arithmetic
progressions. Roughly speaking, he obtains a GRH-quality estimate for 7 (x) on average over

3/20—¢_ Ditchen obtains a sim-

fundamental discriminants —D # 0 (mod 8) provided D < z
ilarly strong result [Ditl13, Theorem 1.2] by averaging over form classes [Q)] € Cl(—D) as
well. These yield average bounds for the least prime p represented by Q(X,Y"). Informally

speaking, he showed forms with fundamental discriminant —D # 0 (mod 8) represent some
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prime p satisfying

D?0/3+0 on average over discriminants D,
P <L (1.36)
D3+ on average over discriminants D and form classes.

We exhibit an unconditional explicit bound for the least such prime p represented by
Q(X,Y). This is an explicit variant of (1.33).

Corollary 1.4.1. Let D > 1 be an integer and let Q(X,Y) € Z[X,Y] be a primitive binary
quadratic form of discriminant —D. For D sufficiently large and x > D*,

1 1

In particular, there exists a prime p 1 D represented by Q(X,Y) satisfying

p< DY,
Proof. This is an immediate consequence of Theorem[7.4.1 U
Remarks.

e Theorem implies p < D%, so the above represents an improvement over this

original bound.

e With a more careful analysis in Theorem when ng = 2, the D~ in the lower bound
can likely be improved to D~'/2 which would agree with (T.33).

From the results of Chapter[9] we also obtain a substantially better bound (in an exceptional

case) for the least prime represented by Q(X,Y).

Corollary 1.4.2. Let D > 1 be an integer and let Q(X,Y) € Z[X,Y] be a primitive binary
quadratic form of discriminant — D. Let L be the ring class field of the order in K = Q(v/—D)
of discriminant —D. Let C' be the element of Gal(L/K) corresponding to Q(X,Y).

—

Suppose 1 € Gal(L/K) is a real Hecke character such that L(s,v, L/K) has a real zero

1
~ nlog(ni¥DkQ)’

B=1

where 1 > 20. Let 6 > 0 be arbitrary. If (C) = 1 and n > 1(0) then there exists a prime
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p1 D such that p is represented by Q(X,Y") and

D%+ if4) is quadratic,
DS if4) is principal.

All implied constants are effective.

Remarks.

e As per Remark 3 following Theorem[9.1.1] one can sharpen the bound in Corollary [I.4.2]
to
D™ if 9} is quadratic,

JARSE)
D* if 4 is principal,

but the implied constants are rendered ineffective.

e One may indirectly compare Corollary to (1.36). The quality of exponents are

fairly similar.

In the opposite direction, one may seek an upper bound for 7 (x) within an absolute con-
stant factor of its asymptotic size (1.34)). A result of Lagarias—Montgomery—Odlyzko [LMO79,
Theorem 1.5] implies that

o(r) <K Li(x)

h(—D)

Oc(D'27) A far as the author is aware, this was the only upper bound of its kind.

forz > e
While this range of = improves over the effective Chebotarev Density Theorem (1.34)), it re-

mains very far from the GRH range of = >, D'*<. We prove an unconditional improvement.

Corollary 1.4.3 (Thorner—Z.). Let D > 1 be an integer and let Q(X,Y) € Z[X,Y] be a

primitive binary quadratic form of discriminant —D. For x > D',

o(r) <K Li(x).

h(=D)

Proof. This is an immediate consequence of Theorem Note we have applied Theo-

rem [I.3.3| with the range (L.32). O

Inspired by the classical Brun-Titchmarsh theorem, we are also able to deduce a more

precise upper bound for mg(x).
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Corollary 1.4.4 (Thorner—Z.). Let D > 1 be an integer and let Q(X,Y) € Z[X,Y] be a
primitive binary quadratic form of discriminant —D. For x > D% and D sufficiently large,

mo(x) < 2h<iQD)Li(a:).

Proof. This is an immediate consequence of Theorem|1.3.4]. U

Up to the quality of exponent, the unconditional ranges in Corollaries [1.4.3| and |1.4.4| are
commensurate with the GRH range z >>. D' *¢. Furthermore, Corollary is within a factor

of 2 of the asymptotic (1.34)), which is best possible short of precluding a Siegel zero.

1.4.2 Elliptic curves and modular forms

We now consider applications to the study of elliptic curves and modular forms. Let £/Q be
an elliptic curve without complex multiplication (CM), and let Ng be the conductor of E. The
order and group structure of E(F,), the group of F,-rational points on £, frequently appears
when doing arithmetic over 2. We are interested in understanding the distribution of values
and divisibility properties of #E(F,,).

V. K. Murty [Mur94] and Li [Li12]] proved unconditional and GRH-conditional bounds on
the least prime that does not split completely in a number field. This yields bounds on the
least prime p { ¢Ng such that ¢ { #E(F,), where ¢ > 11 is prime. As an application of
Theorem we prove a complementary result on the least p { /N such that ¢ | #E(F,).
To state the result, we define w(Ng) = #{p : p | Ng} and rad(Ng) = [[x, P-

Theorem 1.4.5 (Thorner-Z.). Let E/Q be an non-CM elliptic curve of conductor Ng, and let
¢ > 11 be prime. There exists a prime p { {Ng, such that { | #E(F,) and

< 6(5000+1600w(NE))£2 rad(NE) 190042 .

Remark. The proof is easily adapted to allow for elliptic curves over other number fields; we

omit further discussion for brevity.

One of the first significant results in the study of the distribution of values of #FE(F,) is
due to Hasse, who proved that if p { Ng, then |p + 1 — #E(FF,)| < 2,/p. For a given prime /,
the distribution of the primes p such that #F(F,) = p + 1 (mod ) can also be studied using
the mod ¢ Galois representations associated to F.

Theorem 1.4.6 (Thorner-Z.). Let E/Q be a non-CM elliptic curve of squarefree conductor
Ng, and let ¢ > 11 be prime. There exists a prime p { {Ng such that #E(F,) = p+ 1 (mod ¢)
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and
p< (6900w(NE)+4100rad(NE)1800)€+1.

Theorem [1.4.6/ will follow from a more general result on congruences for the Fourier coef-

ficients of certain holomorphic cuspidal modular forms. Let
f(z) = Z as(n)e*m (1.37)
n=1

be a cusp form of integral weight k; > 2, level Ny > 1, and nebentypus x ;. Suppose further
that f is a normalized eigenform for the Hecke operators. We call such a cusp form f a
newform; for each newform f, the map n — as(n) is multiplicative. Suppose that as(n) € Z
for all n > 1. In this case, x is trivial when f does not have CM, and x is a nontrivial real
character when f does have CM. Furthermore, when ky = 2, f is the newform associated to
an isogeny class of elliptic curves £/Q. In this case, Ny = N, and for any prime p { N, we
have that ay(p) = p+ 1 — #E(F,).

Theorem 1.4.7 (Thorner-Z.). Let f(z) = >_°7  ay(n)e*™™ € Z[[e*™]] be a non-CM new-
form of even integral weight k; > 2, level Ny, and trivial nebentypus. Let { > 3 be a prime
such that holds and ged(ky — 1,0 — 1) = 1. For any progression a (mod {), there exists
a prime p { {Ny such that a¢(p) = a (mod ) and

< (ﬁQODW(Nf)-i-éLlOOrad(Nf)1800)£+1'

Remarks.

e Equation (I0.3) is a fairly mild condition regarding whether the modulo ¢ reduction of
a certain representation is surjective. This condition is satisfied by all but finitely many
choices of /. See Section for further details.

e The proofs of Theorems to are easily adapted to allow composite moduli £ as
well as elliptic curves and modular forms with CM. Moreover, the proofs can be easily
modified to study the mod ¢ distribution of the trace of Frobenius for elliptic curves over

number fields other than Q. We omit further discussion for brevity.

e Using Theorem 1.3.1] the least prime p such that a;(p) = a (mod ¢) satisfies the bound
p < 02000+ WN))rad (N;)*@ 1) for any choice of a. Thus, Theorem is an im-

provement for large /.
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e If ro4(n) is the number of representations of n as a sum of 24 squares, then 691794 (p) =
16(p'' +1)+331527(p), where Ramanujan’s function 7(n) is the n-th Fourier coefficient
of A(z), the unique non-CM newform of weight 12 and level 1. If ¢ # 691 is such that

(10.3) holds for f(z) = A(z), then by Theorem [1.4.7] there exists p # ¢ such that
691794(p) = 16(p** + 1) (mod £) and p << (A1000¢+1),

Next, we use Theorem [I.3.3]to improve the best unconditional upper bounds for two out-
standing conjectures of Lang and Trotter [LT76]. Let

f(z) =) ag(n)e*™

be a newform as in (I.37) with integral coefficients as(n). Further, suppose that f does not

have complex multiplication and hence the nebentypus of f is trivial. Fix a € 7Z, and let

mr(x,a) =#{p < x:as(p) = a}. (1.38)
Lang and Trotter conjectured that as x — oo, we have that

NG
m(z,a) ~cpq log x
1 if k> 4,

if kp =2,

where ¢y, > 0 is a certain constant depending on f and a alone.
In the special case where ky = 2, Elkies [EIk91] proved that 7;(z,0) <, 2%/4, In all

other cases, Serre proved in 1981 that

i
) SN (g gy

for any 0 < 1/4; following the ideas of M. R. Murty, V. K. Murty, and Saradha [MMS88]], Wan
[Wan90] improved the range of ¢ in 1990 to any 0 < 1. This was further sharpened by V. K.
Murty [Mur97]] in 1997; he provecﬂ that

z(loglog x)3
(log x)?

Using Theorem[1.3.3] we give a modest improvemen

T(z,a) <, (1.39)

9Theorem 5.1 of [Mur97] actually claims a stronger result, but a step in the proof seems not to be justified.
The best that the argument appears to give is what we have stated above; see the end of Section 9.1 in [TZ17a] for
further discussion.

10Note that we recover the claimed result [Mur97, Theorem 5.1].
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Theorem 1.4.8 (Thorner—Z2.). Let f be a newform of even integral weight ks > 2, level Ny,
and trivial nebentypus with integral coefficients. If m¢(x, a) is given by (L.38)), then

z(log log x)?
Ti(z,a) Ly, W

We also consider a different (but closely related) conjecture of Lang and Trotter regarding
the Frobenius fields of an elliptic curve. Let £//Q be an elliptic curve of conductor Ny without
complex multiplication. For a prime p 1 N, let I, be the Frobenius endomorphism of E/F,,.
Defining ap(p) = p+ 1 — #E(F,), we have that IT> — ag(p)II, + p = 0. By Hasse, we know
that [ag(p)| < 24/p, so Q(I1,) in End(E/F,) ®z Q is an imaginary quadratic field. For a fixed

imaginary quadratic field £ with absolute discriminant Dy, let

me(zr, k) =#{p <z :Q(,) = k}. (1.40)

Lang and Trotter conjectured that as z — oo,

where cpj > 0 is a certain constant depending on £ and £ alone. Using the square sieve,

Cojocaru, Fouvry, and M. R. Murty [CEMOS] proved that
z(log log x)'3/12

WE(xyk) <<NE,I€ <10g$)25/24

Using V. K. Murty’s version of the Chebotarev Density Theorem and Serre’s method of mixed

representations (see [Ser81]]), Zywina [Zyw15]] improved this bound to

z(log log r)?
(log z)?

Using Theorem[I.3.3] we establish a modest improvement to (L.4T).

e, k) <ngk (1.41)

Theorem 1.4.9 (Thorner-Z.). Let E/Q be an elliptic curve of conductor Ng and let k be a
fixed imaginary quadratic number field. If mg(x, k) is defined by (1.40) then

xloglogx

e, k) <ngk W.
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1.5 Conventions and organization

Conventions
We will employ Vinogradov’s notation and big-O notation. That is,
e f < gor f=0O(g)implies there is an absolute constant C' > 0 such that |f| < C' - g.
o fx<gifandonly f < gand g < f.
e f =o0(yg) if and only if § — 0 as some parameter, say x, goes to infinity.
e f ~ gifandonly if 5 — 1 as some parameter, say z, goes to infinity.

We also adhere to the convention that all implied constants in all asymptotic inequalities (e.g.
f < gor f = 0(g)) are absolute with respect to all parameters, unless otherwise specified. If
an implied constant depends on a parameter, such as ¢, then we use <, and O, to denote that the
implied constant depends at most on €. All implied constants will be effectively computable,
unless otherwise specified.

The sets Z, Q, R, and C will respectively denote the integers, rational numbers, real num-

bers, and complex numbers.

Organization

For the reader who wishes to proceed quickly to the proofs of the main theorems:
e Theorem [I.3.1]is proven in Section
e Theorem [I.3.2]is proven in Section
e Theorem|1.3.3|is proven in Section [8.2.1

e Theorem [I.3.4]is proven in Sections[8.2.2]and [8.2.3]

e Theorem[I.3.5]is a consequence of Theoremd.1.1] proven in Section 4.4

e Theorem[1.3.7]is a consequence of Theorem [5.1.1] proven in Chapter 3
e Theorem is a consequence of Theorem proven in Chapter 6]
e Corollary [I.4.2]is a consequence of Theorem[9.1.1] proven in Chapter 9]

e Theorems[I.4.5]to are proven in Section[8.2.3]

e Theorems|1.4.8|and|[1.4.9|are proven in Section|10.3
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We also briefly describe the organization and contents of the chapters.

Chapter 2] consists of background material and notation for Hecke L-functions, elemen-
tary estimates, Artin L-functions, and Deuring’s reduction. All subsequent chapters rely
on the information here. If we refer to a chapter as “self—contained” then we are not

precluding the use of results from Chapter 2]

Chapter [3] specifies some key notation and identifies certain zeros of Hecke L-functions.
Further, we establish several different “explicit inequalities” related to Hecke L-functions
by involving classical arguments, higher derivatives, and smooth weights. The results

therein form the technical crux of all subsequent proofs and applications in Chapter |

Chapter []is a continuation of Chapter 3] establishing explicit zero-free regions and zero
repulsion of Hecke L-functions. Chapters [3] and [4] are chiefly inspired by the work of
Heath-Brown [HB92]].

Chapter [5| contains the proof of log-free zero density estimates. It is self-contained aside
from a crucial application of Lemma The overall strategy follows Weiss [Wei83]]

but requires a more careful analysis.

Chapter [0] is on the Deuring—Heilbronn phenomenon for Hecke L-functions and the
Dedekind zeta function. It is self-contained and uses power sums as the main tool. The

arguments are motivated by the proof of [LMO79, Theoreom 5.1].

Chapter [7] contains proofs of two of the main results of this thesis (Theorems [I.3.1]
and [1.3.2)). It amasses the results of Chapters 4 to 6 along with ideas of Heath-Brown
[HB92] to address the least prime ideal problem in two different ways.

Chapter [§] contains proofs of two of the main results of this thesis (Theorems [1.3.3]
and [1.3.4). As in Chapter [/, we combine the results of Chapters 4 to 6 to give upper
bounds for the number of prime ideals with a prescribed Artin symbol. The approach

here is influenced by Maynard [May13] as well as the arguments of Chapter [7]

Chapter [9] is a self-contained piece on an exceptional case of the “least prime ideal”
problem. The methods are entirely different, employing sieve techniques inspired by
Heath-Brown [HB90] and Friedlander—Iwaniec [F110, Chapter 24].

Chapter[I0]contains the applications of our main theorems to elliptic curves and modular
forms, including the Lang—Trotter conjectures. The arguments therein borrow from a
variety of sources including works of Serre [Ser81l], Murty—Murty—Saradha [MMSS8]],
V.K. Murty [Mur97], and Zywina [Zyw15].
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1.6 Joint work and published material

Joint work

Parts of this thesis were produced in collaboration with Jesse Thorner [TZ17b, TZ17a]. We
have made these joint contributions clear in the statement of the theorems in Chapter [I} For
the remainder of this thesis, we will no longer continue making these distinctions. Instead, we

shall specify here which parts of this thesis are a product of joint work:

e parts of Chapter [2} most of the contents here is elementary or background material.

Chapter 3]

parts of Chapter [} namely, Theorem [6.1.1]and Sections[6.2.2]and [6.3.1]

parts of Chapter [/} namely, Section|/.3|and parts of Section

Chapter §]

e Chapter

Published material

Parts of this thesis are based on published or accepted material:

e [Zam16al] (doi:10.1016/j.jnt.2015.10.003) is related to Chapters [3|and A

[Zam16b]] (do1:10.1142/S1793042116501335) is related to Chapter@

[Zam17] (doi:10.7169/facm/1651) is related to Chapters [6] and

[TZ170] (accepted) is related to Chapters [5]to [7]and

[TZ17a] (doi:10.1093/imrn/rnx031) is related to Chapters [§] and [I0]


http://doi.org/10.1016/j.jnt.2015.10.003
http://dx.doi.org/10.1142/S1793042116501335
http://doi.org/10.7169/facm/1651
https://doi.org/10.1093/imrn/rnx031

Chapter 2

Background

“Sometimes I'll start a sentence and I don’t even know where it’s going. I just
hope 1 find it along the way.”
— Michael Scott, The Office.

In this chapter, we establish notation and recall basic facts regarding Hecke characters, L-
functions, arithmetic sums, prime ideal counting functions, Artin L-functions, and Deuring’s
reduction. The necessary analytic and algebraic number theory material can be found in [[K04,

Neu99|]. The contents here will be used throughout this thesis.

2.1 Hecke characters and congruence class groups

The notation here is motivated by the discussion in [Wei183, Section 1]. Let K be a number
field of degree nyx = [K : Q] with ring of integers Ok. Let Dy denote the absolute value of
the discriminant of K over Q and N = Ng denote the absolute field norm of K over Q. For an
integral ideal q of K, let I(q) be the group of fractional ideals of K relatively prime to ¢ and let
P, be the group of principal ideals («) of K such that « is totally positive and o = 1 (mod q).
The narrow ray class group of K modulo q is given by Cl(q) = I(q)/P,. A subgroup H, or
H (mod q), of Cl(q) will be referred to as a congruence class group of K modulo g. Abusing
notation, we will also regard H as a subgroup of /(q) containing P,.

Characters of Cl(q) are Hecke characters and denoted x (mod q) or simply x when the
modulus is understood. The notation x (mod H) refers to a character x (mod q) satisfying
X(H) = 1. Properly speaking, the domain of y is the quotient group Cl(q) but, for notational
convenience, we pullback the domain of x to I(q) and then extend it to all of I(Of) by zero.

In other words, x(n) is a multiplicative function on all integral ideals n C O and x(n) = 0 for

(n,q) # 1.

29
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The trivial character y, (mod q) is also referred to as the principal character and satisfies

Xo(n) = 1forall (n,q) # 1. We distinguish this character with an additional piece of notation:

Eo(x) = 1 if x is principal, 2.1
0 otherwise.

For m dividing n, the natural inclusion /(n) < I(m) induces a surjective homomorphism
I(n)/P, — I(m)/P, through which a character x (mod m) induces a character Y (modn).
Similarly, a congruence class group H (mod m) induces a congruence class group H (modn).
A Hecke character x (modm) (resp. congruence class group H) is primitive if it cannot be
induced, except by itself.

For a Hecke character y (mod q), let x* (mod f,) be the unique primitive character induc-
ing x. The conductor of x is the integral ideal f,. Similarly, for a congruence class group
H (mod q), let H* (mod fz) be the unique primitive congruence class group inducing H. The

conductor of [ is the integral ideal §z. It is well known that

frr = lem{f, : x (mod H)}.

We require analytic measures of congruence class groups H and Hecke characters y. For a

Hecke character x (mod q), denote
D, = DgNj,,
and for a congruence class group H (mod q), denote
hu=11(): ], Qu = max{Nf, : x (mod H)}, 2.2)

which we refer to as the class number of A and the maximum analytic conductor of H re-
spectively. Observe that the quantity D, depends only on the primitive character x* and the
quantities hy and () depend only on the primitive congruence class group H*. For simplicity,

we will often write () = ()i since we will usually retain the same H throughout our arguments.

2.2 Hecke L-functions

The Hecke L-function associated to a Hecke character y (mod q) is given by

Lis,x) = Lis.x. K) = > x(m)(Nw) = = T (1 - (ﬁg)l foro > 1,
nCO p
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where s = o + it € C. Throughout this thesis, we will retain the convention that the complex
variable s may be written as s = o + it for 0,¢ € R. Moreover, unless otherwise specified,
we shall henceforth refer to Hecke characters as characters. We will also usually suppress the
dependence of L(s, x, K') on the number field K" when it is understood.

If x is the primitive principal character then its Hecke L-function is the Dedekind zeta

function of KX, which is defined as

Cels) =Y (N =T (1 - )_1 foro > 1. (2.3)
p

nCoO

In this section, we record classical facts about L(s, ).

Functional Equation

Let x (mod f, ) be a primitive character. Recall that the gamma factor of  is given by

Y (8) = [W‘S/QF<§>]G(X) . [7?_%1“<8 _g 1)}1)()0, (2.4)

where I'(s) is the Gamma function and a(x), b(x) are certain non-negative integers satisfying

a(x) +b(x) = [K : Q] = nk. (2.5)

The completed L-function of L(s, x) is defined to be

&(s,x) :==[s(1 — s)]EO(X)D;ﬂvX(S)L(s, X)- (2.6)

With an appropriate choice of a() and b(), it is well-known that £(s, ) is an entire function

satisfying the functional equation

5(87 X) = w(X) ’ 5(1 - S7Y)7 (2.7)

where w(y) € C is the global root number having absolute value 1. The zeros of (s, x) are
the non-trivial zeros p of L(s, x) and are known to satisfy 0 < Re{p} < 1. The trivial zeros w
of L(s, x) are given by

a(x) — Eo(x) ifw=0,
253 L(s,x) = 4 b(x) ifw=-1,-3,-5,..., (2.8)
a(x) ifw=-2,-4,—6,...,
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and arise as poles of the gamma factor of y. Since £(s, x) is entire of order 1, it admits a

Hadamard product factorization given by

€0, = 40400 T (1= 2}t 9
P

If x is trivial then L(s, x) is the Dedekind zeta function of K. Of course, the above infor-
mation still holds but we shall sometimes use separate notation to distinguish this case. The

completed Dedekind zeta function {x(s) is given by
Ex(s) = s(1 — ) Dy (5)Cxe (5), (2.10)

where vk is the gamma factor of K defined by

Vi (s) = [W‘gF(g)rm- [w‘%F(Sgl)r. (2.11)

Here r = r1(K) and 2ry = 2ry(K) are respectively the number of real and complex embed-

dings of K. It is well-known that £k (s) is entire and satisfies the functional equation

Ex(s) = Ex (1 — ). (2.12)

We refer to its zeros as the non-trivial zeros p of (k(s), which are known to lie in the strip
0 < Re{s} < 1. The trivial zeros w of (x(s) occur at certain non-positive integers arising

from poles of the gamma factor of K’; namely,

ri+ro—1 ifw=0,
ord Cr(s) =< ry ifw=-1,-3,-5,..., (2.13)
r1 47Ty ifw=-2,—-4,—6,....

See [LO77, Section 5] for further details on these facts.

Explicit Formula

Using the Hadamard product for £(s, x), one may derive an explicit formula for the logarithmic

derivative of L(s, x).

Lemma 2.2.1. Let x be a primitive Hecke character. Then

I Eo(x) Eo(x) 1 V. 1 1
= = Zlog D X(s) = B(v) — Z
g0 =TT Tl Dot () — Bl Ep (3_p+p),
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identically for all s € C. The constant B(x) € C depends only on x and the conditionally

convergent sum is over all zeros p of £(s, x). Moreover,

Re(BO)} = —5 3 (70— + ) = —ZRe% <o,

L=p p

Proof. See [LO77, Section 5] for a proof. Note “ ” denotes “ lim Z 7, O

T—o00
p Imp|<T

2.3 Elementary L-function estimates

In this section, we state elementary estimates of L-functions beginning with well-known bounds

for the Dedekind zeta function and the convexity bound for Hecke L-functions.

Lemma 2.3.1. foro > 1,

o—1
log k(o) < ng log 01 ,
o _
CK CI nk
o) < —nx (o) <

where ((s) = (o(s) is the classical Riemann zeta function.

Proof. For the first inequality, observe that

(o) =IO -Mp) )y =TT [T - Np) ) <[] =p7) " = (o)™

p P (p)Cp p

and note ((0) < (ﬁ) from [MVOQ7, Corollary 1.14]. The second inequality follows easily
from the first. The third inequality follows by an argument similar to that of the first and
additionally noting —%(a) < -1 by [Lou92, Lemma (a)] for example. O

Lemma 2.3.2 (Rademacher). Let ¢ € (0, ) and X be a primitive Hecke character. Then

[L(s,x) < |-

s+ 11Eo(x)
" (1+ sl

(1—0+5)/2
— )

Coll+ 5)%((25%

uniformly in the region
—-0<o<140.
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Proof. This is a version of [Rad60, Theorem 5] which has been simplified for our purposes.
In his notation, the constants vy, a,, G,+.,, v, are all zero for characters of Cl(q). Recall that

Co(+) is the classical Riemann zeta function. O

When applying the above convexity result, we may sometimes require bounds for the
Gamma function I'(s) = fooo e~'t*~1dt in a vertical strip; for instance, from [MV07, Appendix
C], we have that

I'(s) <5 e M (2.14)

uniformly in the region —1 4+ 6 < Re{s} < 2 with |s| > . A more accurate bound for I'(s)
in such a region has exponent —% + ¢ instead of —1. However, this detail does not affect our
calculations so we choose this weaker bound for simplicity.

Next, we record some bounds related to 7, (s) defined in (2.4).
Lemma 2.3.3. Let s = 0 + it witho > 1 andt € R. Then

(i) Re{(s)} < log|s| + 0"

/

(i) Re{X(s)} < " (log(|s| + 1) + 0~ — log )
Vx 2

In particular, for 1 < 0 < 6.2 and |t| < 1,
,Y/
Re{2*(s)} <0

Tx

Proof. The first estimate follows from [OS97, Lemma 4]. The second estimate is a straightfor-
ward consequence of the first combined with the definition of -, (s) in (2.4). The third estimate
follows from [[AK14, Lemma 3]. O]

Lemma 2.3.4. Let x be a primitive Hecke character. If Re{s} > 1/8, then

/
nY—X(s) < nk log(2 + |s]).
Ix

Proof. See [LO77, Lemma 5.3]. O
Lemma 2.3.5. Let k > 1 and x be a Hecke character. Then

1 dF

uniformly for s satisfying Re{s} > 1.
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Proof. Denote ¢)(¥)(-) = dik%( -). From (2.4)), we have that

d
d* v _alx) sy, 000 st
@ = g () T () 19

Since a(x) + b(x) = nx, it suffices to bound ¥ (z) for Re{z} > 1/2. From the well-known

logarithmic derivative of the Gamma function (see [MVO7, (C.10)] for example), observe

(k) > 1 1
=l S < St = e
n= n odd

for Re{z} > 1/2. This yields the result when combined with (2.15) as (p(k + 1) < (o(2) =
7 /6. O

Lemma 2.3.6. Let x be a Hecke character (not necessarily primitive) of a number field K and

k > 1 be a positive integer. Then

ko7 > 0 )t : :
(_1)19-1-1%%(3’)() = Z Z(log Np)x(p) (l(igj)g - (S5£X1)>k:+l N Z #
p m=1 ’

for Re{s} > 1, where the first sum is over prime ideals p of K and the second sum is over all

zeros w of L(s, x), including trivial ones, counted with multiplicity.

Proof. By standard arguments, this follows from the Hadamard product (2.9)) of £(s, x) and
the Euler product of L(s, x). See [LMO79, Equations (5.2) and (5.3)], for example. O

We end this subsection with a classical explicit bound on the number of zeros of L(s, x) in

a circle. See [LMO79, Lemma 2.2] for a non-explicit version.

Lemma 2.3.7. Let x be a Hecke character. Let s = o + 1t witho > 1 andt € R. Forr > 0,

denote
Ny(ris) :=#{p=F+iv:0< B <1,L(p,x) =0,[s — p| <r}. (2.16)

If0 <r <1, then
Ny (r;s) < {4log D + 2log Nf, + 2nk log(|t| +3) + 4 +4Eo(x)} - 7+ 4 + 4Eo(x)-

Proof. Without loss, we may assume x is primitive. Observe N, (r;s) < N, (r;1 4 it) <
N, (2r; 1+ r +it) so it suffices to bound the latter quantity. Now, if so = 1 + r + it, notice

Ny(2r;so) <4r Y Re{ ! }§4rZRe{ ! }
’

So — So —
|so—p|<2r 0P 0P




CHAPTER 2. BACKGROUND 36

k
CK

Applying Lemmas [2.2.1| and [2.3.3| twice and noting Re {£ (s, x)} < —2(1 + r) via their

respective Euler products, the above is

/

§4T<Re{€(80,x)}+;1ogDX+Re{zX(so)}+Eo(x)Re{1+ 1 })

X S0 80—1

< {4log D + 2log Nf, + 2ng log(|t| +3) + 4 + 4Eo(x)} - 7+ 4 + 4Eo(x)

as D, = DgNf¥,. For the details on estimating —%(1 + 1), see Lemma2.4.3 O]

K
K

In Chapter[3] we will improve the bound in Lemma[2.3.7]by exhibiting an explicit inequality
involving the logarithmic derivative of L(s, x).

2.4 Arithmetic sums

Here we estimate various basic arithmetic sums over integral and prime ideals of K and conse-
quently we must define some additional quantities related to the Dedekind zeta function (x (s),
given by (2.3). It is well-known that (x (s) has a simple pole at s = 1. Thus, we may define

11 RK
KK = fS{:els (k(s) and g = "fxl ll_fg (CK(S) T s 1)7 2.17)

so the Laurent expansion of (x(s) at s = 1 is given by

Ck(s) = sﬁ—Kl + kv + Ok(|s — 1).

We refer to v as the Euler-Kronecker constant of &', which was introduced by Thara [lha06].

For more details on 7, see also [lhal0, Murl 1] for example.

Lemma 2.4.1. For x > 0 and € > 0,

1 Nn\ 7k 1 nk 1/44€__1/2
‘ Z —(1—?) _KK(Ing_ZE>_K/K'YK‘<<e (n}X D) x 12,

Nn<z Jj=1
Proof. Without loss, ¢ < 1/2. The quantity we wish to bound equals

1. 1 -
1 —5+100 s | | —5+1i00 T
ENGC RS AL S PR By N PR (s)

T K /. 1 -\ - — —xsds.
7i )1 i STES s+ )" " 2mi Jos e Dlnx +1+9)

Using Lemma 2.3.2] Stirling’s formula, and (g(1 + €)"* < ¢%<("x) the result follows. [
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Corollary 2.4.2. Let € > 0 be arbitrary. If v > 3(n}¥ Dy )"/* then

> > (1= (14207 +Oc((loga) ™)} - i og

Nn<z

Proof. Tt suffices to assume that kx > 1/log x. From Lemma [2.4.1}, it follows that
1 1 K1 €
— Z — zlogx—zf—kw(%—Oe (:U_Slogx>,
7¢ Nn — ]
Nn<z j=1
by our assumption on z. By [[lha06, Proposition 3],

Yo + log 27

1
2 K

1
VK > —ilogDK +

where 7q = 0.5772.. . is Euler’s constant. Since ), ., j~' <logng +1,

1 Z 1 1 log 2
KK Nn 2 2
Nn<z
> (log 2){1 — 15 + Oc((logz) ™)},
by our assumption on x. [

Taking the logarithmic derivative of (x (s) yields in the usual way

/
=% Ax(n) (2.18)
for Re{s} > 1, where Ak( -) is the von Mangoldt A-function of the field K defined by

log Np if nis a power of a prime ideal p,
AK(n){ 8w P P P 2.19)

0 otherwise.
Using this identity, we prove an elementary lemma.

Lemma 2.4.3. Fory > 3and 0 <r < 1,

. C}{ AK(YI) 1 1
(i) CK(1+T) En NnlFr _210gDK+T+1

.. Arg(n
(ii) Z Il\(If1) < elog(eD}(/zy).
Nn<y

Proof. Part (i) follows from Lemmas [2.2.1| and [2.3.3] (2.18)), and the fact that Re{(1 + r —

p)~1} > 0. Part (ii) follows from (i) by taking r = lo;y' -
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We will need a lemma to transfer from imprimitive characters to primitive ones.

Lemma 2.4.4. Let m be an integral ideal. Then, for e > 0,

log N 1
Z Olg\IPP v ng logNm < 2<—K—|—elogNm>
€

plm

where the sum is over prime ideals p dividing m.

Proof. The second inequality follows from (x + y)/2 > \/xy for x,y > 0. It suffices to prove
the first estimate. Write m = [[,_, p{* in its unique ideal factorization where p; are distinct
prime ideals and e¢; > 1. Denote ¢; = Np; and a,, = #{i : ¢ = m}. Observe that a,, = 0
unless m is a power of a rational prime p. Since the principal ideal (p) factors into at most ng

prime ideals in K, it follows a,, < ng for m > 1. Thus, by Cauchy-Schwarz,

Zloipr _ Zbﬂ < (Zloquiym(zlog%)
i=1 ) ¢ i=1

plm 4i

1/2

- (o) (s

m>1 =1

1 1/2
< (e (Zellogq@)
>1

m=

_ (Z logm>1/2\/m'

m2
m>1

1/2

1/2

Since Y, ., 252" < 1, the result follows. O
We record a lemma involving some simple sums over prime ideals.

Lemma 2.4.5. Let a € (0,1],0 > 0 be arbitrary and 0 be an integral ideal of K. Then

1
(i) ) s <o
— (Np)'+0

(ii) Z - < n%Q(log No)!-e/2
plo
(iii) Z —2/atly o + §log No

plo
Proof. For (i), observe that
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where the latter sum is over rational primes p. For (i1), using Holder’s inequality, we see that

Y (X)) (Z)

plo plo plo

Bounding the first sum by log N0 and the second sum by Lemma yields the desired result.

Statement (iii) follows easily from (ii) by considering whether nx < §%/%log N or not. [
Next, we desire a bound for hy in terms of ny, D, and Q) = Qp.
Lemma 2.4.6. Let H be a congruence class group of K. Fore > 0, hy < eOf(”K)D}(/%EQHE.

Proof. Observe, by the definitions of () and fz in Section that for a Hecke character
X (mod H) we have f, | f and Nf, < Q. Hence,

hp= Y 1< Y 3 1= #().

x (mod H) Nf<Q x (modf) Ni<Q
[fr flfu

Recall the classical bound #CI(f) < 2" hNf where h is the class number of K (in the broad
sense) from [Mill 3], Theorem 1.7], for example. Bounding the class number using Minkowski’s
bound (see [Wei83, Lemma 1.12] for example), we deduce that

1
hy < oOc(ni) pl/2teNs < eOf(”K)D1/2+EQ1+6 '
R ©E KT L iy
T H
flfe
For the remaining sum, notice ZWH(Nf)—f < Hp\fH<1 _ Np—e)—l < eOWlin))  where w(far)
is the number of prime ideals p dividing fz. From [Wei83, Lemma 1.13], we have w(fy) <

Oc(nk) + elog(Dk@Q) whence the desired estimate follows after rescaling e. O

[Wei83, Lemma 1.16] is comparable with Lemma but Q¢ is replaced by Nfg. The
relative size of these quantities is not immediately clear, so we end this section with a compar-

ison between () and Nf.
Lemma 2.4.7. Let H be a congruence class group of K. Then Q < Nfy < Q2.

Remark. The lower bound is achieved when H = F,,. We did not investigate the tightness of

the upper bound as this estimate will be sufficient our purposes.

Proof. The arguments here are motivated by [Wei83, Lemma 1.13]. Without loss, we may
assume H is primitive. Since ) = Qy = max{Nf, : x(mod H)} and fy = lem{f, :
X (mod H)}, the lower bound is immediate. For the upper bound, consider any m | fz. Let H,
denote the image of H under the map I (f¢)/F;,, — I(m)/P,. Thisinduces amap I (fz)/H —
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I(m)/H,,, which, since H is primitive, must have non-trivial kernel. Hence, characters of
I(m)/H,, induce characters of I(fy)/H.

Now, for p | fz, choose e = e, > 1 maximum satisfying p¢ | fz. Define m,, := fyp~' and
consider the induced map I(fy)/H — I(m,)/Hy, with kernel V;,. Since H is primitive, V,,
must be non-trivial and hence #1;, > 2. Observe that the characters x of /(fz)/H such that

h

p° 1 f, are exactly those which are trivial on V}, and hence are e in number. For a given p,

this yields the following identity:

Multiplying both sides by log(Np) and summing over p | fz, we have that

1 }111 e e
§hHlongH = 7210g(Np P) < Z Z log Np® < Z log Ny, < hglogQ.

plia plfr x (mod H) X (mod H)
PP IIfx
Comparing both sides, we deduce Nfy < Q?, as desired. 0

2.5 Artin L-functions and Deuring’s reduction

This section can be safely ignored until Chapters [7|and (8| Let L/F be a Galois extension of
number fields with Galois group G := Gal(L/F') and let C be a conjugacy class of G. This

section consists of preliminary material required for counting prime ideals p of F' with Artin
L/F
R
field F', we will use the following notation throughout this section:

symbol [=.=] = C'. A similar discussion can be found in [LMO79, Section 3]. For the number

e O is the ring of integers of F'.

e np = [F : Q] is the degree of F'/Q.

Dp = |disc(F/Q)| is the absolute value of the absolute discriminant of F'.

N = N(g is the absolute field norm of F.

(r(s) is the Dedekind zeta function of F'.

e pis a prime ideal of F'.

n is an integral ideal of F'.
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e Ap(n) is the von Mangoldt A-function for /' given by

Ap(n) log Ngp if n is a power of a prime ideal p,
rn) =
0 otherwise.

Artin L-functions

Let us briefly recall the definition of an Artin L-function from [MMO97, Chapter 2, Section 2].
For each prime ideal p of /', and a prime ideal B} of L lying above p, define the decomposition
group Dy to be Gal(Ly/F,), where Ly (resp. Fp) is the completion of L (resp. F) at 3
(resp. p). Let ky (resp. k,) denote the residue field of Ly (resp. F),). We have a map Dy to
Gal(ky/ky) (the Galois group of the residue field extension), which is surjective by Hensel’s

lemma. The kernel of this map is the inertia group Iyz. Thus, we have the exact sequence
1 = Iy = Dy — Gal(kg/ky) — 1

The group Gal(ky/ky) is cyclic with generator = — zP, where Np is the cardinality of k.
We can choose an element oy € Dy whose image in Gal(ky/k,) is this generator. We call
oy a Frobenius element at *3; it is well-defined modulo Iyz. We have that Iy is trivial for
all unramified p, and for these p, oo is well-defined. For p unramified, we denote by o, the
conjugacy class of Frobenius elements at primes 3 above p; in this case, note that o, = [L/TF]

Let p : G — GL,(C) be a representation of G, and let 1) denote its character. Let V' be the
underlying complex vector space on which p acts, and let VV/* be the subspace of V' on which

Iy acts trivially. We now define their local Euler factors to be

det(I,, — p(op)Np~*)~! if p is unramified in L,

LP(S7¢7L/F) = . . . .
det(I, — p(og) |y1p Np~*)~! if p is ramified in L,

where [, is the n X n identity matrix. This is well-defined for all p, which allows us to define
the Artin L-function

L(s,4, L) F) = HL ), L/F)

for Re{s} > 1. It is well-known to be analytic and non-zero for Re{s} > 1.

Some class field theory

Let A be any abelian subgroup of G = Gal(L/F) and let K = L“ be the subfield of L

fixed by A. We describe some properties of the associated 1-dimensional Artin L-functions
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L(s, x, L/K). First, from [Hei67] for example, note that

=[] (s, x, L/K), (2.20)

xeA

where the product is over the Artin characters y of A = Gal(L/K). From the above, one can

deduce the conductor-discriminant formula, which states

log Dy, = Y log Dy. (2.21)
X

We wish to elaborate on the relationship between the L-functions in (2.20) and the Hecke
L-functions defined in Section2.2]

By the fundamental theorem of class field theory, there is an integral ideal f = 7,k attached
to the extension L/ K and a surjective homomorphism ¢ : I(f) — Gal(L/K), where () is the
group of fractional ideals of K relatively prime to §. Hence, /(f)/H is isomorphic to Gal(L/K)
where H = ker ¢. From this isomorphism, we obtain a natural correspondence between the 1-
dimensional Artin characters y of Gal(L/K’) and the Hecke characters x (mod H) of I(f)/H.

In particular, they satisfy
X' (B) = x ( [L/TK] ) (2.22)

for all prime ideals B C Ok unramified in L. We emphasize that x* is the primitive Hecke

character inducing y. Furthermore, under this correspondence, we have that

] LG x.L/K) = H L(s, X", K). (2.23)

xEA X (mod H)

In particular, the 1-dimensional Artin L-function L(s, x, L/K) is equal to a certain primi-
tive Hecke L-function L(s,x*, K). While L(s, x, K) is not necessarily primitive for any
given Hecke character y (mod H), its L-function L(s, X, K) equals its primitive counterpart
L(s,x*, K) up to a finite number of local Euler factors. Thus, the two L-functions have the
same non-trivial zeros, counted with multiplicity. Hence, each 1-dimensional Artin L-function
L(s, x, L/ K) has the same non-trivial zeros, counted with multiplicity, as a corresponding (not
necessarily primitive) Hecke L-function L(s, x, K) for some y (mod H ). By (2.20) and (2.23)),
this implies that

H L(s, Y\, K (2.24)

has the same non-trivial zeros, counted with multiplicity, as H L(s,x,L/K).

xeA
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Prime ideal counting function

For a conjugacy class C' C G, let g € C' be arbitrary. Define

C
-1 STl 7 o0,/ @.25)

where ¢ runs over irreducible characters of G and L(s,v, L/F') is the associated Artin L-
function. Note the definition of Z(s) does not depend on the choice of g¢ since ¥ is the trace
of the representation p and g is conjugate to any other choice. By orthogonality relations for

characters (see [Hei167, Section 3] for example),

= > Ap(n)O¢(n)(Nn)~*, (2.26)

nQOF

where ©¢(n) is supported on integral ideals n which are powers of a prime ideal; in particular,

for prime ideals p unramified in L and m > 1,

- 1if[(2Emc e,
Oc(p™) = (2.27)
0 otherwise,

and 0 < O¢(p™) < 1if p ramifies in L. This discussion and definition of O¢( ) is also
contained in [LMO79, Section 3]. Thus, by (I.15)), we have that

mo(x, L/F) = Y Oclp) (2.28)

Np<z
p unramified in L
for z > 1. In Chapters [/| and |8} we will be concerned with a prime ideal counting function

which is naturally related to 7 (z, L/F') and is given by

c(x, L/F) =) Ap(n)Oc(n). (2.29)

Nn<z

Observe, by (2.26) and Mellin inversion, that

2+i00 8

Yo(z, L/F) = / Zo(s)—ds. (2.30)
2—ioo S

This property motivates the use of Z¢(s) in our analytic arguments. Next, we record a basic

lemma relating 7¢(z, L/F) with ¢c(x, L/F) for use in Chapter [8] In that scenario, we will

only be interested in an upper bound for 7o (x, L/F'), so we give a simpler statement that
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suffices for our purposes.

Lemma 2.5.1. If x > xq > 3, then

Wc(x, L/F)

vole, L/F) /%M/F dt + O(npxy).

log tlog®t

Proof. For simplicity, write ¢)¢(t) in place of ¢ (¢, L/F'). For t > 1, define

=Y 0c),  be(t):= Oc(p)logNp,

Np<t Np<t

where the sums are over all prime ideals p of F' and O¢(p) is given by (2.27). First, observe
that, by (2.27) and (2.28)), the only difference between 7 (x) and 7o (z, L/ F') is the contribu-
tion from the prime ideals p of F' ramified in L. Since 0 < O¢(p) < 1 for such prime ideals,

we observe that
mo(z, L/ F) < 7c(z), (2.31)

so it suffices to estimate 7 (). Using partial summation, we see that if 3 < xy < z, then

oy belx) Oo(t)
7o(x) = Togz + /xo Tog®t dt + 7e(xo). (2.32)

Since there are at most n prime ideals above a rational prime p, observe that

Fo(r) <Y D 1<np Y 1< loga: < npy. (2.33)

P<zo p|(p) p<zo
Moreover, 0¢(t) < 1¢(t) for all t > 1. Combining these observations with (2.31)) and (2.32)
yields the desired result. 0

Deuring’s reduction

In general, Artin L-functions L(s, ), L/ F') are only known to be meromorphic in the half-plane
Re{s} > 1. Thus, Z¢(s) is meromorphic in Re{s} > 1. However, we will need Z¢(s) to be
meromorphically continued to the entire complex plane in order to execute standard arguments

involving contour integrals like (2.30). To do so, we must enact Deuring’s reduction.

Let A be any abelian subgroup of G = Gal(L/F) such that AN C'is non-empty. From the
definition of Z(s) in (2.25), we may assume without loss of generality that go € AN C. If
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K = LA is the fixed field of A then by [Hei67, Lemma 4],

C
= :G:Zx 9e) 2 (5., L/ ), (2.34)

where the sum runs over irreducible characters y of A, which are necessarily 1-dimensional
since A is abelian. By class field theory, the Artin L-function L(s, x, L/K) is a certain primi-
tive Hecke L-function. Therefore, 4) implies Z(s) is meromorphic in the entire complex

plane. This concludes Deuring’s reduction.

Notational convention

One may wish to notationally distinguish a 1-dimensional Artin L-function L(s, x, L/K) with
the primitive Hecke L-function L(s, x*, K) associated to it by class field theory. However,
throughout this thesis, we will frequently make no such distinction and abuse notation. We

will often treat L(s, x, L/K) as a primitive Hecke L-function with conductor §,, C Ok.



Chapter 3

Explicit inequalities for Hecke L-functions

“You may encounter many defeats, but you must not be defeated. In fact, it
may be necessary to encounter the defeats, so you can know who you are, what
you can rise from, how you can still come out of it.”

— Maya Angelou.

In this chapter, we establish several different explicit inequalities related to the zeros of
Hecke L-functions by involving classical arguments, higher derivatives, and smooth weights.

The notation and results build the foundations for Chapter 4]

3.1 Zero-free gap and labelling of zeros

Let H (mod q) be an arbitrary congruence class group of the number field K. The main goal
of this section is to show that there is a thin rectangle inside the critical strip above which there

is a zero-free gap for

H L(s, x)- (3.1)
)

X (mod H

This zero-free gap is necessary for the proof of Lemma|[3.4.3] which is a crucial component for

later sections.

Let v(x) and n(x) be fixed increasing functions for = € [1, 00) such that

v(z) € [4,00),  v(x) > log(z +4), (3.2)

T

n(x) € [2,00), n(x) — oo as xr — oo, and T et

is increasing.

46
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One could take 7)(z) = 1 log z + 2, for example. Denote

L:=log Dk + %logQ +nk - v(ng),
L*:=log Dk + 3 -1log @, (3.3)
T = (ﬁ*)l/n(”KﬂOg(”K"‘l) + v(nk),

where () = @y is defined by (2.2)). Similarly, for a Hecke character x (mod H) with conductor
fy, define
L, :=logD, +nk -v(ng),
L :=log Dy, (3.4)
Lo:= Ly, =log D + ng - v(ng).
Note that D, < Dg() for any x (mod H) by definition of ().

For the remainder of Chapters [3|and 4] we shall maintain this notation because these quan-

tities will be ubiquitous in all of our estimates. Moreover, all implicit constants will be inde-

pendent of the number field K, the congruence class group [, and all Hecke characters y, and

will only implicitly depend on the choice of v and 7.

First, we record some simple relationships between the quantities defined in (3.3]) and (3.4).

Lemma 3.1.1. Let x (mod H) be arbitrary. For the quantities defined in (3.3) and (3.4), all of
the following hold:

(i) 4<T < L.

(ii) nglogT = o(L).
(iti) L +nglogT < L+o(L) and L +nglogT < L, +o(L).
(iv) T — oo as L — oo.

(v) alo+bLy, < (a+b)L forall0 < b < 3a.

Proof. Statements (i) and (iii) follow easily from (ii) and the definitions of 7, £ and L*. For

(i1), observe that

ng log L*

nr log T <
KO8T = S (nk) log(nk + 1)

+ ng logr(ng) + nk log 2.

The second and third terms are o(L) as v(ng) is increasing. For the first term, note that

m is increasing as a function nx by (3.2). Thus, substituting the upper bound
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nk = O(log D) = O(L*) from Minkowski’s theorem, we deduce that

*

n(L*)

nglogT < +o(L) =o(L),

since 7(x) — oo as x — oo and L* < L. For (iv), if nk is bounded, then necessarily £L* — oo
in which case both 7 and £ approach infinity. Otherwise, if nx — oo, then both 7 and £
approach infinity since v(z) — oo as x — oo. For (v), the claim follows from the definition of
L and the fact that D, < Dg() for all x (mod H). O

Next, we establish a zero-free gap which motivates the choice of £ and its related quantities.

Lemma 3.1.2. Let T, > 1 be fixed and let Cyy > 0 be a sufficiently large absolute constant and
let T be defined as in (3.3). For L sufficiently large, there exists a positive integer Ty = To(H)

such that T, < Ty < % and H L(s, x) has no zeros in the region
X (mod H)

_ loglog T

1
CoL

S o S 1, TO S ’t| S 10T0
Proof. For0 < a < 1andT > 0, denote

Nu(a,T)= Y #{peC|L(p,x)=0, a<B<1 0<]y<T}

X (mod H)

Ccr

where we count zeros with multiplicity. By [We183, Theorem 4.3], forcg < o < 1— Trnloa T

Nu(a,T) < (ng* hHDKQTnK)Cg(lfa)

for some absolute constants 0 < cg < 1,¢7 > 0,cg > 0 and provided 7" and L are sufficiently
large. By Lemmaand Lemma[2.4.6| observe hyy < e and ng logT < Lfor T < T.
Moreover, n7X D Q < e since v(x) > log(x + 4) by (3.2). It follows that, for 7' = T and
T sufficiently large,

Ni(a, T) < (eF - Tyl (3.5)

forcg <a<1-— 0170 and some absolute constants cqg > 0 and c¢;5 > 0.

Now suppose, for a contradiction, that no such 7j exists. Setting o« = 1 — % , it follows
that every region
a<o<1, 107 <[t <107
for J, < j < J, where J = Lllsggf;)J and J, = H‘gifﬂ, contains at least one zero of
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HX(modH) L(37X)- Hence,
Ng(a,T)>J—J, > logT,

since 7T, is fixed and 7T is sufficiently large. On the other hand, by (3.5]), our choice of o implies

nk log T log log ’T>>

Ny(a,T) < exp <2<10g10gT+ e

Co

From Lemma 3.1.1) we have ny log 7 = o(L) so for some absolute constant ¢1; > 0,

C11

Ng(a,T) < exp (%loglog 'T) < (logT)Co.
0

Upon taking Cjy = 2¢;1, we obtain a contradiction for 7 sufficiently large. From Lemma[3.1.1]

we may equivalently ask that £ is sufficiently large. [

3.1.1 Labeling of zeros

Using the zero-free gap from Lemma [3.1.2] we label important “bad” zeros of

IT ZG.x.

X (mod H)
These zeros will be referred to throughout Chapters |3|and E[ A typical zero of L(s, x) will be

denoted p = (3 + iy or p, = B + iy, when necessary.

Worst Zero of each Character

Let T, > 1 be a fixed quantity throughout Chapters [3]and 4}, consequently, the condition that

L is sufficiently large also depends implicitly on 7}, throughout Chapters [3]and [ Consider the

rectangle
R:RH::{SEC:l—MSJSL It < To}
CoLl
for Ty = Ty(H) € [T, L] and Cy > 0 defined by Lemma m Denote Z to be the multiset
of zeros of [ ] 0a 1) L(s, X) contained in R. Choose finitely many zeros p1, p, ... from Z
as follows:

1. Pick p; such that 3; is maximal, and let x; be the corresponding character. Remove all

zeros of L(s, x1) and L(s,x7) from Z.

2. Pick ps such that 5 is maximal, and let y, be the corresponding character. Remove all

zeros of L(s, x2) and L(s,X3) from Z.
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Continue in this fashion until Z has no more zeros to choose. It follows that if x # s, X; for
1 <i < k, then by Lemma every zero p of L(s, x) satisfies:

Re(p) < Re(pr) or  |Im(p)| = 10T5. (3.6)

For convenience of notation, denote

. Ak Hi
= —"— 5 = 1 —_ —, = —.

pr =Bk + i, B r V& 7

Second Worst Zero of the Worst Character

Suppose L(s, x1) has a zero p’ # pi, p1 in the rectangle R, or possibly a repeated real zero

P = p1. Choose p' with Re(p’) maximal and write

)\/ ILL/

/

/ / - ! /
=p +1i, =1-=, ==.
p=p+1, B o V=7

3.2 Classical explicit inequality

We may now prove an inequality for —Re{% (s,x)} based on a bound for L(s, x) in the critical
strip and a type of Jensen’s formula employed by Heath-Brown in [HB92| Section 3]. First, we

introduce an estimate designed to deal with non-primitive characters.

Lemma 3.2.1. Assume H is a primitive congruence class group and x (mod H) is induced by
the character x*. For e > (),

L L

f(s,x): s X*)—i—O(n?K%—eE*),

e
uniformly in the range o > 1.

Proof. Since H is primitive, notice y (mod H) is a Hecke character modulo ;. Hence, using

the Euler products of the respective L-functions,

r log Np log Np
TE0 = TEX] <) Ry S22
L Np
plfer 521 plfe
The desired result then follows from Lemmas and ]

Second, we rewrite the convexity bound for Hecke L-functions in a convenient form.
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Lemma 3.2.2. Assume H is a primitive congruence class group and x (mod H) is induced by

the primitive character x*. There exists an absolute constant ¢ > 0 such that for € > 0,

Eo(x)

‘5—1
s+1

(s, 1) < exp {2010g(Dy7) (1 = 0+ €) + Oclnrc) |
uniformly in the region
—e<o<1+e, T =1t +3.

1
In particular, one may take ¢ = T

Proof. Combining Lemmas[2.3.1and [2.3.2] yields the desired result. O

Any improvement on the constant ¢ in Lemma will have a wide-reaching effect on
the mains results of this thesis. For example, the Lindelof hypothesis for Hecke L-functions

gives ¢ = €. For the remainder of Chapters[3|andH], we set

We may now establish the main result of this section.

Proposition 3.2.3. Let x be a primitive Hecke character. For any 0 < € < 1/4 and any
0<0<e

/

L
_Re{f(& W)} < (6 + Let 462 4 56%) log(Dy7") + (4€ + 80¢'°) log D

+R6{M}— Z Re{ ! }—i—Oe(nK),

s—1 S —
|1+it—p|<5 P

(3.7

and

el L} £ 0 o5 e e B0

} 4O (ng),  (38)

uniformly in the region
1<o<1+e, t e R,

where T = |t| + 3.
Remark.

e When K = Q, Heath-Brown [HB92, Lemma 3.1] showed a similar inequality with ¢ =

% instead of ¢ = % by leveraging Burgess’ estimate for character sums. Our arguments
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are largely motivated by his result, but we include a few modifications. Note that Heath-

Brown’s notation for ¢ differs by a factor of 2 with our notation.

e Li [Lil2] proved a similar result for the Dedekind zeta function with ¢ = 0. Using
a different approach involving Stechkin’s trick, Kadiri and Ng [KN12] established an

analogous estimate for the Dedekind zeta function with ¢ = %(1 — \/LS) ~ 0.27.

e When applying Proposition [3.2.3] we often use the notation in (3.3) and (3.4) in which

case we will use, without mention, that
(¢ + Le+4€® + 5¢") log Dy, + (4€® + 80€'%) log D < (¢ + 4€) L,

for0 <e<1/4.

Proof. Letr = r(e) € (0, ;) be a parameter to be specified later. Choose R = R, (r) < 1

such that the circles |w — s| = R and |w — 1| = r are disjoint and L(w, x) has no zeros on
the circle |w — s| = R. From these choices, one may take R € (R; — r, R;) with Ry = 1 or
Rl =1—A4r.

Apply [HB92, Lemma 3.2] with f(z) = (1) L(z, x) and a = s to deduce

— Re{%(s,x)} = Eol) _ Z Re{ L s —p} —J+0(), (3.9)

_ _ 2
s—1 Wt s—p R
since ]”;OT(Xl) = O(1) and where
7. 1 27r< 01 Ks—l—ReZ’G_l)Eo(x) L(s + Re® ))d&
TR J, OV 08 I\ 5 Ret® 1 1 ST Re |4

Since |w — s| = R and |w — 1| = r are disjoint and R < 1, one can verify

s+ Re?? — 1 _
s+ Rei? + 117

617

as r = r(¢) depends only on e. Thus,
1 2 ) B
J— _R/ (cos) - log |L(s + Rei®,y)|df + O.(1) = J + O, (1),
T Jo

say. We require a lower bound for J so we divide the contribution of the integral into three
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separate intervals depending on the sign of cos 6; that is,

B w/2 3m/2 2m
J:J1+J2—|-J3=/ —i—/ —|—/ :
0 w/2 3m/2

e For § € [0, 7/2], by Lemma it follows that

A 1
log L(s + Re® )| <1 Rcos) < ng ( )
[log L(s 4 Re™, x)| < log (k (0 + Rcosf) < nk log 1 Reosd
Thus, on the interval [, := [0, — (0 — 1)],as ¢ — 1 > 0, the contribution to .J; is

w/2
< nK/ (cosf)log(1/Rcosf)df <, nk.
0

On the interval I, := [§ — (o — 1), 5], as cos @ > 0, the contribution to J; is

<. niclog(1/(o — 1))/ (c0s 0)d0 <. nyc(o — 1)Tog(1 /(o — 1)) <. e,

Ip)

because 0 < 0 — 1 < e and zlog(1/z) is bounded as z — 0.

e For 0§ € [r/2,3m/2], notice
0<o—-—1<o0+Rcosf<o<1+e,
as R < 1. Hence, by Lemma[3.2.2]

log |L(s + Re™, x)| < 2¢log(Dy 7™ )(1 — ¢ — Rcosf + €) + O.(ng)
< 2¢1og(D,7"%)(—Rcosf + €) + Oc(nk).

This implies that

3r/2 ‘
// (cos ) - log |L(s + Re™, x)|df
/2

3mw/2

> 2¢log(D,7"%) / (— Rcos® 6 + ecos0)df + Oc(ng)

w/2

= ¢log(D, 7<) ( — 7R — 4€) + Oc(n).

e For 6 € [37/2,27], we similarly obtain the same contribution as 6 € [0, 7/2].

53
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Combining all contributions, we have that
J 2 =(¢+ =) log(D\™) + Ocni), (3.10)
i

since ¢ = 1/4. For the sum over zeros in (3.9), notice that we may arbitrarily discard zeros

from the sum since, for |s — p| < R,

Re{sip—sgf}:(a—ﬁmﬁ—%)20. 3.11)

Substituting (3-10) and the above observation to every zero p in (3.9) yields (3-8) with Le+5¢'°
replaced by —=e. Taking R — R; and r(c) = €' yields (3:8) whether R, = 1 or Ry = 1 — 4r.

To establish (3.7)), we continue our argument and notice by that we may restrict our
sum over zeros from |s — p| < R to a smaller circle within it: |1 + it — p| < r for any
0 < r < R — e. From our previous observation, we may discard zeros outside of this smaller
circle. As R > 9/10, we have that 0 < € < 1/4 < R — € so we may take r = § for the radius

of the smaller circle.

Now, from Lemma [2.3.7]
Ny (0,1 +1t) = #{p: |1 +it — p| <0} < 2log(Dx D, 7"%)0 + O(1).
Further, for such zeros p satisfying |1 + it — p| < §, notice that

Re{s —p}=0—0 <e+§ < 2

implying
5—p 4¢> -
3 Re{ = }Sﬁlog(DKDXT )+ O(1), (3.12)
|1+it—p| <6
as 6 < e. Combining (3.9), (3.10), and (3.12)) and similarly taking R — R; establishes
(3.7). ]

Using Proposition[3.2.3] we may improve upon Lemma[2.3.7]

Lemma 3.2.4. Let x be a Hecke character and 0 < r < ¢ < 1/4. If s = o + it with
1 <o <14 e€and N,(r;s) by 2.16)), then

N, (r;s) < ®(2log Di + log Nf, + ng log([t] + 3) 4+ Oc(ng)) - 7 + 4 + 45(x),

where ® =1+ 2¢ + 16€? + 340¢™.
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Proof. Analogous to Lemma except we bound N, (r; 1 +1t) instead of N, (2r; 141+ 1t)
and further, we apply Proposition [3.2.3]in place of Lemmas [2.2.1|and [2.3.3] O

3.3 Polynomial explicit inequality

By including higher derivatives of —%(s, X), the goal of this section is establish a general-
ization of the “classical explicit inequality” based on techniques in [HB92, Section 4]. Let
x (mod H) be a Hecke character. For a polynomial P(X) = Y7 a;,X* € R[X] of degree

d > 1, define a real-valued function

P(s,x) =P(s,x; P) = ;9 ?ﬁ;} (;ak (o _(113 1_og1§\!1n) ) - Re{ (ﬁ(:))t} (3.13)

for o > 1 and where Ak(-) is the von Mangoldt A-function on integral ideals of O defined
by (2.3). From the classical formula

_L/ s, x) = ZAK(n)X(n)(Nn)*S foro > 1,

nCoO
it is straightforward to deduce that

d

- (=D)F dt I
P(s,X) :;ak(g_l)k 1 'Re{(k—l)'dsk (s x)} foro > 1. (3.14)

To prove an explicit inequality using P(s, x), we reduce the problem to primitive characters.

Lemma 3.3.1. Assume H is a primitive congruence class group. Let x (mod H) be induced
from the primitive character x* (modf,). Let P(X) € R[X] be a polynomial with P(0) = 0.
Then, for e > (,

P(s,x) = P(s,x*) + Op(e 'ng + €L),

uniformly in the region

100
l<o<14+—.
o<1+ 7

Proof. Since H is primitive, notice x (mod H) is a Hecke character modulo fz. Denote d =
deg P. Observe that

P(SaX)—P(S,X*)‘<<p Z Agiﬁ)(logl\fﬂ) Pzzlong <jlong)

(n,fm)#1 plfn =1
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For p | fg, note log Np < log Nfy < 2log @@ < £ by Lemma and (3.3). Thus, the above

is
<p szd 1long <5 Zlong

plfg 721 plfa

The desired result then follows from Lemma[2.4.4 and Lemma 2.4.71 O

Proposition 3.3.2. Assume H is a primitive congruence class group. Let x (mod H) and ¢ > 0
be arbitrary. Suppose the polynomial P(X) = ZZ:1 a, X" of degree d > 1 has non-negative
real coefficients. There exists 6 = (e, P) > 0 such that

Po‘—l PU__l
%-P<s,x>SRe{—(“)Eo<x>— 2 M}-EMM%H (3.15)

o—1 , oc—1 L
|1+it—py| <6
uniformly in the region
1 100
<o<1+4+— t<T,
T LiogL =7 . =

provided L is sufficiently large depending on € and P.

Proof. Let x* (modf,) be the primitive character inducing x (mod H). From Lemma m

and the observation that nyx = o(L), it follows that
zP(s,x) = zP(s,X") +e
for £ sufficiently large depending on e and P. Thus, it suffices to show (3.13)) with P(s, x*)
instead of P(s, x). Define
d
Py(X) =) aX*=P(X)-aX.
k=2

Using Lemmas [2.2.1]and [2.3.5] we see for £ > 2 and o > 1 that

(_1)k dk—l I/ o
AR A e

Eolx) L BN (D I
k z:(s—px)’€+ sk (k—1)lds*T Lo I X))

1)
1
- (%k 3 o O

s — py)F
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Substituting these formulae into P (s, x*; P») defined via (3.14), it follows for o > 1 that

d

P(s,x"; Py) ——12akRe{(S_1> Eo(x) — Z(U_1>k}+0p(n;<). (3.16)

S JR—
Px px

Without loss, suppose € < 1/4 and obtain 6 = §(¢€) from Proposition Since o < 1+ 12,
we see by the zero density estimate [LMO79, Lemma 2.1] and Lemma [3.1.T| that

o—1|F 100 * 1 100\ % 1
Y [ <(F) ¥ e (n) X
[L+it—px|>0 57 Px £ [1+it—px|>6 |s — Px‘ L Px L+t - le

100\ %
(100) o]
L1

L§s

Hence,

d
1 o—1\F%

Y aR 3 ( ) _plogL,
U—IHG’“ e{ 5 — Py }<<’P o8

|1it—py |23

since 0 > 1+ == u = and 0 depends only on €. Removing this contribution in (3.16) implies

e (T B0 Y (2]

k=2 |Lit—py|<0

P(‘Sv X*7 PQ) -

+ O p(ng +log L)

(0'—1

5 (Z ! P, s—p
:Re{%ﬂ)( ) — Z Tlx)}—kOe,P(nK—Hogﬁ).

|1-+it—py| <5

For the linear polynomial P;(X) := a; X, we apply Proposition m directly to find that

o—1 P1 o—1
73(3 X" P1) <a1(¢+4e)£ —{—Re{%EO(X)_ Z O(s_—plx)}

[1+it—px|<o

+ O p(nglogT)

for £ sufficiently large depending on e. Finally, from (3.14), we see that P(s, x*; P) =
P(s,x*; P1) + P(s,x*; P») since P = P, + P,, so combining the above inequality with the
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previous equation, we conclude that

o—1 p(e=L
P(s,x") < a (¢+4e)£X+Re{PO_(S—11) E)- Y (s—px)}

o—1
|14+t —py | <8

+ O p(nilogT +log L).

Dividing both sides by £ and taking £ sufficiently large depending on € and P, the errors may
be made arbitrarily small by Lemma [3.1.1] Rescaling € yields the desired result. O

Proposition [3.3.2] will be utilized in many contexts but typically we want to restrict the sum

over zeros p to a few specified zeros. To do so, we impose an additional condition on P(X).

Definition 3.3.3. A polynomial P(X) € R[X] is admissible if P(0) = 0 and

Re{P(l>} >0 when Re{z} > 1.

z

Now we establish the desired general lemma.

Lemma 3.3.4. Let € > 0 and 0 < \ < 100 be arbitrary, and let s = o + it with

A
=1+ 1 <7T.

Let x (mod H) be an arbitrary Hecke character and let Z := {pi,ps,...,p;} be a finite

multiset of zeros of L(s, x) (called the extracted zeros), where

s A M .
pj:Bj+Z’yj:(1—Zj)+l-zj, 1<j<J.

Suppose P(X) = zzzl a, X" is an admissible polynomial. Then
J

A A A Ly
= -P(s,x) < Re{EO(X)P<)\+i,u> — ;P<)\+/\Nj —I—i(,u—,tij))} +a A\ + €

for L sufficiently large depending only on ¢, P, and J.

Proof. From Proposition and the admissibility of P, it follows that

2P(s, x) SaMgb%—i—e—i—Re{Eo(X)P( 4 >_ Z P( : >}

A i WP A Ay Fai(p — py)
pxEZ

(3.17)
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for some § = (e, P) and L sufficiently large depending on €, P and A. Note the admissibility
of P was used to restrict the sum over zeros further by throwing out p, ¢ Z satisfying |1 +
it — py| < 0. For the remaining sum, consider p; € Z. If |1 +it — p;| > 0, then |fi; — p| >5 L
or \; >; L. As P(0) = 0, it follows that

Re{P( I )}<<E,p£—1.
N+ il i)

Hence, in the sum over zeros in (3.17), we may include each extracted zero p; with error at

most O, p(L£71). This implies

2. RQ{P<A Ay +Az'(u - ux)>} - ZJ:RQ{P<A + X +A@'(/~L - ﬂj)>}

[1+it—py |<6
PxEZ

+ Ocp(L7).

Using this estimate in (3.17) and taking £ sufficiently large depending on ¢, P and .J, we have

the desired result after rescaling e. 0

During computations, we will employ Lemma with P(X) = P,(X) as given in
[HB92]. That is, for the remainder of Chapters [3|and 4] denote

Py(X) =X+ X?+3X°+ 2X*, (3.18)
We establish a key property of P;(X) in Lemma using the following observation.

Lemma 3.3.5. Let V. W > 0 be arbitrary and m > 1 be a positive integer. Define

™ y™ 1
R FE e — -
G (Z’ Y Z> v (CC2 +22)m + (y2 +22)m (1 +22)m
forz,y,z e R Ifx,y > 1 then
Gm(z,y,2) >0 provided 1 + K > 1.
xm y’m
Proof. Notice
V/z™ W/y™ 1 v W 1

Gm » Yy = + - 2 . — =1

@02 = T Grapy T G G~ G527 2 o Ty~ ) aT Ay
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Lemma 3.3.6. The polynomial Py(X) is admissible. Additionally, if 0 < a <b<¢ A >0,
and B,C' > 0, then

a a a
Re{C - P, B-P —A-P >0 3.19
et 4<c+it)+ 4(6—1—2'15) 4<a+it)}_’ (3.19)
provided
C B_ A
atnZa

Proof. The proof that P;(.X') is admissible is given in [HB92| Section 4]. It remains to prove
(3.19). By direct computation, one can verify that

)} — 16 (ab)! a(b—a)
b+ it 5 (2121 5(0 4 12)3

Re{P4( Q(a,b,t), (3.20)
where Q(a, b, t) = 5t* + 2(50? + 5ab — a®)t* + b*(5b* + 10ab + 14a?) is clearly positive for
O<a<bandt € R. Thus, for0 < a <bandt € R, we have

16 (ab)*

RG{P4( bt )}_ BRCESD

(3.21)

Now, consider the LHS of (3.19). Apply (3.21)) to the first and second term and (3.20) to the
third term. Thus, the LHS of (3.19) is

16a* ct b a’ 16 A
> (C-———-+B-———A- >> SGy(,8,8), (322
= 5 ( (2 + 12)4 - (2 + 12)4 (a2+2)4) = 5 4((1 a a) (3.22)
where G4(z,y, z) is defined in Lemma with V= C/A and W = B/A. Applying
Lemma to G4(£, 2, L) immediately 1mphes 9) with the desired condition. O

3.4 Smoothed explicit inequality

We further generalize the “classical explicit inequality” (Proposition[3.2.3)) to smoothly weighted
versions of —%(s, X), similar to the well-known Weil’s explicit formula. For any Hecke char-

acter x (mod H) and function f : [0, 00) — R with compact support, define

(s,x: f) : ZAK Nn)~ sf<1og£Nn> foro > 1,
et (3.23)

K(s,x; f) == Re{W(s, x; f)}-
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We begin with the same setup as [HB92, Section 5]. Assume f satisfies the following:

61

Condition 1 Ler f be a continuous function from [0,00) to R, supported in [0,xy) and
bounded absolutely by M. Let f be twice differentiable on (0, xq), with " being continu-

ous and bounded by B.

Recall that the Laplace transform of f is given by
F(z) ::/ e #f(t)dt, z e C.
0
Note F'(z) is entire since f has compact support. For Re(z) > 0, we have

F(2) = 27(0) + i),

where
[Fo(2)] < [2]72A(f)
with 5
A(f) =3Bxo + ]f(O)\
Zo

Define the content of f to be

C =C(f) == (x0, M, B, f(0)).

(3.24)

(3.25)

(3.26)

(3.27)

For the purposes of generality, estimates in this section will depend only on the content of

f. For all subsequent sections, we will ignore this distinction and allow dependence on f in

general. We first reduce our analysis to primitive characters and then prove the main result.

Lemma 3.4.1. Assume H is a primitive congruence class group. Suppose x (mod H) is in-

duced from x* (mod f, ). For e > 0 and f satisfying Condition I,
W(s,x; [) = W(s,X"; f) + Oc(e "ny + eL%)

uniformly in the region o > 1.



CHAPTER 3. EXPLICIT INEQUALITIES FOR HECKE L-FUNCTIONS 62

Proof. Since H is primitive, notice y (mod H ) is a Hecke character modulo fz. Thus,

. Axg(n _
Wi =W N < 3 2 et 0g )
(n7fH)7é1

Ag(n) log Np log Np
< M =M — < 2M .
<MY 2.2 gy S

(nfm)#1 plfig 721 plfa
The desired result then follows from Lemmas and O

Proposition 3.4.2. Assume H is a primitive congruence class group. Let x (mod H) and € > 0

be arbitrary, and suppose s = o + it satisfies

1/2
o — 1| < % < T.

Suppose f satisfies Condition 1 and that f(0) > 0. Then there exists 6 = 0(¢,C) € (0,1)
depending only on € and the content of f such that

7 K(s,x: /) < Eo(x)-Re{F((s =)L)} = Y Re{F((s —p)L)}
|1+it—p| <5 (3.28)

+ £(0) %—i—e,

provided L is sufficiently large depending on € and the content of f.

Proof. The proof will closely follow the arguments of [HB92, Lemma 5.2]. Let x* (mod f,)

be the primitive character inducing x. From Lemma (3.4.1]
K(s,x; f) = K(s,x"; f) + Oc(e 'ng + L"),
Dividing both sides by £ and recalling ny = o(L), it follows that
L7UC(s, x5 f) < LTHUC(s, X5 f) + €

for £ sufficiently large depending on e and the content of f. Thus, we may prove (3.28) with
K(s, x*; f) instead of (s, x; f).

Letoc >1+4+2L 'andsetoy =1+ L s0 0y < o. Consider

1 op+1i00 L/
Ii= ( - —(w, X*))Fo((s —w)L)dw. (3.29)

00—100
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Since Fj satisfies (3.26) and

L/ * C}( -1
7w x) < |C—K(Uo)| < nk(og—1)
by Lemma|2.3.1] the integral converges absolutely. Hence, we may compute / by interchanging
the summation and integration, and calculating the integral against (Nn)~" term-wise. That is
to say,

I=> A(m)x"(n) (L /U UOHOO(Nn)_“’FO((s - w)c)dw). (3.30)

<o 2700 J 5 —ioo

Arguing as in [HB92, Section 5, p.21] and using Lebesgue’s Dominated Convergence Theo-
rem, one can verify that
1 oo+100 (Nn)—s

7 (Nn) ™ Fy((s — w)L)dw = T (f(£™" logNn) — £(0)),

o0—100
since f satisfies Condition 1. Substituting this result into (3.30), we see that

/

T= 2 (Wisx's 1) + (5, X0 (0)): (331)

Returning to (3:29), we shift the line of integration from (o = 00) to (—3 =+ oo) yielding

1= By()F((s —~ 1)£) ~ 3 Fol(s — p)1)
’ (3.32)

R+ o [ (= E ) s - ey,

3 —200

where the sum is over the non-trivial zeros of L(w, x) and r(x) > 0 is the order of the trivial

zero w = 0 of L(w, x*). From (2.3) and (2.8)), notice r(x) < ng so by (3.26),

rOOIF(sL)] < ”ffc“(f ) o )  A)

To bound the remaining integral in (3.32)), we apply the functional equation (2.7) of L(w, x*)
and Lemma Namely, using Lemma we note for Re{w} = —1/2 that
L L

—7 (W, x") = L+ (1= w,X7) + Olng log(2 + [wl)) = L3 + O(ng log(2 + |w])).
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From (3.26), we therefore find that

1 —%-I—ioo

L (= 2w ) Fol(s — w) )

2mi ~Lloico
A(f —atico -log(2 4 |w
FO((s—w)E)dw+O< 22)/1 ‘ K |S—(w|2| de).

3 —100

£* —l—H'oo

2m

fgfzoo

Since Fj is entire and satisfies (3.26), we may pull the line of integration in the first integral
as far left as we desire, concluding that the first integral vanishes. One can readily verify that

integral in the error term is

A(S)
£2

A log T _ A(f)

< 2 18

-ng log(2+ |s]) <
by Lemma[3.1.1] Combining these bounds into (3.32) and comparing with (3.31)) yields

5 W( ) = - Ze 0L+ B Fo((s—1)C Fo( OA(f)
o 57X7f)__f<87><)f()z+ O(X) 0 5_ Z O 5_ + I .

(3.33)
We wish to apply Proposition giving & = 0(¢), but we must discard zeros in the above
sum where |1 + it — p| > J. By (3.26), [LMO79, Lemma 2.1], and Lemma 3.1.1} this discard

induces an error

< |1+;>5 L£2]s — p|2 <5 2 zp: [N <5 72 (L +nglogT) <5 =

Hence, taking real parts of (3.33)), applying Proposition [3.2.3] and using (3.25)), we find

K(s,g*;f) gEO(X)Re{F((S—l)E)_ Z F((s—p )}+f( )(¢+ €)% + Osc(L71).

[14-it—p|<d

Taking L sufficiently large depending on € and the content of f, the error term may be made

arbitrarily small. Upon choosing a new ¢, we have established (3.28)) in the range
14207 <o <14 (logl)V2L7 ",

Similar to the discussion in [HB92l Section 5, p.22-23], one may show (3.28) holds in the
desired extended range by considering g(t) = e* f(t) for 0 < a < (log £) /3. O

In analogy with Proposition[3.3.2]and Lemma 3.3.4] we would like to use Proposition[3.4.2]
by restricting the sum over zeros p to just a few specified zeros. To do so, we require our weight
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f to satisfy an additional condition which was introduced in [HB92, Section 6].

Condition 2 The function f is non-negative. Moreover, its Laplace transform F satisfies

Re{F(z)} >0 forRe(z) > 0.

Condition 2 implies that, viewed as a real-variable function of t € R, F'(¢) is a positive decreas-
ing real-valued function. We may now give a more convenient version of Proposition [3.4.2]in

the following lemma.
Lemma 3.4.3. Let € € (0, 1) be arbitrary, and let s = o + it with

loglog T

-1 <

|t‘ < 5T07

where constants Cy > 0 and Ty > 1 come from Lemma Writeo = 1—\/Landt = u/L.
Let x (mod H) be an arbitrary Hecke character and let Z := {py, pa, ..., ps} be a finite,

possibly empty, multiset of zeros of L(s, x) (called the extracted zeros) containing the multiset

{oy 0 < B <1, |l <To}.

. \s i
Write p; = B; + 17, = (1 — Zj) +1- %for 1 <y < Jand suppose f satisfies Conditions 1
and 2. Then

L7 K(s,x; f) < Bo(x) - Re{F(=A+ip)} — Z Re{F(X; = A —i(i; — w)} + f(0)0Z +e

for L sufficiently large depending only on €, J, and the content of f.

Remark. The dependence of “sufficiently large” on .J is insignificant for our purposes, as we

will employ the lemma with 0 < J < 10 in all of our applications.

Proof. From Proposition [3.4.2] it follows that

K(Saﬁx; ) - F0) (6% + €) + Eol(x) - Re{F(=A +ip)}

— Y Re{F((s—p)0)}

[1+it—p| <5

(3.34)

for some § = (¢, C). We consider the sum over zeros depending on whether p € Z or not. For
any p = p; € Z,if |1 +it — p;| > 6, then |fi; — pu| >5 L or ij > L. From (3.25) and (3.26),
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it follows that
Re{F((s — ;)L)} <ec L7

implying

J
S Re{F((s = L)} = YRe{F( — A= il — 1)} + Occ(JET). (3.39)
|14-it—p| <6 Jj=1

pEZ
Next, for all zeros p = 5 + iy ¢ Z satisfying |1 + it — p| < 6, we claim § < 0. Assuming the
claim, it follows by Condition 2 that

> Re{F((s—p)L)} >0. (3.36)
[1+it—p| <8
pEZ

To see the claim, assume for a contradiction that o < § < 1 for some zero p = 47 occurring
in (3.36). As |1 + it — p| < 0, it follows that

Iy < Jt| + 0 < 5Ty + 1 < 6Tp.

Hence, from Lemma(3.1.2] either

loglog T

< T <1
7| < To or B < CoL

In the latter case, it follows 5 < ¢ which is a contradiction, so it must be that |y| < T}, and
o < 8 < 1. By the assumptions of the lemma, it follows p € Z, which is also a contradiction.

This proves the claim.

Therefore, combining (3.35)) and (3.36)), we may conclude that

— Y Re{F((s—p)D)} < = 3 Re{F(; = A= i(i; — )} + OuelJL 7).

[1+it—p|<8

Using this bound in (3.34) and taking £ sufficiently large depending on ¢, C and .J, we have the

desired result upon choosing a new e. 0

We also record a lemma useful for applications of Lemma [3.4.3]in Sections4.2]and 4.3]
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Lemma 3.4.4. Suppose [ satisfies Conditions 1 and 2. For a,b > 0 and y € R, we have that

F(-a)-F(0)  ifb>a,

Re{F(—a+1iy) — F(iy) — F(b—a+1y)} < '
F(—a)—F(b—a) ifb<a.

Proof. If b > a, then by Condition 2, Re{F(b — a + iy)} > 0 so the LHS of the desired

inequality is
< Re{F(—a + iy) — Fliy)} = / "R — 1) cos(yt)dt

< [ s - v
= F(—a)— F(0)

since f(t) > 0 and a > 0. A similar argument holds for b < a, except we exclude Re{ F'(iy)}
by positivity in this case. 0



Chapter 4

Zero-free regions and zero repulsion

“You can’t cross the sea merely by standing and staring at the water.”

— Rabindranath Tagore.

Let H be a congruence class group for a number field K. We will retain the notation of
Chapters [2] and [3] and, in particular, the definitions in Section [3.1] This chapter consists of

various results about the distribution of zeros for the product of Hecke L-functions given by

IT LG

X (mod H)

We will establish explicit zero-free regions and zero repulsion results by exploiting the
explicit inequalities of Chapter [3] Our chief inspiration will continue to be Heath-Brown’s
paper [HB92] on Dirichlet L-functions.

We will postpone establishing the full form of two of the three key principles of Linnik: the
Deuring—Heilbronn phenomenon and the log-free zero density estimate. These two principles
require vastly different approaches than the methods employed in this chapter. While some-
what deviating from the literature, we make a subtle non-technical distinction between ‘“zero
repulsion” and “Deuring—Heilbronn phenomenon”. For us, the former occurs when a zero
(real or complex) close to Re{s} = 1 repels other zeros but not far into the critical strip; the
latter occurs when a simple real zero very close to s = 1 repels other zeros deep into the crit-
ical strip. Therefore, in Chapter ] we will discuss zero repulsion but not Deuring—Heilbronn

phenomenon.

68
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4.1 Statement of results

Let us now state the main theorems of this chapter. Recall K is an arbitrary number field, A

is an arbitrary congruence class group of K, and () = Qg is given by (2.2)). Throughout this

chapter, 7, > 1 is a fixed positive real number and v(x) is any fixed increasing real-variable

function > 4 such that v(z) > log(x + 4). Thus, any implied constants (e.g. coming from a

“sufficiently large” condition) depend implicitly on 7} and v.

Theorem 4.1.1. Let H be a congruence class group of a number field K. Suppose D Qn7*
is sufficiently large and let r > 1 be an integer. Then the function H L(s, x) has at most

X (mod H)
ord x>r
1 zero, counting with multiplicity, in the rectangle
&
o>1 - . <,

~ log Dk + 3log Q + ni - v(nk)
where s = o + it and )

0.1764 ifr > 6,
0.1489 ifr =5,
0.1227 ifr =2,3,4,
k0.0875 ifr=1.

Co —

Further, if this exceptional zero p; exists, then it and its associated character X are both real.

Remark. Here ord y is the multiplicative order of .

As mentioned in Chapter [I] some explicit results have been shown by Kadiri [Kad12] and
Ahn and Kwon [AKI14]. However, these results are for a single Hecke L-function L(s, x)
instead of [ ] (04 ;) L(s, X). Further, those zero-free regions are of the form

5
o>1 0

— t] <0.13. 4.1
- log Dg + log Q' [t < 0.13 @1

Note that the dependence on the degree ny is “absorbed” by log Dg. It has been shown that
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L(s, x) is zero-free (except possibly for one real zero when Y is real) in the rectangle (4.1)) for

(0.1149 if ord x > 5 [AK14],
0.1004 if ord x = 4 [AK14],
co = 4 0.0662 if ord y = 3 [AK14],
0.0392 if ord x = 2 and Dy is sufficiently large [Kad12,
\0’0784 if ord y = 1 and Dy is sufficiently large [Kad12].

Note that the results of [Kad12] also allow for |¢| < 1 to be used in (4.1)). Comparing the above
known values for ¢, with ¢ in Theorem[.1.1] if a given family of number fields K satisfies

IOg DK )

SR 4.2
log log Dk “.2)

Nk = 0(
then, for a suitable choice of v(z), Theorem is superior to all previously known cases,

especially in the ()-aspect. A classical theorem of Minkowski states, for any number field K,
ng = O(log D)

so, unless ny is unusually large, one would expect that (4.2) typically holds.
We also establish a result, similar to those of [[Gra81]] and [HB92] for Dirichlet L-functions,

giving a larger zero-free region but allowing more zeros.

Theorem 4.1.2. Let H be a congruence class group of a number field K. Suppose D Qn7*

is sufficiently large. Then H L(s, x) has at most 2 zeros, counting with multiplicity, in

X (mod H)

the rectangle
0.2866

B log Dy + %logQ +ng - v(ng)

oc>1

it < T..

Moreover, the Dedekind zeta function (k (s) has at most 2 zeros, counting with multiplicity, in

the rectangle
0.2909

B log D + ng - v(ng)

g >

It < T..

When an exceptional zero p; from Theorem exists, we prove an explicit version of

strong zero repulsion.

Theorem 4.1.3. Let H be a congruence class group of a number field K. Suppose x1 (mod H)

I'This case is not explicitly written in the cited paper but is directly implied by the case ord y = 1.
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is a real character and

A1
log Dy + %logQ +ng - v(ng)

Br=1

is a real zero of L(s, x1) with Ay > 0. Then, provided D Qn3¥ is sufficiently large (depending

on R > 1 and possibly ¢ > 0), the function H L(s, x) has only the one zero [3,, counting
X (mod H)
with multiplicity, in the rectangle

min{c; log(1/\1), R}

c>1-— 3 )
log D + $1og @ + ng - v(nk)

] < T,

where s = o + it and

L ¢ ifxy is quadratic and \; < 10710,
0.2103 if x1 is quadratic and \y < 0.1227,

€1 =3
1 —¢€ ifxiis principal and Ay < 1075,

\0.7399 if x1 is principal and \; < 0.0875.

Kadiri and Ng [KN12]] have established an explicit version of strong zero repulsion for

zeros of the Dedekind zeta function (x (s) with

0.9045 if A; < 1079,
0.6546 if A; < 0.0784.

cl =

Hence, Theorem 4.1.3|improves upon their result when (4.2) holds and when the primary term

c¢11og(1/\1) dominates, as normally is the case in applications.

We also establish some explicit numerical bounds related to the zero density of Hecke L-
functions. While Chapter [5]is dedicated to the log-free zero density estimate in its complete
form, we have chosen to include these numerical bounds in Chapter 4| since the techniques

employed are similar to the other theorems herein. For A > 0 and 7, > 1, define
N(A) = N\ Ty) = #{x (mod H) : x # X0, L(s, x) has a zero in the region S()\) },

where

A
log Dy + %logQ +ng - v(ng)

S(\) =S\ T,) = {sé@:azl— |t gT*}. 4.3)
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In the classical case K = Q, H = P, and q = (g), this quantity has been analyzed by
[Gra81, HB92] for a slowly growing range (A < logloglog ¢) and by [HB92| for a bounded
range (A < 2). We establish a result in the same vein as the latter. To do so, we require some
technical assumptions.

Let0 < A < 2be given. Let f € C2([0, 00)) have Laplace transform F'(z) = [;° f(t)e~*dt.
Suppose f satisfies all of the following:

f(t) > 0fort > 0; Re{F(2)} > 0 for Re{z} > 0;
2 4.4)
FO) > 50 (FO)=3£0)) > 5£(0)(3£(0) + F(0)).

We therefore have the following result.
Theorem 4.1.4. Let ¢ > 0 and 0 < X\ < 2. Suppose f € C?([0,00)) satisfies @4). Then

unconditionally,

N(\) <

for D Qn'X sufficiently large depending on € and f.

Remark. Let p; be a certain zero of a Hecke L-function L(s, x;) with the property that
Re{p1} > Re{p,} for any character x (mod H) with a zero p, in the rectangle S(\) given
by (@.3). By introducing dependence on p;, the bound on N()\) in Theorem can be
improved. See Section [3.1]for the choice of p; and Theorem .51 for further details.

Theorem [{.1.4] and its proof are inspired by [HB92, Section 12] and so similarly, the ob-
tained bounds are non-trivial only for a narrow range of A. By choosing f roughly optimally,
we exhibit a table of bounds derived from Theorem below.

A |00 | 125 | 150 | 175 | 200 | 225 | 250 | 275 | 300 | .325 | 350 | .375 | 400 | 425 |

N[ 223 ]3[4 a5 6|79 | 1n]15]22]4)]

One can see that the estimates obtained are comparable to Theorems [@.1.1] and {.1.2] which
respectively imply that N(0.1227) < 1 and N(0.2866) < 2.

In the classical case K = (Q, Heath-Brown substantially improved upon all preceding work

for zeros of Dirichlet L-functions. For general number fields /&', we have taken advantage of
the innovations founded in [HB92] to improve on the existing aforementioned results and also

to establish new explicit estimates. As such, the general structure of this chapter is reminiscent
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of his work and is subject to small improvements similar to those suggested in [HB92, Section
16]. Xylouris implemented a number of those suggestions in [Xyllla] so, in principle, one
could refine the results here by the same methods.

Finally, we emphasize that, throughout Chapter 4 we will use the notation established in
Chapter 2] and Section The identified zeros in Section [3.1) will play an especially key role.
The results of Chapter [3|form the technical crux of all proofs of this chapter.

For the reader who wishes to proceed quickly to the proofs of the theorems:

Theorem is proved in Section 4.4

Theorem is an immediate corollary of Propositions[4.2.7, 4.2.13] [4.3.4] and 4.3.10]

Theorem {.1.3]is an immediate corollary of Propositions 4.2.7|and §.2.13]

Theorem [.1.4]is a special case of Theorem[4.5.1]

4.2 Zero repulsion: y; and p; are real

Recall the indexing of zeros from Section Throughout this section, we assume Y; and
p1 are real. We wish to quantify the zero repulsion of p; with p’ and p, using the results of
Sections3.3]and [3.4] along with various trigonometric identities analogous to the classical one:
3+ 4 cosf + cos 20 > 0. We emphasize that x; can be quadratic or possibly principal.

We will primarily use the smoothed explicit inequality (Lemma|3.4.3|) so we assume that the
weight function f continues to satisfy Conditions 1 and 2. For simplicity, henceforth denote
K(s,x) = K(s,x; f), which is given by (3.23)). Suppose characters y, x. have zeros p, p.

respectively. Our starting point is the trigonometric identity

0 xo(m) (1 + Refx(n) (Nn)""}) (1 + Re{x. (n) (N ).
Multiplying by A(n) (£~ log Nn)(Nn)~" and summing over n, it follows that

0 < K(o, xo0) + Ko +iv,x) + K(0 + 07, Xx)
1 1 for o > 0. 4.5)
+ §’C(0 + 4y + 17, XX) + §’C(0 + iy — i, XXF)

In some cases, we will use a simpler trigonometric identity:

0 < Xo(n) + Re{x(n)(Nn)"},
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which similarly yields

0 < K(o,x0) + K(o + i, x) for o > 0. (4.6)

4.2.1 Bounds for )\’

Recall p1, A1, p’ and X are defined in Section We establish zero repulsion results for p’ in
terms of py, using different methods depending on various ranges of ;. In this subsection, we
intentionally include more details to proofs but in later subsections we shall omit these extra

explanations as the arguments will be similar to those found here.

Lemma 4.2.1. Assume x| and p, are real. Let € > 0 and suppose f satisfies Conditions 1 and

2. Provided L is sufficiently large depending on € and f, the following holds:

(a) If x1 is quadratic and N < )\, then with ¢ = 4¢ it follows that
0< F(=N)=F0O)=FXA —=X)+ f(0) +e€
+Re{F(-N+iy) = F(ip) — F(A — N +iu) }.
(b) If x1 is principal, then with 1) = 2¢ it follows that
0< F(=XN)=F0)—F\ —X)+ f(0) +¢
+Re{F (=N + i) — F(ip/) — F(A\ — N +iu)}.
Proof. (a) In (.5), choose x = x. = x1,p = p and p. = p; with o = /' in (4.5)) giving
0 < K(B', x0) + K(B' + i, x1) + K(B', x1) + K(8" + ', xo)- 4.7)

Apply Lemma to each (%, ) term and extract the relevant zeros as follows:

e For IC(', xo) and (8" +1iv/, x0), extract no zeros since by assumption \' < A, yielding
y p y

LTIK(B' x0) < f(0)02 + F(=X) +¢,

(4.8)
LK+ x0) < F(0)¢= + Re{ F(=N +ip/)} +e.
e For (B' + 7/, x1) and K(F', x1), extract {p1, p'} implying
LR + v x0) < fO8F = FO) ~Re{Fu =Xty e\

LK x1) < F(0)5 = F(A = X) = Re{F(ipt)} +e.
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Using (4.8) and in and rescaling ¢, the desired inequality follows except with ¢ =

o - % From Lemma , ¥ < 4¢ so we may use ) = 4¢ instead.
(b) Use with x = xo0,0 = " and p = p/, from which we deduce

0<K(B,x0) +K(B +iv,x0) foro > 0.

Similar to (a), for both &C(x, yo) terms, apply Lemma extracting both zeros {1, p'} yield-

ing

LTS, x0) < f(0)gE2 + F(=N) — F(\ = XN) — Re{F (i)} + ¢
LB+, x0) < [(0)0=2 + Re{F (=X +ip') — F(\ = XN +ip)} — F(0) + ¢

Combined with the previous inequality, this yields the desired result with ¢ = 2¢ - % By
Lemma|3.1.1} we may use ©) = 2¢ instead. O]

A1 very small

We now obtain a preliminary version of the strong zero repulsion for zeros of L(s, x1).

Lemma 4.2.2. Assume x1 and py are real. Let ¢ > 0 and suppose L is sufficiently large

depending on e.
(a) If x1 is quadratic and N < )\, then either \' < 4e or
! 1 -1
N> (5 - e> log(A7!),
which is non-trivial for \; < 3.5 x 1071,
(b) If x1 is principal, then either N < 4e or
N> (1 —€) log(A\rh),
which is non-trivial for \; < 1.8 x 1075,

Proof. The proof is a close adaptation of [HB92, p. 37]. From Lemma[3.4.4]and Lemma[4.2.1]
we have that
0<2F(=XN) = F(0) = 2F (A — X) + f(0) (¢ + ¢).

where 1) depends on the cases in Lemma and we assume f(0) > 0. As in [HB92, p. 37],
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choose
iIZ’O—t 1f0§t§a;o,

ft) =

0 if t > o,

for which Conditions 1 and 2 hold. Then by the same calculations, we see that

2x9A; exp(zoN)

2F(=N) = 2F(A\ — X) < o

Hence, from the first inequality, we have that

1
2201 (\) 2 exp(z)) — 5:(:3 +x0(¢p +€) > 0.

Choose z := 2y + % -+ 2¢ so that the dependence on f is uniform for \’ > 1. With this choice,

our inequality above then leads to

!/ !/

A A
A > T exp(—zo)) = T exp(—(2¢ + 2¢)\).
e
When X > 4e, we conclude that
N 2 (4 ) logp).

The result in each case follows from the value of 1/ given in Lemma and noting ¢ =
1/4. ]

A1 small

Here we create a “numerical version” of Lemmal4.2.1]

Lemma 4.2.3. Let ¢ > 0 and for b > 0, assume 0 < \y < b and retain the assumptions of
Lemmad.2.1} Suppose, for some X, > 0, we have

2F(=N,) —2F (b — \,) — F(0) + f(0)y) <0 (4.10)

where 1) = 4¢ or 2¢ if x1 is quadratic or principal respectively. Then X' > X\, — € for L
sufficiently large depending on €, b and f.

Proof. Lemma[.2.T]and Lemma [3.4.4]imply that

0 < 2F(=N) = 2F(A; — X) — F(0) + f(0)ih + €.
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M< [ gloght > > A

10719 11.51 10.99 | .8010
107° 10.36 9.920 | .7975
1078 9.210 8.838 | .7930
1077 8.059 7.740 | 7873
10°¢ 6.908 6.623 | .7796
107° 5.756 5.481 | .7687
1074 4.605 4.303 | .7521

M < | dlogh\' > > A
030 1.753 1.137 | .6183
035 1.676 1.048 | .6092
040 1.609 9699 | .6007
045 1.551 9016 | .5927
050 1.498 8407 | .5852
055 1.450 7859 | .5780
.060 1.407 7362 | 5711

.001 3.454 3.075 | .7239

.065 1.367 .6906 | .5644
.005 2.649 2.176 | .6896

.070 1.330 .6487 | .5580
.010 2.303 1.778 | .6679

075 1.295 .6098 | .5517
015 2.100 1.542 | .6522

.080 1.263 5738 | 5457
.020 1.956 1.374 | .6394 085 1933 5401 | 5397
025 1.844 1.244 | .6283

Table 4.1: Bounds for \* = )\ with y; quadratic, p; real and A\; small;
and for \* = A\, with y; quadratic, p; real, x» principal and \; small.

Now, by Conditions 1 and 2, the function

F(=)) - / FONL — e)dt
is an increasing function of A and also of b. Hence, the previous inequality implies that
0<2F(=X)—=2F({b—X)—F(0)+ f(0)¢ +e.

On the other hand, from the increasing behaviour of F'(—\) — F'(b — \), we may deduce that,
if (4.10) holds for some \;, then

0<2F(=A)—2F(b—\) — F(0) + f(0)  onlyif A >\,

Comparing with the previous inequality and choosing a new value of ¢, we conclude that \' >
A, — €. See [KN12| p.773] for details on this last argument. [

In each case, employing Lemma[4.2.3|for various values of b requires a choice of f depend-
ing on b which maximizes the computed value of \;. Based on numerical experimentation, we
choose f = f) from [HB92, Lemma 7.2] with parameter A = A(b). This produces Tables
and [4.2] Note that the bounds in Table [4.1] are applicable in a later subsection for bounds on
Ag.
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M < | logA\t > V> A M < logh\t > N> A
107° | 11.51 | 11.66 | 1.545 .085 2465 | 1.869 | 1.193
1074 | 9.210 |9.324 | 1.516 0875 | 2436 |1.836 | 1.189
.001 6.908 | 6.902 | 1.468 .090 2408 | 1.803 | 1.185
.005 5298 |5.135| 1413 .095 2354 | 1.741 | 1.178
010 | 4.605 |4.352|1.379 .100 2303 | 1.681 | 1.170
015 4200 |3.887 | 1.355 .105 2254 | 1.625] 1.163
.020 3912 | 3.555 | 1.336 110 2207 | 1.572 | 1.156
025 3.689 | 3.297 | 1.319 115 2.163 | 1.521 | 1.149
.030 3.507 | 3.084 | 1.304 120 2120 | 1472 1.142
035 3.352 | 2.905 | 1.291 125 2.079 | 1.426 | 1.135
040 3219 | 2.749 | 1.279 130 2.040 | 1.381 | 1.129
045 3.101 | 2.611 | 1.267 135 2.002 | 1.338]1.122
.050 2.996 | 2.488 | 1.257 140 1.966 | 1.297 | 1.116
055 2900 |2.377 | 1.246 145 1.931 | 1.258 | 1.110
.060 2.813 | 2275 1.237 150 1.897 | 1.220] 1.103
.065 2733 | 2.181 | 1.227 155 1.864 | 1.183 | 1.097
.070 2.659 | 2.095]| 1218 160 1.833 | 1.148 | 1.091
075 2.590 |2.015 ] 1.210 165 1.802 | 1.113 | 1.085
.080 2.526 | 1.940 | 1.201 170 1.772 | 1.080 | 1.079

Table 4.2: Bounds for \" with x; principal, p; real and \; small.

A1 medium

As a first attempt, we use techniques similar to before.

78

Lemma 4.2.4. Assume x1 and p, are real. Provided L is sufficiently large, it follows that if o'

is real then
0.6069

1.2138

N >

and if p' is complex then

0.1722
0.3444

N >

if x1 is quadratic and N < )\,

if x1 is principal,

if X1 is quadratic and N < X,

if X1 is principal.

Proof. If p/ is real, then 1/ = 0. From Lemma4.2.1]it follows that

0 < F(=N)=F(0) = F(\ = X) + 5 £(0)¢ + ¢,
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where ¢, f, 1 are specified in Lemma Since F'is decreasing by Condition 2,
0< F(=N)—2F(0)+ f(0)¢ +e.
We select the function from [HB92, Lemma 7.5] corresponding to £ = 2. Hence,

1
¥ €08 20 < iy +e
For k = 2, we find § = 0.9873... and so \' > &1269 for an appropriate choice of . If p’ is com-
plex, then we follow a similar argument selecting f from [HB92, Lemma 7.5] corresponding
tok =3 (ie. 6 =1.2729..). O

For p/ complex, a method based on Section [3.3]leads to better bounds than Lemma[4.2.4]

Lemma 4.2.5. Assume x1 and p; is real and also suppose p' is complex. Let A > 0 and J > 0.
If L is sufficiently large depending on €, \ and J then

A 20(J + 1)°X + ¢ if x1 is quadratic,

A
X A)-+
+ &(J +1)2X+€  if x1 is principal,

0< (J2_|_ %)<P4(1) —P4()\+)\1

)~ 27 P

provided

Jo 1 1 .
— ith Jy = 4
Ot N + Ot ) > N with Jy mm{2

Remark. Recall P;(X) is defined by (3.18].

AT}, 4.11)

2]’

Proof. For an admissible polynomial P(X) = ZZ:1 a, X*, we begin with the inequality

< xo(m)(1 + x1(n))(J + Refxi (n)(Nn) =}
= (J2+ 1) (xom) + xa(n) + 27 - (Re{xo(n)(Nn) ™"} + Re{x1 (n)(Nn)™'})
+ 1 (Re{xo(m)(Nn) ™27} + Re{x1 (n)(Nn)"27'}).

To introduce P(s, x) = P(s, x; P), we multiply the above inequality by

((0 —1)log Nn)k_1
U )

"z =
2=
q\./
VN
NE

Qg
k=1

witho =1+ % and sum over ideals n yielding

0<(J*+ %)(77(0, Xo) + P(o, Xl)) +2J- (77(0 +19,x0) + P(o + 17/, Xl))

4.12)
+ 3 (P(o+2iy,x0) + Plo + 27, x1)).
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Taking P(X) = P,(X) so a; = 1, we consider the two cases depending on x.

(a) x1 is quadratic: Apply Lemmamto each P(x, x) term in (#.12) extracting the pole from
Yo-terms and the zeros p;, p’ (and possibly p’) from the y,-terms. Each of these applications

yields the following:
L7 P(o,x0) < ¢ P4A(1),
E_I.P(o' X1)<¢ L +e—— ! (P4( A )+R6{P4(;)})
>\ A+ A A+ N4y’

L1 Plo+iv, x0) <<z§£° +e+ — Re{P4(

reamle
. | ) 1 Y A A
LPlo+i) <o +e— 5 (PG X> R, ) A G )

1 - ! Lo l L
L7 Po+2iv, x0) < oX +€+>\ RG{P“()\JrZiu’)}’

A
L7 Plo +2i7 ) < 65 +e— 1 Re{ P

G PG

provided £ is sufficiently large depending on e and \. For the term P (o 4147/, x1 ), we extracted
all 3 zeros of y; since p/ # 0. Substituting these inequalities into (#.12) and noting °+£"1 <2
by Lemma[3.1.1] we find that

A A
0% (P (A = Pl530)) ~2P(y) — A= B+ 2000+ D ke
4.13)
where

T D S S Y Y

A=Re{(J*+1) P4(A+X )} P4()\+)\1+m’) 2 P4(A+m')}’
A 1 A 1 A

B:Re{QJ-P4(m)+§ P(m) §'P4()\+2ip/)}

From Lemma3.3.6] we see that A, B > 0, provided

J2+1+ 2J >2J and 2J N 1/2 >1/2
A+M)E T A+ )T M AFM)E T A+ )7 M

Assumption (4.TT)) implies both of these inequalities.



CHAPTER 4. ZERO-FREE REGIONS AND ZERO REPULSION 81

(b) x1 is principal: Then (4.12)) becomes

0 S (2J2 + 1)7)(07 XO) + 4.7 - P(U + Z-P)/a XO) + P(O’ + 2i717 XU)

We similarly apply Lemma to each term above extracting the pole and zeros p1, p'
(and possibly p'). Each of these applications yields the following:

et Pl <o e (PR (Pl

N » o 1/ A A N p A
L P(U+Z'YaXO)§¢EO+6+)\< P4(A+A/)+RQ{P4()\+W/) Fa >\+/\1+’iﬂ')

- PG })

A A A }

-1 - ! Lo 1 { ) = ) — e
L7 Plo+2i7,x0) <o +e+ < Re P4()\+2w/) P4()\+>\1+2iu’) P4(/\+>\’+W’)

A

Lo
L

(4.13)) except with 2¢ replaced by ¢. Following the same argument, we obtain the desired
result. ]

Substituting these into the previous inequality, noting < 1, and dividing by 2, we obtain

Again, we exhibit a “numerical version” of Lemma[4.2.5]
Corollary 4.2.6. Assume x1 and p; is real and suppose p' is complex. Let ¢ > 0. Suppose
0 <A <b,A>0,J > 0and that there exists \, € [0, 00) satisfying

A
A+b))_2J'P4(A+Ag

(J* + 1) (Pu(1) = Py( )+ (J+1)°A<0

where 1) = 2¢ or ¢ if x1 is quadratic or principal respectively. If

Jo N 1 >i
A+ ) (A+b)r 7 A

where Jo = min{% + 55,4.J},
then ' > N, — € provided L is sufficiently large depending on €, \ and J.

Proof. From Lemma

A
A+ A

A
A+ N

0 < (J2+ 2)(Pa(1) — Pu( )) —2J - Py( )+ (2= Eo(x1)) - o(J +1)°A +e.
Since P, has non-negative coefficients and P,(0) = 0, the above expression is increasing with

A1 and ). From this observation, the desired result follows. O
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A< | Llog(1/A) | > | A J
.09 1204 | 5261 | 1.239 | .8837
.10 1151 | .5063 | 1.265 | .8793
11 1.104 | .4880 | 1.289 | .8752
12 1.060 | .4709 | 1.310 | .8714
1227 | 1.049 | .4665 | 1.316 | .8704
13 1.020 | 4549 | 1.330 | .8677
14 9831 | 4398 | 1.348 | .8642
15 9486 | 4257 | 1.364 | .8608
16 9163 | 4122 | 1.379 | 8575
17 8860 | .3995 | 1.393 | .8544
18 8574 | 3874 | 1.405 | .8513
19 8304 | 3759 | 1.417 | .8483
20 8047 | 3649 | 1.428 | .8454
21 7803 | 3544 | 1.438 | .8426
22 7571 | 3443 | 1.447 | 8398
23 7348 | 3347 | 1.455 | .8370
24 7136 | 3254 | 1.463 | .8343
25 6931 | 3165 | 1.471 | .8316
26 6735 | 3080 | 1.477 | .8289
27 6547 | 2998 | 1.483 | .8263
28 6365 | .2918 | 1.489 | .8237
2866 | 6248 | .2868 | 1.493 | .8220

Table 4.3: Bounds for \* = )\’ with y; quadratic, p; real and A\; medium;
and for \* = )\, with x; quadratic, p; real, y» principal, and p, complex.

82

Corollary gives lower bounds for A’ for certain ranges of ;. For each range 0 < \; <
b, we choose A = A(b) > 0,J = J(b) > 0 to produce an optimal lower bound \; for \'. This

produces Tables [4.3|and 4.4

Summary of bounds on )\’

We collect the results for each range of )\ into a single result for ease of use.

Proposition 4.2.7. Assume x and p, are real. Suppose L is sufficiently large depending on

€ > 0. Then:

(a) Suppose x1 is quadratic and N < X\y. Then

N >

and if \; > 0.1227 then the bounds in Table4.3|apply and N' > 0.2866.

(3 —e)log Ay if A < 10710
0.2103log A

if A < 0.1227
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A< | log(1/A) > | XN > A J
18 1.715 1.052 | 2.478 | .8837
19 1.661 1.032 | 2.505 | .8815
.20 1.609 1.013 | 2.530 | .8793
21 1.561 9939 | 2.555 | .8772
22 1.514 9759 | 2.578 | .8752
23 1.470 9586 | 2.600 | .8733
24 1.427 9418 | 2.621 | .8714
25 1.386 9255 | 2.641 | .8695
26 1.347 9098 | 2.660 | .8677
27 1.309 .8945 | 2.678 | .8659
28 1.273 8797 | 2.695 | .8642
29 1.238 .8653 | 2.712 | .8625
.30 1.204 8513 | 2.728 | .8608
31 1.171 8377 | 2.743 | .8592
32 1.139 .8245 | 2.758 | .8575
.33 1.109 8116 | 2.772 | .8560
34 1.079 7990 | 2,785 | .8544
.35 1.050 1867 | 2.798 | .8528
.36 1.022 7748 | 2.811 | .8513
37 .9943 7631 | 2.822 | .8498
38 9676 517 | 2.834 | .8483
.39 9416 7406 | 2.845 | .8469
40 9163 1297 | 2.855 | .8454
41 .8916 191 | 2.866 | .8440
42 .8675 1087 | 2.875 | .8426
43 .8440 6985 | 2.885 | .8412
44 .8210 .6886 | 2.894 | .8398
45 71985 .6788 | 2.903 | .8384
46 1765 6693 | 2911 | .8370
A7 1550 .6600 | 2.919 | .8356
48 1340 .6508 | 2.927 | .8343
49 7133 .6418 | 2.934 | .8329
.50 6931 .6330 | 2.941 | .8316
Sl .6733 .6244 | 2.948 | .8303
52 .6539 6159 | 2.955 | .8289
53 .6349 .6076 | 2.961 | .8276
54 6162 5995 | 2.967 | .8263
55 5978 5915 | 2.973 | .8250
.56 5798 5837 | 2.978 | .8237
57 5621 5760 | 2.984 | .8224

5733 5563 5735 | 2.985 | .8220

Table 4.4: Bounds for \" with y; principal, p; real and A\; medium.

83
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(b) Suppose x1 is principal. If A1 < 0.0875, then

(1—e)log A\t if A\ <107°
0.73991log A\['  if Ay < 0.0875

N>

and if \; > 0.0875 then the bounds in Tables4.2land{.4|apply and N' > 0.5733.

Remark. The constants 0.1227 and 0.0875 come a posteriori from the corresponding zero-free
regions established in Section

Proof. (a) Suppose \; < 107!°. From Table we see that \' > 10.99 > 4e and so the
desired bound follows from Lemma.2.2] Suppose A\; < 0.1227. One compares Lemma{.2.4
and Table 4.3|and finds that the latter gives weaker bounds. Thus, we only consider Tables 4.1
and 4.3| for this range of ;. For the subinterval \; € [0.12,0.1227], it follows that

0.4663
N > 0.4663 > —————log A\ > 0.2200log A7 .
>0 663_10g1/0‘12 og A~ > 0.2200 log A}

Repeat this process for each subinterval [1071°,107°], [107°,107%],...,[0.85,0.9],...,[0.12,0.1227]
to obtain the desired bound. For A; > 0.1227, one again compares Lemma[.2.4] and Table
and finds that the latter gives weaker bounds. For (b), we argue analogous to (a) except we
only use Table4.2]for \; < 0.0875. O

4.2.2 Bounds for )\,

Recall p1, A1, p2 and )\, are defined in Section We follow the same general approach as
A with natural modifications. Throughout, we shall assume A\, < )’; otherwise, we may use
the bounds from Section on \.

Lemma 4.2.8. Assume x1 and p; are real and also that Ay < X'. Suppose f satisfies Conditions
1 and 2. For € > 0, provided L is sufficiently large depending on € and f, the following holds:

(a) If x1, x2 are non-principal, then, with 1) = 4¢, it follows that

0< F(=X) = F(0) = F(A = X2) + f(0) + €.

(b) If x1 is principal, then x5 is necessarily non-principal and, with 1) = 2¢, it follows that

0< F(=X2) = F(0) = F(A — X) + f(0)Y + e
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(c) If x2 is principal, then X is necessarily non-principal and, with i) = 4¢, it follows that

0< F(=Xa) — F(0) = F(\ — Ao) + F(0)0 + ¢
+ Re{F(=A2 +ip2) — Fip2) — F(M — Ao+ ip2) }.

Proof. In (@.5), set (x, p) = (x1,p1) and (X«, ps) = (x2, p2) and o = S, which gives

0 < K(B2, x0) + K(B2, x1) + K(B2 + 72, x2) + 3K (B2 + 172, x1x2) + 5K(B2 — 172, X1X2)-
(4.14)

The arguments involved are entirely analogous to Lemma[4.2.1|so we omit the details here. For
all cases, one applies Lemma to each K(x, x) term, extracting p; or p; whenever possible.
We remark that x;x2 and x;\3 are always non-principal by construction (see Section[3.1). [

A1 very small

We include the final result here without proof for the sake of brevity.

Lemma 4.2.9. Assume x1 and p; are real and \y < \'. Suppose L is sufficiently large depend-
ing on e > (.

(a) If x1, x2 are non-principal, then either Ay < 2e or

%> (5 - ¢) loa(h7),
which is non-trivial for \; < 1.8 x 107°.
(b) If x1 is principal, then - is necessarily non-principal and either \y < 2e or
Az > (1 —e€)log(A),

which is non-trivial for \; < 4.3 x 1073,

(c) If x2 is principal, then X is necessarily non-principal and either \s < 4e or

1
A = (5 =€) log(A),
which is non-trivial for \; < 3.5 x 10710

Proof. Analogous to Lemma {.2.2|using Lemma [{.2.§]in place of Lemma[4.2.1 We omit the
details for brevity. O
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A1 small

Lemma 4.2.10. Assume 1 and p; are real and also that \y < X. Suppose [ satisfies Condi-
tions 1 and 2. Let € > 0 and assume 0 < A\ < b for some b > 0. Suppose, for some Xy > 0, we

have

F(=X) — F(b— S\b) — F(0)+40f(0) <0 if X1, X2 are non-principal,

F(=X) — F(b— X)) — F(0) +26f(0) <0 if x, is principal,
2F (=) — 2F(b — \y) — F(0) +4¢f(0) <0 if x2 is principal.

Then, according to the above cases, Ay > Xy — € provided L is sufficiently large depending on
e, band f.

Proof. Analogous to Lemma [4.2.3| using Lemma [4.2.8]in place of Lemma Hence, we
omit the proof. 0

As before, Lemma 4.2.10] requires a choice of f depending on b which maximizes the
computed value of S\b. Based on numerical experimentation, we choose f = f) from [HB92,
Lemma 7.2] with parameter A = \(b) for all cases. This produces Tables and[4.6
A1 medium

We first deal with the case when p- is real and Y5 is principal, i.e. po = 0.

Lemma 4.2.11. Assume x1 and p; are real. Suppose L is sufficiently large. If p is real, then

0.3034 if x1, X2 are non-principal,
0.6069 otherwise.

2 =

If ps is complex, then

0.3034  if x1, x2 are non-principal,
A2 > 1 0.6069 if x; is principal,

0.1722 if xs is principal.

Proof. Analogous to Lemma {.2.4 using Lemma {.2.§| in place of Lemma #.2.1] The argu-
ments lead to selecting f from [HB92, Lemma 7.5] corresponding to k = 2 (i.e. § = 0.9873...)
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A < %log M= A > A

107° 5.756 5.828 | 7725
1074 4.605 4.662 | .7579
.001 3.454 3.451 | .7342
.005 2.649 2.569 | 7065
.010 2.303 2.178 | .6896
015 2.100 1.947 | .6776
.020 1.956 1.783 | .6679
.025 1.844 1.654 | .6596
.030 1.753 1.550 | .6522
.035 1.676 1.461 | .6455
.040 1.609 1.384 | .6394
.045 1.551 1.317 | .6337
.050 1.498 1.256 | .6283
.055 1.450 1.202 | .6232
.060 1.407 1.152 | .6183
.065 1.367 1.107 | .6137
.070 1.330 1.065 | .6092
075 1.295 1.026 | .6049
.080 1.263 .9895 | .6007
.085 1.233 9555 | .5967
.090 1.204 .9236 | .5928
.095 1.177 .8935 | .5890
.100 1.151 .8652 | .5853
.105 1.127 .8383 | .5816
110 1.104 8127 | 5781
115 1.081 7884 | .5746
120 1.060 7653 | 5712
125 1.040 7432 | 5679
130 1.020 7221 | .5646
135 1.001 7019 | 5613
.140 9831 .6825 | .5582
.145 9655 .6639 | .5550
150 .9486 .6460 | .5520

Table 4.5: Bounds for A\, with x; quadratic, p; real, y2 non-principal and A\; small.

A < log )\1’1 > | Ay > A

155 9322 .6288 | .5489
.160 9163 6122 | .5459
.165 9009 5962 | .5429
.170 .8860 .5808 | .5400
175 8715 5659 | .5371
.180 .8574 5515 | .5342
185 .8437 5376 | .5314
.190 8304 5242 | .5286
.195 8174 5111 | .5258
200 8047 4985 | .5231
205 7924 4863 | .5203
210 .7803 4744 | 5176
215 7686 4629 | 5150
220 7571 4517 | .5123
225 7458 4408 | .5097
230 7348 4302 | .5070
235 7241 4200 | .5044
240 7136 4100 | .5018
245 7032 4002 | .4993
250 .6931 3908 | .4967
255 .6832 3816 | .4942
.260 .6735 3726 | 4916
265 6640 3638 | .4891
270 .6547 3553 | .4866
275 .6455 3470 | .4841
280 6365 3389 | .4817
285 6276 3310 | .4792
.290 6189 3233 | .4768
295 6104 3158 | .4743
300 6020 3084 | .4719

87
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M [logh\t > > A

004 5521 [6.150 | 1.448
.006 5116 | 5.705 | 1.434
.008 4.828 | 5386 | 1.422
010 4.605 | 5.137 | 1.413
015 4200 | 4.682 | 1.394
020 3912 | 4.357 | 1.379
025 3.689 | 4.103 | 1.366
.03 3.507 | 3.895 | 1.355
.04 3219 | 3.565 | 1.336
.05 2.996 | 3.309 | 1.319
.06 2.813 | 3.099 | 1.304
.07 2.659 {2922 1.291
.08 2.526 | 2.769 | 1.279
0875 | 2436 |2.666 | 1.270
10 2303 | 2.513 | 1.257
12 2.120 | 2.304 | 1.237
14 1.966 | 2.130 | 1.218
16 1.833 | 1.979 | 1.201
18 1.715 | 1.847 | 1.186
20 1.609 | 1.730 | 1.171
22 1.514 | 1.625 | 1.156

Table 4.6: Bounds for A\, with x; principal, p; real and \; small.

A < | log Afl > | Ay > A

24 1.427 1.531 | 1.142
.26 1.347 1.444 | 1.129
28 1.273 1.365 | 1.116
.30 1.204 1.292 | 1.104
32 1.139 1.224 | 1.092
34 1.079 1.162 | 1.080
.36 1.022 1.103 | 1.068
.38 9676 1.048 | 1.057
40 9163 9970 | 1.046
42 .8675 9488 | 1.035
44 .8210 29033 | 1.025
46 7765 .8605 | 1.014
A48 7340 .8199 | 1.004
.50 .6931 7816 | .9934
52 .6539 7452 | 9833
54 .6162 7106 | .9733
.56 5798 .6778 | .9633
.58 5447 .6466 | .9535
.60 5108 .6168 | .9438
.6068 4996 .6070 | .9405

88
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when p, is real or x, is non-principal, and to k = 3/2 (i.e. § = 1.2729...) when p, is complex

and Y is principal. [

For x» principal and p, complex, the “polynomial method” of Section [3.3] yields better

bounds.

Lemma 4.2.12. Assume x is quadratic and p, is real. Further suppose - is principal and p
is complex. Let A > 0 and J > 0. If L is sufficiently large depending on e, A and J, then

A
)\+)\1)> a 2JP4(A+A2

0 < (24 1) (Pu(1) — Pu( )+ 20(J +1)°A +e,

provided
Jo 1 1
— 4.15
RSN WIEE T (4.15)

where Jo = min{% + 55,4.J}.

Proof. This is analogous to Lemma so we give a brief outline here. We begin with the

inequality

< xo(M)(1 + x1 (1)) (J + Re{(Nn)"2})?
= (724 3 (0 + 1 (1)) +27 - (Re{(N) =72} + Re{xa (m)(Nw) )
+ 3+ (Re{(Nn)=2} + Re{x1(n)(Nn) >72}).

We introduce P (s, x) = P(s, x; Py) in the usual way with o = 1 + 2, yielding

0<(J?+ %)(P(U, Xo) + P(o, Xl)) +2J- (73(0 + 172, X0) + P(0 + i’yg,xl))

(4.16)
+ 3 (P(o + 2i72, X0) + P(0 + 2im2, X1)).-

Next, apply Lemma [3.3.4]to each P(x, *) term in (@.16)) extracting the zero p, from x,-terms
and the zero p; from the x;-terms. One also extracts both zeros {2, 72} from P(o + @72, x0)-
Noting % < 2 by Lemma 3.1.1|and choosing a new ¢, these applications yield the follow-
ing:
0< (724 D(P1) — Pu(+2)) — 2Py (~ ) — A~ B4 20(J + 1A+
A4\ A4 Ao @17)
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provided L is sufficiently large depending on € and A and where

;)
A+ Ao+

A= (J* + 1)Re{ Py( }+2J - Re{Py(

)\+)\1—|—Z[L2
A 1

A 1 A
B = 2] Re{Pi(y g 2W)} 5 Re{ P g 2%)} -5 Re{1>4(—H 2%)}.

Assumption (4.15) implies A, B > 0 by Lemma [3.3.6]yielding the desired result from (#.17).
[

With an appropriate numerical version of Lemma [4.2.12] analogous to Corollary 4.2.6] we
obtain lower bounds for Ay for \; € [0,b] and fixed b > 0. Optimally choosing A = A\(b) >
0, = J(b) > 0 produces Table 4.3 again.

Summary of bounds on )\,

We collect the estimates of the previous subsections for each range of \; into a one result for

ease of use.

Proposition 4.2.13. Assume x1 and p, are real. Suppose L is sufficiently large depending on
e>0:

(a) Suppose x1 is quadratic and Ny < N'. Then

(53 —e)log Ay if A < 10710

Ny >
0.2103log A\['  if A\ < 0.1227

and if \y > 0.1227 then the bounds in Table 4.3 apply and \s > 0.2866.
(b) Suppose x is principal. Then
Ay > (1 —€)log A7t if Ay < 0.0875.
and if \y > 0.0875 then the bounds in Table 4.6l apply and \s > 0.6069.

Remark. After comparing Propositions 4.2.7|and 4.2.13|in the case when Y, is quadratic, we

realize that the additional assumptions A’ < Ay or Ay < ) are superfluous.

Proof. (a) First, suppose Y» is non-principal. For \; < 1075 we see from Table that
Ao > 5.828 > 2e so the desired bound follows form Lemma For 107 < )\ <
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0.1227, consider Table Apply the same process as in Proposition to each subinterval
[1075,107], ..., [0.12,0.125] to obtain

A2 > 0.35061log AL

Now, suppose - is principal. For \; < 107!, we see from Tablethat A2 > 10.99 > 4e
so the desired bound follows from Lemma.2.9] For 10719 < \; < 0.1227, consider Tables[4.1]
and[4.3] Apply the same process as in Proposition[4.2.7|to each subinterval

[107,107%),...,[0.85,0.9],...[0.12,0.1227]

and obtain
Ay > 0.2103log Ay L.

Upon comparing the two cases, the latter gives weaker results in the range \; < 0.1227. For
A1 > 0.1227, we compare Lemma4.2. 11| and Tables [4.3]and [4.5]to see that Table @.3] gives the
weakest bounds.

(b) Similar to (a) except we use Table in conjunction with Lemma 4.2.9| The range \; <
0.004 gives the bound Ay > (1 — ¢)log A;'. The range 0.004 < A\; < 0.0875 turns out to give
a better bound but we opt to write a bound uniform for A; < 0.0875. For A; > 0.0875, we use
Lemmal4.2.11land Table O

4.3 Zero repulsion: y; or p; is complex

When y; or p; is complex, the effect of zero repulsion is lesser than when x; and p; are real.
Nonetheless, we will follow the same general outline as the previous section, but with modified
trigonometric identities and more frequently using the “polynomial method” of Section
Also, whether y; is principal naturally affects our arguments in a significant manner so, for
clarity, we further subdivide our results on this condition. Recall the definitions of zeros p1, o/,

and p- in Section3.1.1
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4.3.1 Bounds for )\’
X1 hon-principal

Lemma 4.3.1. Assume Y or p; is complex with x| non-principal. Let A\ > 0,J > i. If Lis
sufficiently large depending on e, \ and J then

) +2(J +1)%°0A +e,

0< (S + )P = (P +3) - Puls) =2 PG

provided
Jo 1

1
SN NS UIEgsT

with Jy = min{J + 2 4J}. (4.18)

47

Proof. For simplicity, denote P(s, x) = P(s, x; Py). Our starting point is the inequality

2

0 < xo(m) (1 + Re{x: (m)(Nw)™'}) ( + Refxa (m)(Nn) 1)

In the usual way, it follows that

0 < (24 D{P(o,x0) + P(o +iv,x1) }+
+JP(o +i(n +7"),x7) +2JP(0 +ivi, xa) + JP(0 +i(yi =), x0) (419
+ 3P0 +i(2v +7),x1) + 3P(0 + 2im, x3) + +P(o +i(2n — '), x1),

where 0 = 1 + % To each term P( -, x]) above, we apply Lemma extracting zeros

depending on the order of y; and the value of . We divide our argument into cases.

(i) (ordx; > 4) Extract {p1,p'} from P( -, x}) when r = 1. From @.19)), we deduce

A

0 <7+ DA ~ (4 DP() ~ 2P ()

A+ Mp+e  (4.20)

where ¢ = (J2+3J+ )Qgczl +(J2+J+ )gba] and

A A A
)\+>\1+it1> +2J'P4(A+X+z’t1) _J'P‘*(Aﬂ'tl)}

A= Re{(J2 + %)P4(
with ¢ = 4/ — yy. One can easily verify that J* + 3J + 3 < 3. (J?2+ J + ) and so

by Lemma[3.1.1] we may more simply take ¢» = 2(.J + 1)%¢ in @20). By Lemma3.3.6]
assumption (@.18)) implies A > 0, completing the proof of case (i).

(i) (ordx; = 3) Extract {p1,p'} or {p1,p'} from P(-,x}) when r = 1 or 2 respectively.
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Then by (@.19),

A A
0<(J>+HP1) = (S + HPi(~—~=) —2JP(~——) —A—B+A
_( +2> 4() ( +2) 4(>\+)\/) 4(>\+/\1) + ¢+6’
4.21)
where ¢ = (J? +3J + Z)cﬁ% + (J?+ J + 3)p=2, the quantity A is as defined in case
(i), and

S S St A
)\+)\1+it2)+2 P4()\—|—)\’+z't2) Z P4()\+it2)}

B =Re{J- Py

with ty = p/ + 211. Again, one can check that J? + 3.J + % <3 (JP+J+ %) and so by
Lemma [3.1.1} we may take ¢ = 2(J + 1)?¢ in @21). Similar to (i), Lemma and
assumption @.18) imply A, B > 0.

(iii) (ord x1 = 2) Extract{p1, p1, p'} fromP( -, x"}) whenr = 1 or 3. Again, apply Lemma|3.3.4
to the terms in (@.19) except with a slightly more careful analysis. We outline these mod-

ifications here.

o Write 2J-P(0+ivi, x1) = J-P(o+iy, x1)+J-P(o+iv, x1). Extract {p1, p1, 0}

from the first term and extract {p;, p1, o'} from the second term.

e For 1 P(0+i(2v1+7'), x1) and ;P(c+i(2v1 —'), x1), extract {py, p'} and {py, p'}
respectively.

With these modifications, (4.19) overall yields

0 <(J* 4 $)Pa(1) — (J* + $) Pu(

A
) T HRGT) AT

R (PP )T Py py(
Re{(‘] +4)P4()\+>\1+it1)+J P4()\+>\’+it1) / P4(A+it1)}
A A A
_ 2. 8. p(— 2 P — 7
Re{(‘] T P4(>\+)\1+it3)+J P4(/\+X+z't3) ! P4(A+z't3)}
A 1 A 1 A
—Re{QJ-P4(m)+§'P4(m>_§'P4(/\—|-Z't4)}

(4.22)
wheret; = p/' —puy;ts = p' ity = 2p1;and ) = (J2+2J+1)¢%+(J2+2J—|—1)¢%.
Trivially J2 +2J +1 < 3 (J?+2J + 1) and so by Lemma[3.1.1} we may more simply
take 1) = 2(J 4 1)2¢. The three terms Re{. .. } in (@22) are all > 0 by Lemma[3.3.6/and
(4.18)) and hence can be ignored.

This completes the proof in all cases. 0

A suitable numerical version of Lemma[4.3.1] produces Table
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M N2> A J M N> A J

1227 | 7391 | 1.097 | 7788 210 | 4353 | 1.264 | .8073
A25 | 7266 | 1.104 | 7797 215 | 4241 | 1.269 | .8087
130 | .7007 | 1.120 | .7817 220 | 4132 | 1.273 | .8100
135 | .6766 | 1.135 | .7836 225 | 4027 | 1.276 | .8114
.140 | .6540 | 1.149 | .7854 230 | .3926 | 1.280 | .8127
145 | .6328 | 1.162 | .7872 235 | .3828 | 1.283 | .8140
150 | .6128 | 1.174 | 7889 240 | .3733 | 1.285 | .8153
155 | .5939 | 1.185 | .7906 245 | .3641 | 1.288 | .8166
160 | .5759 | 1.195 | .7923 250 | .3552 | 1.290 | .8179
165 | .5589 | 1.204 | .7939 255 ].3465 | 1.292 | .8191
170 | 5427 | 1.213 | 7955 260 | .3381 | 1.294 | .8204
A75 | .5272 | 1.221 | 7971 265 | .3300 | 1.295 | .8216
180 | .5124 | 1.229 | .7986 270 | .3220 | 1.296 | .8229
185 | .4982 | 1.236 | .8001 275 | .3143 | 1.297 | .8241
190 | 4846 | 1.242 | .8016 280 | .3068 | 1.298 | .8253
195 | 4715 | 1.249 | .8030 285 | .2995 | 1.299 | .8265
200 | .4590 | 1.254 | .8045 290 | .2924 | 1.299 | .8277
205 | .4469 | 1.259 | .8059 2909 | 2911 | 1.299 | .8279

Table 4.7: Bounds for \" with x; or p; complex and x; non-principal

X1 principal

94

Lemma 4.3.2. Assume Y1 is principal, py is complex, and p' is real. Suppose [ satisfies

Conditions 1 and 2. For ¢ > 0, provided L is sufficiently large depending on € and f, the

following holds:

0 < 2F(=N) = 2F(A; — N) — F(0) + 20£(0) + ¢.

Proof. This is analogous to Lemma To be brief, use (@#.6) with (x,7) = (xo0,71) and
o = (' and apply Lemma|3.4.3|extracting {p’, p1, p1 } from (3, xo) and {p/, p1 } from K(5’'+

’i’YlaXO)'

O

A numerical version of Lemma yields bounds for A" with f = f) taken from [HB92,
Lemma 7.2], producing Table 4.8] The remaining case consists of x; principal with both p;

and p’ complex.

Lemma 4.3.3. Assume Y is principal, p; is complex and p' is complex. Let X\ > 0 and J > 0.

If L is sufficiently large depending on €, A and J then

0< (P+HP(1) — (P+1)- P

) —2J

A+ M\

.p4(

A+ N

) +2(J + 1A +e



CHAPTER 4. ZERO-FREE REGIONS AND ZERO REPULSION 95

M N2> A M | N> A

0875 | 1.836 | 1.189 22 7994 | 1.023
.09 1.803 | 1.185 23 7522 |1 1.013
.10 1.681 | 1.170 24 7073 | 1.002
11 1.572 | 1.156 25 6646 | .9917
12 1.472 | 1.142 .26 .6239 | 9813
.13 1.381 | 1.129 27 5851 | 9711
.14 1.297 | 1.116 28 .5480 | .9609
15 1.220 | 1.103 .29 5126 | .9508
.16 1.148 | 1.091 .30 A787 | .9407
17 1.080 | 1.079 31 4462 | .9307
.18 1.017 | 1.068 .32 4150 | .9208
.19 9578 | 1.056 33 3851 | .9108
.20 9020 | 1.045 34 .3565 | .9009
21 .8493 | 1.034 3443 | .3445 | .8966

Table 4.8: Bounds for \’ with y; principal, p; complex and p’ real

provided both of the following hold:

! + Jo > i and 2 + 1 > i
A+2)r A+ )2 M A+A) A+ )7 W

(4.23)

where Jo = min{J + 2, 4J} and J, = 4J/(J* +1).

Proof. Analogous to Lemma[4.3.1]but we exchange the roles of p; and p’ using that

2

0 < Xo(n) (1 + Re{(Nn)™}) (J + Re{(Nn)""})".
Writing P(s) = P(s, xo; Pu), it follows in the usual way that

0< (S*+ D{P(o)+Plo+in)}+JP(o+i(y + 7)) +2JP(c +iy) + JP(oc +i(y —mn))
+ 1P(o+i(2y +m)) + 3P0+ 2iv) + 3P0 + (27 — ™)),
(4.24)
where 0 =1+ % Next, apply Lemma to each term according to the following outline:
e P(o) and P(o + i7') extract all 4 zeros {p1, p1, o', p'}.
e P(o+iv)and P(o +i(y' + 1)) extract only {p1, o/, p'}.

o P(o+i(y — 1)) extract only {p7, o', p'}.

e P(o+i(2y 4+ 7)) and P(o + (27 — 7)) extract {py, p'} and {p1, p'} respectively.
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e P(o + 2i7) extract only {p1, p1, 0}

When necessary, we utilize that Py(X) = P,(X). Then overall we obtain:

A A
0S(J2+%)P4(1)—(J2+§)P4(/\+)\1) —2J.P4(A+X) +20(J + 1)\ + ¢
7
A A A
— R{AT-P—, B, -P)(~———)-C,-P , }
; ¢ 4(>\+)\1+ztr)+ 4</\—|—)\’+th) 4()\+th)
(4.25)
where .., A,, B,, and C, are given by the following table.
r 1 2 3 4 5 6 7
tr f1 G o | p = | 20| 20+ | 20—
Al 27241 2.J 2.J 2J  |[1/2] 1/2 1/2
B.| 2] |2J243/2|J*+3/4|J>+3/4]| 2] J J
Cp | J2+1/2 2.J J J /2] 1/4 1/4

It suffices to show the sum over r in (4.25)) is non-negative. By Lemma the sum is > 0

provided
A, n B, S Q
A+A)r A+ M

After inspection, the most stringent conditions are r = 1,2 and 5, which are implied by as-

sumption (4.23). O

forr=1,2,...,7.

This produces Table 4.9]in the usual fashion.

Summary of bounds

We collect the results in the subsection into a single proposition for the reader’s convenience.

Proposition 4.3.4. Assume x or p, is complex. Provided L is sufficiently large, we have the

following:
(a) If x1 is non-principal then N' > 0.2909 and the bounds for X' in Table 4.7 apply.
(b) If x1 is principal then X' > 0.2909 and the bounds for X' in Table 4.9 apply.

Proof. 1f x; is non-principal, then the only bounds available come from Table If x1
is principal, then upon comparing Tables 4.8 and [4.9] one finds that the latter gives weaker
bounds. 0
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M N2> A J

.0875 | .5330 | 1.155 | .8815
090 | .5278 | 1.161 | .8804
095 | 5179 | 1.171 | .8782
.100 | .5083 | 1.181 | .8762
105 | 4991 | 1.190 | .8742
110 | .4902 | 1.198 | .8723
15 | .4817 | 1.206 | .8704
120 | 4734 | 1.213 | .8686
125 | 4654 | 1.220 | .8669
130 | 4577 | 1.226 | .8652
JA35 | .4502 | 1.232 | .8636
140 | .4429 | 1.238 | .8620
145 | .4359 | 1.243 | .8605
150 | 4290 | 1.248 | .8590
155 | 4223 | 1.252 | .8576
160 | 4159 | 1.257 | .8562
165 | 4096 | 1.261 | .8548
170 | .4034 | 1.265 | .8534
A75 1 .3974 | 1.268 | .8521
.180 | .3916 | 1.271 | .8509
185 | 3859 | 1.274 | .8496
190 | .3804 | 1.277 | .8484

Table 4.9: Bounds for \’ with x; principal, p; complex and p’ complex

M N> A J

195 | .3749 | 1.280 | .8472
200 | .3696 | 1.282 | .8460
205 | .3645 | 1.284 | .8449
210 | .3594 | 1.286 | .8437
215 | .3545 | 1.288 | .8426
220 | .3497 | 1.290 | .8415
225 | .3449 | 1.291 | .8405
230 | .3403 | 1.293 | .8394
235 | .3358 | 1.294 | .8384
240 | .3314 | 1.295 | .8374
245 | .3270 | 1.296 | .8364
250 | .3228 | 1.297 | .8354
255 | 3186 | 1.297 | .8344
260 | .3145 | 1.298 | .8335
265 | .3106 | 1.298 | .8326
270 | .3066 | 1.299 | .8317
275 1.3028 | 1.299 | .8308
280 | .2990 | 1.299 | .8299
285 ].2953 | 1.299 | .8290
290 | .2917 | 1.299 | .8281
2909 | .2911 | 1.299 | .8280

97
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4.3.2 Bounds for )\,

Before dividing into cases, we begin with the following lemma analogous to Lemma[4.3.1]

Lemma 4.3.5. Assume 1 or py is complex. Suppose [ satisfies Conditions 1 and 2. For ¢ > 0,
provided L is sufficiently large depending on € and f, the following holds:

(a) If x1, X2 are non-principal, then

0.< F(=A\1) — F(0) = F(A — A) + 46£(0) + c.

(b) If x1 is principal, then p, is complex, x5 is non-principal and

0< F(=\)— F(0) — F(As — A1) +46£(0) + ¢
+Re{F (=M1 +im) — Flipn) — F(Aa — A\ + i)}

(c) If x2 is principal, then X is non-principal and

0< F(=A\) = F(0) — Fha — A1) +46£(0) + €
+ Re{F (=M1 +ips) — Flipa) — F(A2 — M +ipo)}.

Proof. The arguments involved are very similar to Lemma4.2.T]and Lemma[4.2.8|so we omit

most of the details. Briefly, use (4.3) by setting (x, p) = (x1, 1) and (s, p«) = (X2, p2) and
o = (1, which gives

0 < K(B1, x0) + K(B1 + i, x1) + K(Br + iy2, x2)

(4.26)
+ KB +i(n +72), xaxz) + 2K(B1 + i — 72), xaXz)-

Apply Lemma to each KC(*, %) term, extracting zeros p; or ps whenever possible, de-
pending on the cases. Recall ;Y2 and x;2 are always non-principal by construction (see
Section [3.1). O

X1 and Y» non-principal
A numerical version of Lemma [4.3.3] suffices here.

Lemma 4.3.6. Assume x or py is complex with 1, x2 non-principal. Let ¢ > 0 and for b > 0,

assume 0 < \; < b. Suppose, for some 5\5 > 0, we have

F(=b) — F(0) — F(\y — b) + 4¢£(0) < 0.
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M| A > A

1227 | .4890 | .3837
.13 4779 | .3888
135 | 4706 | 3922
140 | 4635 | 3955
145 | 4566 | .3986
150 | .4499 | 4017
155 | 4433 | 4047
160 | .4370 | 4077
.165 4308 | 4105
170 | 4247 | 4133
175 | 4188 | 4160
180 | 4131 | 4187
185 | 4075 | 4213
190 | .4020 | 4238
.195 .3966 | .4263
200 | .3914 | 4287
205 | 3862 | 4311
210 | 3812 | 4334
215 | .3763 | 4357

Table 4.10: Bounds for Ay with x; or p; complex and X1, Y2 non-principal

M| A2 A

220 | 3715 | 4380
225 3668 | .4402
230 | 3622 | 4423
235 3576 | 4444
240 | .3532 | 4465
245 | 3488 | .4486
250 | .3446 | .4506
255 .3404 | 4526
260 | .3363 | 4545
.265 3322 | 4564
270 | .3283 | 4583
275 | 3244 | 4602
280 | .3205 | .4620
285 3168 | .4638
290 | .3131 | .4656
.295 3094 | 4673
300 | .3059 | .4690
.3034 | .3035 | .4702

Then Ay > N\, — € provided L is sufficiently large depending on € and f.

99

Proof. Analogous to Lemma [4.2.10| using Lemma [4.3.5]in place of Lemma Hence, we

omit the proof.

This produces Table by taking f = f, from [HB92, Lemma 7.2] with parameter

A= A(b).

X1 principal or Y- is principal

When ¥ is principal and ps is real, a numerical version of Lemma [4.3.5| suffices.

]

Lemma 4.3.7. Assume Y or p; is complex. Further assume - is principal and p is real. Let

€ > 0and forb > 0, assume 0 < \; < b. Suppose, for some N, > 0, we have

F(=b) — F(0) = F(A — b) +26(0) < 0.

Then s > N, — € provided L is sufficiently large depending on € and f.

This produces Table by taking f from [HB92, Lemma 7.2] with parameter A = A(b).
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M| A > A M| > A

1227 | 1.221 | .6530 37 .8149 | .8425
.13 1.203 | .6620 .39 .7932 | .8526
15 1.155 | .6846 41 7725 | .8622
17 1.112 | 7049 43 7526 | .8714
.19 1.073 | 7234 45 7335 | .8803
21 1.037 | .7403 47 7152 | .8889
23 1.003 | .7560 .49 .6977 | .8971
25 9710 | .7707 S1 .6807 | .9051
27 9412 | .7844 .53 .6644 | 9128
.29 9132 | .7973 .55 .6487 | .9203
31 .8867 | .8095 .57 .6336 | .9276
.33 .8615 | .8210 .59 .6189 | .9346
.35 8377 | .8320 .6068 | .6070 | .9404

Table 4.11: Bounds for A\, with y; or p; complex and 5 principal and p, real

Now, when Y is principal or when Y5 is principal and p, is complex, we employ the “polyno-

mial method”.

Lemma 4.3.8. Suppose x; is principal and p; is complex, and let x, # x;. Let €, A, J > 0. If
L is sufficiently large depending on €, \ and J, then

A

0< (J*+ H){P(1) - P —2JP, 20(J + 1)\
P4 D{R0) = PG} 2R y) #2004 1P e
provided
Jo + ! > 1 where Jo = min{J + 2, 4.J} (4.27)
A+ A+ 7 A 0 ap = h '

Proof. Write P(s, x) = P(s, x; P1). We begin with the inequality
0 < xo(n) (1 + Re{xx(n)(Nn)~#}) (J + Re{(Nn)~7})*,

It follows in the usual fashion that

0 < (J*+ 3){P(o,x0) + P(o + ive, x) } +
+ JP(o +i(v; + ) x) + 2JP(0 + v, x0) + JP(o +i(y; —w) Xe)  (428)
+ 3P0+ i(29; + ), xi) + 5P (0 + 2075, x0) + 1P (0 +4(27; — ), Xn),

where o = 1 + 2. Next, apply Lemma to each P(x, x) term in (4.28) extracting {p;, p; }
from x(-terms, p; from the yj-terms, and p; from Y;-terms. When necessary, we also use that
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Py(X) = Py(X). Then overall

A

<(JP+Hpr) -+ HP —2JP. A —A-B .
0 <(J*+3)Pi(1) = (> + 3) 4()‘+)\k) J4(A+/\j)+¢ +e , (429)
where
— 243 ; . ; — . A
A_Re{(w +2)P4(A+Aj+wj)+2‘] P4(A+Ak+mj) 2/ P4(A+zpj)}’

_ P (— 2 yi1p(— Ny 1p (A
B_Re{2‘] P4(A+Aj+2wj)+2 P4(A+Ak+2zﬂj) 2 P4(A+2zpj)}’

and ¢ = (J2 4+ 2J + 1) + (J2 + 2J + 1)¢2. Trivially J2 +2J +1 < 3- (J2+2J + 1)

so, by Lemma 3.1.1} we may more simply take ¢ = 2(.J + 1)2¢ in (#29). From Lemma[3.3.6|
and (4.27), it follows that A, B > 0. O

We record a numerical version of Lemma [4.3.8| without proof.

Corollary 4.3.9. Suppose x1 or py is complex. Forb > 0, assume 0 < \; < band let \, J > 0.

Denote Jy := min{J + 2, 4J}. Assume one of the following holds:

(a) x1 is principal, p; is complex. Further there exists X € [0, 00) satisfying

A

0= (J2+4H(P(1)=-P —)) —2J-P 20(J + 1)%\
(2 + (R0 - Pl 5)) () + 200+ DA
and
Jo N 1 >i
(A+0)* A+ 24 A

(b) X2 is principal, ps is complex. Further there exists X € [0, 00) satisfying

A

0= (J*+3)(Ps(1) - 134(A "

A 2
b))—QJ-P4()\+Xb)+2¢(J+1) A+e

and
L N §
(A+0)* A+ )t A

Then, in either case, Ay > Xy — € for L sufficiently large depending on ¢, b, \ and J.

This produces Tables 4.12]and 4.13]
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AMS A= A J

0875 | 1.017 | .9321 | .7627
090 | .9892 | 9474 | 7640
095 | .9385 | .9760 | .7666
.100 | .8937 | 1.002 | .7690
105 | .8537 | 1.026 | .7713
110 | 8175 | 1.048 | .7735
A15 | 7846 | 1.069 | 7757
120 | 7544 | 1.087 | 7777
125 7266 | 1.104 | 7797
130 | .7007 | 1.120 | .7817
A35 | .6766 | 1.135 | .7836
140 | .6540 | 1.149 | .7854
145 | .6328 | 1.162 | .7872
150 | .6128 | 1.174 | .7889
A55 | .5939 | 1.185 | .7906
160 | .5759 | 1.195 | .7923
165 | .5589 | 1.204 | .7939
170 | 5427 | 1.213 | 7955
A75 1 .5272 | 1.221 | 7971
180 | .5124 | 1.229 | .7986
185 | .4982 | 1.236 | .8001
190 | .4846 | 1.242 | .8016

M A= A J

195 | 4715 | 1.249 | .8030
200 | .4590 | 1.254 | .8045
205 | .4469 | 1.259 | .8059
210 | 4353 | 1.264 | .8073
215 | 4241 | 1.269 | .8087
220 | 4132 | 1.273 | .8100
225 | 4027 | 1.276 | .8114
230 | .3926 | 1.280 | .8127
235 | .3828 | 1.283 | .8140
240 | .3733 | 1.285 | .8153
245 | .3641 | 1.288 | .8166
250 | .3552 | 1.290 | .8179
255 ] .3465 | 1.292 | 8191
260 | 3381 | 1.294 | .8204
265 | .3300 | 1.295 | .8216
270 | .3220 | 1.296 | .8229
275 | 3143 | 1.297 | .8241
280 | .3068 | 1.298 | .8253
285 1.2995 | 1.299 | .8265
290 | .2924 | 1.299 | .8277
2909 | .2911 | 1.299 | .8279

Table 4.12: Bounds for A\, with y; principal and p; complex

102
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M| A > A J

1227 | 4691 | 1.217 | .8677 M | Ay > A J
A25 | 4654 | 1.220 | .8669 215 | 3545 | 1.288 | .8426
130 | 4577 | 1.226 | .8652 220 | 3497 | 1.290 | .8415
135 4502 | 1.232 | .8636 225 3449 | 1.291 | .8405
140 | .4429 | 1.238 | .8620 230 | .3403 | 1.293 | .8394
145 | 4359 | 1.243 | .8605 235 | 3358 | 1.294 | .8384
150 | 4290 | 1.248 | .8590 240 | 3314 | 1.295 | .8374
155 4223 | 1.252 | .8576 245 3270 | 1.296 | .8364
160 | 4159 | 1.257 | .8562 250 | 3228 | 1.297 | .8354
.165 4006 | 1.261 | .8548 255 3186 | 1.297 | .8344
170 | 4034 | 1.265 | .8534 260 | 3145 | 1.298 | .8335
A75 |1 .3974 | 1.268 | .8521 265 | 3106 | 1.298 | .8326
180 | 3916 | 1.271 | .8509 270 | 3066 | 1.299 | .8317
185 3859 | 1.274 | .8496 275 3028 | 1.299 | .8308
190 | 3804 | 1.277 | .8484 280 | .2990 | 1.299 | .8299
.195 3749 | 1.280 | .8472 285 .2953 | 1.299 | .8290
200 | .3696 | 1.282 | .8460 290 | 2917 | 1.299 | .8281
205 3645 | 1.284 | .8449 2909 | .2911 | 1.299 | .8280
210 | .3594 | 1.286 | .8437

Table 4.13: Bounds for Ay with x; or p; complex and 5 principal and p, complex

Summary of bounds
We collect the results in the subsection into a single proposition for the reader’s convenience.

Proposition 4.3.10. Assume x1 or py is complex. Provided L is sufficiently large, the following
holds:

(a) If x1 is non-principal, then \y > 0.2909 and the bounds for )\ in Table apply.
(b) If x1 is principal, then Ay > 0.2909 and the bounds for )\, in Table apply.

Proof. 1f x; is non-principal then one compares Table[4.10] Table[.1T]and Table[d.13]and finds
that the last one gives the weakest bounds. If y; is principal, then the only bounds available
come from Table [l

4.4 Zero-free region

Proof of Theorem If y; and p; are both real, then Theorem is implied by Propo-
sitions [4.2.7)and [4.2.13] Thus, it remains to consider when x; or p; is complex, dividing our

cases according to the order of ;.
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x1 has order > 5
We begin with the inequality

0 < xo(n)(3+410- Re{xl(n)(Nn)_m})2(9 +10 - Re{xl(n)(Nn)_m})Q, (4.30)

which was also used in [HB92, Section 9]. This will also be roughly optimal for our purposes.
We shall use the smoothed explicit inequality with a weight f satisfying Conditions 1 and 2.
By the usual arguments, we expand out the above identity, multiply by the appropriate factor

and sum over n. Overall this yields

0 < 14379 - K(0, x0) + 24480 - K(0o + i1, x1) + 14900 - K(o + 2iv1, x3) 4an
+ 6000 - K (0 + 3ive, X3) + 1250 - K(o + 4iv1, X7, '
where K (s, x) = K(s, x; f) and o = 1 — - with constant \* satisfying
A < N < min{\, A2}

Now, apply Lemma to each term in (4.31) and consider cases depending on ord x;. For
lC(O- + m%a X?)

e (ord x; > 6) Extract {p;} if n = 1 only.

e (ord x; = 5) Set \* = \; and extract {p; } if n» = 1 only.

It follows that
0 < 14379 - F(=X\*) — 24480 - F (A — X*) + Bf(0)¢ + €, (4.32)

where B = 14379 - £ 1 46630 - 3. From Lemma[3.1.1} B < 57516 + 3493531 < 62174 s0
(#4.32) reduces to

0 < 14379 - F(—X\*) — 24480 - F(A; — X*) + 62174¢.f(0) + e. (4.33)
We now consider cases.

e (ordx; > 6) Without loss, we may assume \; < 0.180. From Propositions §.3.4]
and 4.3.10f we may take A\* = 0.3916. Choose f according to [HB92, Lemma 7.1]
with parameters § = 1 and A = 0.243. Then (4.33) implies A\; > 0.1764.
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e (ord x; = 5) Since A* = A in this case, (4.33) becomes
0 < 14379 F(—\y) — 24480 - F(0) + 62174 f(0)¢p + €.

We choose f according to [HB92, Lemma 7.5] with & = 24480/14379 giving 6 =

1.1580... and 1 62174
—1 2 < -
Ay cos”l < 4 14379 te

whence A\; > 0.1489.

x1 has order 2, 3 or 4

We use the same identity (4.30), but instead we will apply the “polynomial method” with
P,(X). In the usual way, it follows from (4.30) that

0 < 14379 - P(0, x0) + 24480 - P(0 + i1, x1) + 14900 - P(0 + i1, x3)

(4.34)

where 0 = 1 + % with A > 0. The above identity will be roughly optimal for our purposes.
Now, we apply Lemma to each term above and consider cases depending on ord ;. For
each term P (o + nivyy, X7):

e (ord y; = 4) Extract {p,} if n = 1 and {p;} if n = 3.

e (ord x; = 3) Extract {p, } if n =1or4 and {p;} if n = 2.

e (ord x; = 2) Extract {p;, p1} if n = 1 or 3 since p; is necessarily complex.

It follows that

0 < 14379 - Py(1) — 24480 - P ( )+ Ay, + By oA+, (4.35)

A+
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where
( )\ d
Re{1250 - Py(~———~—) — 6000 - Py(~——"—— =4
el 4(A+4w1) 4(A+A1+4w1)}’ o=
A A
Re{6000 - Py(~—2—) — 16150 - Py~ dyi =3
| ef 4(/\+3w1) 4(A+A1+3w1)}’ X =
X1 — A
Re{14900 - Py(~—=—) — 30480 - Py(~——"—— dyi =2
el 4(>\+2m1) 4(>\+A1+2w1) orext = £
A\
Re{1250 - P;(~——"~—) — 6000 - Py(+——"——
+ e{ 4<)\+4Z,U/1) 4()\+)\1+47/,U1)},
\
and )
15629 - £ 445380 - 22 if ord x; = 4,
B,, = {20379 £ 440630 - ¢ iford y; = 3,
30529 - £0 430480 - &L iford yy = 2.
\

By Lemma [3.1.1] we observe B,, < 61009. Furthermore, applying Lemma to A,,, it
follows that A,, < 0 in all cases provided

14900 30480

— <0. 436
X A+ T (4.36)

Thus, implies

0 < 14379 - Py(1) — 24480 - Py(

1009\
A+A1)+6 009p\ + €

provided (4.36) holds. Taking A = 0.9421 yields \; > 0.1227.

X1 is principal

Recall in this case we assume p; is complex. We begin with a slightly different inequality:
0 < xo(n) (0 + 10 - Re{(Nn)""1})*(7 + 10 - Re{(Nn)~1})*,

Again using the “polynomial method” with P,(.X), it similarly follows that

0 < 620 - P(, x0) + 1050 - P(0 + i1, Xo0) + 745 - P(0 + 2i71, X0)

4.37)
+350 - P(0 + 3im, Xo) + 125 - P(0 + i, x0),
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where o0 = 1 + % with A > 0. Apply Lemma to each term above, extracting {p1, 1}

since p; is necessarily complex. Since £y < £, we have that

A
0§620-P4(1)—1O50-P4(m)+A0+289O¢/\+e, (4.38)
1
where
Ay = Re{1050 - P, (~—— )—1365-&(#)
A+ g A+ AL+
A
+ Re{745 - Py(—%—) — 1400 - Py(~—+——
{ 4()\+21M1) 4(>\—|—)\1—|—2w1)
A
+Re{350 - Py(~——) =870 Py(~—"——
o{ 4(>\+3w1) 4(>\+A1+3wl)
A
Re{125 - Py(~———) — 350 - Py(~—————)}.
* e{ 4(A‘+-4i#1) 4<A'+-A1‘+-4iul)}

Applying Lemma to each term of Ay, it follows that Ay < 0 provided

1050 1365
— < 0. 4.39
PRI (4.39)

Thus, (4.38) implies

0 < 620 - Py(1) — 1050 - P4 ( ) + 28900 + €

A+ A\

provided (4.39)) is satisfied. Taking A = 1.291 yields A\; > 0.0875. This completes the proof
of Theorem O

4.5 Numerical zero density estimate

Recall 7, > 1is fixed and H is an arbitrary congruence class group of K. Let us first introduce

some notation intended only for this section.

Worst low-lying zeros of each character

Consider the rectangle
{seC:0<o<1, [t <T,}.
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For each character (mod H) with a zero in this rectangle, index it Y*) for k = 1,2, ... with a

zero p*) in this rectangle defined by:
Re(p") = max{Re(p) : L(p,x"") = 0, |y < T.},

so x) #£ x® for j # k. Write

A) L8
h) . gk e gy A k)

Without loss, we may assume A < X\2) < .. and so on.

Remark. Upon comparing with the indexing given in Section 3.1 we always have the bound
. > A\®) for all & where both quantities exist. Further, \; = A,

4.5.1 Low-lying zero density

For A > 0, consider the rectangle
A
S=8) ::{SEC:l—Zgagl, it < T.,}.
Define

N =N(A) :=#{x (mod H) : x # xo0, L(s, x) has azeroin S(\)} = Z 1.
AR <\
x®#xo

Below is the main result of this section which gives bounds on N(\) using the smoothed

explicit inequality.

Theorem 4.5.1. Suppose f satisfies Conditions 1 and 2 and let € > 0. Assume \y > b for some
b>0. For A\ >0, if

F(A=1b) > 3£(0)¢,
and

(FO—8) — 4£(0)0) > 47(©)0(£()0 + F(-b)

then unconditionally,

(£0)6+ F(=0)) (F(=b) = 1£(0)0)

N < :
(PO =b) = ££(0)8) — £7(0)6(f(0)6 + F(-b))

+e€ (4.40)




CHAPTER 4. ZERO-FREE REGIONS AND ZERO REPULSION 109

for L sufficiently large depending on €, T, and f.

Remark. If (x(s) has a real zero in S(\), then one can extract this zero from K(o, xo; f) in

the argument below and hence improve (4.40) to

(F()6+ F(=b) = F(x = 1)) (F(=8) = F(A = b) = 11(0)9)

N < 2
(FO=b) = ££0)8) — ££0)6(£(0) + F(~b) = F(A ~ b))

+e€

with naturally modified assumptions. The utility of such a bound is not entirely clear. If the real

zero is exceptional, then the zero repulsion from Sectiond.2]would likely be a better substitute.

Proof. We closely follow the arguments in [HB92, Section 12]. Let x (mod H) denote a non-
principal character with a zero j = /3 + 47 in S(\); thatis, b < A\ < A < \. Applying
Lemma with s = o + iy where 0 = 1 — £ and Z = {5} we find that

L7 Ko+, x; f) < F(0)p% — F(A—b) +¢ (4.41)

for £ sufficiently large depending on € and the content of f. Since F' is decreasing by Condition
2, it follows that F'(\ — b) > F(\ — b). Also recalling that % < £ by (3:3) and (34), we see

that (4.41)) implies:
L7 K(o+i7,x: f) < f(0)40 — F(A—b) +e. (4.42)

Summing @#42)) over Y = x\) (which are non-principal by construction) and ¥ = ) for
j=1,...,N where N = N(\), we deduce that

(FO =0 = 1040 =€) NL < =3~ Ko+ x; )

J<N

—— 3 A(m)(Nw) f(lOgEN“)Re{ > A m)(Nw) =}

(n,9)=1

< 3 MmNy (R

(n,g)=1

)| D X9 ) ¥my
J<N
(4.43)

The LHS of (4.43) is positive by assumption so after squaring both sides of (4.43), we apply
Cauchy-Schwarz to the last expression on the RHS implying

(LHS of @A43))” < 5,5,
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where

= Z A(n)(Nn)"f<10g£Nn) = K(B x0: f),

and Z An <logNn>‘Z U) () (Nn)~ —in@ |7

J<N

— Z K(o + (49 — 4®), @g®), p),

Jk<N

The 1 term from S; and the N terms in S, with j = k give

K(o,x0; f) < L(f(0)¢ + F(=b) +€)

by Lemma For the N? — N terms in S, with j # k, apply Lemma extracting no
zeros to see that

K(o +i(y" = ") xOxW; ) < L£(f(0)50 + ).
Therefore, from (@.43)), we conclude that

(F(A —b) — f(0)¢ — e>2N2£2
< L‘[f(o)qﬁJr ¢+ F(—b)] x z[(f(0)¢+ e+ F(—b))N + (F(0)46 + ) (N2 — N)].

Dividing both sides by N £?, solving the inequality, and choosing a new ¢ > 0 depending on
f, we find

(£0)6+ F(=0)) (F(=b) = 3 £(0)0)
(FO =) = 37(0)0) "~ 2£(©)6(F(0)6 + F(-0))

provided the denominator is positive, which is one of our hypotheses. [

N <

+e€

To demonstrate the utility of Theorem {.5.1] we produce a table of numerical bounds for
N(A). Just as in Heath-Brown’s case [HB92, Table 13], it turns out that the acquired bounds
only hold for certain bounded ranges of A € [0, ;] depending on A; > b. However, for

small values of A, the resulting bounds are better than similar ones obtained in Chapter [5] (cf.

Table [5.1).
We apply Theorem using the weight f = f; 5 from [HB92| Lemma 7.1] with param-
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Table 4.14: Bounds for N()\) in Theorem m

eters 0 and )\, say, taking

6 = 1.63 4+ 1.28b — 4.35),

A

M0 A >0875 | A\ > | A\ >1227T | A > 15 [ A >20 | A\ >25 | A >.30 | A\ > .35
A N(N) N(N) N(N) N(N) N(N) N(N) N()N) N()N) N(N)
1 2 2
125 2 2 2 2
150 3 3 3 3
175 3 3 3 3 3
200 4 4 4 3 3
225 4 4 4 4 4 4
250 5 5 5 5 4 4
275 6 6 5 5 5 5 5
300 7 6 6 6 6 6 5
325 9 8 7 7 7 7 6 6
.350 11 9 9 9 8 8 7 7
375 15 11 11 10 10 9 8 8 7
400 22 15 14 13 12 11 10 9 8
425 46 22 20 18 16 14 12 11 10
450 00 41 36 29 24 19 16 13 12
475 1087 207 85 51 30 22 18 15
.500 00 00 00 00 90 40 27 21
525 00 413 61 34
.550 00 o0 127
575 o0
.600

This is roughly optimal based on numerical experimentation and produces Table {.14] Only

non-trivial bounds are displayed since trivially N(A) < 1 for A < ;.

4.5.2 Extending the low-lying zero density estimate

To extend the valid range of X in Table [d.14] we introduce a variant inspired by suggestion 8 of
[HB92, Section 12]. For A > A\, > 0 fixed, define

SAA)={seC:1-

L

A
—<o<l1-

Ac
—, t| < T,
Sl <1
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and

N A) =#{x(mod H) : x # xo0, L(s, x) hasazeroin S(A\, \,) } = E L.
Ae<ABI <X
xM#xo

Trivially, S(),0) = S()\) and
N =N + N A,

To bound the latter quantity, construct a subset M(\, \,) of M := {x®) : k > 1} as follows:

1. Remove the trivial character from M.

2. Delete every character x = x*) from M such that L(s, x) has a zero in S(),).
3. Select a character ¢ € M such that ) has a zero in S(A, A,). Put ¢ in M (A, \,).
4. Delet Y and ¥y from M for every character x with a zero in S(\,).

5. Repeat Steps 3 and 4 until there are no more characters to choose from M.

Denote M (A, \,) = #M(\, \,). By construction, if ¢, and v, are distinct characters of
M, \,) then 112, # x for any x with a zero in S()\,). Moreover, it follows that

NOLA) < {IN(A) + LM ).

since, for each ¢ € M(A, \,), we deleted at most N (\,) characters (as well as ¢ itself) which
could have a zero in S(\, \,). Combining this with our previous bound for N (), we deduce

NA) <{NA) + 1FM (A A) + N(\) (4.44)

for A > A\, > 0. Bounding M (A, \,) for values of \ exceeding Table will therefore allow
us to extend the range for N () as well. Unfortunately, the possible existence of a complex
zero in S(\,) for the Dedekind zeta function (x(s) (i.e. the trivial character y, (mod H))

limits the potential of this argument.

Proposition 4.5.2. Let A\ > b > 0 be fixed and set M = M (\,b). Assume the Dedekind zeta

function (k(s) does not have a complex zero in the region

Re{s} >1— %, Im{s}| <T.

Note that Step 4 automatically deletes 1Y as well since if L(s, x) has a zero in S()\,) then so does L(s, X).
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If
FOA=b) > 4£(0)s,
and )
(PO =b) = ££0)8) > 4(0)6(£(0)0 + F(-b))
then unconditionally,
(£ + F(=0)) (F(=b) = ££(0)9)
(FO =8~ 47(0)6) — 47006706 + F(~0))

M(\b) < +e€ (4.45)

for L sufficiently large depending on ¢, T, and f.

Proof. We sketch the proof since it is a straightforward adaptation of the proof of Theo-
rem using the characters of M (), b). One first deduces, by Lemma [3.4.3] that

L7 Ko+ x5 f) < F(0)56 — F(A—b) + € (4.46)

for all X(j) ranging over M(\,b), so 1 < j < M. The above holds since no character y €
M(), b) has a zero in S(b). Rearranging and applying Cauchy-Schwarz, one must bound the
analogous S; and Ss. To do so, we again see that

K(o, xo: f) < L(f(0)¢ + F(=b) +¢)

by Lemma It is here we use that L(s, xo) has no complex zero in S(b); if any real zero
g=1-— % of L(s, x) arises in our application of Lemma , we may discard it by Condition
2 as F(A —b) > 0. For the M? — M terms in Sy with j # k, we again apply Lemmam

extracting no zeros to see that

Ko +i(y9 =), xOxW; 1) < L(F(0)5¢ + ).

Note that no zeros are extracted due to the construction of M (), b). In particular, xU k) £y
for any y with a zero in S(b). Continuing with the same arguments as in Theorem 4.5.1] we

conclude the desired result. ]

We could similarly produce a table like Table [4.14] using Proposition 4.5.2] However, we
will not require such precision in its application in Section We will content ourselves with

the following corollary.

Corollary 4.5.3. If L is sufficiently large then N (0.569) < 3365 unconditionally.



CHAPTER 4. ZERO-FREE REGIONS AND ZERO REPULSION 114

Proof. We wish to apply Proposition using the weight f = f; from [HB92, Lemma 7.2]
with parameter ), say. By Theorem , b = 0.0875 is a valid choice and N (0.0875) < 1.
Taking A = 0.2784, we deduce, by Proposition _ that

M (0.569,0.0875) < 1682.

Thus, by (#.44), we conclude N (0.569) < 2- 1682 4 1 = 3365, as desired. O

We emphasize that the goal of Corollary is to maximize the value of A for which we
can obtain a reasonable bound for N (). The precise quality of the bound is not of serious
concern since it will still be far better than those obtained in Chapter [5] (cf. Table [5.1). With
this purpose in mind, one can see that A = 0.569 in Corollary 4.5.3|exceeds A\ = 0.425 in the
first column of Table m In fact, it exceeds the range of \ in every column of Table



Chapter 5

Log-free zero density estimates

“So me put in work, work, work, work, work, work...”
— Rihanna.

In this chapter, we use the power sum method to prove explicit versions of the log-free zero
density estimates for Hecke L-functions due to Weiss. These results serve as generalizations
of the classical log-free zero density estimate (I.9) for Dirichlet characters. We will retain the

notation of Chapter 2] but we will abandon the notation introduced in Chapters [3] and {

5.1 Statement of results

Let A be an arbitrary congruence class group of a number field K. For a Hecke character
X (mod H),0 < o < 1,and T' > 1 arbitrary, define

N(o,T,x) =#{p=08+iv: Lp,x) =0,0 < B <1,y <T},

where the nontrivial zeros p of L(s, x) are counted with multiplicity. Weiss [Wei83, Corollary
4.4] proved that if % <o<landT > n%h}f"’( , then

> N(o,T,x) < (") DT )0, (5.1)

X (mod H)
where C' > 0 is some absolute constant. We will prove the following.

Theorem 5.1.1. Let H be a congruence class group of a number field K. If% <o <land
T> max{n%ﬁ(D}l(BQﬁ‘/g)_l/”K, 1}, then

Z N(o,T,x) < {eP0x) p2.Qrrx+2)811-0), (5.2)

X (mod H)

115
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If1 — 1072 < o < 1, then one may replace 81 with 73.5.

Remark.

e Theorem noticeably improves Weiss’ density estimate (5.1)) in the range of 7. If
ng < 2(log D)/ loglog D, then Theorem holds for 7" > 1. Thus we may take
T > 1 for most choices of K.

e One can verify from Minkowski’s lower bound for Dy and the valid range of 7" that the

eO(nx) factor is always negligible, regardless of how nx compares to (log D)/ log log Dy

To obtain the precise numerical exponents in Theorems [1.3.2] and [1.3.4] we will require a

more explicit version of Theorem [5.1.1) when o is very close to 1 and 7 is fixed. This desired
precision necessitates the introduction of a few important quantities.
Let 09 > 0 be fixed and sufficiently small. For this chapter onlyﬂ define

(3 +d0)log Dic + (12 + 60) log Q + (& + do)n lognye it nie™’® > DiQY*,
(1+ o) log Dic + (2 4 o) log Q + donx log n otherwise.

L =

(5.3)
Notice that

£ > (1+00)log D + (3 +60) log @+ dong logng and &£ > (Z+do)ng logngk (5.4)
unconditionally. First, we restate a slightly weaker form of Theorem using .Z.

Theorem 5.1.2. Let H be a congruence class group of a number field K. Let T > 1 be
arbitrary. If 0 < \ < Z then

> ONA-2,T,x) <!
X (mod H)

provided £ is sufficiently large depending only on T

Proof. One can verify this in a straightforward manner from (5.3) and Theorem [5.1.1] O

In addition to Theorem we will require a more explicit zero density estimate for

! Actually, we will return to this quantity in later chapters but emphasize this point here to avoid confusion.
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“low-lying” zeros. For T" > 1, define

NN =Ng(\T)= > N(1-2.Tx)

X (mod H)

= Y #p:Llpx) =0,1— % <Re{p} < 1, [Im{p}| < T}.
X (mod H)

(5.5)
Notice A/ (\) defined here is not the same as N (\) as defined by (#.3). Instead, one has N () <
N (A). By Theorems [4.1.1) and [4.1.2] observe that A'(0.0875) < 1 and N (0.2866) < 2. In
light of these bounds, we search for explicit numerical estimates for A/(\) with 0.287 < A < 1.
These are given by Table and help establish the following explicit bound on N (\).

Theorem 5.1.3. Let H be a congruence class group of a number field K. Let ¢y > 0 be fixed
and sufficiently small. If 0 < \ < €¢g.Z and T’ > 1 then

N()\) :NH()\,T) < 6162>\+188

for £ sufficiently large depending only on T. If 0 < X\ < 1, then the bounds for N'()\) in
Table[5.1|are superior.

The proof of Theorem[5.1.3]is given in Section[5.4.2]and essentially relies on Theorem|[5.3.3]
with a careful choice of parameters for each fixed value of \.

5.1.1 Comparing the mollifier method with power sums

It is instructive to compare the two primary methods for proving log-free zero density esti-
mates. The basic idea behind the proof of (the so-called mollifier method) is to construct
a Dirichlet polynomial which detects zeros by assuming large values at the zeros of a Dirichlet
L-function. The optimal Dirichlet polynomial for this task will look like a version of x(n),

where
(—1)" if n is squarefree with r prime factors,
p(n) = .
0 otherwise
is the usual Mobius function. In order to efficiently sum the large values contributed by each
of the detected zeros, one relies on the fact that the partial sums of x(n) exhibit significant
cancellation. To see why this is true, observe that the Prime Number Theorem (with the error

term of Hadamard and de la Vallée-Poussin) is equivalent to the statement that there exists an
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A logNA) < | « n w £ J(EN) | Yer | Xea
287 198.1 3448 | .09955 | .03466 | 1.0082 | .46 | 5.8 | 993
288 198.3 3444 | .09943 | .03462 | 1.0082 | .46 5.8 | 991
289 198.5 3441 | .09931 | .03458 | 1.0082 | .46 5.8 | 988
290 198.7 3437 | .09918 | .03454 | 1.0082 | .46 5.8 | 986
291 198.9 3433 | .09906 | .03450 | 1.0082 | .46 | 5.8 | 984
292 199.1 3429 | .09894 | .03446 | 1.0081 46 | 5.8 | 982
293 199.3 3426 | .09882 | .03442 | 1.0081 46 5.8 | 979
294 199.5 3422 |1 .09870 | .03439 | 1.0081 46 5.8 1977
295 199.8 3418 | .09859 | .03435 | 1.0081 46 5.8 | 975
296 200.0 3415 | .09847 | .03431 | 1.0081 46 | 5.8 | 973
297 200.2 3411 | .09835 | .03427 | 1.0080 | .46 | 5.8 | 970
298 200.4 3408 | .09823 | .03423 | 1.0080 | .46 5.8 | 968
299 200.6 3404 | .09811 | .03420 | 1.0080 | .46 5.8 | 966
.300 200.8 .3400 | .09800 | .03416 | 1.0080 | .46 5.8 | 964
325 205.9 3316 | .09518 | .03326 | 1.0075 | 47 | 5.8 | 914
350 211.0 3240 | .09257 | .03242 | 1.0071 47 | 5.7 | 871
375 216.0 3171 | .09014 | .03163 | 1.0067 47 5.7 | 833
400 220.9 3108 | .08787 | .03090 | 1.0064 | .48 5.7 | 800
425 225.7 3054 | .08678 | .02878 | 1.0061 46 5.6 | 769
450 230.4 2998 | .08373 | .02956 | 1.0059 | .48 5.6 | 744
475 235.1 2948 | .08184 | .02895 | 1.0056 | .48 | 5.6 | 720
.500 239.8 2903 | .08006 | .02837 | 1.0054 | 49 | 5.6 | 699
550 249.0 2821 | .07677 | .02729 | 1.0050 | .49 5.5 | 661
.600 258.0 2748 | .07379 | .02631 | 1.0046 | .50 | 5.5 | 629
.650 266.9 2684 | .07109 | .02542 | 1.0043 S0 | 54| 602
.700 275.6 2627 | .06862 | .02460 | 1.0041 S0 | 54| 579
750 284.3 2576 | .06634 | .02383 | 1.0039 | .51 5.4 | 559
.800 292.9 2529 | .06424 | .02313 | 1.0037 S1 54 | 541
.850 3014 2486 | .06230 | .02247 | 1.0035 Sl 5.3 | 525
.900 309.8 2447 | .06049 | .02186 | 1.0033 Sl 5.3 | 510
950 318.2 2412 | .05880 | .02128 | 1.0032 | .52 5.3 | 497
1.00 326.5 2378 | .05722 | .02074 | 1.0030 | .52 | 5.3 | 486

Table 5.1: Bounds for N'()\) in Theoremm

118



CHAPTER 5. LOG-FREE ZERO DENSITY ESTIMATES 119

absolute constant c3 > 0 such that if x is sufficiently large, then

Z (n) < xexp(—cs(logz)/?). (5.6)

n<x

The fact that (5.6) is a part of the proofs of the log-free zero density estimates in [Gra77,
HB92, 1K04, Jut77] may not be immediately obvious. After summing the mollified Dirichlet

polynomials over all characters y (mod ¢) and applying duality, one must ultimately minimize

s =3 ()

n<x din

the quadratic form

subject to the constraint
p(d) ifl1 <d< z,

0 if d > 2,

Ad =

where 1 < z; < 2z are given real numbers. See, for example, [IK04, Pages 430-431]. For the

purpose of proving a log-free zero density estimate, it is convenient to define

. log(z/d)
p(d) min <1, —log(zg/zl)

0 ifd > 2.

) if1<d< 2,
A =

Each of [Gra77, [HB92, K04, Jut77]] uses the beautiful work of Graham [Gra78]|] to estimate
S(z) with this choice of \;; Graham proves that

i

S(z) = m(l +O<m>). (5.7)

At several points in the proof of (5.7)), Graham uses the asymptotic Prime Number Theorem in

the form (5.6).

For a number field K, let ux(n) be the extension of the Mobius function to the prime
ideals of K. For the sake of simplicity, suppose that the Dedekind zeta function (x (s) has no
exceptional zero. The effective form of the Prime Ideal Theorem proven in [LO’/7/]] is equivalent

to the statement that there exists an absolute constant ¢4 > 0 such that if log z > nx (log D )?,

then s
Z pr(n) < xexp(—c4(logx> / )

n
Nn<z K

Therefore, to generalize (3.7) to the Mobius function of K, x needs to be larger than any
polynomial in D before the partial sums of 115 (n) up to z begin to exhibit cancellation. Thus
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if one extends the preceding arguments to prove an analogue of for the Hecke characters
of K, then the ensuing log-free zero density estimate will not have the K -uniformity which is
necessary to prove Theorem[1.3.2]

Turan developed an alternate formulation of log-free zero density estimates. The idea is to
take high derivatives of —%(s, X)- This produces a large sum of complex numbers involving
zeros of L(s, x), which can be bounded below by the Turan power sum method (see Proposi-
tion[5.3.1). The integral of a certain zero-detecting polynomial (which is not defined in terms
of the Mobius function) gives an upper bound for these high derivatives. Therefore, when a
certain zero-detecting polynomial (which is not defined in terms of the Md&bius function) en-
counters a zero of L(s, y), its integral will be bounded away from zero because of the lower
bound given by the power sum method. The contributions from the detected zeros up to height
T are summed efficiently using a particular large sieve inequality (see Section|[5.2).

The advantage of using the power sum method in our proofs lies in the fact that the method
is a purely Diophantine result, independent of the number fields in our proofs; this allows for
noticeably better field uniformity than the mollifier method. The disadvantage is that the lower
bound in the power sum method is quite small, which, for example, would inflate the constant
12/5 in (1.9). To our knowledge, the power sum method is the only tool available that will
produce a K -uniform log-free zero density estimate of the form which is strong enough
to deduce a conclusion as strong as Theorem [I.3.2] Limitations to the power sum method
indicate a genuine obstacle to any substantive improvements in the constants in Theorem [[.3.2]
when using these methods.

To prove the large sieve inequality (5.11)) used in the proof of Theorem[S.1.1| we bounded
certain sums over integral ideals, which required smoothing the sums using a kernel that is
nx-times differentiable. Unfortunately, the smoothing introduces the powers of nx "% (see the
comments immediately preceding [Wei83, Section 1]). As mentioned after Theorem [1.3.2]
the factor of ng "% is negligible if ny is small compared to (log Dk )/loglog Dy, which is

expected to be the case in most applications.

5.2 Mean values of Dirichlet polynomials

In [Gal70], Gallagher proves the following mean value results for Dirichlet polynomials.

Theorem. Let {a,} be a sequence of complex numbers such that ", ., nla,|* < cc.

(i) If T > 1, then

> / TT ‘ ni; anx(n)n™

x modq¥ —

2 oo
dt <Y (qT +n)|an|?, (5.8)
n=1
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where the sum is over Dirichlet characters x mod gq.

(ii) Let R > 2, and assume a,, = 0 if n has any prime factor less than R. If T' > 1, then

Siosg [ |3 aurton

q<R X mod ¢

“it < Z (R*T + n)|an|?. (5.9)

Here, >_" denotes the restriction to primitive Dirichlet characters x mod q.

In (5.9), the log(R/q) weighting on the left hand side (which arises from the support of a,,)
turns out to be decisive in some applications, such as the proof of (I1.6). To prove Theo-
rem we need a K -uniform analogue of when a,, is supported as in (5.9). Weiss
used the Selberg sieve to prove such a result in his Ph.D. thesis [Wei80, Theorem 3/, p. 98].

Theorem (Weiss). Let b(-) be a complex-valued function on the integral ideals n of K, and
suppose that > (Nn)|b(n)|? < oco. Let T > 1. Suppose that b(n) = 0 when n has a prime
ideal factor p with Np < z, and define V(z) = 3 .. Nn"L If0 < € < 1/2, then

Z /T ’ Z b(n)x(n)N (—Nn+c( )(n TIL(KDKQTTLKZ4>1/2+EhHT)

for some constant c(e) > 0 depending only on e.

Remark. Assuming the Lindel6f Hypothesis for Hecke L-functions, the upper bound becomes
< Z |b(n) ( N+l )(DKQ)%HT1+€”KZ2+€>.

This appears to be optimal when using the Selberg sieve, considering that when K = Q, the
second term is roughly (¢72?)1*¢. For related unconditional results, see Duke [Duk89, Section
1].

This result is interesting in its own right, but to make the result more practical for the
applications at hand, Weiss chooses b(n) to be supported on the prime ideals p such that y <
Np < y°. Then, Weiss sets z = 5'/% and chooses logy > ¢, log(DgQT™%) and ¢ = 1/3. By
Corollary [2.4.2] and taking ¢; and ¢, to be sufficiently large, Weiss’ result reduces to

- 1 )
Z/ b it < ey 2 [bRINE.

x(H)=1 y<Np<y©l y<p<y‘l

In [Wei183, Corollary 3.8], Weiss recasts this estimate with more generally.
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Corollary 5.2.1 (Weiss). Let b(-) be a complex-valued function on the prime ideals p of K

such that 3, (Np)[b(p)|* < oo and b(p) = 0 whenever Np < y. Let H be a primitive congru-
ence class group of K. If y > (hyna DxkQT?"%)3, then

Z / > el

ot < —Z|b )|?Np.

The exponent 8 in the range of y in Corollary [5.2.1]is large enough to influence the value
of C in (5.1)), which affects By in (1.24). In this section, we improve Corollary so that it

does not influence the exponents in Theorem

Theorem 5.2.2. Let v > € > 0 be arbitrary. Let b( ) be a complex-valued function on the
prime ideals p of K such that 3~ (Np)[b(p)[* < 00 and b(p) = 0 whenever Np < y. Let H be

a primitive congruence class group of K. If T' > 1 and
,y Z Ce{thg?/‘l'H))nKD?{/2+UQ1/2T11K/2+1}1+€ (510)

for some sufficiently large C. > 0 then

Z / ’Zb Np*“2 <<5{ 1+U};/ )ZNp\b

x (mod H) 1+e€ 1Og( )

(5.11)
where L' = 1log D + 1log Q + ing logng + (%6 + 1)log T + O.(1).

Remark. Taking v = ¢ and using Lemma [2.4.6] we improve the range of y in Corollary
to
Y>> eoe(nK){ni(/4nKD%(Q3/2TnK/2+1}1+E.

5.2.1 Preparing for the Selberg sieve

To apply the Selberg sieve, we will require several weighted estimates involving Hecke char-

acters. Before we begin, we highlight the necessary properties of our weight V.
Lemma 5.2.3. ForT > 1, let A = T'\/2ng. Define

W) = [

and let
1 24100 R
U(z) = —/ U(s)x~*ds
2
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be the inverse Mellin transform of \/I\f(s) Then:

(i) 0 < U(x) < A/2 and V(x) is a compactly supported function vanishing outside the
interval e~ 2"x/4A < g < /A,

(ii) W(s) is an entire function.

W(s)| < (A/]s])? el

(iv) For|s| < A, [T(s)| < (1 +|s[?/(54%))%x.

(v) Uniformly for

U(s)| < 1.

2N,

(vi) Let {b,,}m>1 be a sequence of complex numbers with ), |by,| < co. Then

/_j’;bmm_“ dt<— )Zb xp( )de

Proof. For (i)—(v), see [Wei83, Lemma 3.2]; in his notation, V(z) = Hy,, (z) with parameter
A = T+/2nk. Statement (vi) follows easily from the proof of [Wei83|, Corollary 3.3]. U

For the remainder of this section, assume:

e H (mod q) is an arbitrary primitive congruence class group of K.
e 0 <e<1/2and T > 1is arbitrary.

e U is the weight function of Lemma([5.2.3]
Next, we establish improved analogues of [Wei183, Lemmas 3.4 and 3.6 and Corollary 3.5].

Lemma 5.2.4. Let x (mod H) be a Hecke character. For x > 0,
X(n) z QO(C[) ni /4 1/2 A1/2ng /241 1+e
2N ()~ B0 e {mi QAT

Proof. The quantity we wish to bound equals

1 —14400 .
— L(s+1,x)V(s)x’ds. (5.12)

210 J 1 oo

If x (mod q) is induced by the primitive character x* (mod f, ), then

L(s,x) = L(s,x") [ J(1 = x*(p)Np ™).

plg
piix
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Thus |L(it, x)| < 2“@|L(it, x*)| where w(q) is the number of distinct prime ideal divisors
of g. Since H (modq) is primitive, ¢ = fx so w(q) < 6e*nk + £log(DkQ), by [Weis3|
Lemma 1.13]. Thus, for Re{s} = —1, |L(s + 1, x)| < e2<") (D Q)/?|L(s + 1, x*)|. Thus,
by the convexity bound (Lemma [2.3.2)), the expression in is

1 0 1 =
< ) (DgQ)2u! / (L4 ) M B (—1 + it) | dt
0

as D, < Dg(@. By Lemma|5.2.3(iii) and (iv), this integral is

[e.e]

A
< /2 (1+ [¢) G+ | T(—1 +it)|dt—|—/ (14 [¢) BB (=1 + i) dt,
0 7

which is < Onx) AGTens+l Collecting the above estimates, the claimed bound, up to a

factor of e, follows upon recalling A = T'v/2n and noting e%"x) < (n}¥)e. N

Corollary 5.2.5. Let C be a coset of H, and let 0 be an integral ideal coprime to q. For all

x > 0, we have

1 x p(q) ke 1 /4 1/2 14e 1

—\IJ<—> R VS . x/4 D 1/2TnK/2+1 L

|nEZCNn Nn Nq hy Nbl Se VK K ¢ } x
oln

Proof. The proof is essentially the same as that of [Wei183,, Corollary 3.5], except for the fact
that we have an improved bound in Lemma[5.2.4] O

We now apply the Selberg sieve. For z > 1, define

So={nipln = Np>z} and V(=3 —. (5.13)

Lemma 5.2.6. Let C be a coset of H. For x > 0 and z > 1,

1 " . {n?{KMD}(/?Ql/zTnK/zH}1+622+26
Nn  \Nn huV(z) x

neCns,

Proof. The proof is essentially the same as that of [Wei183, Lemma 3.6], except for the fact that
we have an improved bound in Lemma O
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5.2.2 Proof of Theorem 5.2.2

Let z be a parameter satisfying 1 < z < y, which we will specify later. Extend b(n) to all
integral ideals n of K by zero. Applying Lemma and writing b, = > \,_,, b(n)x(n), for
each Hecke character y (mod H), it follows that

S [ fas T[S [Simame()[

X (mod H) modH) n
(5.14)

By the orthogonality of characters and the Cauchy-Schwarz inequality,

S (S < £ (Sxomors(sy)) T 4

X (modH) n €l(q)/H neC neCns,

since z < y and b(n) is supported on prime ideals with norm greater than y. For 6 = §(¢) > 0

sufficiently small and By > 0 sufficiently large, denote
Mg _ M5z2+25 and M;s = B(S{n?(K/ZlD}(/QQl/QTnK/Q-I-l}1+(5.

By Lemma [5.2.6] the right hand side of the preceding inequality is therefore at most

S o () (2 + M) < 5 o () (i + )

Cel(q)/H neC

Combining the above estimates into (5.14) yields

IN
|

5;Z:N”|b(”)’2(% /OOO\I/<Nn> Cf - ha M /0°° lq’(Nn)d;)

< 5—WZNn|b(n)!2<;é)|@(0)| + hHM‘gI\Tf(l)I),

by Lemma v). Since b(n) is supported on prime ideals whose norm is greater than y, the
above is < ({75 + O(hugMsz*"y~1)) 3=, Nplb(p)|*. Now, select = satisfying

y(1+6)/(1+e) 1/(2+26)
2= (—) , (5.15)

hHM5
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so1 < z < y. Hence,

3 / )Zb (o)Np~|

X (mod H)

< 52”(% +Oe(y‘5/2)) Ep:Nplb(MIQ (5.16)

for § = 6(e) > 0 sufficiently small. From (5.10) and (5.13)), it follows that z > 3(n}X Dy )'/2+v/2
provided C. in (5.10) is sufficiently large. Applying Corollary 2.4.2]to (5.16), it follows that

_it]? DTV —¢/2 2
Z / ‘Zb PINp™) dt < (2{1+U}logz+06(1) +0:ly™ ));Npﬂ)(p)

x (mod H)
since v > € > 0. Finally, by (5.10) and (5.15)),

2logz > 10g(hi) — +{log Dk +1og Q + 3nk logng + (nx + 2)log T + O(1)}.

Substituting this estimate into the previous inequality, we obtain the desired conclusion. [

5.3 Detecting the zeros of Hecke L-functions

5.3.1 Notation

We first specify some additional notation to be used throughout this section.

Arbitrary Quantities

e Let H (mod q) be a primitive congruence class group.
e Letee (0,1/8) and ¢ = 1+ 2e 4 16€® + 340€'°.
e LetT > 1. Recall Q = Qp as in (2.2) and define
L=Lp.:=logDg + 1logQ + (“& + 1)log(T + 3) + Ong, (5.17)
where © = O(¢e) > 1 is sufficiently large depending on e.
e Let \g > 5. Suppose 7 € R and A > 0 satisfy
M <A< EL and 7| <T. (5.18)

Furthermore, denote r = %
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Fixed Quantities

e Leta,n € (0,00) and w € (0, 1) be fixed.

e Define A > 1sothat A; = /A2 + 1 satisfies

Ay = 2(4e(1+1/a))*(1 + 7). (5.19)

o Letz =eX“ and y = ¥ with X, Y > 0 given by

Vv o)

2log (22L) 1+ 8
X=X= "o A5

and «,n, w are chosen so that 2 < Y < X. Notice X = X, and Y = Y), depend on the

(5.20)

arbitrary quantities € and A\, but they are uniformly bounded above and below in terms of
a,n,and w, i.e. X < 1 and Y =< 1. For this reason, while X and Y are technically not

fixed quantities, they may be treated as such.

5.3.2 Key ingredients
Detecting Zeros

The first goal of this section is to prove the following proposition.

Proposition 5.3.1. Let x (mod H) be a Hecke character. Suppose L(s,x) has a non-trivial
zero p satisfying

[1+iT—p| <71 = (5.21)

A
2.
Further assume

WA + Wy

TN = e < b

(5.22)

where X = X, Y =Y,

k’o - ko()\) =a! (2¢A)\ + 8),
Wy = Wi(A) = 8A1 (1 + £) +2eA: (Y + § + {2X + 1}e) + O(e),
Wy = Wa(X) = 2ew ™t A1e ™™ 418 4+ O(e).
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IfA< Land2 <Y < X then

r 10g< )

X p)log Np 2du
Z w EO( )1{\T|<Ar}<7—>

Np1+ZT
y<Np<u
4AN+16 (1 — 2
. (a/(1+a)> H6(1 = J(N)*
Re2l/« 4

Remark. Note that TW;(\) < 1 for j = 1,2.

The proof of Proposition is divided into two main steps, with the final arguments cul-
minating in Section [5.3.5] The method critically hinges on the following power sum estimate
due to Kolesnik and Straus [KS83]].

Theorem 5.3.2 (Kolesnik—Straus). For any integer M > 0 and complex numbers zy, . . ., zn,

there is an integer k with M+1 < k < M+N such that |2f+- - -+2z%| > 1. 007(m)N\Z1’k

) ) N . )
Remark. For any M > 1, one can verify that the expression ( is a decreasing

N )
16(1 1 N)

Makai [Mak64]] showed that the constant 4e is essentially optimal.

Explicit Zero Density Estimate

Using Theorem and Proposition the second and primary goal of this section is to

establish an explicit log-free zero density estimate. Recall, for a Hecke character Y,
N(o,T,x) =#{p: L(p,x) = 0,0 <Re{p} < 1,[Im(p)| < T}. (5.23)

where o € (0,1) and T > 1.

Theorem 5.3.3. Let & € (1,00) and v € (0, ;5] be fixed and denote o = 1 — . Suppose

MSA<L, X>Y>46, and T> max{n3/*(D}PQY9) "V 1}, (5.24)

where X = X¢\ andY = Yey. Then

4€

Y NOTx)< ==
X (mod H) 62 -1

: (C4>\4 + Cg)\g + Cl/\ + C())GBl)H_BQ : {1 — J(f/\)}_2
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where J( -) is defined by (5.22)) satisfying J(éX) < 1, and

By = 4¢ A€ log(dea (1 4 a)20+9/) B, = 16log(dea ™ (1 + o)2H)/@),

CmepX (X —YV)H (X +Y + 1+ )¢

4
04 = 5 Cg = —04, 01 = 4¢A§, OO = 16A+ €.

(1 - m5) (7Y —4) o€
(5.25)

Remark.

e In Section[5.4] we will employ Theorem[5.3.3|with various choices of parameters «, 77, v, €, w,
and ¢ depending on the range of o. Consequently, this result is written without any ex-

plicit choice of the fixed or arbitrary quantities found in Section[5.3.1]
e The quantities Cy and Cf are technically not constants with respect to \ or € but one can
see that both are bounded absolutely according to the definitions in Section[5.3.1]

Sections[5.3.3|and[5.3.4] are dedicated to preparing for the proof of Proposition which
is contained in Section[5.3.5] The proof of Theorem[5.3.3]is finalized in Section[5.3.6]

5.3.3 A large derivative

Suppose x (mod H) is induced from the primitive character x*. Denote F'(s) := Lf/ (s,x*) and
z:= 1+ r+ir. Using Theorem|5.3.2] the goal of this subsection is to show F'(s) has a large

high order derivative, which we establish in the following lemma.

Lemma 5.3.4. Keep the above notation and suppose L(s, x) has a zero p satisfying (5.21)). If
A< A%[. and 1g is the indicator function of a set S, then

+1 z
k de(1+a) {8(1 )AL O(E)})‘ +18
Bo00r<any (1) + [ PO ()| 2 = {1 - AT+ 0k }

—_

for some integer k in the range * - (2pAX +8) < k < 2. (20 AN 4 8).

Proof. By [We183, Lemma 1.10],

Fe+ 2 s L)

S —
[14iT—p|<1/2 P

uniformly in the region |1 + i7 — s| < 1/2, where G(s) is analytic and |G(s)| < L in this

region. Differentiating the above formula £ times and evaluating at 2 = 1 + r + ¢7, we deduce

DY pwy . Fol) 1 k
e
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A

i = L
since r = 7

16
Cauchy’s integral formula with a circle of radius 1/4. For zeros p that satisfy Ar < |1 + i —

< L by assumption (5.18). The error term arises from bounding G*)(z) using

p| < 1/2, notice that
(A+ D)<+ 1+ir—pP <|z—pP < (r+1+it—p|)? < (r+1/2)* < 1.
Recalling A; = v/ A? + 1, it follows by partial summation that

1 b LN, (u; 2)
Z 2 — p|Ftt S/ u AN (u; 2) = (k + 1) XdeUA—O(E)
Ar<|1+it—p|<1/2 =P Arr Agr U

where we bounded N, (1; z) < £ using [LMO79, Lemma 2.2]. By Lemma|2.3.7} the above is

therefore

> 4ul + 8 A1+ LYArL+8
<(k+1) /Aﬂ Wdu +0(L) < (Arr)Ft +O(L).

By considering cases, one may bound the Fy(x)-term as follows:

Eo(x) 1
k+1 0
5| < Eo(X) - Lgrj<an(T) + =7 (5.26)
(z — 1)k+1 AR
The above results now yield
PRl (k) ()
EO(X>1{\T|<AT}<T> + T()
pht 414+ DAL 49 . (5.27)
= ‘ 2 (= — )’“+1‘ B [ i +0((4r) HL)]'
P 1

[14i7—p|<Ar

To lower bound the remaining sum over zeros, we wish to apply Theorem[5.3.2] Denote
N =N (Ar;1+it) = #{p: L(p,x) = 0, |1 + it — p| < Ar}.

Since \ < Ailﬁ < jﬁ and € < %, it follows by Lemma|3.2.4|and (5.17) that N < 290 A\ + 8.
Define M := | 222248 | Thus, from Theorem|5.3.2/and assumption (3.21),

1 > 6] 20 AN+8 1 <
|1+z‘r—zp|<,4rm - <m> W (5.28)
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for some M + 1 < k < M + N. To simplify the right hand side of (5.27)), observe that

(4r)M L < ANdr)F < A4e)FATF < edATF, (5.29)
since r = % <4 <z by assumption. Moreover, our choice of A; in (5.19) implies
ak 1 1 a 20AM+8 ] 2
Art) = () <( ) : 5.30
de(1+a)/ 28 Aj(1+n)k = \de(1+ a) 2k Ay (1 + )k (5:30)

since ak > a(M + 1) > 2¢p AN + 8. Incorporating (5.28)-(5.30)) into (5.27) yields the desired
result. The range of k£ in Lemma is determined by the above choice of M and N. O]

5.3.4 Short sum over prime ideals

Continuing with the discussion and notation of Section [5.3.3] from the Euler product for
L(s, x*), we have that

F(s)= 2o = S (5

for Re{s} > 1, where Ax(-) is given by (2.5). Differentiating the above formula k times, we
deduce that
(—1)k+lphl

Ag(n)x*(n
1 CFR () = % -1 Ji(rlog Nn) (5.31)

for any integer k¥ > 1, where z = 1 + r + i7 and Ji(u) = u*/k!. From Stirling’s bound (see
[0ST]) in the form k*e=*v/ 27k < k! < k¥e~Fv/2rke'/1?* one can verify that

AFer ifu< %,
Jp(u) < ey (5.32)
ATFe=w)uif g > lOg (2‘41 )k,

forany £ > 1and A; > 1,w € (0, 1) defined in Section The goal of this subsection is to

bound the infinite sum in (5.31)) by an integral average of short sums over prime ideals.

Lemma 5.3.5. Suppose the integer k is in the range given in Lemma If A < L then

X ( X p) log Np du
) Z an—i-r—i-m— TJk(T log Ntl <r / ’ Z Np1+lT U

y<Np<u

+ (elY + 1+ 2X + 1}e M + O(e)]A + e M Jw) A
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where © = eXX and y = ¥ with X = X,,Y =Y, defined by (5.20).

Proof. First, divide the sum on the left hand side into four sums:

D=+ D> D+ DY =S+ +S+5

n Np<y y<Np<zr Np>=x  nnotprime

Observe that (5.20) and (5.32)), along with the range of & in Lemma[5.3.4] imply that

ATF(Nn)" if Nn <y,

Ji(rlogNn) <
ATF(Nn)A=9)r i Nn > .

(5.33)

Hence, for 51, it follows by Lemma [2.4.3| that

log N A
il <At > % P o r Ak elog(eDY?y) < e(AY + 5 +e) AT,
Np<y

since 11 = % < elog Dy < L,and y = Y. Similarly, for Ss, apply partial summation using
Lemma [2.4.3]to deduce that

logNp B cu'r’elog;(eDl/2 t) _ elmwAX
|S5] < r AT Z (Np)lter = Alk/ Htor dt < ({X+3A+w™"+e) AR
Np>z z

For S,, since 1;—’: < e* for u > 0, observe that
1
Ji(rlog Nn) = (2r)* (3 log Nn)* /k! < (2r)%(Nn)z2.

Thus, by Lemma[2.4.3]

log Np log Np log Np
|S4| < rz Z Np™) 1+ Je(rlogNp™) < (27’)er Z W <K (27’)er Npieer

p m>2 P m>2 p

< NeATF,

since log Dy < Land L7' < 7 = 2 < - Also note that € € (0, £) implies (2¢)F < e.
Finally, for the main term S5, define

X(p) log Np
W(U) - Z Np1+’LT ’

y<Np<u
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so by partial summation,

% (5.34)
U

t=rlogu

Sy = rW(x)z " Jp(rlogz) — 1 /ﬂﬂ W(u)%[e_th(t)]

as W (y) = 0. Similar to S1, S3, and Sy, it follows from (5.33) and Lemma that

AK (ﬂ)
Nn

lrW (2)a ™" Jp(rlogz)| < rAFz—" Z

y<Np<z

<e({X + 1IN+ e)eMA"

Observe |4 (et J,(1))| = e~ Jp_1(t) — e 7" Je()]| < e[ ka1 (t) + Ji(t)] < 1 from the defini-
tion of J, () and since )~ , Ji(t) = €'. Hence,

|Sa] < 7"2/ |W(u)|i—u +e({X + 3PN +e)e AR
y

Collecting all of our estimates, we conclude the desired result as A > Ao > 1. OJ

5.3.5 Proof of Proposition

If Eo(x)1jrj<arp(7) = 1 then the inequality in Proposition holds trivially, as the right

hand side is certainly less than 1. Thus, we may assume otherwise.

Combining Lemmas|[5.3.4]and [5.3.3| via (5.31)), it follows that

X p) log Np du Q@ 20408 ]
D N T Crriw) I LR U D

y<Np<u

after bounding A;* as in (5.30) and noting k > k in the range of Lemma By assumption,
J(A) < 1 and hence the right hand side of (5.33) is positive. Therefore, squaring both sides
and applying Cauchy-Schwarz to the left hand side gives

X p) log Np 2du
> > (iirw
pH” u de(1+ )

o 4pAN+16 ]
r*log(x/y) )

" 92k+2 {1 - ‘]()‘)}2'

y<Np<u

By assumption, y = e > e2¢ > Nf,, so it follows x*(p) = x(p) for y < Np < x so we may
replace x* with x in the above sum over prime ideals. Finally, we note k£ < 1%‘(2(@4)\ + 8)
since k is in the range of Lemma [5.3.4] yielding the desired result. O
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5.3.6 Proof of Theorem 5.3.3!

For x (mod H), consider zeros p = 3 + i7y of L(s, x) such that
1-)\L<B<1, |<T (5.36)

Denote \* = {X and 7" = X*/L = {(1 — o), so by (5.24) we have r* < . For any zero
p = B +iyof L(s,x), define ®,,(7) := Lgj14ir—p<ry (7). If p satisfies (5.36) then one can
verify by elementary arguments that

1 [T €2 —1
— o, (1)dr > Y—=——.
rx o an( ) - 5
Applying Proposition[5.3.T]to such zeros p, it follows that
x(p) log Np
Z Np 1+z7’

y<Np<u

2du

/ l<I>p,x(7) [( ") log(z/y) — + Eo(X) 1gjrj<ary(7) |dT

_T r*

21 ( o >2¢A£>\+16
> 1—J(Ea A
- 4¢ 46(1 + a>2(1+a)/a X { f )} ( )a
say. Note 7 = X~ and iy = e¥* where X = X,. and Y = Y).. Summing over all zeros p of
L(s, x) satisfying (5.36)), we have that
N x(p) log Np du
WON(0,T,x) < (X — Y)(20r*L + 8)(r*)*L / (/ ) 3 N d7>—

y<Np<u

u

+ Eo(x)(4pAr* L + 16 4),
(5.37)

because, by Lemma[3.2.4]
Y, (7) = Nyt 14 i7) < 2¢r*L + 8
L(pf;():O

for |7| < T and r* < e. From the conditions on Y and 7" in (5.24) and the definition of £ in
(5.17), observe that, for v = v(e) > 0 sufficiently small, Lemma implies that

y = eYL Z CV{th(I?/‘H‘QU)nKD?{/Q"FQ’UQl/QTnK/Q—&-l}1+V’
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since v < 55 and © = O(e) > 1 is sufficiently large. Therefore, we may sum over

X (mod H) and apply Theorem [5.2.2| with b(p) = log Np fory < Np < uto deduce

w(A) Z N(o,T,x) < <C’(2¢r*£+8)( )—I—O gygi / Z long

X (mod H) Y y<Np<u

+ 4A¢r* L + 164, (5.38)

where €' = 57(X = Y)(1 — 15) ' (552Y — 4)". To calculate ', we replaced £ (found

in Theorem i by observing from Lemma E that £ + 1%6 loghy < 4L since T >

max{ni(/GD;(4 Q49K 1) and © = O(e) is sufficiently large. For the remaining integral

in (5.38), notice by Lemma[2.4.3| that

(log N
/ Og p) e <log:v/ elog(eDY*u )%“ SEX(X —Y)(X +Y +1+2)L%
Yy

y<Np<u Y

Substituting this estimate in (5.38)) and recalling v* = \*/L£ = £\/L, we have shown

> N0, T.x) <20C"¢" - X +8C"E" - X + 49 AL - X + 16A + O (N Le™E),

X (mod H)

where C” = £X(X —Y)(X +Y 4+ 1+ 2)C". Since L > © and © is sufficiently large
depending on e, the big-O error term above and the quantity % in C” may both be bounded by
e. This completes the proof of Theorem[5.3.3] O

5.4 Proofs of log-free zero density estimates

Having established Theorem [5.3.3] we may deduce Theorems[5.1.T]and [5.1.3]

5.4.1 Proof of Theorem 5.1.1]

Without loss, we may assume H (mod q) is primitive because Q = Qy = Qpu/, hy = hy and
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if H' induces H. Suppose % <o<1- %. By a naive application of [LMO79, Lemma 2.1],
one can verify that for 7" > 1,

> N0, T, x) < huTlog(DxQT") < (e D3 QT +2)31(1=2) (5.39)

X (mod H)

after bounding Ay with Lemma

Now, let € € (0,1/8) be fixed and define £ as in (5.17). Suppose 1 — { < o < 1. Let
R > 1 be fixed and sufficiently large. By applying the bound in Lemma to [Wei83|,
Theorem 4.3], we deduce that for 7" > 1,

Y O NA-E£Tx) <1, (5.40)

X (mod H)

so it suffices to bound .4 ) IV (0, T’ X) in the range

€ R

Equivalently, if o = 1 — % then we consider the range R < A < ;L. According to Theo-
rem[5.3.3]and the notation defined in Section[5.3.1] select

£=14+1075, v =105, n=1075, w=10"°and a =0.15.
It follows that the constants By, Cy, C1, C5, Cy in Theorem [5.3.3| are bounded absolutely,

X >Y >46, B, <146.15¢, and £A; <4

where ¢ = 1 + %e + 16€% + 340€'°. Moreover, since A > R, J(EN) < (1+13—5)’\ < (1+1§—5)R
and therefore J(£X) < 1 for R sufficiently large. Thus, by Theorem

Z N(O’, T, X) < )\46146'15(15)\ < 6146.2(15)\ — 6146‘291)(1—0')[: (542)
X (mod H)

for o satisfying (54T) and T > max{n>/®D**"* Q=% 1}. To complete the proof of
Theorem|[5.1.1], it remains to choose € in (5.42)). If ¢ = 0.05 then 146.2¢ < 162 = 2-81 yielding
the desired result when combined with (5.39). If € = 1073 then 146.2¢ < 147 = 2 - 73.5 as

claimed. O
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5.4.2 Proof of Theorem

For T > 1, set Ty := max{n’/°D*/*" Q%% T}. Comparing £ = L1, 5, given by (5.17)
with .Z given by (5.3), one may deduce £ < .Z for . sufficiently large depending only on 7.
Hence, for A > 0 and .Z sufficiently large depending only on 7’, we have that

NN =Ny(N)= > NI-2Tx)< > NI-2Tx), (5.43)

X (mod H) X (mod H)

where N (o, T, x) defined in (53.23)). For A < 0.2866, the result follows as N (0.2866) < 2 by
Theorem For each fixed value of 0.2866 < A\ < 1 appearing in Table we apply
Theorem with v = 0.1 and € € (0,107°) assumed to be fixed and sufficiently small; this
yields a bound for N'(\.Z/L). By (5.43)), the same bound holds for A/(\). Using MATLAB, we
roughly optimize the bound in Theorem|[5.3.3|by numerical experimentation over the remaining
parameters («, n,w, &) which produces Table Note that we have verified J({A) < 1 and
Xex > Yer > 4.6 in each case. It remains to consider A > 1. Apply Theorem with

T=1 JX=1, «a=01549, n=0.05722,
e=10"% v=01, ¢=10030, w=0.02074.

This choice of values is motivated by the last row of Table but with a more suitable choice
for . With this selection, one can check that for any A > 1,

461 <Yer <92, 264 < X\ <526, J(EN) < 0.272.

These inequalities can be verified by elementary arguments and the definitions in Section[5.3.1]
and (5.22). In particular, for any A > 1, the assumptions of Theorem are satisfied for all
1 <\ < ¢Z. Denoting Cy, Cs, Cy, Cy, By, By as in Theorem [5.3.3] it follows that:

Cy = Cy(N) 6.0 x 10", C, <17, B, < 154,
Cs = Cs()\) < 2.4 x 10", Cy < 65, B, < 156,

for A > 1. Thus, by Theorem[5.3.3] for 1 < \ < ¢,.Z,

N(A) £52(6.0 x 10" - A 4+2.4 x 10 - X® + 17 - X 4 65) "M%

(6M)* (60
TR

< 52.6.7 x 1012 . 16224154 < (16224188 0

< 52-6.7 x 102 . ( 46N+ 1)6156>\+154



Chapter 6

Deuring—Heilbronn phenomenon

“Everybody, try laughing. Then whatever scares you will go away!”
— Tatsuo Kusakabe, My Neighbor Totoro.

The Deuring—Heilbronn phenomenon for Hecke L-functions quantifies the zero repulsion
effect of a simple real zero attached to a real (possibly trivial) Hecke character all the way
to the critical line. In this chapter, we establish explicit variants of the Deuring—Heilbronn
phenomenon for the Dedekind zeta function of a number field /& and for the Hecke L-functions
of characters x (mod H) where H is an arbitrary congruence class group of K. As usual, we
retain the notation of Chapter 2] only.

The only known proof method which retains the appropriate field uniformity utilizes power
sums. This technique originates from the work of Lagarias—Montgomery—Odlyzko [LMO79,
Theorem 5.1] and appears again in a paper of Weiss [Wei183, Theorem 4.3]. In all cases, our

approach follows the general structure of [LMO79, Theorem 5.1] with a more careful analysis.

6.1 Statement of results

We begin by stating a variant for Hecke L-functions.

Theorem 6.1.1. Let H be a congruence class group of a number field K with () = Qg given
by 2.2). Let ¢ (mod H) be a real Hecke character and suppose L(s, ) has a real zero (31. Let
T > 1 be arbitrary, and x (mod H) be an arbitrary Hecke character. Let p' = ' + i/ be a
zero of L(s, x) satisfying % < @ < 1land|y| <T. Then, for e > 0 arbitrary,

Ce
log ((1 — 1) log(Dk - Q - T”KeOe(”K)))

/ < 1 _
b= bilog Dy + balog Q + bsng log T + O (nk)

138
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for some absolute effective constant c. > 0, where

(48 + €,60 +€,24 + €) if ¢ is quadratic,

(bh b27 b3) =
(24+€,12+€,12+€) if e is trivial.

The above result is the first explicit variant of its kind. To prove Theorem[I.3.1] we need to
quantify the Deuring—Heilbronn phenomenon for only the Dedekind zeta function of K, which
is the special case when ¢ and y are both trivial in Theorem However, we will require

the following more precise version.

Theorem 6.1.2. Let K be an arbitrary number field and T' > 1 be fixed. Suppose (xk(s) has a
real zero (3 and let p' = ' + iv' be another zero of (i (s) satisfying

1< <1l and |Y|<T. (6.1)
Then, for D sufficiently large,
¢ (=5 og 1)
0
B <1 & (1 —p1)log Dk
- C'log Dy ’

where ¢ = ¢(T) > 0 and C = C(T') > 0 are absolute effective constants. In particular, one
may take T and C' = C(T') according to the table below.
T| 1 | 35|87 | 22| 54 | 134332825 | 2048 | 5089 | 12646 |
C'[31.4]32.7]35.0 [ 38.4]42.0 [45.9 | 49.7 | 53.6 | 57.4 | 61.2 | 65.0 |

Remark.

(i) This result for general 7' > 1 follows from [LMO79, Theorem 5.1] but our primary
concern is verifying the table of values for 7" and C'. The choices of 7" in the given table
are obviously not special; one can compute C for any fixed 7" by a simple modification
to our argument below. We made these selections primarily for their application in the
proof of Theorem|[1.3.1]

(ii) If ng = o(log D) then one can take C' = 24.01 for any fixed 7.

(ii1) Kadiri and Ng [KN12] alternatively show that if

loglog Dy

__9BOBTK 1 and |Y|<1 6.2
Bsilog Dy =" and - |7/] < ©.2)
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and Dy is sufficiently large then

1
lo
g<1-— § <(1 - 51)10gDK)
- 1.531og Dy, '

While the repulsion constant 1.53 is much better than 31.4 given by Theorem [6.1.1] the
permitted range of 3’ in is much larger than that of therefore allowing The-
orem to deal with Siegel zeros which are extremely close to 1. Thus, to distin-
guish this feature, we refer to Kadiri and Ng’s result as “zero repulsion” whereas Theo-
rem [6.1.2]is “Deuring—Heilbronn” phenomenon. The same type of comment holds true
when comparing Theorem[d.1.3](zero repulsion) with Theorem 6.1.1|(Deuring—Heilbronn

phenomenon).
If o is a real zero in Theorem [6.1.2] then one can improve upon the above theorem.
Theorem 6.1.3. Suppose (i (s) has a real zero 3y and let ' be another real zero of (k(s)

satisfying 0 < ' < 1. Then, for D sufficiently large,

c
1
08 ((1 — /) logDK>
16.6log Dy ’

pr<1-

where ¢ > (0 is an absolute effective constant.
Remark. If ng = o(log D) then 16.6 can be replaced by 12.01.

Applying the above theorem to the zero 5/ = 1 — (; of (x(s) immediately yields the
following corollary which will play a key role in our proof of Theorem[I.3.1]

Corollary 6.1.4. Suppose (i (s) has a real zero [31. Then, for D sufficiently large,
1 — By > D%C
where the implicit constant is absolute and effective.

Remark. Corollary [p.1.4|makes explicit [LMO79, Corollary 5.2] and so, as remarked therein,
Stark [Sta74] gives a better lower bound for 1 — ; when K has a tower of normal extensions
with base Q. However, if log Dx = o(nx log nk ) then the above bound is superior to [Sta74].
This condition on log Dy holds, for example, when K runs through an infinite /-class field

tower above some fixed number field F' # Q and for some fixed prime .
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6.2 Preliminaries

6.2.1 Power sum inequality

We record a power sum inequality and its proof from [LMO79, Theorem 4.2] specialized to

our intended application.

Lemma 6.2.1. Define

P(r,0) = ]Zl (1 - JZ— 1>Tj cos(j0).
Then
(i) P(r,0) > —%forO <r<1landallb.
(i) P(1,0) = J/2.
(iii) |P(r,0)] < 3rfor0 <r <1/3.

Proof. See [LMO79, Lemma 4.1] for details. O

Theorem 6.2.2 (Lagarias—Montgomery—Odlyzko). Let € > 0 and a sequence of complex num-
bers {z,},, be given. Let s,,, = ", 2" and suppose that |z,| < |z | for all n > 1. Define

1
M = mz 2] (6.3)
1

Then there exists mo with 1 < mqy < (12 + €)M such that

€
48 + be

Re{sm,} >

|21 [™.
Proof. This is a simplified version of [LMO79, Theorem 4.2]; our focus was to reduce their
constant 24 to 12 4 € by some minor modifications. We reiterate the proof here for clarity.

Rescaling we may suppose |z;| = 1. Write z,, = r,, exp(if,,) so r,, € [0,1]. Then

J .

Sy ::Z (1 — L>Re{sj}(1 + cos jb)

j=1

I Veos i RN
(1 an 1)(COSj9n)(1 + cos j01)r),

[
- =

n=1 1

<.
Il

NE

{P(rn, 0,) + SP(rp, 0, — 01) + %P(rn, 0, + 91)}.

2

3
Il
—
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Using Lemma we lower bound the contribution of each term. For n = 1, we obtain a
contribution > (% — 7’1). Terms n > 1 satisfying r, > 1/3 contribute > —1 > —3r,,. Each
of the remaining terms satisfying r,, < 1/3 are bounded using Lemma6.2.1](iii) and therefore
contribute > —3r,,. Choosing J = | (12 + €)M |, we deduce that

J+1 M
$y > _am > 8 (6.4)
4 4
as J+1 > (12+¢) M. Now, suppose for a contradiction that Re{s; } < g5 forall1 <j < J.
Then, as (1 — J_+1>(1 + cos j#;) is non-negative for all 1 < j < J,

J .
€ 7 ) € eJ
S, < (1——)1 0,) < 2P(1,0) = .
J ; 7))L eosif) < e 2P(10) = e

Comparing with (6.4) and noting J < (12 + €)M, we obtain a contradiction. O

6.2.2 Technical estimates for Hecke L-functions

In this subsection, we consider Hecke L-functions and certain sums over their zeros, both trivial

and non-trivial.

Lemma 6.2.3. Let x (mod q) be a Hecke character. For 0 > 2 andt € R,

/ /

—Re{%(o + it,x)} < —Re{%(o + it,x*)} +

1
5 1 (nK + loqu),
where x* (mod f, ) is the primitive character inducing x.

Proof. By definition,

L(s,x) = P(s,x)L(s,x*), where P(s,x)= H <1 — X*(p)>.

plg
piix

Hence, it suffices to show |5 (s, x)| < 555 (nx + log Nq). Observe that

X ( log Np log Np 1 1 log Np
‘ ’ ‘ZZ ZNpU— —1-27° 20—1% Np

PJ( fx

We bound the remaining sum by taking e = 1 in Lemma[2.4.4] This yields the desired estimate.
O
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Lemma 6.2.4. Let x (mod q) be a Hecke character. For o > 1 andt € R,

Z 1 < (% + (%) ‘MK if x is primitive,
w trivial o + it —w]* T (2 +2%) nk+ (2 + = log2) log Nq unconditionally,

where the sum is over all trivial zeros w of L(s, x), counted with multiplicity.

Proof. Suppose x (mod q) is induced by the primitive character x* (mod f, ). Then

L(sx) = P(s. )Ls. ). where P(s) = ] (1_%"‘_%
pla, piix

for all s € C. Thus, the trivial zeros of L(s, x) are zeros of the finite Euler product P(s, x) or
trivial zeros of L(s, x*). We consider each separately. From (2.8)) and (2.3)), observe that

oo

1 1 00 1
wt%v:ial orit—wp = X;MT)H? X)kz;(a+2k+1)2+tg
L(W,X*)—O

<o = (5 )
— 4+ — |nk.
0+2k2_ 2% | o2)"E

Now, if x is primitive then P(s,x) = 1 and hence never vanishes. Otherwise, notice the
zeros of each p-factor in the Euler product of P(s, x) are totally imaginary and are given by

ay(p)i+; 27”2 - for some 0 < a,(p) < 27/log Np. Translating these zeros w +— w -+ it amounts

to choosmg another representative 0 < b, (p;t) < 27/ log Np. Therefore,

1 . 1 1 2
1, (L2 Yioeva
Z lo + it —w|? — %%UQ—F(Q?Tk/long)Q_ 20+0210g2 08

w trivial

as required. [

Lemma 6.2.5. Let H be a congruence class group of the number field K. Suppose 1) (mod H)
is real and x (mod H) is arbitrary. For c = o+ 1 witha > 1 andt € R,

1 1 1 1
2ot 2 ot 2 pras Bt 2 ra- P

p

(x (p)=0 L(p:)=0 L(p:x)=0 L(px)=0
1l Y 2 1
< —~ b log(DyQ"Dy) + (log(a+ 2) + ) + geri 1 210g7r>n;(

2 4 4
+nKlog(a+2+|t|)+mlogQ+a+a+1],
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where the sums are over all non-trivial zeros of the corresponding L-functions.

Remark. If ¢ is trivial, notice that the left hand side equals
1 1
(Y ey L))
2; o —pf? 2; |0+ it — pl?
Cx(p)=0 L(p,x)=0

This additional factor of 2 will be useful to us later.

Proof. Suppose ¢ and x are induced from the primitive characters {)* and x* respectively.
From the identity 0 < (1 + ¢*(n))(1 + Re{x*(n)(Nn)~"}), it follows that

gK( )+ —(0, V) + £,(0 +it, x*) + %(0 + it,qb*x*)}. (6.5)
K

o<—R{
- L
The first three L-functions are primitive, but & := 1)*x* is not necessarily primitive. Note ¢ is

a character modulo [f,, f,], the least common multiple of f, and f,. Hence, by Lemma m

we deduce that

CK( )+ — (a,w*)+£ 0+it,x*)+£
(x

nic +log Nlfy. ful

0< R{
¢ 2 — 1

= S(o it €} +
Note N[f,, f4] < Q? since ¢ and y are both characters trivial on the congruence subgroup H
and therefore the norms of their respective conductors are bounded by (). Substituting this

bound into the above, we apply Lemmas [2.2.1|and [2.3.3|to each term. We deduce that

0 < 3log(DxDyDy D) + 1ng+wM4mﬂa+14_m)+f%nK

1 _ 1 1 1
—Re{ ; a—p+ ; a—p+ ; U+z't—p+ ; a—i—it—p}

Cx (p)=0 L(p,4)=0 L(p,x)=0 L(p,¥x)=0
1+ FE 1+ E E + E E + F
I 0(?) n o(1) I Re{ o(X) -0<X¢) I o(X) 0(X?/1) }’
«Q a+1 o+ it a+ 141t

(6.6)

where A, = log(a+1)+2+ = - —2log 7. Since 0 < 3 < 1, notice Re{ +Zt e TP

and Re{ - o aﬁﬂt <= + ——. Further, D, and Dy are both < Dy () as £ = ¢*x* induces

the character ¢x (mod q) Wthh is trivial on H. Rearranging (6.6) and employing all of the

subsequent observations gives the desired conclusion. 0
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6.2.3 Technical estimates for the Dedekind zeta function

In this subsection, we consider the Dedekind zeta function of a number field X and certain
sums over its zeros, both trivial and non-trivial. The estimates are similar to the previous
subsection on Hecke L-functions but, for some applications, we will desire precise numerical
estimates for the special case of the Dedekind zeta function. Recall the notation defined in
Chapter 2] especially Section[2.2]

Lemma 6.2.6. For o > Qandt > 0,

/

Re{ (a+1)+7—K(a+1izt)}:Gl(a;t)-r1+G2(a;t).2r2,
VK YK
where
Grlant) o= At 1,0);A<a+ L0 oen
(6.7)
A 1,0 A 2,0 A 1, A 2.t
o) = BOHLO T A +20) + Mo+ LY+ A +20)

and A(x,y) = Re{%(ﬁ%)}

Remark. For fixed @ > 0 and j = 1 or 2, observe that G;(«; t) is increasing as a function of
t > 0 by [AK14, Lemma 2].

Proof. Denote 0 = o + 1. As A(z,y) = A(z, —y), we may assume ¢t > 0. From 2.11), it
follows that

Vi 1
Re{ (o + zt)} =3 [(rl +1r9)A(0,t) + roA(o + 1,t) — (r1 + 2r2) log W}
YK
1
=3 [rl(A(a, t) —logm) + 2r; - (—A(”’tHQA(”H’t) — log W)} )
Using the same identity for ¢ = 0 gives the desired result. [

Lemma 6.2.7. Fora > landt € R,

1
2 ot iri—op = el la)

w trivial

where the sum is over all trivial zeros w of (k(s),

o0

Za+1—|—2k and Ws(a Za—l—l—i—k '

k=0 k=0
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Proof. This follows immediately from (2.13)). [l

Lemma 6.2.8. Fora > landt € R,

1 1
+ —)
;(]oz—i—l—pP o + 14 it — p|?

(6.8)
<l(loD + G [t]) - 1+ Ga(as|t]) 27’)4—3—0— 2
o gLk 1&g 1 2(Q; 2 2 arar
where the sum is over all non-trivial zeros p of (i (s) and G;(«, |t|) are defined by (6.7).
Proof. We combine the inequality
Ck Sk
0 < —Re{=>(a+1)+(a+1+it)
Cx Ck
with Lemmas [2.2.1]and to deduce that
0 < log Dic + Gi( |t|) + Galas [t]) - 2> + Ref L }
0 a;lt]) - r a; [t]) - 2r e
= o8 e e PR ? at+it  a+l+it

a+1— a+1l+it—p a a+1

Observe, as 5 € (0,1),
Re{ 1 - } __a+l - B > a'
a+1+it—p la+1+it—p? = Ja+1+it—pl?

and 1 1 1 1

Re{ b= .

Vatit a+itit) Sa ati

We rearrange (6.9) and employ these observations to deduce (6.8). O

6.3 Proofs of Deuring—Heilbronn phenomenon

6.3.1 Proof of Theorem|6.1.1

Recall H (mod q) is an arbitrary congruence class group of a number field K. If H (mod m) in-
duces H (mod q), then a character y (mod H) is induced by a character ¥ (mod H). It follows

that ~
Lo = 6.0 (1- 32)

plq
ptm
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for all s € C. This implies that the non-trivial zeros of L(s, x) are the same non-trivial zeros

of L(s, x). Therefore, without loss of generality, we may assume H (mod q) is primitive.

We divide the proof according to whether v is quadratic or trivial. The arguments in each

case are similar but require some minor modifications.

1) is quadratic.

Let m be a positive integer, « > 1 and 0 = a + 1. From the identity 0 < (1 + ¢*(n))(1 +
Re{x*(n)(Nn)~'}) and Lemma with s = o + i7/, it follows that

- 1 1 5 5 5 5
Re{ ;Z’T} Sam  (at1-pg Re{ ((;C)—F_:”yl(;fif) " (a +<1X)++W(iwé)l)zm}’
(6.10)

where z, = z,(7') satisfies |z1| > |z2| > ... and runs over the multisets
{(0 —w)™? : wis any zero of (x(s)},
{(0c —w)™?:w# B is any zero of L(s,1*)}, 6.11)
{(c +1iy —w) % :w# B is any zero of L(s, x*)},
{(c +iy —w) % :w# B is any zero of L(s,9*x*)}.

Note that the multisets includes trivial zeros of the corresponding L-functions and *x* is a
Hecke character (not necessarily primitive) modulo the least common multiple of §, and f,.
With this choice, it follows that

(a+1/2)2<(a+1-8)2<|z|<a? (6.12)

The right hand side of (6.10) may be bounded via the observation

1 1

, — . <a?l— —————— < a ™ Im(l - B),
(a+idt)>m  (a+it+1-— 51)2”“ (1+ ;-_ﬂii)2m (1= p1)
whence

Re{ Zz;?y} < a M (1 By). 6.13)

n=1
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On the other hand, by Theorem [6.2.2} for € > 0, there exists some my = mg(e) with 1 < mg <
(12 + €) M such that

Re{ ZZZLO} > Sz > S+ 1= )70 > Sam ™ exp(— 22 (1 — ),
n=1

where M = |z1|71 >°°7 , |z,|. Comparing with (6.23) for m = my, it follows that
exp(—(24 +26)2(1 - ) < L(1 - By). (6.14)

Therefore, it suffices to bound M/« and optimize over o > 1.

By (6.11), the quantity M is a sum involving non-trivial and trivial zeros of certain L-
functions. For the non-trivial zeros, we employ Lemma with Dy = DgNf, < D@
since v is quadratic. For the trivial zeros, apply Lemma [6.2.4] in the “primitive” case for
Ck(s), L(s,1*), L(s, x*) and in the “unconditional” case for L(s,1*x*). In the latter case,
we additionally observe that, as H (mod q) is primitive, log Ng < 2log @ by Lemma 2.4.7]
Combining these steps along with (6.22)), it follows that

2x 4o 2

3
[210g D (- )1
[ Dkt ot 3 T s 1)2log2 T 2eni o 1) 108¢

M < (a+1/2)?

« o?

da 1
+ <log(a+2) +log(av+3) +2 —2logm + 1) + Satl 1>nK

4 4
log T + = }
+ ng log +a+04+1’
(6.15)

for o > 1. Note, in applying Lemma|6.2.5} we used that log(a+ 2+ T') < log(a + 3) +log T
for 7" > 1. Finally, select « sufficiently large, depending on € > 0, so the right hand side of

6T3) s
< (24 155) log D + (2.5 + 155) log @ + (1 4 155)nk log T + Oc(nk).

Substituting the resulting bounds in (6.14) completes the proof of Theorem for ¢ quadratic.

1 is trivial.

Begin with the identity 0 < 1 + Re{x*(n)(Nn)~"""}. This similarly implies

Re{ izy} <t ! —i—Re{( o) _ o) } (6.16)

o (a+ 1= B at i) (@t Lty — B

n=1
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for a new choice z,, = z,(7') satisfying |z1| > |22| > ... and which runs over the multisets

) .
o—w) “:w# frisany zero of (x(s)},
(o =)™ s # By is any zer0 of Gi(s)} o
{(0 +1iy —w) % :w# B is any zero of L(s, x*)}.
Following the same arguments as before, we may arrive at (6.24)) for the new quantity M =
|21]71 227 | |2,]. To bound the non-trivial zeros arising in M, apply Lemma with D,, =
Dy since 9 is trivial. For the trivial zeros, apply Lemma|6.2.4|in the “primitive” case for both

(k(s) and L(s, x*). It follows from (6.22) that, for o > 1,

2

(a+1/2)°
2 a+1

(07

<

M 1 1 1 2
E [lOgDK+<§+m>10gQ+§nK10gT—|—a+

(6.18)

1 1 20 1/2
+ <§log(a+2) + §log(a+3) +1—logm+ TR + Satl 1>nK].

Again, we select « sufficiently large, depending on € > 0, so the right hand side of (6.18]) is
< (14 55)log D + (0.5 4+ £5)log Q@ + (0.5 + 5 )ng log T' 4 Oc(nk).

Substituting the resulting bound into (6.14) completes the proof of Theorem 6.1.1 0

Remark. To obtain a more explicit version of Theorem the only difference in the proof
is selecting an explicit value of «, say o = 18, in the final step of each case. The possible
choice of « is somewhat arbitrary because the coefficients of log D, log @ and ny in (6.15))
and cannot be simultaneously minimized. Hence, in the interest of having relatively

small coefficients of comparable size for all quantities, one could choose the value o = 18.

6.3.2 Proof of Theorem [6.1.2)

Let m be a positive integer and o > 1. From [LMQO79, Equation (5.4)] with s = a + 1 + 7/,
it follows that

1 1 1

Re{ Do} < FRe{ e b 619

nz:l Tam (a+1l-= )P (a+iy)2m  (a+iy +1—pp)2m (6.19)
where z,, satisfies |z1| > |z2| > ... and runs over the multisets

{(a+1—w)"?:w# B isany zero of (1 (s)},
{(a+ 14y —w) ?:w+# B is any zero of (1 (s)}.
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If w is a trivial zero (and hence a non-positive integer by (2.13)) then (a+ 1 —w) ™2 > 0. Thus,
for any z, = (a + 1 — w)~2 in (6.19) corresponding to a trivial zero w, we have z™ > 0 so we

may discard such z,,. It follows that

00 . 1 1
Re{> zr}<— - FESp (6.20)

n=1

where Z, satisfies |2;| > |Z2| > ... and runs over the new multisets

{(a+1—w)"?:w# By is any non-trivial zero of (1(s)},

(6.21)
{(a+1+iy —w) ?:w+# B is any zero of (1 (s)}.
As p' = ' + i/ belongs to the latter multiset, it follows that
(a+1-=8)72<|4|<a? (6.22)
Since
1 _ 1 ‘ < afzm l—-—— |« a72mflm(1 _ ﬁl)
(a+idt)?™  (a+it+1—5)2m— (14 8)2m ’
equation (6.20) becomes
Re{ 3 z:;‘} < a ™ (1 - By). (6.23)
n=1

On the other hand, by Theorem|6.2.2] for € > 0, there exists some my = mq(€) with 1 < my <
(12 + €)M such that

Re{ Yoz} 2 glanl™ 2 o+ 1-#)7" 2 Ga= exp(~22(1 - ),
n=1

where M = |Z;|7' "> | |Z,| according to our parameters Z, in (6.21). Comparing with (6.23))

for m = mg, we have that

exp(—(24 +2¢) 5 (1 = 8) <c T (1 = Bu). (6.24)
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Therefore, it suffices to bound M/« and optimize over o > 1. By Lemmas|6.2.7|and [6.2.8|and

(6.22), notice that

M
«

(a+1-0)
(0]

Ga(azy]) | 1

N

: {élogDK + (M + Wl(oz)) T
2

o+ o?

<
(6.25)

2
WQ(CY)) . 27”2 + ? +

for @ > 1. To simplify the above, we note 1 — 3’ < 1/2 by assumption and G;(c; |y']) <
G,(a;T) for j = 1,2 by the remark following Lemma Also in (6.25), if a coefficient of

71 Or 19 1S positive, we employ an estimate of Odlyzko [Odl77] which implies
(log 60) - r1 + (log 22) - 2ry < log Dk (6.26)

for D sufficiently large. With these observations, it follows that

M
=< ,0}) log Dk
«Q

(0% 0%

(a+1/2)? <l © max { Gi(o;T) + onl(a)’ Ga(a; T) + saWs(a)
alog 60 alog 22

L2y 2
a2 a+oa?|
Seeking to minimize the coefficient of log Dy, after some numerical calculations, we choose

a = «(T) according to the following table:

T| 1 |35|87 | 22| 54| 134 | 332 | 825 | 2048 | 5089 | 12646 |
o [3.503.775.39 | 7.30 [ 8.92 | 10.17 | 11.21 | 12.26 | 13.22 | 14.17 | 15.23 |

To complete the proof for 7" = 1, say, the corresponding choice of o = 3.50 implies

M
— < 1.3067log Dg
o

for D sufficiently large. Substituting this bound into (6.24)) and fixing € > 0 sufficiently small
yields the desired result since 24 x 1.3067 < 31.4. The other cases follow similarly. [

Remark. To clarify remark (ii) following Theorem [6.1.2] notice that if nx = o(log D) then
the coefficients of 7, and 5 in (6.25]) can be made arbitrary small for D sufficiently large

depending on v > 1. Fixing « sufficiently large (depending on T') gives
M/a < 1.00011log Dg

for D sufficiently large. As 24 x 1.0001 < 24.01 the remark follows.
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6.3.3 Proof of Theorem

The proof is very similar to the above proof for Theorem Recall ' # [, is now a real
zero of (k(s), i.e. 7' = 0. Arguing as in the proof of Theorem we deduce that

= 1 1
Re{ 5;1} < _ , 6.27
; —am (a4 1-—p5)2m (6.27)
where Z, satisfies |21| > |Z2| > ... and runs over the multiset
{(a +1—p)~%: p+# B is any non-trivial zero of (x(s)}. (6.28)

Note we again discarded the trivial zeros by positivity. Equation (6.22) still holds for Z; and
we argue similarly to deduce (6.24) holds for M = |z;|7* Y, |Z,|. Thus, by Lemma with
t = 0, we deduce that

(a+1-73)2

<
- 2

M 1 G1(; 0 Ga(; 0 2 2
« o «Q (e a a+ o

(6.29)
for a > 1. Notice, in particular, the additional factor of 2 in the denominator and the lack of
Wi («r) and Wy () terms as compared to (6.23]). Continuing to argue analogously, we simplify

the above by noting 1 — 3/ < 1 and apply Odlyzko’s bound (6.26) to conclude that

M (a+1)2{(1 {Gl(a;O) G 0)

< -
a T 2« a+max alog60’ alog22’

o}>1ogDK+§+ 2 }

o+ o?

for D sufficiently large. Selecting o = 5.8 gives

M
= < 0.6881log Dg
(0

for Dy sufficiently large. As 24 x 0.6881 < 16.6, we similarly conclude the desired result. [



Chapter 7

Least prime ideal

“Fell deeds awake: fire and slaughter! Spear shall be shaken, shield be
splintered, a sword-day, a red day, ere the sun rises!”

—Théoden, The Lord of the Rings.

Throughout this chapter, let L/ F be a Galois extension of number fields with Galois group
G := Gal(L/F) and let C be a conjugacy class of G. Our aim is to estimate

L/F
P(C,L/F) = min{Np : p degree 1 prime ideal of F' unramified in L such that [%] =C},

where N = N(g is the absolute norm of F'. Informally speaking, we are bounding the least prime
ideal which occurs in the Chebotarev Density Theorem. This chapter contains the proofs of
Theorems|[1.3.1]and[1.3.2] which are two of the main results of this thesis. We will use notation
from Section

7.1 Setup

7.1.1 Choice of weight

We will need to select a suitable weight function for counting the prime ideals of the base field

F' so we describe our choice and its properties here.

Lemma 7.1.1. For real numbers A, B > 0 and positive integer { > 1 satisfying B > 2(A,
there exists a real-variable function f(t) = f,(t; B, A) such that:

(i) 0< f(t) < A forallt € R.

(ii) The support of f is contained in [B — 2( A, B.

153
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(iii) Its Laplace transform F(z) = [, f(t)e"*'dt is given by

_ Az 2
F(z)—e_(B_MA)Z<1A—e> . (7.1)
z

(iv) Let £ > 1 be arbitrary. Suppose s = o + it € C satisfies 0 < 1 andt € R. Write

Uzl—éandt:%.Ifogag%andt#()then

F((1-8)2)| < e (B2t s (2)"

Alyl

9 a
) =

Furthermore, for all t € R,

IF(1—5).2)| < e B2 and  F(0) = 1.

Remark. Heath-Brown [HB92] used the weight f with ¢ = 1 for his computation of Linnik’s
constant for the least rational prime in an arithmetic progression. Our choice is also motivated
by the work of Weiss [Wei83, Lemma 3.2]. Namely, the weight function f depends on a
parameter ¢ which will be chosen to be at least of size O(ng). This forces f to be O(ng)-
times differentiable and hence F'(a + ib) will decay like |b|~9%) for fixed a > 0 and |b| —
oo. This decay rate will be necessary when applying log-free zero density estimates such as
Theorem to bound the contribution of zeros which are high in the critical strip.

Proof.

e For parts (i)—(iii), let 15( - ) be an indicator function for the set S C R. For j > 1, define

1

wo(t) = Z1-azza/(t), and  w;(t) = (w* wj—1)(?).

Since [, wo(t)dt = 1, it is straightforward verify that 0 < wo(t) < A™" and woy(t) is
supported in [—(A, ¢/ A]. Observe the Laplace transform W (z) of wy is given by

eAz/2 _ e—Az/2

o = ST (),

so the Laplace transform Wy, (z) of wy, is given by
6Az/2 _ efAz/Z

Woe(2) = (T)M s (1_A—€ZAZ>2£.

The desired properties for f follow upon choosing f(t) = wy(t — B + (A).
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e For part (iv), we see by (iii) that

1 — e~ Alztiy) 20

F(1=9)2) < e ATh)

(7.2)

To bound the above quantity, we observe that for w = a + b witha > 0 and b € R,

1—e™)2 1 —e7%\2
e (5
w a

This observation can be checked in a straightforward manner (cf. Lemma [7.1.2). It

follows that
1 — e~ Alz+iy) 2U—a

Az +1y)

2¢ ‘ 1 — e~ Alz+iy)

Py ‘1 . efA(eriy)
Az + iy)

Az +1y)

9 a
<Gy

In the last step, we noted |1 —e~4@+%)| < 2 since # > 0 by assumption. Combining this
with (7.2)) yields the desired bound. The additional estimate for |F'((1 — s).%)| follows

similarly. One can also verify F'(0) = 1 by straightforward calculus arguments.

Lemma 7.1.2. For z = x + 1wy withx > 0and y € R,

2 1 —e7%\2
(=)
x

Proof. We need only consider y > 0 by conjugate symmetry. Define

‘1—€_Z
z

1—¢77

z

2 1 —2x __ 2%
_ +e : 62 Ccos Yy for y > 0,
e +y

q)ﬂc(y) = ‘

which is a non-negative smooth function of y. Since ®,(y) — 0 as y — oo, we may choose

Yo > 0 such that ®,(y) has a global maximum at y = . Suppose, for a contradiction, that

@, 00) > (+—) (13)

T

By calculus, one can show (1 — e~%)/z > e~*/2 for x > 0. With this observation, notice

—2\2
2¢ 7 -sinyg 2P, (vo) Yo _ 2e T -sinyy 2 1_963 Yo
() =—F5——5— ——5 5 < —5 5 — ( 5 >2 by (7.3)
T2+ Y T+ Yy T+ Yo T+ Yy
2e % -sinyy 27" -y <0

2y Pty
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since siny < y for y > 0. On the other hand, ®,(y) has a global max at y = y, implying
®’.(yo) = 0, a contradiction. O

7.1.2 A weighted sum of prime ideals

Recall L/F is a Galois extension of number fields with Galois group GG and C' is a conjugacy
class of GG. Furthermore, recall the notation and discussion in Section [2.5]

Suppose the integer £ > 2 and real numbers A, B > 0 satisfy B — 2¢A > 0. Select the
weight function f = f,(-; B, A) from Lemmaaccording to these parameters. For .£ > 1
arbitrary, define

B o log Np . /log Np
S - S(f) - p unra;ﬁed in L ®C(p) Np f< g ) 7 (74)
p degree 1

where the sum is over degree 1 prime ideals p of F' which are unramified in L and O¢(p)
is defined by (2.27). The parameter £ is left unspecified because the choice is different in
Section compared with Sections and In any case, if S > 0 then there exists a
degree 1 prime ideal p of F' unramified in L with [L’/TF] = (' and Np < eBZ; that is,

S>0 = P(C,L/F) <P

Equivalently, S > 0 implies 7¢(z, L/F) > 1 for # > e¢P%. We may take this observation a bit
further to obtain a better lower bound for 7¢(x, L/ F), defined by (I.13).

Lemma 7.1.3. In the above notation,

L/F) > Ae™4% 5 =
o(z, L/F) > Ae Slogx’

(@
where 1 = eB<.

Proof. Since f is supported in [B — 2¢A, B] and | f] < A~ by Lemma(7.1.1} it follows by the
definition of S that

A7t og(BY)
b unramifiedin L (7.5)

1
= A_le%A’%Eﬁc(x, L/F).
T

The last line follows from (2.28)) and the fact that x = ¢®¥. Rearranging the inequality gives

the lemma. O]

Now, we wish to transform .S into a contour integral by using the logarithmic derivatives
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of certain Artin L-functions. Recalling the discussion in Section [2.4] one is naturally led to

consider the contour

1 2+100
[ :=— Z, F((1-s)2)d 7.6
s [ Zel)F((1 =820, 1.6
where Zc(s) is defined by (Z:223) and F(z) = [, f(t)e *'dt is the Laplace transform of f.
Comparing (7.6) and (2.26), it follows by Melhn inversion that
log Nn
I=2'%" 6 ( ) 7.7
Z c(n ~ (7.7)

where the sum is over all integral ideals n of F' and Ar(n) is the von Mangoldt A-function for
integral ideals of F given by (2.3). Comparing and (7.7), it is apparent that the integral
I and quantity .Z 'S should be equal up to a neglible contribution from: (i) ramified prime
ideals, (ii) prime ideals whose norm is not a rational prime (i.e. not degree 1 over QQ), and (iii)
prime ideal powers. In the following lemma, we prove exactly this by showing that the collec-
tive contribution of (i), (ii), and (iii) in is bounded by O(A~1.Le 2(B-2DL 6g ) ),

Lemma 7.1.4. In the above notation,

1 241400 N .
LS = — Za(s)F((1 = 8)L)ds + O(A™ . Le 3 B-20L 00 D).

270 Jo—ioo

Proof. Denote Q; = eB~2Z and Q, = 8%
Ramified prime ideals. Since the product of ramified prime ideals p C Op divides the relative
different 1, it follows that

Z log Np < log Dy,.

pCOFR
ramified in L

Therefore, by Lemma|/.1.1)and (2.27)),

1 Np . /log Np™ _
> e () cat Y e Y

pCOr m=1 pCOF m>1
ramified in L ramified in L Np™>Q1

log N
car y e
pCOFp p

ramified in L
Np>Q1

<A1 B2€A$logD

Prime ideals with norm not equal to a rational prime. For a given integer ¢, there are at most
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ng prime ideals p C Op satisfying Np = q. Thus, by Lemma|7.1.1]and (2.27)),

Z Z Z O longf<lo§>Tp> < A g Z Z

p prime k>2 pCOF p prime k>2
Np=p* Q1<p*<Q2

< A 'npLQ?
<K AL P a(BAUNL log Dy,

P*

Note in the last step we used the fact that np < ny; < log Dy, by a theorem of Minkowski.

Prime ideal powers. Arguing similar to the previous case, one may again see that

> > Zlong <long ) Op™) <« AL Le s B2ANL o0

p prime pCOK m>2
Np=p

The desired result follows after comparing (7.4)), and (7.7) with the three estimates above.
[

Equipped with Lemma the natural next step is to move the contour to the left of
Re{s} = 1. Applying Deuring’s reduction as described in Section[2.5|combined with Lemma
and (2.34)) yields the following:

Lemma 7.1.5. Let H be any abelian subgroup of G such that HNC' is non-empty. Let K = L
be the subfield of L fixed by H and let go € HNC. If S = S(f) is defined by (7.4) and F is
the Laplace transform of f in Lemma then

71§ = Ig: 2(75)/2 M—ZI(S,X,L/K)F(Q—S),%MS

—1300

+ O(A L2 B-2UNL 40 D),

where the sum is over all Hecke characters X attached to the abelian extension L/K. Here

L(s, x, L/K) is the (primitive) Hecke L-function attached to x.
Remark. The number of Hecke characters appearing is precisely #Gal(L/K) = [L : K].

Now, after pulling the contour in Lemma to the left of Re{s} = 1, we have two op-
tions for estimating the non-trivial zeros of the Hecke L-functions. By (2.20), we can estimate

their contribution as:

(i) the zeros of the Dedekind zeta function (;(s);
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(i) or the zeros of Hecke L-functions L(s, x, L/K) averaged over all Hecke characters .

Section[7.2]takes strategy (i) whereas Section[7.3|takes strategy (ii). In each case, the ubiquitous
quantity . will be defined differently.

7.2 Proof of Theorem 1.3.1

7.2.1 Additional preliminaries

For the entirety of Section[7.2] let
% =log Dy.

By a classical theorem of Minkowski, we have that n; < .Z. We shall use this fact often and
without reference. Recall the definitions and quantities related to the Dedekind zeta function
of L described in Section [2.2] We summarize a few key results needed for the main argument.

Let Z be the multiset consisting of zeros of (;(s) in the rectangle
0 < Re{s} <1, |Im{s} <I. (7.8)

Choose p; € Z suchthat Re{p;} =1 =1— % € (0, 1) is maximal.

Theorem 7.2.1 (Kadiri [Kad12l]). Assume Dy, is sufficiently large. If \; < 0.0784 then p; is a

simple real zero of (1(s).

For Section only, we refer to the case \; < 0.0784 as the exceptional case. Otherwise,
A1 > 0.0784 is regarded as non-exceptional. The final arguments will be divided according to
these two cases. Now, select another zero p' € Z of (;(s) such that p’ # p; (counting with
multiplicity in Z) and Re{p'} = ' = 1— :\_a; is maximal. In the exceptional case, p; is a simple
real zero so p’ is affected by the zero repulsion emanating from p;. This is explicitly quantified

in [KN12, Theorem 4]; we state a slightly weaker version here.

Theorem 7.2.2 (Kadiri-Ng [KN12]). Let n > 0 be arbitrary. If \y > 1 then N > 0.6546 log(1/\)
for Dy, sufficiently large depending on 1.

When \; < 7, we will defer to Theorem for the Deuring—Heilbronn phenomenon and
its effect on p’. Next, we reduce Theorem to verifying the following lemma.

Lemma 7.2.3. Assume £ is sufficiently large. Suppose for every B > 40 there exists a choice

of A and ! for (7.4) satisfying one of:

(i) A>1072 (A <3 and %3—15 > 1.
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(i) A> L1 IA<1, and %Z*ls > A

Then ) |C'|
x
L/F _——
me(x, LI F) > DY |G| log x

for x > D7° and Dy, sufficiently large.

Proof. Let B = kfff so B > 40. In case (i), we apply Lemma to deduce that

ez |C] 1|C] =
L/F orlCl z 1 ]C]
mo(z, L/F) > e |Gllogz ~ DY |G|logx

as desired. In case (ii), we again apply Lemma to deduce that

Cl =
L/F) > \ 2z [0 .
me(w, LIF) > e |G| log x

From Corollary [6.1.4] we have that A\; > D;'". Combining with the above yields the desired

result as e>? = D2, O

Thus, it suffices to verify the assumptions of Lemma hold unconditionally.

7.2.2 A sum over low-lying zeros

Now, we begin by shifting the contour in Lemma and reducing the analysis to a careful

consideration of contribution coming from zeros p = 5 + iy of {1,(s) which are “low-lying”.

Lemma 7.2.4. Let T* > 1 be fixed. Keep the notation of Lemmal7.1.5] Then

G5O < Y (1 -02) +0(2(mg) + Zoer-20212)

AT+ A
Iv|<T™*
n O<$<E>2ge—(8—2€A)$ n j(éyz—sw—zmwn)’

(7.9)

where the sum is over non-trivial zeros p = [ + iy of (1(s), counted with multiplicity.

Proof. Consider the contour in Lemma Since Hecke L-functions are meromorphic in
the entire complex plane, we shift the line of integration to Re{s} = —3. From (2:20), this
picks up exactly the non-trivial zeros of (y(s), its simple pole at s = 1, and its trivial zero at
s = 0 of order 1y + 7o — 1. For Re{s} = —1/2, we have by that

F((l . 8).,%) < e 3(B-2AA)L/2 | <m)% (7.10)
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and, from [LO77, Lemma 6.2] and (2.21)),

Z |%(s,x, L/K)| <« Z {log Dy + nglog(|s| +2)}

X
<L L+ L : K] nglog(|s| +2)
< &L+ nglog(|s| +2).

It follows that

X(ge) [ L _ 2 \* _sB-2eayz)
x /2 (5, L/K)F((1 5)3)ds<<Z<A$) e ,

—100
as ny, < Z. For the zero at s = 0 of Z¢(s), we may bound its contribution using (7.1)) to

deduce that
—(B—2LA) &

i7) © 7
since 1 + 21y = ny, < .Z. These observations and Lemma [7.1.5]therefore yield

(r+r— 1)F(ZL) < ,s,ﬂ(

iglg 'S — F(0 ‘ Z|F (1—p |+O<"i —1(B-20A) % +$<A;>2£€_(B_2M)$>
ot o)

(7.11)
where the sum is over all non-trivial zeros p = (5 + iy of (1 (s). By [LMO79, Lemma 2.1] and
(7.1), we have that

ST s () SR < 2 )

k=

e N 0 R

asn; < % and ¢ > 2. The result follows from ((7.11)) and the above estimate. O

For the sum over low-lying zeros in Lemma we bound zeros far away from the line
Re{s} = 1 using Lemma below. In the non-exceptional case, this could have been
done in a fairly simple manner but when an exceptional zero exists, we will need to partition
the zeros according to their height. This will amount to applying a coarse version of partial

summation, allowing us to exploit the Deuring—Heilbronn phenomenon more efficiently.

Lemma 7.2.5. Let J > 1 be given and T > 1 be fixed. Suppose

2<Ri <R < <R; <2, 0=Tp<Th <THL<---<T;=T".
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Then

S IR -0 2) = Y IR - p)2) +0(min{ (2)", 2 }e-v2am)

P
|y|<T™

(7.12)
S0 ) )

where the marked sum Y indicates a restriction to zeros p = 3 + i of (1 (s) satisfying

R.
B>1-2L  Ta<hl<T; forsomel<j<.J.

If J = 1 then the secondary error term in (/.12) vanishes.

Remark. To prove Theorem|I.3.1] we will apply the above lemma with J = 10 when an excep-
tional zero exists. One could use higher values of J or a more refined version of Lemma [7.2.3|

to obtain some improvement on the final result.

Proof. Recall ¢ > 2 for our choice of weight f. Let 1 < j < .J be arbitrary. Define the multiset

R,
Zi={p:Qlp) =0, 1= T < h| <Tj}
and denote S; := > - [F((1 — p)Z)|. Since
J

SR -p)2) = Y IF(1-p2)+ 3 S,

p Jj=1
Iv|<T™

it suffices to show

20
S1 < min { (%) ,3}6_(3_2“)&,

2
and S; < .Z( e B2AR foro < j < J.

AT21.$>

Assume 2 < j < J. AsT; < T™ and T™ is fixed, it follows that #2Z; < .Z by [LMO79,
Lemma 2.1]. Hence, by Lemma and the definition of Z;,

S; < o~ (B—2LA)R; Z <A|j|g>2e < i”(ATng)Me_(B_%A)Rf

PEZ;

as desired. It remains to consider S;. On one hand, we similarly have #2; < .Z by [LMQ79,
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Lemma 2.1]. Thus, by Lemmal|/.1.1{and the definition of .5,
S, < Le (B-2AAR (7.13)

On the other hand, we may give an alternate bound for S;. For integers 1 < m,n < &2,

consider the rectangles

<og<1-2 T <p< 2

m—+1 m n—1 n}
z’ A A

Rm,n::{s:ajtite(j:l—

We bound the contribution of zeros p lying in R, ,, when m > R;. If a zero p € 'R, ,, then

|F((1—-p)2)| < e—(B—%A)m(

2 20
Mm) ’

by Lemma with o = 2/. Further, by [LMO79, Lemma 2.2],

#{p € Romm 1 Colp) =0} < /(m+1)24n2 < /m2+ (n—1)2

The latter estimate follows since m,n > 1. Adding up these contributions and using the

conjugate symmetry of zeros, we find that

g, < Z Z ‘<<< ) Z o~ (B—2tA)m +(n—1)2)_2€+1

m>R, pERmn m>Ry
nzl (¢ (p)=0 n>1
92\ 26
< (_) ¢~ (B-2AAR
A

since ¢ > 2. Taking the minimum of the above and (7.13)) gives the desired bound for S;. [

If an exceptional zero exists with \; sufficiently small then we shall choose the parameters
in Lemma(7.2.5]so that the restricted sum over zeros is actually empty. Otherwise, Lemma(7.2.3|
will be applied with J = 1 and 7} = 7™ = 1 so we must handle the remaining restricted sum

over zeros in the final arguments. We prepare for this situation via the following lemma.

Lemma 7.2.6. Let 7 > 0 and R > 1 be arbitrary. For A > 0 and { > 1, define

Fy(z) = (1_A—62AZ)2Z.

Suppose (1 (s) is non-zero in the region

Re{s} >1-— %, Im{s}| <1
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for some 0 < A < 10. Then, provided Dy is sufficiently large depending on n, R, and A,

s 1 — e 4\ 21 1 —e 240 24N — 1 4 24
Y- () o) 2AZN?

p

+n}, (7.14)

where ¢ = 3(1 — \/ig) and the marked sum " indicates a restriction to zeros p = 3 + iy of
Cr(s) satisfying

R
ﬂ Eil'— Z?a ’7'5;1-

In particular, as A — 0, the bound in becomes %2 + 1 + 1.

Proof. This result is motivated by [HB92, Lemma 13.3]. Define

A% sinh ((A—1)A) if0<t <A,
0 ift > A,

h(t) :=

SO
AN —AX

& 1 e e 2 e A%
Hz) = | e ht)dt = - .
(=) /O e ht)dt 2A2{)\+z+)\—z v

As per the argument in [HB92, Lemma 13.3],

—AX

B+ 2)] < 220 Re{H(2)) (7.15)

for Re{z} > 0. Combining the above with Lemma|7.1.2] it follows that

1 — e AM\20-1) 24X
L) <€ -Re{H(2)}

B+ < (T

for Re{z} > 0, since (1 —e™")/z is decreasing for z > 0. Setting o = 1— 2 € R, this implies

1-— e—AA>2<“> 2e~4X

SR =02 < (—5— — > Re{H((0 — p)Z)},

so it suffices to bound the sum on the RHS. Since h and H satisfy Conditions 1 and 2 of
[KN12]], we apply [KN12, Theorem 3] to bound the sum Y’ on the RHS yielding

AL (M) h(log Né‘ﬁ)

;’ Re{fH (7= ) 2)} < WO +0) + H((lo =D2) =27 37 maaoh( =5

NCOy,

< h(0)(¢+n) + H((c —1)2),

for Dy, sufficiently large depending on 7, R and A. Using the definitions of ~ and H and
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rescaling 7) approriately, we obtain the desired result. O

7.2.3 Non-exceptional case (\; > 0.0784)

Recall the definition of p; given in Section Here we assume \; > 0.0784. Choose
(=2, B>741, and A=15

to give a corresponding f and its Laplace transform F' defined by Lemma Observe that
B — 2¢A > 1.41 for the above choices.

Let e > 0. Apply Lemma[7.2.4 with 7* = 1. Then employ Lemma[7.2.5|with J = 1,7} =
T* = 1and R; = R = R(e) sufficiently large so that

Gl

|C|.$ 1S>1—Z|F (1—p)L)| —e

for Dy, sufficiently large depending on €. Here the restricted sum is over zeros p = (3 + @
satisfying

R
ﬁ>1—§ | < 1.

It suffices to prove the sum over zeros p is < 1 — ¢/2 for fixed sufficiently small e. Observe by
the definition of F} in Lemma and our choice of p; that

Z F(1=p)2) = 3 e By (1 - p)2) < e N Y By ((1 - p)2)].

Since \; > 0.0784, we may bound the remaining sum using Lemma with A = 0.0784.

Hence, the above is

< e MM X 11166 < e X000 11166 = 0.9997 - < 1

Y

as desired. Thus, :glf 1S > 1. By Lemma|7.2.3| this completes the proof of Theorem [1.3.1

in the non-exceptional case.

7.2.4 Exceptional case (\; < 0.0784)

For this subsection, let 0 < 1 < 0.0784 be an absolute arbitrary parameter which will be
specified to be fixed and sufficiently small at the end of each subcase. Recall by Theorem
that p; = (3 is a simple real zero of (y(s).
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A small (n < A\ < 0.0784)

Again, choose the weight function f from Lemma|7.1.1| with
(=2, B>263 and A=0.1,

so B—2(A > 223 and /A = 0.2 < 3. The argument is similar to the previous case but we
take special care of the real zero 5;. With the same choices as the non-exceptional case, we

deduce
1G]

LS ZL-IFO =g D) = YR - 2)| - (7.16)

p#B1
for Dy, sufficiently large depending on e. Observe that, since p; is real and (1 — e™*) /¢t < 1 for

t >0,
1— 6—0.1)\1

0.1\
By our choice of g in Section and a subsequent application of Lemma with A = 0,

we have that

4
F((1—=p1)2)| = 6_2-23’\1< > < e 22\

STIF(1 = D)) < e Y |R((1 - p)2)] < e x 65270,

p#p1 pPFp1

As \; > n, we apply Theorem to see that A’ > 0.65461log(1/A;) for Dy, is sufficiently

large depending on 7. Hence, the above is

S 6.5279 x )\%23><0.6546 S 6.5279 x /\}4597.

Thus, becomes

%315 >1— e 20 65279 x AT — ¢
> (2.23 — 6.5279 x AT — 2.4865M ) A1 — €,

t

since 1 — e~ >t —t*/2fort > 0. The quantity in the brackets is clearly decreasing with \;

so since A\; < 0.0784, we conclude that the above is

> (2.23 — 6.5279 x 0.0784%%%7 — 2.4865 x 0.0784)\; — €
> 0.0097A; — €
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By taking ¢ = 10759 and noting \; > 7, we have }gi,ﬁf 1S > A, for Dy sufficiently large
depending on 7. By Lemma [7.2.3] this completes the proof of Theorem forn <\ <

0.0784.

A; very small ((£72%0 < )\ < )

Choose the weight function f from Lemma with

¢=101, B >32, and A—404,

so B—2(A > 31.5and /A < 1 for Dy, sufficiently large. Applying Lemma with T* =1,
it follows that

1Gl

o f Szl-IFO-p)2 )= D IF((1=p)2) +0(L7.

fink

Similar to the previous subcase, we have that |F((1 — 3,).%)| < =315, For the remaining
sum over zeros, we apply Lemmawith J=1T, =T, =1,and R = 31 5 log(ci/ A1)
with ¢; > 0 absolute and sufficiently small. As \; > . 72°, we may assume without loss that
R, < ijf for .Z sufficiently larg Therefore,

Gl

|C|$_IS > 1 — 35 _ Z IF((1-p)2)| +O( —201 +)\ii)1_5/31.4)7 (7.17)

p#B1

where the sum Y is defined as per Lemma By our choice of parameters 77 and R, it
follows from Theorem [6.1.2] that the restricted sum over zeros in (7.17) is actually empty. As
1—et>t—1t%/2fort > 0, we conclude that

Gl

‘Or% 18 >31.5)\ + 0(37201 4 A?1.5/31.4>.

Since . 2% < \; < 7 by assumption and 7 is sufficiently small, we conclude that the RHS is
> )\ after fixing . By Lemma|7.2.3| this completes the proof of Theorem in this case.

This implies the zero 1 — f3; is already discarded in the error term arising from Lemma This minor
point will be relevant when \; is extremely small.
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A1 extremely small (\; < £ ~200)

Choose the weight function f from Lemmal(7.1.1|with

0.88
(=1%], B>35 and A=-——
’7 —‘7 — Y an g?

so B —2(A > 33.24 and (A < 1 for Dy, sufficiently large. Applying Lemma [7.2.4] with
T* = 12646, it follows that

2 33.24
%3—15 B F(O)‘ < Z (1= p)ZL)| + O<$6210g(0.88><12646)'$ + $3e*T‘Z>

P
|y|<12646

1 3 2
+ O<g€—33.24$+210g (m)iﬂ + $€—§X33.24$+210g (m)ﬁ)

< 3 IF((1 = p)2)| + O(Loe 105,

p
|y|<12646

(7.18)
For the remaining sum, we use Lemma [7.2.5| with J = 10 selecting 7 and ; = bg(g&
according to the table below. Note C; = C(1;) > 0 and ¢; = ¢(Tj) are the absolute constants
in Theorem

J
T; | 3.5 | 87 | 22 | 54 | 134 | 332 | 825 | 2048 | 5089 | 12646
C;132.7 350|384 |42.0{45.9|49.7|53.6| 574 | 61.2 | 65.0

Therefore,

:%:z—ls >1—|F((1-p51)Z)| - Z/ IF((1 = p)2)| — |F(B1.2L)| + O(ZLBe16622)
p#P1,1—P1

10
i O(g)\i,3.24/32.7) 4 Z O <$€210g (W)Xﬁaﬂ/q)?
j=2

(7.19)
where the sum Y is defined as per Lemma Since the zeros of (;(s) are permuted under
the map p — 1 — p, it follows from Theorem [6.1.2]and our choice of parameters T; and C; that
the restricted sum over zeros in 1s actually empt For the zeros 1 — /3, and (31, notice

|F((1 o ﬁ1>$)| < 6—33.24)\1 < e—33>\1 and F(ﬁlg) < 6—33.24(2—)\1) — 0(6_332),

>The zero 1 — (3; cannot be discarded via symmetry or Theorem which is why we must consider its
contribution separately.
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as \; < 0.0784. Moreover, as \; < .Z 2% and % > 1.016, we observe that

P )\?3.24/32.7 < )\;1/200 X )\%.016 < )\{01.

To bound the sum over error terms in the (7.19), notice \; > Ze~1¢5% by Corollary
which implies that

_2 _ 2\ S P <
PR (o.ngj )f)\i,g.%/cj < N PP (0.88Tj71)f+16.6(1733.24/0j)j‘
Substituting the prescribed values for C; and Tj_;, the above is < ;e %92% forall 2 < j <
10. Incorporating all of these observations into yields

%3—15 >1 e 3N 4 O<)\i.01 + A 002% +$36_16'62$>

> 33\, + o( ALOL 4 ) =002 336_16.62,%)7

since 1 — et >t —t2/2 fort > 0. Again noting that \; > Ze~'66Z by Corollary
and \; < £ 729 by assumption, we finally conclude that the RHS is > \; for D, sufficiently
large. By Lemma|[7.2.3] this completes the proof of Theorem [I.3.1]in all cases. O

Remark. We outline the minor modifications required to justify the remark following Theo-
rem

o If there is a sequence of fields Q = Lo C L; C --- C L, = L such that L; is normal
over L;_; for 1 < j < r then by [Sta74, Lemmas 10, 11], it follows that \; > Le~05%.

When )\, is extremely small (\; < .2 72%), one may therefore select

3
(=1710.05¢], B=32, and A= —
|> —|7 Y an g?

and apply Lemma with T* = 12646. Afterwards, employ Lemma with T;

and R; = % chosen according to the table below.

J 1 2 3 4 5 6 7 8 9 10 11
T; | 1 | 35 | 87 | 22 | 54 | 134 | 332 | 825 | 2048 | 5089 | 12646
C;131.4|32.7(35.0(384|42.0|459|49.7|53.6| 574 | 61.2 | 65.0

Following the same arguments yields the desired result.

e If n;, = o(logDy) then by remark (ii) following Theorem [6.1.2] applied to Corol-
lary |6.1.4} it follows that \; > Ze~12014 Moreover, by remark (ii) following The-
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orem|6.1.2] one can use

log(c/ A1)

J , 1 e, and R, Y

in the application of Lemmas[7.2.4]and[7.2.5] One may then modify the case when )\ is
very small to consider £ 19 < )\; < 7 and take

¢ =1000, B=24.1, A=1/10°

Similarly, one may modify the case when ), is extremely small to consider \; < £ ~10%0
and take 0.9
(=[0.12], B=241, and A=

Following the same arguments yields the claimed result.

e If (;(s) does not have a Siegel zero then A\; > 1 so the cases when \; < 7 are unneces-

sary.

Remark. When )\; is extremely small (\; < Z72%), the selection of parameters A, B, ¢,
and T} was primarily based on numerical experimentation but for the previous cases, one can

choose them roughly optimally.

7.3 Proof of Theorem 1.3.2

7.3.1 Additional preliminaries

From Lemma(7.1.5] recall that we are given an arbitrary abelian subgroup H of G = Gal(L/F’)
satisfying H N C' # () and K = L' is the fixed field of L by H. Define the max conductor of
L/K by

Q = Q(L/K) := max{NKf, : x € Gal(L/K)}, (7.20)
where the K-integral ideal f,, C Ok is the conductor of the Hecke character x attached to the
abelian extension L/ K. For the entirety of Section leﬂ

(5 +00)log Dic + (55 + 00) log @ + (35 + do)nuc log i nig™/® > DI*Q1”,
(14 do)log D + (2 + &o) log Q + don log nk otherwise,

L=

(7.21)

3This is the same quantity as defined in (5.3)).
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where dp > 0 is fixed and sufficiently small. Notice that
£ > (1400)log Dk + (3 +00) log Q+dgng logng and £ > (L +00)nk logng (7.22)

unconditionally. We exhibit a bound on the degree of the extension L/K in terms of .Z.
Lemma 7.3.1. [L : K| < e*?/3 and n;, < Le*/3,

Proof. Let f = fr/x be the Artin conductor attached to L/K by class field theory. Let I(f)
be the group of fractional ideals of K relatively prime to §. By class field theory, there exists
a homomorphism ¢ : I(f) — Gal(L/K). Thus /(f)/ker ¢ is isomorphic to Gal(L/K). This

induces an isomorphism between their respective character groups and therefore,
Q(L/K) = max{Nf, : y € Gal(L/K)} = max{Nf, : y € I(})/ ker ¢}.

By our previous observations, |/ (f)/ ker ¢| = |Gal(L/K)| = [L : K]. For ¢y > 0 fixed and suf-
ficiently small, we have by Lemma that hyer o = |1(f)/ ker ¢ < €O () p1/2F0 glieo
e*?/3 as desired. To bound ny, observe that ny, = [L : K|ng and ng < Z. O

We will need to carefully analyze the zeros of

[T Les.x.L/K). (7.23)
X

where the product is over all (necessarily primitive) Hecke characters attached to L /K. From
the discussion in Section the non-trivial zeros of are, counting with multiplicity,
exactly the non-trivial zeros of (3.1]) for some congruence class group H of K. In fact, this
correspondence occurs for each L-function appearing in both and (3.1I). Thus, all the
results of Chapters [3] to [ regarding the non-trivial zeros of can be directly translated to
results about (7.23)). The remainder of this subsection is dedicated to recording these translated
results using the quantity .. The differences are primarily notational.

First, we specify some important zeros of (7.23)). These zeros will be used for the remainder

of this section. For 7, > 1 arbitrary, consider the multiset given by

Z .= {p e C: [] L(p, x. L/K) = 0,0 < Re{p} < 1,|Im(p)| < T*}. (7.24)
X

We select three important zeros in Z as follows:

e Choose p; € Z such that Re{p; } is maximal. Let y; be its associated Hecke character so
L(p1,x1,L/K) = 0. Denote p; = By + iy = (1 — 3%) + i, where 81 = Re{p:},m =
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Im{p1}, A1 > 0, and p; € R.

e Choosdp’ € Z\ {p1,p1} satisfying L(p', x1, L/K) = 0 such that Re{y'} is maximal
with respect to these conditions. Similarly denote p' = ' + iy’ = (1 — f};ﬁ) + z%

e Choose p; € Z\ Z; such that Re{p2} is maximal and where Z; is the multiset of
zeros of L(s,x1,L/K) contained in Z. Let y» be its associated Hecke character so
L(pa, X2, L/K) = 0. Similarly, denote p, = 5 + is = (1 — 22) +i%2.

If £ is defined by (3.3) with a suitably chosen function v then by (7.22)) it follows that
£ > L for £ sufficiently large. Thus, the results on the distribution of zeros of Hecke L-

functions, including those from Chapter @ may be rewritten in the current notation.

Theorem 7.3.2. Assume £ is sufficiently large depending on T,. If Ay < 0.0875 then p; is a

simple real zero of Hx L(s, x, L/K) and is associated with a real character x,. Furthermore,
min{\', A2} > 0.2866.

Proof. This is the contents of Theorems4.1.1jand4.1.2] O

Theorem 7.3.3. Let £ be sufficiently large depending on T,. If A\; < 0.0875, then min{\', Ao} >
0.51. If n < Ay < 0.0875, then min{\', \y} > 0.21031og(1/A1).

Proof. Follows from Theorems 4.1.3|and[7.3.2] Note 0.210310og(1/0.0875) > 0.51. O

Theorem 7.3.4. Let T > 1 be arbitrary. Suppose x1 is a real character and p, is a real zero.
For any character x of L/K, let p = [ + iy # p1 be a non-trivial zero of L(s,x, L/K)
satisfying 1/2 < 8 < 1 and |y| < T. For £ sufficiently large, there exists an absolute

effectively computable constant c; > 0 such that

log( @ >
81.7Z + 25nk log T '

b<1—
Proof. This follows immediately from Theorem[6.1.1] since
(48 4+ €)log Dk + (60 + €) log Q 4+ O (nk) < (80 + 2¢).Z

for . sufficiently large depending on e. [

Theorem 7.3.5 (Stark). Unconditionally, \, > e~ 2*%/>,

*If py is real then p’ € Z \ {p1} instead with the other conditions remaining the same.
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Proof. By Theorem [/.3.2] or its non-explicit predecessor [Wei83, Theorem 1.9], we may as-
sume p; is real and its associated character y; is real. By considering cases depending on
whether y; is quadratic or principal, the result follows from (7.21)), (7.22)), and the proof of
[Sta74] Theorem 1’, p.148]. O

Let y € GEI(L /K') be a Hecke character. Define

N(o,T,x) =#{p=pF+iv: Lp,x, L/K) =0,0 < < 1,|7| < T}

for 0 < o0 < 1and T > 1. Further denote

N(o,T):=> N(o,T,x). (7.25)
X

We emphasize that the following estimate does not assume .7 is sufficiently large.
Theorem 7.3.6. For0 < o < landT > 1, N(0,T) < (e'02ZT81nx+162)1-0

Proof. This follows from Theorem To remove the condition on 7" in Theorem [5.1.1] we
used the definition of % in (7.21]). ]

We will also require a more explicit zero density estimate for “low-lying” zeros. Set
Ty = max{ni/ESD;l/:mK Q */omx T}

Comparing £ = Ly 5, given by (5.17) with £, we deduce £ < £ for .Z sufficiently large
depending on 7. This observation implies that, for A > 0,

N(1-2%.T,x) <N(1—2%T x). (7.26)

Hence, the results of Chapter [5|can be transferred into the current notation with .. Abusing
notation, define for 0 < \ < &,

N =NNT) => N1-2.T.x). (7.27)
X

Theorem states that A/ (0.0875) < 1 and NV (0.2866) < 2 for . sufficiently large depend-
ing on 7,. For larger values of A\, we use the following:

Theorem 7.3.7. Assume £ is sufficiently large depending on T,. Let ¢ > 0 be fixed and
sufficiently small. If 0 < \ < €y.Z then

N()\) < 6162)\4—188.
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The bounds for N'(X) in Table[5.1]are superior when 0 < X < 1.

Proof. This is the same as Theorem [5.1.3] O

Finally, we reduce the proof of Theorem to verifying the following lemma.

Lemma 7.3.8. Let n > 0 be sufficiently small and arbitrary. Assume £ is sufficiently large
depending only onn > 0. Let A = 4/ % and { = |nZ|. If every B > 693.5 defining (7.4)

implies %3’13 >, min{1, \, } then

1 g T
D3, Q4n3 |Gl log x

Wc(I, L/F) >

for x > D$*Q%' + D32Q37n2"K and D Qn'i sufficiently large.

Proof. Let B = kji,’“" so B > 693.5 by assumption and the definition of . in (7.21)). Fixn > 0

sufficiently small. By Lemma|7.1.3] our assumption on S, and Theorem [7.3.5] it follows that

1 C| x 24 S ‘C’ i
,L/F) > min{1, \ —1077;/’__ > —(F+1omz 1~ *
mo(z, L/ F) > min{l, Aije |G| log ‘ |G| log
as desired. By (7.21)), we somewhat crudely bound .# to note that e(FH1mZ o D3.Q*n3rx,
Combining with the above yields the desired result. ]

Remark. The quality of exponents for D3 Q*n " in the lower bound for 7o (x, L/F) can be

easily improved by simple modifications to our bounds in Theorem and our bound of .Z

in the above arguments. For simplicity, we did not pursue the optimal exponents.

7.3.2 A sum over low-lying zeros

We again begin by shifting the contour in Lemma and reducing the analysis to a careful
consideration of contribution coming from zeros of Hecke L-functions which are “low-lying”.
Recall that 7, > 1 is arbitrary throughout this section, though we will emphasize it in the

statements of some lemmas.

Lemma 7.3.9. Let T, > 1 be arbitrary, and let p; and x; be as in Section If

8lng + 162 1

B —2/A > 162 / A>—
> 162, > 1 , >$,
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and £ is sufficiently large then

|G 2715 — F(0) + Xilge) F((1 - p0)2)| < 32 3 IF((1 - p).2)

9 2
T40.5nx+81 778$>
+0 ( (AT*.i”) * te

where the sum " indicates a restriction to non-trivial zeros p # p1 of L(s, x, L/ K), counted
with multiplicity, satisfying 0 < Re{p} < 1 and [Im{p}| < T..

Proof. Shift the contour in Lemmato the line Re{s} = —%. For each Hecke character y
(which is necessarily primitive), this picks up the non-trivial zeros of L(s, x, L/ K), the simple
pole at s = 1 when Y is trivial, and the trivial zero at s = 0 of L(s, x, L/K) of order r(x). To
bound the remaining contour, by [LMQ79, Lemma 2.2] and Lemma iV) with o = 2, for
Re{s} = —1/2 we have that

/

L
—f(s,x,L/K)<<<$+nKlog(|s|—l—2), and |F((1—s)%)| < L2 2B2AL g2,

since A > 1/.%. It follows that

1 —1/2+ic0 I 5
By — = (s,x, L/K)F((1 = 8).L)ds < L3 2B-2NL
210 J 19— ico L

Moreover, by the conductor-discriminant formula (2.21), our condition on A, (7.21)), and
Lemma[7.3.1] we have that

A~ P (B-2A)Z)2 log Dy, < Pl (B- 2£A).$/2[L K]log(DgQ) < e~ (B-20A-4).2/2

Substituting all of these calculations in Lemma [7.1.5]implies

G- F(0)+ Y W9e) Y. F((1-p)2)| < Yo r()F(&)+e B-24-0272, (7.08)

where the inner sum over p = p, is over all non-trivial zeros of L(s, x, L/K). From (2.5)) and
(2.8)), notice r(x) < ng. Thus, by Lemmas|7.1.1|and[7.3.1]

Zr(x)F(.iﬂ) < [L: Knge B2  o~(B-2A-22

X
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It follows from (7.28)) that
G — _(B— _
9 g1s = F(0 )—Zx(gc)ZF((l—p)f)—l—O(e (B—20A 4)3/2)
X P

The error term is bounded by O (e~ %) as B — 2¢A > 162. Therefore, it suffices to show

Z:= ZZ X IR-al<( p) TR

2kT*<Im{p}<2k+1T

From Lemma(7.1.1} writing p = 5 + iy with 3 > 1/2, observe that

20
F(p2)| +F((1 = p)2)] < 26 E200-02 (2 ),

Moreover, from Theorem

N(o) = N(o,T) = ZN(O', 2T, x) < (6162$T81n1<+162)(1—0)

X

for ; <o <1,T > 1, and .Z sufficiently large. Thus, denoting B’ = B — 2(A, it follows by

partial summation that

Y. Y F(-p2)

X P
T<|[Im{p}|<2T

<(arz)" [ <A

( g)% |:N 1/2 _B g/2+B/$/ —(B’—162)(1 U)XT(81NK+162 )(1— UdO':|

20
(B'—162).2/27040.5n+81 1]
<AT$> [ +

5
40.5n 5 +81-2¢
< (AZ)

since B > 162. Note we have used that the zeros of [, L(s, x, L/K) are symmetric across

the critical line Re{s} = 1/2. Overall, since ¢ > 2.2 'we deduce that

2 \2¢ s 2 20
A ( ) 7740.5n 5 +81-2¢ 9k)40.5n 5 +81-2¢ ( ) 74050 +81
<\az) ™ §< ) <\arz)
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Next, we further restrict the sum over zeros in Lemma to zeros p close to the line
Re{s} = 1. To simplify the statement, we also select parameters ¢ and A for the weight

function.

Lemma 7.3.10. Let T, > 1,7 € (0,1) and 1 < R < % be arbitrary. Suppose

4
B-2A>162. A= (=[nZ). (7.29)

If Z is sufficiently large depending only on T, and 1 then
92718 — F(0) + Xilge) F(1 = p)2)| < 3 S T IF((1 = p).2)|
X P
+ O(e—(B—QEA—162)R + (QT*)—%!/enff + 6—78!/)’

where the marked sum " runs over zeros p # p1 of L(s, x, L/ K), counting with multiplicity,
satisfying 1 — & < Re{p} < 1 and [Im{p}| < T.

Proof. For £ sufficiently large depending on 7, the quantities B, A and ¢ satisfy the assump-
tions of Lemma Denote B’ = B — 20 A. We claim it suffices to show

> Z' IF((1—p).L)| < e”BT1DR, (7.30)

X Re{p}<1-R/.Z

where Y is defined in Lemma To see the claim, we need only show that the error
term in Lemma [7.3.9]is absorbed by that of Lemma [7.3.10] For .# sufficiently large, notice

T *40'5”1( < e asng log T, = o(.Z). Hence, for our choices of A and ¢, we have that

( 2 )%Tfo.smf(wl < <L>2’7‘$€n$.
AT, 2T,

This proves the claim. Now, to establish (7.30)), define the multiset of zeros

Rn(x) = {p: L(p.x) =0, 1— L <Refp} <1-2, [Im(p}| <T.}

for 1 <m < .%Z. By Theorem and Lemmal 7.1.1} it follows that

Z Z [F((1-p)Z)| < e B'm Z AR, (x) < o~ (B/=162)m

X pERm(X)

for . sufficiently large depending on 7. Summing over m > R yields the desired conclusion.
O



CHAPTER 7. LEAST PRIME IDEAL 178

Next, we proceed to the final arguments for the proof of Theorem by dividing into
cases depending on whether A\; > 0.0875 or not.

7.3.3 Non-exceptional case (\; > 0.0875)

For this subsection, we assume A\; > 0.0875. Thus, we have no additional information as to

whether p; is real or not, or whether Y is real or not.

Recall n > 0 is arbitrary and sufficiently small, say n < 1072 at least. Assume . is suffi-
ciently large, depending only on 7; we will frequently use this fact throughout this subsection

without further mention. Suppose

4
B > 693.5, (=|nZ|, and A= 72

Thus B, /¢, and A satisfy and B’ := B — 2(A > 693. By Lemma [7.3.8] establishing

Theorem |1.3.2] in the non-exceptional case is therefore reduced to verifying %3 18> 1.

Now, assume the fixed parameter \* > 0 satisfies
A< min{ X, Ao},

where )\ and )\, are defined in Section with 7T, = 1. For a non-trivial zero p of a Hecke
L-function, as usual, write p = 3 + iy = (1 — %) 4+ i4. Let m(p;) = 1if p is real and
m(ps) = 2 if p; is complex. Thus, from Lemma [7.3.10| with 7, = 1 and R = R(n) > 1
sufficiently large, it follows that

G| t
2s 2 1 melF (- w2 - 5 X R 02)] -

X
where the marked sum ZT runs over non-trivial zeros p # py (or p # py, p1 if p1 is complex)
of L(s, x), counted with multiplicity, satisfying \* < A < R and |y| < 1. Note we have used
that |F'((1 — p1)Z)| = |F((1 — p1)-Z)|. By Lemma(7.1.1] this implies that

G| B B
IF:.,% 16>1—-2¢ BA1—§ § e Br . (7.31)
X A <A<LR
[v[<1

Let A > 0 be a fixed parameter to be specified later. To bound the remaining sum over zeros,
we will apply partial summation using the quantity A'()), defined in (7.27), over two different
ranges: (D A* < A< Aand (i) A < A < R.
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For (i), partition the interval [A*, A] into M subintervals with sample points
)\*:A0<A1<A2<"'<AM:A.

By partial summation, we see

YT emyy e

X AT<A<ZA Aj_1<A<A;
[vI<1

M—-1
<e —B'Ap— 1N’ AM +Z — 7BIAj)N(Aj> = Zl,
7=1

say. By Theorem [7.3.2] we may choose \* = 0.2866. Furthermore, select

0.286 + 0.001r 1<r <14,
A=1, M = 32, A, = €0.300 4 0.025(r — 14) 15 <7 < 22,
0.5+ 0.05(r — 22) 23 < r < 32.

By Theorem[7.3.7, we may use Table[5.1]to bound A/ ( - ), yielding Z; < 0.9926.

For (ii), apply partial summation along with Theorem Since B’ > 693 > 162 and
R = R(n) is sufficiently large, it follows that

>3 s [T mav

x A<A<R
lv[<1

< e—(B/_162)R+188+/OO Bl e~ (B'—162)2+188
N A
B/

S B 162 !SI oy = Zy 4,

say. Evaluating the right hand side with B’ > 693 and A = 1, we deduce Z, < e 3%,
Incorporating (i) and (ii) into ((7.31])), we see that

G /
Hz-ls > 1—2¢ %M —0.9926 — e — 21 > 0.0073 — 2,

as \; > 0.0875 and B’ > 693. Since n < 1073, we conclude :gif 1S >> 1 as desired. This

completes the proof of Theorem [1.3.2]in the non-exceptional case. 0
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7.3.4 Exceptional case (\; < 0.0875)

For this subsection, we assume A\; < 0.0875, in which case p; is an exceptional real zero
by Theorem Thus, p; is a simple real zero and x; is a real Hecke character. Recall
n > 0 is arbitrary and sufficiently small, say < 1073 at least. Assume .Z is sufficiently
large, depending only on 7; we will frequently use this fact throughout this subsection without
further mention. We will proceed in a similar fashion as the non-exceptional case, but need a
less refined analysis due to the strength of the Deuring-Heilbronn phenomenon. Suppose
B > 163, (=1|nZ|, and A:i.
Z
Thus, B, ¢, and A satisfy and B' := B — 2{A > 162. For the moment, we do
not make any additional assumptions on the minimum size of B and hence B’. To prove
Theorem [1.3.2] when p; is an exceptional zero, it suffices to show, by Lemma that
Igi.ﬁf 1S >, min{1, \;} for B > 593 and .Z sufficiently large depending on 1.
For a non-trivial zero p of a Hecke L-function, write p = § + iy = (1 — %) + 77y so by
Lemma IF((1 —p)ZL)| < e B, From Lemmawith T,>land1 < R< .Z
arbitrary, it follows that, if we define

A n when 7, = 1 and R = R(n) is sufficiently large,
a O(e~(B'=169R 4 o=T82)  when T, = T, (n) is sufficiently large and 1 < R < .&,
(7.32)
then
%z 1S >1— xi(ge)e B™M Z Z —BA (7.33)

where the restricted sum >_* is over zeros p # p;, counted with multiplicity, satisfying 0 <

A < Rand |y| < T.,. Suppose the arbitrary parameter \* > 0 satisfies
A > \*  for every zero p occurring in the restricted sum of (7.33). (7.34)
It remains for us to divide into cases according to the range of A; and value of x;(g¢) € {£1}.

In each case, we make a suitable choice for \*.

Moderate exceptional zero (n < \; < 0.0875 or x1(9c) = —1)

For the moment, we do not make any assumptions on the size of A; other than 0 < \; < 0.0875.

Select T, = 1 and R = R(n) sufficiently large so A = 7 according to (7.32). By partial
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summation, our choice of \* in (7.33)), and Theorem [/.3.7] it follows that
* ’ R ’ / o ’
Z Z e B < / e BN < e~ (B'-162)R+188 | / Ble—(B'—162)A+188 1)
)\*
X P

*

As R = R(n) is sufficiently large and B’ > 162, the above is < —2—e!88-(B'=162A" 1

B'—162
Comparing with (7.33)), we have that
G _ =7 ’ _ ’_ *
%z 'S 21— xilge)e PN = gl FTIONEIE gy, (7.35)

Finally, we further subdivide into cases according to the size of A\; and value of x;(g¢) € {£1}.

Recall n > 0 is sufficiently small and arbitrary.

A\ medium (1072 < \; < 0.0875).  Here we assume B > 593 in which case B’ > 592.
Select \* = 0.44 which, by Theorem [7.3.3] satisfies (7.34) for the specified range of ;.
Substituting this estimate in (7.35)) and noting |x1(gc)| < 1, we deduce that

%3_15 > 1 eP02x1078 %6—430x0.44+188 — 2> 0.032 — 21

for A € [1073,0.0875]. Hence, for n sufficiently small, %2‘15 > 1 in this subcase, as

desired.

A osmall (n < A\ < 1073).  Here we assume B > 297 in which case B’ > 296.5. Select
A* = 0.2103log(1/A;), which, by Theorem [7.3.3] satisfies (7.34). For A\ < 1073, this implies
A* > 1.45. Applying both of these facts in (7.35)) and noting |x1(gc)| < 1, we see

|G|$_IS > ] — 29650 _ ﬁe—(134.5—188/1.45),\* o> 1 e 2965M @Al — 9,

12| 134 134
since 4.84 x 0.2103 =1.017---> 1. Asl—e® > x — x2/2 for x > 0, the above is

296
A2 — @M — 21 > 294.2); (1 — 150\;) — 2 > 2501,

(296.5)?

> 296.5\ — 2

because 7 < \; < 1073, Therefore, %3 ~1S >, 1 completing the proof of this subcase.

A1 very small (A\; < n) and x1(9c) = —1.  Here we also assume B > 163 in which case
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B’ > 162.5. From ([7.33), it follows that

1Gl

|C|‘$_IS > 1 4 ¢ 16250 _ 395,~05MH188 o > 9 0(6—0.5» T4 )\1)'

By Theorem [7.3.4 the choice A* = - log(cy/A;) satisfies for some absolute constant
c; > 0. Since \; < 7, the above is therefore > 2 — O(n°%/® 4+ 1) > 2 — O(n'/1%?). Asy
is sufficiently small, we conclude %f ~1S > 1 as desired. This completes the proof for a

“moderate” exceptional zero.

Truly exceptional zero (A\; < n and x;(gc) = 1)

Select T, = T.(n) sufficiently large and let R = i log(c1/A1), where ¢1 > 0 is a sufficiently

small absolute constant. By Theorem it follows that the restricted sum over zeros p in

(7.33)) is empty and therefore by (7.33) and (7.32)),

1G1
€l

as x1(gc) = 1. Additionally assuming B > 243 in which case B’ > 242.2 and noting

1—e® >z —a?/2forx > 0, we conclude that

1Gl

G2 2 24220 - 00 + NPHET L 7T > 0 (2422 — O(A)™! 4 €7,

In the last inequality, we use that \; > e~ *®Z by Theorem As A\ < npforn >0
sufficiently small, we conclude %f —18 > )\, as desired.

Comparing all subcases of the exceptional case, we see that the most stringent condition is
B > 593. By Lemma|[7.3.§] this completes the proof of Theorem[1.3.2] O

Remark. The “truly exceptional” subcase is analogously considered in Chapter [9]in the lan-
guage of ray class groups. In particular, when L/K corresponds to a primitive congruence
class group H of K, this subcase is implied by Theorems [9.1.1] and 9.1.2] which are numeri-

cally much stronger results and use entirely different methods.

7.4 Absolutely bounded degree

In this section, we improve upon Theorem when ny = [K : Q] is uniformly bounded by

an absolute constant. We will proceed as in Section [/.3|and establish the following theorem.
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Theorem 7.4.1. Let L/ F be a Galois extension of number fields with Galois group G and let

C C G be a conjugacy class. Let H C G be an abelian subgroup such that H N\ C' is nonempty,
K = LY be the fixed field of H, and Q = Q(L/K) be defined by (1.22). If ngz < 10*° then

1 |C] =
D3 Q*|G|log x

mo(x, L/ F) >

or x > D032 and Dy Q su ciently large. In particular,
Z Vg
P(C,L/F) < D4K55 Q342

Remark. Our primary goal was to minimize the exponents of Dy and Q. Our secondary goal

was to allow the largest range of ny possible without sacrificing the exponents of Dy and Q.

This section is dedicated to proving Theorem We will assume all of the contents and
notation from Sections [7.1] and [7.3l

7.4.1 Additional preliminaries

For A > 0, define N(\) = N (A, L/K) to be the number of Hecke characters x attached to
L/K such that L(s, x, L/ K) has a zero in the region
Refs}>1- 5., [n{s}<T
e{s - — m{s -
g Y —

Recall .Z is given by (7.21) and T, > 1 is arbitrary. From Theorem [7.3.2] we have that
N(0.0875) < 1 and N(0.2866) < 2. The source of our improvement will be our ability to use
N(A) in place of N'(\) from Theorem when ) is small.

Lemma 7.4.2. If £ is sufficiently large depending on T, then N(0.569) < 3365.

Proof. This follows from Corollary since .Z > L for £ sufficiently large. Here, L is
given by (3.3). N

We reduce the proof of Theorem to verifying the following lemma.

Lemma 7.4.3. Let > 0 be sufficiently small and arbitrary. Assume nyi < 10* and &£ is
sufficiently large depending only on n > 0. Let A = 4% and { = [W} + 1. If every
B > 454 defining (1.4) implies %3*15 >, min{1, A\, } then

1 |C| =z

L/F —
mo(z, L/F) > D3 Q% |G| log x
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for x > D5 Q%2 and Dk Q sufficiently large.

Proof. The argument is similar to Lemma|7.3.§] O

7.4.2 A sum over low-lying zeros

We will require Lemma as well as two additional lemmas. One lemma addresses the

low-lying zeros for our new choices of A and /.

Lemma 7.4.4. Let T, > 1,7 € (0,1) and 1 < R < .Z be arbitrary. Suppose

81ngk + 162

B—20A>162, A=— (=] 1

]+1 (7.36)
If £ is sufficiently large depending only on T, and 7 then
[Eg S = F(0) + Xalgo) F(1—p) )| <D D T IF((1 = p).2)]
X p
+ Oy (e~ (B-2A-162R | p—122)

where the marked sum " runs over zeros p # p1 of L(s, x, L/ K), counting with multiplicity,
satisfying 1 — & < Re{p} < 1 and [Im{p}| < T..

Proof. This result is motivated by Lemma [7.3.10} so the arguments are similar. For . suffi-
ciently large depending on 7, the quantities B, A and ¢ satisfy the assumptions of Lemma(7.3.9
Denote B’ = B — 2¢ A. First, the bound is established exactly as in Lemma Thus,
we again need only show that the error term in Lemma is bounded by £7!?2, For .¥
sufficiently large depending on 7, notice by our choices of A and /¢ that

2 2 40.5n ¢ +81
(AT*$> L S (

1 >40.5nK+82

Tg TfO.SnK—i—Sl <<nK 3—1227
*

as desired. O]

The second lemma addresses the sum over zeros for a single Hecke character. There is no

corresponding lemma in Section[7.3.2]

Lemma 7.4.5. Letn > 0,17, > 1 and R > 1 be arbitrary. Let x be a Hecke character attached
to L/K. For A > 0and ( > 1 arbitrary, define

Fuz) = (“A—QZAZ)%. (7.37)
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Suppose L(s, x, L/ K) is non-zero in the region

Re{s} > 1— %, Im{s}| < T,

for some 0 < A < 10. Then, provided £ is sufficiently large depending onn,T,, R, and A,

1— e‘A’\)Q(Z—l) { (1 — e‘””‘) 24N — 1 4 724

> IE((1-2)] < (T A2) 2AZ)2 +’7} (7.38)
p

where ¢ = 1/4 and the marked sum "' indicates a restriction to zeros p = 3 + iy of (1(s)
satisfying

R
521—§7 v < Ts.

In particular, as A — 0, the bound in becomes %2 + 1 + 1.

Proof. This result is motivated by [HB92, Lemma 13.3] and Lemma The arguments are
analogous except we replace the application of [KN12|, Theorem 3] with Proposition [l

Lemma(7.4.5| poses two issues whereby we must fix the degree 1 to obtain improvements
over Theorem [I.3.2] First, it has a condition that . is sufficiently large depending on A
(amongst other quantities). Second, the quality of the bound in is O(1/A). Thus, if A
is not uniformly bounded below by an absolute constant, then we cannot apply Lemma
to obtain a degree uniform result like Theorem However, our arguments seem to force
A < nj'. This is because B — 2¢(A > 162 implies /A < 1 to permit bounded values
of B. Since ¢ > ng is a seemingly necessary condition due to applications of the log-free
zero density estimate (e.g. Theorem and its relatives), it follows that one must impose
A < (7' < nit. If one could circumvent these two issues, then we expect the quality of
exponents in Theorem to carry over to Theorem|1.3.2] We did not attempt to pursue such

a strategy.

7.4.3 Proof of Theorem [7.4.1

For the entirety of this subsection, assume
1 <ng <10%.

Recall the definition of p; in Section [7.3.1] From the proof of Theorem [I.3.2]in Sections
and [7.3.4} it follows that we need only consider the cases A, large (A\; > 0.0875) and )\,
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medium (10*3 < Ay < 0.0875). In all other cases, the values of B are shown to be small

enough. Thus, we assume \; > 1073.

Recall n > 0 is arbitrary and sufficiently small, say n < 1072 at least. Assume . is suffi-
ciently large, depending only on n; we will frequently use this fact throughout this subsection

without further mention. Suppose

81ngk + 162
4

-‘—1—1, and A:l.

B > 164, (=] i

Thus B, ¢, and A satisfy and B’ := B — 2({A > 163. For the moment, we do not
make any additional assumptions on the minimum size of B and hence B’. By Lemma(7.4.3]

establishing Theorem1.3.2) when \; > 1072 is therefore reduced to verifying %Z 18> 1.

Now, assume the fixed parameter \* > 0 satisfies
A* < min{\, A2},

where \ and )\, are defined in Section With T, = 1. For a non-trivial zero p, of a Hecke
L-function L(s, x), as usual, write p, = p =+ iy = (1 — %) +i4. Let m(py) = 1if py is
real and m(py) = 2 if p; is complex. Thus, from Lemmawith T,=1land R=R(n) > 1
sufficiently large, it follows that

%XIS > 1—m(p)|[F((L=p) D) =) ZT [E((1 = py)Z)| =,

where the marked sum ZT runs over non-trivial zeros p, # p1 (or p, # p1, p1 if p; is complex)
of L(s, x), counted with multiplicity, satisfying \* < A < R and |y| < 1. Note we have used
that |F'((1 — p1)L)| = |F((1 — p1)Z)|. For each character x, consider the corresponding
inner sum over zeros. By Lemma([7.1.1]and (7.37)), we have that

SR = p)2) < S PN - p)2)] < BN SR - py)2)].

Px P

Applying Lemma (using A — 0) to the remaining sum, it follows that, for any given Yy,

SR = p) )] < (41ng + 80)eE Y
Px

since 27‘;5 + 1 < 41lng + 84 . For A* > 0 fixed, let M(A*) be the set of characters x (including
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the trivial character) with a zero p satisfying A < A* and || < 1. Thus, we have shown

> Z |F((1—p)Z)| < No(A*) - 1665,

XEM(A*)  px

where No(A*) = #M(A*). Observe that

N(A*) +1 if xo has a zero p satisfying A < A* and || < 1,
N(A¥) otherwise,

No(A") =

where N( -) is defined in Section By Lemma/7.1.1] this implies that

G "
LISz mp)e T -z S Y ey a9
| ‘ XEM(A®) A*|<|,\<R

v|<L1

where
Z[) = (41nK + 84) N()(A*)Q_B/A*.

Let A > A* > 0 be a fixed parameter to be specified later. To bound the remaining sum over
zeros, we follow the proof in Section Namely, we will apply partial summation using
the quantity N (\), defined in ([7.27), over two different ranges: (i) A* < A < A, and (ii)
A < X < R. For (i), partition the interval [A*, A] into M subintervals with sample points

A*:A0<A1<A2<"'<AM:A.

By partial summation, we again see

2. 2 e ZZ 2, o

XEM(A*) A’|*<|)\<A Aj 1 <A<ZA;
7|<L1

S

-1
< e TMENA) + ) (TP = TPV = 4,

1

J

say. If M = 0, we set Z; = 0 trivially. For (i1), we similarly apply partial summation along
with Theorem Since B’ > 163 and R = R(n) is sufficiently large, it follows that

l B/ /
Z Z e,B 61887(8 —162)A +n = Ty + n,

XEM(A* )A|<|,\<R — 162
<
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say. Incorporating (i) and (ii) into (7.39), we conclude that

|G|

@3—15 >1—m(p)e PN — Zy— 2y — Zo — 1. (7.40)

Finally, we divide into two cases. Recall that we need only consider \; > 1073,

Ap large (\; > 1072)

Here we assume B > 454 so B’ > 453.5. By Theorem|[7.3.2] we may choosd’| \* = 0.2866.

Furthermore, select
A* = 0.5609, A=1, M =9, A, =055+0.06r (1<r<09).
By Lemma it follows that
Zo < (Alng + 84) - 3366 - e~158:5X0-2866 < (=118, | —117

For Z;, we apply Theorem using Table [5.1] to bound N(-), yielding Z; < 0.9649.
For Z,, we see that Z, < e~ !9 If A\; > 0.0875 then m(p;)e BN < 2~ 4535%0.0875 <
10716, Otherwise, if 1072 < A; < 0.0875 then, by Theorem [7.3.2] m(p;) = 1 implying
m(py)e BM < e74895%001 < (0. 011. Combining all of these observations into (7.40), we

conclude that

1Gl

‘C’.z*ls >1—0.011—e Mg —e 17 —0.9649 — 10 —p

> 0.008 — 7

for nxg < 10% < e!, Since n < 1073, we conclude %ﬁ_lS > 1 as desired.

Ay small (1073 < \; < 1072%)

Here we assume B > 358 so B’ > 357. By Theorem [7.3.2] p; is a simple real zero attached
to a real Hecke character x; so m(p;) = 1. By Theorem [7.3.3] we may take \* = 0.968 >
0.21031og(1/0.01). Select

A=AN"=X=0968, and M =0.

One could use Theorem when 1072 < \; < 0.0875 but this does not seem to lead to any significant
improvements in Theorem[7.4.1}



CHAPTER 7. LEAST PRIME IDEAL 189

With these choices, we see that m(p;)e P21 < 73572001 < (,029. Moreover, Z, < 10~ for
ng < €32 Z, = 0 by definition, and Z, < 0.8562. Thus,

G
%%21321—00%—405—0—08%2—n

> 0.11 — 7.

Since < 1073, we conclude %2 1S > 1 as desired. This completes the proof of Theo-

rem[7.4.1lin all cases. [



Chapter 8

Brun-Titchmarsh

“That is brand new information!”
— Phoebe Buffay, Friends.

Throughout this chapter, let L/ F be a Galois extension of number fields with Galois group
G := Gal(L/F) and let C be a conjugacy class of GG. Our aim is to upper bound

ez, L/F) = #{p : Np < z,p prime ideal of F unramified in L, [LJ/TF} — 0},

where N = N(g is the absolute norm of F'. This chapter contains the proofs of Theorems
and [1.3.4] which are two of the main results of this thesis. The material here has substan-
tive intersections and connections with Section and can be viewed as a complementary

perspective. Again, notation from Section [2.5| will be used throughout this chapter.

8.1 Setup

8.1.1 Choice of weight

Let us define a weight function and describe its properties. It will be used to count prime ideals

with norm between z/2 and z.

Lemma 8.1.1. Forany x > 3,¢ € (0,1/4), and positive integer { > 1, select

R
- 2logx’

There exists a real-variable function f(t) = f(t; x, ¢, €) such that:

(i) Oﬁf(t)§lforallteR,andf(t)Elfor%§t§1.

190
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(ii) The support of f is contained in the interval [} <14 =]

"~ loga’ log
(iii) Its Laplace transform F(z) = [;, f(t)e”*'dt is entire and is given by

_ L 2Az

B 1 — e(%JrQZA)z 1 e ¢
Flz)=e s ( —z )( —2Az ) ’ @1

(iv) Let s = o + it € C,0 > 0 and « be any real number satisfying 0 < a < (. Then

_ crat o2y (20)°
|F(—slogx)| < S[Tozz (1+2777%) <e|s|> :

(v) Ifs=o0+it € Cand o > 0, then
|F(—slogx)| <e”x°.

Moreover,
e‘x?

1/2 < F(0 3/4 F(—ol < .
[2< F0) <3/4. Fl-ologa) < S0

(vi) Let s = —% + it € C. Then

—-1/4 ¢
5z (%) (1/4 4 12)~2.

|F(=slogx)| <
€

log x

Remark. This choice of weight can be regarded as a smoothed version of Maynard’s weight
[May13], Equation (5.6)]. It is motivated by the choice of weight in Chapter[7]on the least prime
ideal. See the remark following Lemma for details.

Proof.
e For parts (i) and (ii), let 15( - ) be an indicator function for the set S C R. For j > 1,
define

1
w(t) = oalaa),  9o(t) = 1g_paaeeq(t),  and g;(t) := (w* g;1)(t).

Since fR w(t)dt = 1, one can verify that f = g, satisfies (i) and (ii).

e For part (iii), observe the Laplace transform W (z) of w is given by

A Az

_ez—e* A 1 — 24
Wiz) = 2Az - ( —2Az )’
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and the Laplace transform G, (z) of gy is given by

1/2—0A)z —(14£A)z 1420A)z

—( — 1 — el
Go(z) = € € — o~ (1+2A)z <€—)
z —z

Thus (iii) follows as F'(2) = Go(z2) - W(2)".

e For part (iv), we see by (iii) and the definition of A that

O€ .0 1— —2Aslogx ¢
— -(1+e_“:v_"/2)‘e— . (8.2)

F(—sl <
|[F(=sloga)] < 2Aslogx

|s| log x

To bound the above quantity, we observe that

"< (1 _ae_a)2 <1 (8.3)

‘l—e_w

w

for w = a + ib with a > 0 and b € R. This observation can be checked in a straightfor-
ward manner (cf. Lemma([7.1.2). Using (8.3), it follows that

l—a —240 | o «a
< (Ganmess) 1< ()"
~ \2A|s|logx ~ \¢ls|

In the last step, we noted 1 + x~ 249 < 2 and used the definition of A. Combining this

with (8.2)) and observing e~?¢ < 1, we deduce the desired bound.

1— €—2As log x

2Aslogx

¢ ‘1 _ 6—2Aslogac a ‘1 _ €—2Aslogac

2Aslogx 2Aslogx

e For part (v), we see by (iii) that

7(%+25A)s log z

‘1—6

1— €—2Aslogx ¢
(3 + 20A)slogx ‘

1
|F(—slogz)| < <§ + 2€A> e’“x? -

2Aslog x
< ea'ExO'

— Y

where the second inequality follows from an application of (8.3]) and the observation that
14+ 20A < 1+e<1 Fors =0 >0, observe that F(—olog ) is real and positive.

Thus, by (iii) and (8.3)),

1
—(3+2tA)o —2Ac

1—2 11—z ¢
F(=ologa) <" ( ) (o)
(-ologz) < ez ologx 2Ac logx

oo (1 _ x2A0>g
“ologx \2Aclogx
eO’EIU

~ologx’
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This completes the proof of all cases of (iv).

e For part (vi), we shall argue as in (iv). Rearranging (iii), notice that

1 — e (5124 —2Az

o | (S ey |

If r :== Re{z} > 0, then

1 +6_(%+2£A)T (1 + 62Ar>g

F < pl—3+2eA)r
[P(2)] < e e

]
9e(—5+2tA)r

If we substitute z = —slogz = (3 — it) log z, then it follows by the definition of A that

|F(—slogz)| <

2e€/2—1/4 ( 20 >5<4e€/2x‘1/4<2€

|3 + it|log z \ €| + it ) (1/ )"

log €

This yields (vi) since 4e/? < 5 for € < 1/4.

8.1.2 A weighted sum of prime ideals

Recall L/F is a Galois extension of number fields with Galois group GG and C' is a conjugacy
class of (G. Furthermore, recall the notation and discussion in Section

For x > 3,¢ € (0,1/4) and integer ¢ > 1, use the compactly-supported weight f(-) =
f(+;z, ¢, ¢€) defined in Lemma 8.1.1] and set

S(@) = Sile) = Y2 Arm)Oc(m)f (LN, (84)

el log x

where O¢ is given by (2.27). We reduce our estimation of 7o (z, L/ F') given by (2.28) to the

smoothed version S(x).

Lemma 8.1.2. Let xy > e*. Suppose there exist constants a, b > 0and 0 < ¢ < 1/2, all of

which are independent of x, such that S(x) < {a + b}V, for all x > xy. Then, for all

IGI
T 2 T,
tole, L)F) < {a+219x +o( ””010“)}|C| Li(z).
C\4y 1/2 T |G|
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Proof. Ift > 1, then

ve(t) = Y Oc(mAx(n) + vo(t'?). (8.5)

t1/2<Nn<t

The sum in (8.3)) is bounded by S(¢) in (8.4) because of Lemma i), while the secondary
term in is estimated much like (2.33). Thus, we have that

Ye(t) < S(t) + O(npt'/?). (8.6)

We substitute (8.6) into Lemma/[2.5.1]and deduce that

S(x) *8(t) npw'/?
L/F) < dt .
mo(z, L/F) < log x * /IO tlog®t * O( log x +npx0)

From our assumption on S(t) for ¢ > z, it follows that

1/2

1—c x —c
Wc(x,L/F)<a|C|Li(I)+bg[x +/ ! dt}+0<”ﬂ

— . 8.7
|G| |G| Llog = , log?t log x +nF$O) ®.7)

Note that if 0 < ¢ < 1/2, then e / log2t is an increasing function of ¢ for ¢ > e?. Since

o > ¢' and Li(z) > = for z > ¢*, we conclude that

x tfc T tlfc dt 1—c x dt 1—c
/ 5 dt:/ —— < r 5 — < * < x~°Li(z). (8.8)
2 lOg”t z log™t t log“z J,, 1 log x

The desired result follows from (8.7), (8.8)), and the identity n;, = [L : F|ng = |G|np. O

By Mellin inversion, (8.4)), and (2.26), it follows that

241400
S(x) = logx/2 Zo(s)F(—slogx)ds. (8.9)

211

—1300

To shift the contour, we use Deuring’s reduction with an abelian subgroup H of G such that
H N C is non-empty. This is described in Section [2.5] In particular, using (2.34)), this yields
the following lemma.

Lemma 8.1.3. Let H be any abelian subgroup of G such that HNC' is non-empty. Let K = L
be the fixed field of L by H and let go € H N C. If S = S(x) is defined by (8.4) and F is the
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Laplace transform of f in Lemma then

|C logx/
|G|ZX 271 Jy

2+i00 /

_f(87 X5 L/K>F<_S IOg I)ds,

—100

where the sum is over all Hecke characters X attached to the abelian extension L/K. Here

L(s, x, L/K) is the (primitive) Hecke L-function attached to x.

Next we shift the contour in Lemma and bound S(x) in terms of the non-trivial zeros
of Hecke L-functions. Henceforth write S = S(z) for simplicity. Recall f depends on the
arbitrary quantities = > 3, ¢ € (0,1/4) and an integer ¢ > 1.

Lemma 8.1.4. Assume { > 2. Then

@ S <14 log:,E
|C| ez

ZZ|F pxlogx)|+0(an Yog x + z7°/%(2/€)" logDL>
X Px

(8.10)
where the outer sum is over all Hecke characters x of the abelian extension L/ K and the inner

sum runs over all non-trivial zeros p, of L(s, x, L/ K), counted with multiplicity.

Proof. Shift the contour in Lemma to the line Re{s} = —1. This picks up the non-trivial
zeros of L(s, x, L/K), the simple pole at s = 1 when x is trivial, and the trivial zero at s = 0
of L(s, x, L/ K) of order r(x). Overall, we see that

%szlog:p[ (~log) = 3 ¥lac) ZF pylog) +0(Z (IFO)])]

1/2+zoo (811)
+ log x Z 27”

I
_f(sv X L/K)F(_Slog QZ)dS,

—1/2—ico

where the sum over p = p, is over all non-trivial zeros of L(s, x, L/K), counted with multi-

plicity. From (2.5) and (2.8), we see that r(x) < ng. Hence, it follows by Lemma V)
that

6

x
F(—logaj)glo ot and Z 0)| <[L:K]ng =nyg.

For the remaining contour, by [LO77, Lemma 6.2] and the primitivity of x, we have that

/

—f(37X7L/K) < log Dy + ng log(|s| + 3)
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for Re{s} = —1/2, where D, is defined in (2.2). It follows by Lemma 8.1.1[(vi) that

1 —1/2+ic0 /
og-x/ ——(s,x, L/K)F(—slogx)ds

2mi 1/2—ic0 L
a2l > log D, + ng log(|t| + 3) 20\
1/4( > g Uy K dt 1/4( ) loe D
Lz c /_oo (1/4_”2)6/2 <Lz _e og Uy,

because ng < log Dx < logD, and ¢ > 2. Summing over x and using the conductor-
discriminant formula (2.21) yields

—1/24i00 /
X(g L B 20\ ¢
e S [ L 110 (2

Taking absolute value of both sides in (8.11]), multiplying both sides by (e€z)~!, and combining

all of these observations yields the desired result. [

8.1.3 A sum over low-lying zeros

This subsection is dedicated to analyzing the sum in Lemma 8.1.4| over all non-trivial zeros of
all Hecke L-functions L(s, x, L/K). We will reduce our estimation to a sum over low-lying
zeros by exploiting information about the distribution of zeros of Hecke L-functions. We will
utilize] the results and notation of Section for the Hecke L-functions associated to the
abelian extension /K. In particular, the quantity . in and the zeros py, p/, and p, are
defined exactly as in the aforementioned subsection.

We will demonstrate that the contribution of zeros is negligible if the zeros are either high-
lying or far from the line Re{s} = 1. Throughout this chapter (unlike Chapter , we assume
1 < B < 1000 is a fixed absolute constant. Recall that x > 3,¢ € (0,1/4), and ¢ > 1 are
arbitrary parameters used in the definition of S = S(x) given by (8.4). Moreover, any sum » _
is over all Hecke characters y attached to L/K. We begin by considering high-lying zeros.

Lemma 8.1.5. Let T, > 1 be arbitrary. Let 0 < E < %B be fixed. Let

B>162+FE, (>8ng+162, 1>e> 40 /B0, (8.12)
Forxz > eBZ,
log x 1
i > Y IF(=ploga)| < . (8.13)

X P
Im{p}|>T,

'Only Lemma |7 will be ignored.
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Proof. Write p =+ iywithf=1— % If T > 1, then Lemma iv) with a = 4(1 — j3)

and our choices of our conditions on ¢, £, and x imply that

€.0—1 01—
logx|F<_plogm)‘ < 2@; (2—7{> (1-6) < %e—(B—E))\(QT)—(82nK+162))\/$' (8.14)
x €

Using Theorem [5.1.2] via partial summation, we see that

TOETS™ S |F(—ploga)]

b% P
T<[Im{p}|<2T
6—(B—E—162)$

ng log(27)

Z
> / e~ (BmE-16X o) =ni AL g\ « 1,
Z 0

since B > 162 + E. Overall, this implies that the LHS of (8.13)) is

log = 1 1 1
S0 5) DEEED DR GRS DB E
X k=0 P k=0
2k T, <Im{p}<2F+1T,
as desired. O

As we shall see in the next section, an appropriate combination of Lemmas [8.1.4/and[8.1.5
and Theorem [5.1.2] suffices to establish Theorem [1.3.3] For Theorem [1.3.4] we must also show

low-lying zeros far to the left of Re{s} = 1 contribute a negligible amount.

Lemma 8.1.6. Ler 0 < R < 1% be arbitrary. Assume 812) holds. For x > 5%,

|
BE S S |(_plog)] < a-0-E-1mns

T
X P

where the marked sum "' runs over zeros p = 3 + iy of L(s, x, L/ K), counting with multi-
plicity, satisfying 0 < <1 — R/.Z and |y| < e L.

Proof. From our choices of ¢, £ in (8:12) and Theorem it follows that

N(l . %,6_1) < 6162)\<1/€)(81nK+162))\/$ < 6162A:EE)\/B.$ < x(162+E)>\/B.5f

for 0 < A < &, where N(o,T) is given by (7.23). Write p = 3 + iy with § = 1 — 5 for
some non-trivial zero p appearing in the marked sum. By Lemma [8.1.1(iv) with « = 0 and
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Lemma v), it follows that

N for |p| > 1/4,
ol =1/ ®.15)

log z
B F(—ploga)| <
z x4 logx  for |p| < 1/4.

To clarify the second inequality, we observe by Lemma v) that |F(—plogz)| < 27 <
x'/* for |p| < 1/4. Thus, by (8:13)) and partial summation, we have that

< —(B—E—162)\

log x ! ~(B-E-162)  logx
SN Y F(—ploga)| <o b+ T

X |pl=1/4

< y(B-E-162)R/BL

Moreover, by (8.15)), a crude application of [LMO79, Lemma 2.1], and Lemma(7.3.1] it follows

that

e

1
BENT S F(—plogn)| < L K22 ogw < a3/ logw < a1

T

X P
lpI<1/4

Combining these estimates yields the desired result since, by our assumptions on B and I,
o~ (B-E-162)R/BL 5, 1 —(B-E-162)/2B 5, 1.~1/2 5, ,=3/4+3/162 5, ,.—3/4+3/B 0

We package these lemmas into the following convenient proposition.

Proposition 8.1.7. Let 0 < R < %.,2” be arbitrary. Let 0 < F < %B be fixed. Assume that

B > 162+ E, (> 82ny + 162, > e > 4027 P80, (8.16)
If v > eP% and S(x) is given by (8.4), then
|G| S(z) logx * —(B—E-162)R/BY
Cler 1 on XX: Ep: [F(—ploga)| + O(e+x ). (8.17)

where the sum > indicates a restriction to non-trivial zeros p of L(s, x, L/ K), counted with

multiplicity, satisfying 1 — R/.Z < Re{p} < 1 and |[Im{p}| < e .

Proof. Let T, = 1/e. It follows from our hypothesis (8.16) along with Lemmas [7.3.10]
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and [8.1.3]that
G| S log *
_ <1 F(—pl
Clew = +— g; |[F'(—plog )|

+0 (e 4 g~ (BoEIR/BZ | L log a4+ 275/4(20/€)" log DL).

(8.18)

It remains to bound the third and fourth expressions in the error term by €. Since £ < B and

? > 244, we see that

—E/Bt —1/244

E>X >x_1/€>x

Moreover, n;, = ng[L : K| < Le*? < 23/1%2 by Lemma and (7.22). Similarly, since
log D, =3 log D, < [L: K|log(DfQ), it follows that

(20/€)* log D, < 2P/BL[L : K] < 2*3.2e*% < x¥/3+3/162

Applying these estimates in (8.18]) yields (8.17). O

8.2 Proofs of Brun-Titchmarsh

Finally, we have arrived at the proofs of Theorems [1.3.3|and [1.3.4] In comparison to Theo-
rem the proof of Theorem [1.3.3]is quite simple, requiring only the log-free zero density

estimate of Hecke L-functions given by Theorem Recall this result is uniform over all

extensions L/F' and therefore we do not assume .7 is sufficiently large in the proof of Theo-
rem

The proof of Theorem [1.3.4]is divided into cases depending on how close the zero pi,
defined in Section is to Re{s} = 1. Namely, for n > 0 arbitrary and sufficiently small, if
A1 < 1 then we refer to p; as an 7)-Siegel zero. The cases depend on whether an 7-Siegel zero
exists. The main steps are similar to the proof for Theorem but we need a more refined

analysis involving zero-free regions and Deuring—Heilbronn phenomenon.

8.2.1 Proof of Theorem 1.3.3

Select

B=2445  FE =821, (=82ng+162, e=1/8 and R=0. (8.19)
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Let M, > 0 be a sufficiently large absolute constant. For z > xy := 5% 4 M|, n244 K we
claim these are valid choices to invoke Proposition It suffices to check € = % > 4l E/BE
for 2 > x9. We need only show (32¢)2¢F < x,. This is visible from the fact that

5 (82n  +162)

(32£)B£/E <L ng e OnK) < TZ%M‘MLK < o,

after enlarging M if necessary. This proves the claim.

€]
1G]

>
corresponding restricted sum > is empty whenever R = 0. Let M > 1 denote the im-
plicit absolute constant in the above estimate for S(x). Thus, by Lemma with zy =
M52 L Mn3H " g = M and b = ¢ = 0, we have that

Therefore, by Proposition [8.1.7, we have that S(zr) < z for x g, because the

1 C
mo(x, L/F) < {M +O(npz ' + nLo8 T xogx(em S 4 2 E’"K))}HLi(x)

for x > x,. By Lemma and (7.21), notice that n;, < e**/3 < D% Q%n}¥. Thus, the
desired result follows for z >> 6245 9f + D2 Q?n2!%"%  completing the proof. O

Remark.

1) If one wishes to minimize the value of B and hence minimize the exponents of Dg and Q

in (1.31)) then one may alternatively select
B =162.01, E=0.95 (=82nkg+162, e¢=1/8, and R=0

in place of (8.19). Taking 2o = €'62° + Myn ;2" it follows that

62.01 (32m ;- +162) el

(320)PYF < 095 i) & p P < g

Arguing as above, one deduces mo(z, L/F) < }g{ Li(z) for z > 1035 4 D2 Q2p, 000"

as claimed in the remark following Theorem[1.3.3|based on (7.21).

2) Similarly, to minimize the exponents of n}* in (I1.31)), one may alternatively select
B=3595  E=197, (=82nkg+162, e=1/8 and R=0

in place of (8.19). Taking zy = €% it follows by (7.22)) that

5(82nx+162) O(nK)

(32€)BZ/E < ng 197 < n}?Q.GBnK < xo,
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since 359.5 x = > 149.7. Arguing as above, one deduces o (z, L/F) < %Li(w) for

x> 30097 > 4Z/30359.52 ag claimed in the remark following Theorem 1.3.3L

8.2.2 Proof of Theorem [1.3.4; 7)-Siegel zero does not exist

Let n > 0 be arbitrary and sufficiently small and let .Z be sufficiently large depending only
on 7. We will frequently use these properties without further mention. Recall that the proof of

Theorem [I.3.4]is divided according whether p, is an 7)-Siegel zero or not.

In this subsection, we assume an 7)-Siegel zero does not exist; that is, A\; > 7. We will show
Theorem holds with no error term. Assume \* > 0 satisfies

A< min{\, Ao}, (8.20)
where )" and ), are defined in Section with T, = n~2. Select
B > 360, E = 198, { = 82ng + 162, € =1n?, (8.21)

and let R = R(n) be sufficiently large. We claim these choices satisfy the assumptions of
Proposition Since .7 is sufficiently large depending only on 7, it suffices to show, for
x > B, that 42~ F/BY = (1) as £ — oo. If ng is bounded while . — oo then this
is immediate, so we may assume nyx — oo. By (7.22), notice that { = 82nx + 162 <
{196.8 + 0(1)} =%~ < 197—Z— for ny sufficiently large. Thus, for nx sufficiently large and

log ni logngk
BZ e have that

T >e

4€x7E/B£ < nKe’wS‘Z/Z < an%lognK < n}—(1/197.

Hence, 42~ 5/B% = o(1) for x > eB¥, as ngx — oo. This proves the claim.
Therefore, by Proposition it follows that

|G| (=) <14 log x

|C| e‘x — e‘x

3N T IF(—plog )| + O(?)

X P

for # > B, where the sum >_* runs over non-trivial zeros p of L(s, x), counted with multi-
plicity, satisfying 3 > 1 — R/.% and || < 2. For a non-trivial zero p of a Hecke L-function,
write p = 3+ iy =1 — % +i4. By Lemma(8.1.1] we see that

1
L F(—ploga)| < a9 < 7B,

ecxr
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since x > P4, Extracting p; and py (or simply p; if p; is real) from >_*, we deduce by our
choice of A* in (8.20) that

Gl S(=) _ _BA B L
1l ez < <1+mlp T+ ) n?), (8.22)
X M<XR
ly|<n—2

where m(p;) = 2 if p; is complex and m(p;) = 1 if p; is real. To bound the remaining

quantitieﬂ we must select \* for which we further subdivide into cases.

A1 small (77 <A\ < 10_3)

By Theorem p1 is a simple real zero attached to a real character y, implying m(p;) = 1.
Select B = 361 and choose \* = 0.21031og(1/A;), which satisfies (8:20) by Theorem [7.3.3]
with T, = n~2. Arguing as i Section (with T, = n~? instead) and using Theoremm
we may conclude by (8.22) that

S(a) < {20+ 0P} o

for z > %1%, By Lemmas|7.3.1/and[8.1.2} we conclude that

mo(z, L/F) <{2—=n+0(n" + LelL (g2 4 3617y logz))} :G} i(z)

for z > €%61¢ Hence, in this subcase, Theorem (with no error term) follows for z >

3037 after fixing n > 0 sufficiently small and recalling . is sufficiently large.

A1 medium (1072 < \; < 0.0875)

One argues similar to the previous case with some minor changes. Namely, select B = 593
and choose \* = 0.44. Following the corresponding subcase in Section [7.3.4|(using T, =
instead) allows us to deduce Theorem [1.3.4|for = > €79°%.

Ap large (A\; > 0.0875)

Select B = 693 and \* = 0.2866 as per Theorem with 7, = n~2. Noting m(p;) < 2

unconditionally, one may argue similarly as per the previous cases and follow Section [/.3.3

2At this stage, one may wish to compare (8:22) with its “least prime” counterparts (7.33) and (7.31). It is
apparent that the arguments will be very similar.
30bserve 361 > 297 so the same estimates hold.
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(using T, = 72 instead) to deduce Theorem for x > 99497 As §, in (7.21) is suffi-
ciently small, this yields the desired range of x in Theorem [I.3.4] completing the proof in all
cases when an n-Siegel zero does not exist. [

8.2.3 Proof of Theorem [1.3.4;: n-Siegel zero exists

For this subsection, we consider the case when \; < 7. By Theorem [/.3.2] it follows that

pr=p=1- % is a simple real zero and Y, is a real Hecke character. Suppose

B = 692, E = 344, (= 82ng + 162, 40z ~34/0928 < ¢ < 1/4. (8.23)

With these choices, we claim for x > €52 that 40z 734/692¢ = o(1) as £ — oo. If ng is

uniformly bounded while . — oo then this is immediate, so we may assume nx — co. By

(7:22), notice that £ = 82nx + 162 < {196.8 + o(1)} o — < 197L— for ni sufficiently
6922 \we have that

large. Thus, for ny sufficiently large and = > e
A0g—34/692 o BULI n}(e#bgnx < n;(m_

Hence, 402734/692¢ — o(1) as ngx — oo. This proves the claim, which implies the condition
on € in (8.23)) is non-empty for . sufficiently large.
Now, let 1 < R < 1. be arbitrary. By Proposition|8.1.7} for z > %> we have that
GIS@) _ a0

log = * _
Ol oep =17 + =230 | F(—plogx)| 4+ O(e 4 a7 8R92) g oy
O ecx B e X p#p

where Y runs over non-trivial zeros p # p; of L(s, ), counted with multiplicity, satisfying
1—-R/Z < Re{p} <1, Tm{p}| < et

Note that the /31 term in (8.24) arises from bounding F'(—o logx) in Lemma v) with
o = (1. We further subdivide our arguments depending on the range of \;.

A1 very small (% <A1 <7

Here select € = 7” and R = min{g; log(c1/A1), 5.2} for some fixed sufficiently small ¢; > 0.
Since 4¢z~344/692¢ = (1) as £ — o0, it follows that this choice of ¢ satisfies for &
sufficiently large depending only on 7.

Hence, by Theorem with T, = =2, these choices imply that the restricted sum >_" in
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(8.24) is empty for . sufficiently large depending only on 7. Moreover, we see that
oy 186R/693.2 < e*% log(c1/M1) < )\% < 772,

as x > €927 and 186/82 > 2. Further, we have that

x_(l_ﬁl)

A

_ e—Allogx/i”{l + O()\l/g)} <1-— n—+ 0(772)7

since 12;75 <A <nande ' <1—t/2for0 <t < 1. Overall, we conclude that

]

S(z) <{2—n+00n? @x

for x > €%2¢, By Lemmas[7.3.1|and|8.1.2, we conclude that

mo(z, LJF) < {2 =0+ O(n* + L (7% + %1 og x))}%h(:c)

for z > €%92¢. Hence, in this subcase, Theorem (with no error term) follows for x >

e9945Z after fixing n > 0 sufficiently small and recalling .Z is sufficiently large.

A1 extremely small (\; < i)”?’i <n)

Here select

f C1 A 1
81.Z + 25nk log(1/e¢) log ()\71 Ltk log(l/«s))7 53}

€ = 40z 344/692C and R = min {

for some sufficiently small ¢; > 0. Again, since 4¢x314/692¢ = o(1) as ¥ — oo, it follows
that ¢ < 1/4 for .Z sufficiently large so this choice of ¢ satisfies (8.23).

Now, from our choice of R and Theorem the restricted sum in (8.24)) is empty. For
the main term, observe for .Z sufficiently large and n > 0 sufficiently small that

T e )

as A\ < 120"?% ande™! <1 —1¢/2for 0 <t < 1. To bound the error term in (8.24)), notice that

81 344 - 25m 185.9
81.Z + 25nx log(1/e) < —— 1 209
+2nxlog(1/e) < o5 log  + oo Somn + 162) °8% < o3 1087

by our choice of € and ¢ and since x > €3¢, Consequently, R > 182?92@33 log( Afiz) for
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some sufficiently small ¢] > 0, implying

since Ay <

x*lSGR/ng_g < ()\191?&) 185 9 < 771/2000 (%))

2nL
gz AN 1555 1859 <

2000 Combining these observations into (8.24]) implies that

|G| S(z) 5 A1 logx

|C] e 37

Al
+ O(e + /2000 %) <2 100X + O(e),

as 7 is sufficiently small. Rearranging and substituting the choice of ¢ and ¢, we see that

Cl.,

S(x) < {2~ 100\ + O(nga mwsm) L 20 a,

for z > €927 Now, if x > €%949Z then, by Lemma[7.3.1, we have that

ny 8% 71 log & < N 893AL 11 log = < a1 5/6949 log < nge a1/ (166mx+327)

Similarly, nyz "2 < nga—/(167x+327) Thys, by the previous inequality and Lemma|8.1.2}
it follows that

nc(x, L/F) < {2 —100A; + O (nga 166nK+327)} :g:L'(x) (8.25)

for x > 8949 As 4y in (T.21)) is sufficiently small, this completes the proof of Theorem in all

cases. Ul
Remark.
1) In (8.23), we could instead take B = 502 and E' = 198 to establish (8.25]) except with an error term

2)

—1/(208nx+411) ). To improve the error term, we chose the largest values of B and E which

of O (n KT
did not reduce the valid range of x in Theorem This range of x is limited by the A\; > 0.0875

case addressed in Section[8.2.21

As stated in Theorem|1.3.4] we obtain the sharper bound 7o (x, L/ F) < 2 IgI Li(x) from (8.23)) with

good effective lower bounds for ;. To see this, notice the error term in (§:23) is < A}:%°! provided

CINK )166nK+327 .
—- 41,

T > ()\%.001

where ¢; > 0 is some absolute constant. If the above holds then (8.25) becomes

ne(a, L/F) < {2 — 100\, + O(A{Ofﬂ)} :g}m( ).

As Ay < n, thisimplies 7¢(z, L/ F) < 2%Li(x) by fixing 7 sufficiently small. Hence, any effective
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3)

upper bound on x; translates to a range of = where the sharper bound for 7¢(x, L/F') holds. From
the proof of Theorem 1” in Stark [Sta74], we have that A; > min{g(nx)~!, D;(l/"K Q12K
where g(ng) equals 1 if K has a normal tower over Q and equals (2ng)! otherwise. If nxg < 10

and D Q is sufficiently large then we have that
T < (1//\1)167n1<+328 < D}?7+328/n1< QB4+164/nk D‘}?5Q248 <

for x satisfying (1.33)), as desired. Thus, we may assume nx > 10 in which case we have that

167
) < nK nK(l/A1)167nK+328
D167+328/TLK 84+164/nK 16Tn gk 16Tn g 167n +328
L Dy Q ny +ny " g(nk)

< D%})OQlOln}?mK i n}?7an(nK)167nK+328.
Therefore, if K has a normal tower over Q or (2nx)! < D%nK Q!/2nx then
I < ngoglmn}(mweo(nx) < D%?Olen}?SNK <z,

for z satisfying (I:33) and D OnX sufficiently large. Otherwise, g(ng) < (2ng)! < (2ng)*"x
which implies that

167 333n2
x1 <<D%?OQ101HK nK +nK K

2
unconditionally. Thus, imposing z > niﬂnK in addition to (1.33) also yields the sharper estimate
for 7o (x, L/ F') claimed in the remark after Theorem

Just as Theorem [7.4.1] improves over Theorem [I.3.2] when nx is absolutely bounded, one could
likely improve Theorem [I.3.4] via the same arguments. We have omitted such an argument for the

sake of brevity.



Chapter 9

Siegel zeros and the least prime ideal

“Once you do something, you never forget. Even if you can’t remember.”

— Zeniba, Spirited Away.

In this chapter, we establish a bound (in an exceptional case when a so-called Siegel zero exists) for
the prime ideal of least norm in a ray class of a number field K. The proof techniques are based on sieve
methods and are completely different than those found in Chapter[7] Furthermore, the exposition will be
in the language of ray class groups though one can translate the main theorems into a Chebotarev variant
like Theorem [1.3.2] For these reasons, we keep this chapter almost entirely self-contained aside from
the notation and results of Chapter[2] Moreover, we will repeat some contents and historical information

of Chapter|[I]in the language of ray class groups for the sake of clarity.

9.1 Introduction

Let K be a number field, O = Op be its ring of integers, and ¢ C O be an integral ideal. Let
H (mod q) be a congruence class group of K. Define the (narrow) ray class group of K modulo H,
denoted C1(H ), to be the quotient of fractional ideals of K relatively prime to q and H. In other words,
Cl(H) := I(q)/H. If H = P, is the group of principal ideals («) such that o = 1 (modq) and «
is totally positive then CI(F;) = Cl(q) is the usual narrow ray class group of K modulo q. Recall
Q=Qu= maX{Nng : X (mod H)}.

For any class C € CI(H), it has long been known that there are infinitely many prime ideals p € C.

Therefore, it is natural to ask:
What is the least norm of a prime ideal p € C?

We refer to this question as the least prime ideal problem. The Generalized Riemann Hypothesis (GRH)

for Hecke L-functions implies for > 0,

Np <5 (DrQ)° - B3, 9.1)

207
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where Dy = |disc(K/Q)| is the absolute discriminant of K, N = Ng is the absolute norm of K, and
hg = #CI(H) is the size of the ray class group. Fogels [Fog62b] was the first to give an unconditional
answer when H = P, (and hence ) = Nq)) showing

Np e (DrQ)es),

where n = [K : Q)] is the degree of K over Q and ¢(ng) > 0 is a constant depending only on n .
This bound is not entirely satisfactory because the implied constant and exponent depend on n g in an
unspecified manner. In his Ph.D. thesis work, Weiss [Wei83] proved a K-uniform version of Fogels’

result; that is, unconditionally for any congruence class group H of K
Np < ni™< . DB . QC, 9.2)

where A, B,C > 0 are absolute constants. Assuming GRH as in (9.I) and estimating hy using
Lemma [2.4.6] one may take (A4, B,C) = (6,1 + 6,2 + ) for § > 0. The focus of this chapter is,
in an exceptional case, to exhibit a bound like (9.2) with explicit exponents.

Specializing to K = Q,q = (¢) and H = P; = {(n) : n > 1,n = 1(mod q)}, the least prime
ideal problem naturally corresponds to the least prime p in an arithmetic progression a (mod ¢). Linnik

[Lin44al] famously showed unconditionally that
p<q*

for some absolute constant L > 0 known as “Linnik’s constant” and where the implicit constant is
effective. Conjecturally, L = 1 + ¢ for any § > 0 is admissible and GRH implies L = 2 + § is
acceptable. The current world record is L = 5 by Xylouris [Xyl11b] building upon suggestions of
Heath-Brown [HB92]|.

Thus far, a crucial ingredient to all proofs computing Linnik’s constant is the handling of a putative

real zero
1

~ nlogg
of a Dirichlet L-function attached to a quadratic Dirichlet character v (mod q). If n > 3 we refer to this

B=1

scenario as the exceptional case and the zero (3 as an exceptional zero. If additionally 1/7 = o(1), then
we call /3 a Siegel zero which conjecturally does not exist. Most authors adapted Linnik’s original proof
and established a quantitative Deuring—Heilbronn phenomenon which is a strong form of zero repulsion
for 5. However, in the exceptional case, the best bound thus far on Linnik’s constant involves sieve
methods and was pioneered by Heath-Brown [HB90]. He showed, with effective implicit constants, that
L = 3 + ¢ is an admissible value provided n > 7(d) which bests the aforementioned unconditional
L = 5. Even more astonishingly, Heath-Brown showed that the GRH bound L = 2 + ¢ is an admissible
value provided n > n(9) although the implied constants are ineffective. Sieve techniques are indeed

very advantageous in the exceptional case. To further emphasize this point, we remark that Friedlander
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and Iwaniec [FI03] proved, under some additional technical assumptions, that L = 2 — % is admissible
when a Siegel zero exists. This surpasses GRH!

Now, let us describe the exceptional case in the context of the least prime ideal problem for a
congruence class group H (mod q) for a number field K. Let x (mod H) be a Hecke character and

recall its associated Hecke L-function is given by

L(s,x) = ) x(mNm)= =] (1 - ()12(5))5)1
p

nCO

for o > 1, where s = o + it. Recall that L(s, x) possesses a (nearly) zero-free region of the form

C
oc>1 !

— t| <1
21y <L

where ¢; > 0 is an absolute constant. However, just as with Dirichlet L-functions, exactly one real
zero (3 attached to a real Hecke character ¢ (mod H ) cannot be eliminated from this region — no matter
how small ¢; is chosen. Note that Theorem implies ¢; = 0.0875 is admissible for n}l{‘ DkQ
sufficiently large. We emphasize that 1) may be quadratic or principal.

For the remainder of this chapter, suppose H (mod q) is a primitive congruence class group of K

and ¢ (mod H) is a real Hecke character with a real zero

1
nlog(niX DrQ)’

=1 9.3)
where 1 > 20; that is, 5 is an exceptional zero of the exceptional character 1. If 1/n = o(1) then we
shall call 8 a Siegel zero. Note that we did not attempt to relax the assumption that H is primitive; it is
conceivable that one could obtain similar results without this condition.

For a ray class C € Cl(H) satisfying ¢)(C) = 1, we establish an explicit effective field-uniform

bound for the size of the least prime ideal p € C provided S is a Siegel zero.

Theorem 9.1.1. Let H (mod q) be a primitive congruence class group of a number field K. Suppose
¥ (mod H) is a real Hecke character such that L(s,)) has a real zero [ as in (0.3). Let C € C1(H)
satisfy ¥(C) = 1 and § > 0 be given. Then there exists a prime ideal p € C satisfying

Np <5 {nins . DR . QC . n3}'™°
provided n > n(6), where

(16,6 + %, 5+ %) if v is quadratic,

(A4,B,C) =
(6,3 + i, 3) if 1 is principal.

©.4)

All implicit constants are effective.
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Remark.

1y

2)

3)

The factor of h?% is natural in light of (9.1) but one may prefer a bound similar to (9:2). Using
Lemma [2.4.6allows us to give the alternative bound
Np <5 {nf}/"K - DF - QC/}Hé,
where
(A B.C) = (16,7 + %,74— %) if 1 is quadratic,
(6,4 + %, 5) if 4 is principal.

Even more simply, (A", B’,C") = (16,9.5,9) is admissible in all cases.

For a point of reference, consider the estimate in the special case K = Q and q = (q). If there exists
nl;gq and ¢(a) = 1 for (a,q) =1,
then Theorem implies there exists a prime p = a (mod ¢) such that

a quadratic Dirichlet character ¢ (mod ¢) with real zero § = 1 —

p<s q9+5

provided > 1(d). The exponent L = 9 + § is comparable to the unconditional L = 5 [Xyl11b]
and to the effective Siegel zero case L. = 3 4+ § [HB9O].

By a straightforward modification, one can improve Theorem[9.1.1|by appealing to the Brauer-Siegel
Theorem (see Theorem [9.3.4)) from which it follows that

(6,6,5) if 4 is quadratic,
(2,3,3) if 4 is principal,

(A,B,C) =

or as in Remark 1,
(6,7,7) if ¢ is quadratic,
(2,4,5) if ¢ is principal,

(A, B,C") =

but the implicit constants are ineffective.

Theorem 0.1.1]is a straightforward consequence of the following quantitative lower bound for the

number of prime ideals in a given ray class. Here xx is the residue at s = 1 of the Dedekind zeta

function (x (s) and

pr(q) = #(0/a) = Nq H (1 - 7)

is the generalized Euler ¢-function of K.

Theorem 9.1.2. Let H (mod q) be a primitive congruence class group of a number field K. Suppose
¥ (mod H) is a real Hecke character such that L(s,) has a real zero (3 as in (9.3). Let C € CI(H)
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satisfy ¥(C) = 1. For § > 0, assume n > 1n(0) and My > 0 is sufficiently large. Further assume
My - {nfmx . DE.QC - m3 V' < 2 < My (n"KDgQ)'™, (9.5)

where (A, B, C) are given by (9.4). Then

#{p € C prime : Np < z} > cypAy, - RKM . 9.6)
Ng  hpg
where
3 2 1 e .
L(1,%) (1 ~Np? + N7p3) H (1 — N—pQ> if Y is quadratic,
A, — Y(p)=1 Y(p)=—1
¥ L e
H ( Np2) if 1 is principal,
pla
and
0.00466 if ¥ is quadratic,
Cyy =

0.0557  if v is principal.

All implicit constants are effectively computable.

Remark.

1) Bounding hy by Lemma[2.4.6 we see that contains the interval
Mi{n™ - DE - QO YT < < My(njF D)™™,
where (A’, B', C") are given by Remark 1 following Theorem and M > 01is sufficiently large.

2) According to Remark 3 following Theorem [9.1.1] one can widen the lower bound of interval (9.5)

using the ineffective Brauer-Siegel Theorem.

3) By obvious modifications to the proof, one can easily obtain an upper bound of the same form as
(©.6). That is, for the same range as (9.3), one can show

e (q) T

Nq hH

#{p € Cprime : Np < z} < épAy - ki

where
8.62 if v is quadratic,
4.02 if ¢ is principal.

Upper bounds for even wider ranges of x could potentially also be established by allowing for a

constant larger than ¢y,
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4) The constant ¢, is likely subject to improvement which we do not seriously pursue here as that is

not our aim.

5) One can also establish a variant of Theorem [9.1.2] which holds for larger values of x. For instance,

one could instead assume
-n"KED L <7< K D 100¢
(Ms -n3XDgNq)” < o < (Ms - np DgNq)

for any integer £ > 20, say. Adapting the argument in Section[9.5.2] one can deduce the same lower

bound with

~

0.0275 — O(%;) if ¢ is quadratic,

0.0749 — O(%;) if ¢ is principal,

Cw:

~

provided n > n(6,¢).

The primary objective of this chapter is to prove Theorem[9.1.2] The arguments involved are moti-
vated by the sieve-based techniques employed for the classical case K = Q, including Heath-Brown’s
aforementioned foundational paper [HB90|] and an elegant modern proof by Friedlander and Iwaniec
[F110, Chapter 24]. To be more specific, let us sketch the main components and, for concreteness,
temporarily suppose that ¢ (mod H) is quadratic. First, we establish the Fundamental Lemma (Theo-

rem[9.2.1) for zero-dimensional sieves in number fields and aim to apply it a sequence {an }nco, Where

an = Pk m1{n e cy- Y 9(),

on

pk (+) is the Mobius function defined by (9.7), and 1{ - } is an indicator function. Roughly speaking, the
sum } ., ¥(9) pretends to be an indicator function for integral ideals n satisfying p | n = ¥(p) = 1.
After computing local densities, we show that our sieve problem is zero-dimensional because ¢ (C) = 1
and a Siegel zero is assumed to exist. Then we use a Buchstab identity and apply the Fundamental
Lemma to lower bound terms with no small prime ideal factors and upper bound terms with large prime
ideal factors. An appropriate choice of the relevant sieve parameters and a Tauberian-type argument
finishes the proof.

The numerical values in (9.4) and corresponding bounds in Theorem [9.1.1] are ultimately based on
estimates for Hecke L-functions inside the critical strip. Similarly, in the classical case, Heath-Brown
[HB90] uses Montgomery’s mean value theorem for Dirichlet L-functions [Mon71]] and bounds for their
fourth moments inside the critical strip. As far as the author is aware, a suitable mean value theorem for
Hecke L-functions with complete uniformity over all number fields has not yet been established. We
instead employ Rademacher’s convexity estimate [Rad60] for Hecke L-functions due to its complete
uniformity in all aspects. In certain cases, such as the narrow class group for imaginary quadratic fields,
one could improve on the numerical values in using subconvexity estimates for Hecke L-functions

contained, for example, in the deep works of Fouvry and Iwaniec [FI01] and Duke, Friedlander, and
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Iwaniec [DFIO02].
Proving a version of Theorem for the non-residue case ¢/(C) = —1 would certainly be desir-

able but it is not immediately clear how to do so by sieve-based techniques. In the classical case K = Q,
the corresponding sieve problem is one-dimensional leading to an excellent value for Linnik’s constant
which was first established by Heath-Brown [HB90|]. For a general number field K of degree ng, if
most small rational primes split then the sieve problem could at worst have dimension nx. Since we
seek a bound like (9.2) with absolute exponents, this high dimension issue therefore poses a difficulty
when ¢(C) = —1.

Finally, we summarize the organization of this chapter. Section[9.2]sets up a sieve in number fields
and proves the Fundamental Lemma for zero-dimensional sieves. The discussion therein is a close
adaptation of [FI10, Chapters 5 & 6] but is included for completeness as many variations of number
field sieves exist. Section [9.3| consists of notation and elementary estimates related to the exceptional
character . Section computes the key components of our sieve problem — local densities and
dimension — and estimates terms with small prime factors and large prime factors. Section[9.5]contains
the proof of Theorem 9.1.2

9.2 Sieve theory in number fields

9.2.1 Notation

Begin with a sequence A = {ay }nco of non-negative real numbers such that

Al =" an

nCO

converge For an integral ideal 0 C O, define

Av={ap:0|n}, A=) an,

n

and suppose
[ Ao| = g(0) X + 7

for some multiplicative function ¢() called the density function and remainders ry. The local densities
g(0) satisfy
0<g(p) <1

IFor instance, one could take a, = e Nn/@ with > 1.
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for all prime ideals p of O. Given a set of prime ideals P and sifting level z > 2, define

P=Be) = [[» VE:=]]0-90),
peP peP
Np<z Np<z

and
S(AP,2)=8(Az2) = >  an
(nPB(2))=1
where we suppress the dependence on P or z when it is understood. Recall the Mobius function pux (- )

on integral ideals is defined by

(=1)" ifn =ypy---p, where p; are distinct prime ideals,

pc(n) = ©.7)
0 otherwise,
or equivalently
1 ifn=(1),
> nuk(0) = (98)
on 0 otherwise.

Sifting A according to P amounts to estimating S(.A, z). It is therefore natural to introduce a

function, called the sieve weight,
A= (N)o, ford | P(z) and No < D,

which acts as a finite approximation to the Mdbius function with level of distribution D. From (9.8),

one can easily see that

S(A,2) = > (o)Al
R (:)

so our approximation takes the form

SMAZ) =3 Kol | = Zan<2)\a).

n on

Of special importance are weights AT = (A\{) and A~ = ()\;) satisfying

DA< uk(@) <) A (9.9)

on on dn

and therefore implying
S7(A,z) < S(A,2) <ST(A4,2), 9.10)

where the lower bound sieve S~ and the upper bound sieve S™ correspond to A~ and A™ respectively.
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In keeping with notation, we naturally define the main term sums by

VID,2)= Y Mg@), V(D2)= > XNgd),
2%(2) 2% (2)
No<D No<D

and remainder terms by

RY(D,z) = Z A T, R™(D,z) = Z Ay Ta-
)

NRYE 0B(2)
No<D No<D

215

The conditions under the sums may be dropped in light of the definition of the sieve weights, but we

include them for emphasis and clarity.

We will be concerned with sieves satisfying

|| (1—g<p>>—1so(f§§;)“ for2 < w < z,
w<Np<z

where C' > 1 is a constant and < > 0 is the sieve dimension.

9.2.2 Buchstab iterations
Fix a norm-based total ordering “<” of prime ideals of O; that is, for prime ideals p and p’,

p=<p = Np<Nyp.

©.11)

Abusing notation, for y € R, write y < p (resp. p < y) if y < Np (resp. Np < y). Similarly, write

y X p(resp. p X y)if y < Np (resp. Np < y). Observe that
Np <pandp <Np, but NpApandp A Np

with this choice. Further abusing notation, for a prime ideal m, define

Bm):=[[p,  V(m)= ][] -90),

peP peP
p<m p<m
and
S(A,m) := Z ay.
(n,P(m))=1

Comparing with notation from the previous subsection and using (9.12)), notice that

PB(Nm) | B(m), V(m) < V(Nm), and S(A,m) < S(A,Nm).

9.12)
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Note that the results herein are independent of the choice of ordering.

Now, choose sieve weights AT = (A]) and A~ = ()\; ) defined to be the Mobius function truncated

to sets of the type

Ti={0=p1-pr:pm < ym form odd} ©.13)

D :={0=p1-pr:pm < Yym formeven}
where 9 is written as a product of distinct prime ideals enumerated in decreasing order,

0=p1---py withz>p;>--- > py.

By convention, Dt and D~ both contain 0 = (1). The real numbers y,,, are truncation parameters and

by inclusion-exclusion, (9.9) is satisfied regardless of the choices for y,.

Following the discussion on Buchstab iterations in [FI110, Section 6.2], one may similarly deduce

S(Az) = ST(A2) = > Su(A,2) (9.14)
n odd
S(A,z) =57 (A2)+ Y Su(A,2), (9.15)
where
Sn(Az) = DY S( A, Pa)- (9.16)
Yn XPpn <--=<p1

Pm<Ym, m<n, m=n(2)

Moreover, by the same procedure,

V(z) =VHD,z) = > Val (9.17)
n odd
V() =V (D,2)+ Y Val2), 9.18)
where
Valz) = ) ) glprpa)V(pn). 9.19)
Yn =S <-<p1<z
Pm =<Ym, m<n, m=n(2)
From (9.14) and (9.13),

S(A,2) < ST(A,2) = XVT(D,z)+ RY(D, 2),
S(A,z) >S5S (A, 2) =XV (D,z)+ R (D, z).

Thus, to prove the “Fundamental Lemma” for a certain choice of truncation parameters ¥, it suffices
to upper bound V/,(z) in light of (9.17) and (9.18).
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9.2.3 Fundamental Lemma for zero dimensional sieves

We assume the sieve dimension is zero, i.e. x = 0 in (9.11)). For the sets defined in (9.13), choose the

truncation parameters
D

T N1 pm)

which is an instance of the beta-sieve independently due to Iwaniec and Rosser. Thus, )\Di is a combina-

torial weight truncated to D* with level of support D. Define the sifting variable

log D
T = .
log 2

As previously remarked, it remains to upper bound V;,(z) as defined in (9.19).
Suppose n < 7 — 1. By our choice of truncation parameters, the condition y,, =< p,, in (9.19) implies
that D < (Np;)"+! < 271 < 27 = D, a contradiction. Thus,

Vo(z) =0 forn <7 —1.

Now, suppose n > 7 — 1. Since the terms of V,,(z) are non-negative and V' (p,,) < 1, we deduce that

Va2 <3 S gler b < (o) < log V()"

Pn<=p1<2 Cop=z
Using (9.11)) with x = 0, observe that

< C(logC)™

Vi) ] forn > 7 — 1.

Summing over all n of the same parity and using the power series for hyperbolic sine and cosine, observe

og C)" 2 — og O)"
Zd:dvn(z)gv(z), ;1C(Igc)zv(z)_ [C ; 1_CI<Z( )(Ign!C)]7

n odd n odd

C(logC)™ C? logC)"
S e v Y LBy, [ ;1—0 2 (gnv)]
n even nn>eﬂ; e_nl OSZE\%}] (1)

where n1(t) is the least odd integer > ¢ — 1, and ng(t) is the least even integer > ¢ — 1. We have

therefore established the following theorem.

Theorem 9.2.1 (Fundamental Lemma for zero dimensional sieves). Let D > 1 and z > 2. Suppose
©.11) holds with k = 0 for all w with 2 < w < z and some C' > 1. Then

S(A,2) < XV(2){1+ Ey(Cim) | + RY(D, 2),
(9.20)
S(A,z) > XV(z){l ~ Ey(C T)} + R(D,2),
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_ logD
where T = Tog 2

, n1(t) is the least odd integer >t — 1, ng(t) is the least even integer >t — 1,

2 n
men=-S"_c y =9

2 n!
1<n<ni(7)
n odd
C?+1 (logC)"
Eo(Ci7) = 5 c Z o
0<n<no(T) ’

n even

and R* (D, z) are the remainders given by

RED,z)= Y A with |[Af|<1.
)

0B (=
No<D

Remark. Of course, one could replace Ey(C';7) and E1(C;7) by simpler expressions using Taylor’s

theorem but this results in slightly worse constants.

9.3 Exceptional character

In this section, we setup notation related to the central object of our study — the exceptional character
1 — and subsequently prove various estimates by standard methods. Let ¢ (mod H) be a real character

with real zero
1

nlog(ni X D Q)

B=1- with 7 > 20. 921

For integral ideals n C O, define

Z Y(m) if ¢ is quadratic,

A(n) =4 e (9.22)
Xo(n) if 1) is principal,
and
p(n) := pk (M)A(n), (9.23)

where px (-) is defined by and yo (mod H) is the principal Hecke character. That is, xo(n) = 1
for all (n,q) = 1 and equals zero otherwise. Recall that ¢)(m) = 0 for (m, q) # 1. Hence, restricting
the sum in (9.22) to ideals m coprime to q is superfluous but added for clarity. Now, we first collect

some simple observations about these functions which we state without proof.
Lemma 9.3.1. Define A(n) and p(n) as in (9.22) and (9.23)) respectively. Then:
(i) p(n) and \(n) are multiplicative functions of n.

(ii) p(p) = Np) = Lor2if1(p) = 1 and 4 is principal or quadratic respectively.
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(iii) p(n) = 0 if there exists a prime ideal p | n such that 1p(p) = —1.
(iv) 0 < p(n) < An).

Next, define

Fy(s) = Z AM) o Refs) > 1. (9.24)

We highlight some basic properties of F;(s) in the following lemma.

Lemma 9.3.2. Define Fy(s) as in (9.24). Then:
(i) Fy(s) extends meromorphically to all of C with only a simple pole at s = 1.
(ii) Fy(8) = 0 where (3 is the real zero associated to 1) (mod q).

(i) Ford € (0,3) and s = o + it,

Q‘;{D Q2+ [t]) Q"K} (1=049)/2 ,05(nx) if 1 is quadratic,

Fy(s) <
QJ{DK 2+ t]) ”K} (1=040)/2 105 (nx) if 1 is principal,

uniformly in region 6 < o <14 6 with|s — 1| > 4.

Proof. By (9.22),

L(s,x0)L(s,) if ¢ is quadratic,

Fy(s) =

L(s, x0) if 1) is principal.
From this factorization, (i) follows from well-known properties of Hecke L-functions and (ii) is implied
by L(f3,%) = 0. For (iii), use Lemmal[2.4.5|with a = §,/2 for the “imprimitive” part of Fy(s), i.e. Euler
factors corresponding to p | q. This is bounded by (Nq)%/2¢94("x) As H (mod q) is primitive, we have
by Lemma that Nfz = Nq < Q2. Hence, the “imprimitive” part of F(s) contributes at most
Q%e%(nx) - Second, apply Lemma to the “primitive” part of Fy(s) and note (g(1 + 6) <5 1.
Also observe that D, = DgNf, < Dg(Q by the definition of @) in (2.2). Combining these estimates
yields the claimed bound. O

In light of Lemma[9.3.2] we define some naturally-occurring quantities. First,

@;(‘ﬂ ki L(1,%) if v is quadratic,
s=1 er(q) . if 1) is principal,
Nq

where r  is the residue of the Dedekind zeta function (x (s) at s = 1 and

erta) = #(0/0" =NaJ[ (1- )

pla
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is the generalized Euler -function. Further, denote

. n?? X D%{ Q if ¢ is quadratic, (9.26)
Y = |
ny Dy if ¢ is principal.

For the remainder of this section, we collect various well-known lower and upper bounds for r,
and establish other relevant estimates involving A\(n). The arguments are straightfoward with standard

applications of Mellin inversion.

Theorem 9.3.3 (Stark). For § > 0,

1 < ngM)nK D%HK Q/2nxF0 if ) is quadratic,
- é
o ”§+6)nK D}(/nK Q° if ¢ is principal,

where all implicit constants are effective.

Proof. This is a weak rephrasing of [Sta74, Theorem 1] to our context. If 1) is principal then xy =
wﬁigq)m( so the result follows from [Sta74, Theorem 1] and by noting wlj?q) < 6205(7”<)(Nq)5/2 <5
ni?K Q° from Lemmas and [2.4.7] If 1) is quadratic, then consider the quadratic extension of K
given by M = K(v) implying xy; = ki L(1,7*) where * is the primitive character inducing .
Since L(1,7) > %;')L(l, ), it follows that xy, > (@,1517((](1))2HM so we again apply [Sta74, Theorem

1] and Lemmas and to prove the claim. O

Theorem 9.3.4 (Brauer-Siegel). For § > 0,
1 nx 5
— <5 (X DrQ)°,
Ry
where the implicit constant is ineffective.

Proof. Similar to Theorem [9.3.3] but instead of using [Sta74, Theorem 1] to bound the residues of

Dedekind zeta functions, we apply the celebrated Brauer-Siegel theorem:
KM e d]T/f

for any number field M, where the implicit constant is ineffective. See [Bra47| for details. 0

Theorem [9.3.4] is the only result with ineffective constants so we reiterate that, unless otherwise

stated, all implicit constants are effective and absolute.
Lemma 9.3.5 (Stark). For § > 0 arbitrary, kg, >5 (1 — B)(n7XQ)~°.

Proof. Arguing as in Theorem|9.3.3] this is an analogous rephrasing of [Sta74, Lemma 4] to our context.
O
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Lemma 9.3.6. For d > 0,

> &(I‘l‘))ﬁe—m/y = k(1= By P{1+ 0(5)},

n

provided
y = MsW,/*7Q) 9.27)

for some sufficiently large constant Ms > 1.

Proof. We apply Mellin inversion to see

24100

)\(n) _Nn 1 s
g Z A e e /HOO Fy(s + B)T(s)y’ds.

Shift the line of integration to Re{s} = 1/2 — 3, pick up the pole s = 1 — 3, and bound the remaining
integral using Lemma[9.3.2(iii) and (2.14). Therefore,

W1/4+5/8Q6/8605(n;<)
§ = {rr(1 = B)+ 05 (—4 e )2

Note Wi/ 018 05(nx) 5 Wi/ 074 from the nX factor in the definition of Wy, Thus, by condition
©.27),

S = {f%r(l B+ Oé(Mg/Q(n’;(iDKQ)é/aa) }yl_ﬁ.

From Lemma[9.3.5] it follows that the main term dominates the error provided Mj; is sufficiently large.

This yields the desired result. O

Lemma 9.3.7. For 6 > 0 and y» > 3y,

Z )i\(;l)(e—Nn/yz _ e—Nl‘l/yl) < kg log(yz/,m),

n

provided
_1-615,1/2+6
1> M- k0w PHQ0

for some sufficiently large constant Ms > 1.

Proof. By Mellin inversion,

2+i0c0

Aln _ _ 1 s s
S .= zﬂ: 1\(111)(6 Nn/ya e Nn/y1) _ % /2_ioo Fw(s + 1)1"(3){y2 — yl}ds.

Shift the line of integration to Re{s} = —1 + 4, pick up the simple pole at s = 0, and bound the
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remaining integral using Lemma iii) and (2.14). Thus, for § > 0,

W1/2+5/8Q6/8605(n;<)
S" = iy log(ya/y1) + 05( £ 0
1

Since W;/ 2+0/8 05 () <5 Wli/ 2+9/% and log(y2/y1) > 1, the result follows from the condition on
Y1 O

9.4 Application of the sieve

9.4.1 Sieve sequence

Let C € CI(H) be any ray class satisfying ¢/(C) = 1 and retain the notation of Section Recall that

the Hecke L-function L(s, ) is assumed to have a real zero

1

—1- -
7 nlog(n} Dk Nq)

with n > 20. Let 2 < z < . During the course of our arguments, the parameter z will be chosen and

the valid range of x will be specified. We wish to apply the sieve to the sequence
A= Ax) = {an}aco  with ay = p(n)e N2 . 1¢(n), (9.28)

where p(n) is defined in and 1¢(n) is an indicator function for C. The choice of the smoothing
weight e N2 for a, was made for the sake of simplicity and without any claim to optimality for the
resulting constants in (9.4). Other sufficiently smooth weights, such as e~ (Nn/2)* op (1 — %) QHK, could
also potentially be used although we did not investigate these possibilities. However, for any suitable
choice of weight, we expect the factor of nf}"K to appear in Theorem with a possibly different

value for A.

Now, choose the set of prime ideals to be
P = {p C O prime : Y(p) = 1} (9.29)

and denote
D = {o C Osquare-free: p |0 = ¥(p) =1}. (9.30)
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9.4.2 Local densities

Lemma 9.4.1. Let 0 € D. Then, for any 6 > 0,

Mol =D p(m)e ™" = g(0)X + 14

neC
on

with X = byky, - hi where if 1 is quadratic then
H

by =2 H ( Np Np3) ( Np2>

P(p)=-1
90) =g forPeEP
1/246
7| < (:;DW : (H%KDKQ)(H[;)/Q

and if v is principal then

bwzl—[(l—N;),

plq
g(p) = Np 11 forp € P,
L1/2+8 . s
2] <5 W : (nKKDKQ)( o)/,

Remark. If 0 ¢ D, then |A,| = 0 by Lemma Thus, for prime ideals p ¢ P, set g(p) = 0 and

multiplicatively extend the function ¢ to all integral ideals of O.

Proof. We adapt the proof of [HB90, Lemma 1] with some modifications when bounding the remainder

terms 7. Write

Fls,0) == 3 plw)x(n)(Nn)~™*  for Re{s} > 1
nCO
dn

s0, by orthogonality and Mellin inversion,

Spmer =L S @ [ seooreds ©31)
nag‘c H X (mod H) 2—ioo
n

Alternatively, we may write f(s, x) as an Euler product to see that

F5.0 = pon @) x [T (1400 5E) » H
pfo
)=

pfo
P(p)=1 P(p

‘d
/\

Note that prime ideals p | ® do not appear in the Euler product since p(n) = 0 for n not square-free.
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Including these analogous factors, we may write

fs0 =TI (1+00) (ﬁﬁ))s) < JT 1xas,0, 9.32)
Y(p)=1 Y(p)=—1
where () \~1
—s XP) N\~
o) = pIx@ () ] (1420 )
Y(p)=1
On the other hand,
() . XP(p) \! X(p)
L(s,x)L(s,x) = 122 -+ ) < I (1- -
=1 ( (Np)* ~ (Np)? ) Hoy=1 ( (Np)? )
p -1
L(s,x) = H (1 - (>1i1(p))5> .
pta
Upon comparing with (9.32), we deduce
f(sa X) = 90(37X)g(87 X)G(87 X)7 (933)
where
2(p 3(p 2(p - _
(1 -3 (>1<\Tp()2)3 + 2(>1<\Tp()3)5> X H (1 — (>1<\Tp()2)3) if ¥ is quadratic,
g(s,x) = P(p)=1 P(p)=-—1
7 (1 — X*(p) ) if 7 is principal,
pta (Np)
and

L(s,x)L(s,xy) if 1 is quadratic,
G(s,x) =

L(s, x) if 4) is principal.

Therefore, f(s,x) has meromorphic continuation to C and is analytic in Re{s} > 1/2, except

possibly for a pole at s = 1 when x or ) is principal.
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Furthermore, we claim

Go(s,x) <5 €93K) (Np)~1/2, (9.34)
g(s,x) <5 e9505) (9.35)

uniformly in the region Re(s) > 1/2 + § for any 6 > 0. Here we ignore s in neighborhoods of
poles arising from local factors of gy (s, x) with Np < 4. To see the claim, notice (9.35) follows from

Lemma i). Estimate (9.34) follows from Lemma iii) with @ = 1/2 combined with the
observation that

p(d) < > 1< logNd <5 (N2)°
plo

This proves the claim.

Now, we move the line of integration in (@9:31) from Re{s} = 2 to Re{s} = J + 4. This yields a

main term of

R:% > X(C)Res f(s,x).

x (mod H)

Before computing R, observe that since ¢(C) = 1 and ¥? = g

f(37X0):f(87w)7 G(S,X()):Fw(s),
g(l)XO) = 9(171/})7 gb(LXO) = ga(lﬂ/}) = g(b),

where F;(s) and g() are defined in (9.24) and the statement of Lemma respectively. Therefore,
if ¢ is quadratic, the main term R picks up residues for xy = xo and x = . Namely,

R = E Resf(s x0) + ¥(C )R:ef.f(S,¢)}
%—ﬂlmMQWPifﬂ@ﬂ
ii 9(1,x0)g(d) - 26y

=9(0)X,

since by, = 2¢(1, xo) when 1 is quadratic. If ¢ is principal, the main term R picks up a residue for
X = Xo only. In other words,

R = = -Res f(s, x0)

= 7 g(1,x0)9(0) - Res L(s, xo)

= —-9(1,x0)9(0) - iy
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since by, = g(1, xo) when 1) is principal.
Thus far, we have shown
[ As| = g(0) X + 7o,

where
1/2484ic0

Ty = hi Z (C’)l/1 f(s,x)T(s)x’ds.

27 J1/246—ico

To bound the remainder, we factor f(s, x) via (9.33) and apply the estimates (9.34)), (9.35)), and (2.14).
This yields

‘/L,2+5 O(snK . _
ol s S Z/ (4464 it )l Mt

Hence, the desired result follows from the convexity bound for Hecke L-functions (Lemma [2.3.2),
Lemmasm and[2.4.7| and observing as usual that e?s("x ) &5 ni?K . 0

Motivated by the bounds on the remainder terms 7, in Lemma[9.4.1] we define

n" <D 1/2if 4 is quadratic,
U, = (N DkQ) Yisq (9.36)
(N DgQ)Y* if 4 is principal,

so more simply

1/2+6 s
‘Ta| <K WU¢
9.4.3 Sieve dimension
We prove our sieve problem is zero-dimensional.
Lemma 9.4.2. For > 0, .
Y — <1+,
Np
Np<z
P(p)=1

provided 1 > 1(8) and z < ('} D Q)%™
Proof. According to Lemmal9.3.6] set
é
y = M;W,/* Q.

where W, is defined in (9.26). Using A\(n) defined in (9.22)) and its properties described in Lemma(9.3.1]
one can verify that A\(n) < A(np) for ¢(p) = 1 and n C O. Thus,

1 )\(I‘L) —Nn/y )\(ﬂ) Nn/yz
(g; (NWXZ:(Nn)ﬁe N/)SZ:(N@BB N, 937)

P(p)=1
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which we write as S152 < S3, say. It suffices to show S; < 1+ 4. By our choice y, we may apply
Lemma[9.3.6to Sy and S5 deducing

S < 2P+ 0(0)}.
Since z < (n}X D xQ)9() by assumption, we conclude that
S1<1+0(8) + Os(n "),

whence the result follows after rescaling . 0

Corollary 9.4.3. Let g(0) be the multiplicative function defined in Lemma and § > 0 be arbitrary.
Then, provided n > n(9),

- e?t0 if 4 is quadratic,

vy = 1 (-ow) "<

146
w<Np<z elt

if ¥ is principal,,

forall2 < w < z < (N} DQ)%W). In particular, @.11) holds with C' = C, and r = 0.

9.4.4 Small prime ideal factors

With the local densities and dimension computed, we may now apply the Fundamental Lemma and
sieve out small primes. Before doing so, we restrict the choice of sieve parameters for the remainder of

the section. For 6 > 0, suppose
Bs - {ryt + 110 w)PHQ0 < 2 < (nE D)0 W (9.38)

for some sufficiently large constant Bs > 0. Define

gl _logD

T Uz T e

(9.39)

where £y, Wy, Uy, are defined in (9.25), (9.26)), and (9.36) respectively.

Proposition 9.4.4. For § > 0, suppose the sifting level z satisfies (9.38)) and define the level of distribu-
tion D and sifting variable T as in (9.39). Assume n > n(d) and

24-208

x> Ms{ (k" + VW, *Uy - hig} (9.40)
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for Ms > 0 sufficiently large. Then

1
S(A,2) < XV(){1+ B1(Cyi) + 05(1ogx)}’
(9.41)

1
S(A,2) = XV(2){1 = Bo(Cyim) + Os(1or7) 3
where Ey and E are defined in Theorem[9.2.1| and C., is defined in Corollary[9.4.3}

Proof. We only prove the lower bound; the upper bound follows similarly. With the described choice
of parameters, we employ the Fundamental Lemma for zero-dimensional sieves (Theorem [9.2.1)) in
conjunction with Lemma[9.4.T] and Corollary [9.4.3] yielding

S(A, z) > XV(z){l — Eo(Cy; T)} + R (A, D). (9.42)
Since the sequence A = {an } is only supported on the set D (defined in Section[9.4.1)),

R (A, D)< > |rl.

No<D
oeD

From Lemma (9.3.1| it follows 1{d € D} < A(d) so by Lemma|9.4.1}

R™(A, D) <5 '/2PU5 3~ A(0)(No) 1/
No<D

(9.43)
<5 & POULTON A (D) (No) 2 NP,
0

By Mellin inversion, the sum over 0 equals
1 1+i00

— F, L (s)D*ds.
omi | w(s+5)(s) s

Pulling the contour to Re{s} = §/8, we pick up a main term of #,,T'(1/2) D'/? and bound the resulting
integral using Lemma[9.3.2]and (2.14). Applying these estimates in (9.43), we find

R (A, D) <5 m1/2+5U1})+5 (,%Dm n W;/4+5/8Q6/8605(nK)D6/8>

By (9.40), the first term in the parentheses dominates whence

ka0

hu

R (A, D) <5 /inl}f‘sxl/?""le/Z <5

Since z satisfies the upper bound in (9.38), it follows from Corollary 0.4.3] and the definition of X in

Lemma(9.4.1]that )
ﬁ¢1‘
XV(Z) >>5 hH : eoé(nK)
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for n > n(d). By these two observations, we conclude that

5/2 XV(2)

R (A, D) <5 XV(z)z™° <5

log z

provided > ¢95("%)_ This latter condition on z is clearly implied by assumption (9.40). Substituting
this estimate into (9.42)) yields the desired result. O

9.4.5 Large prime ideal factors

Lemma 9.4.5. Suppose p € P satisfies z < Np < '/ and assume z satisfies (0.38). Then for § > 0,

XV (z)
S(A]:U p) <<§ Np )
provided n > n(9) and
Ms{(kt + )W, Uy - hig }77% < o < My(nf D @)™ (9.44)

for Ms > 0 sufficiently large.

Proof. From Section recall S(Ap,p) < S(Ap,Np) so it suffices to bound the latter. Using
Lemma[9.4.T]and Corollary [0.4.3] we apply the upper bound sieve from Theorem [9.2.1]to the sequence

A, with level of distribution D’ = D /Np, sifting level z’ = Np, and sifting variable 7/ = 11?) gg ]3 This

application therefore yields

S(Ap, Np) < g(p) )+ D Il

|B(2')
No< D’

since V(Np) < V(z) for Np > z. As g(p) < (Np)~! by Lemma [9.4.1] it suffices to bound the

remainder sum. Following the same argument as in Proposition [9.4.4] we see that

AP)  _Nop/p
’T D| <<§ 1+§ e p/
al;’) ' )1/2 oy > (No)l/2
No< D’
< :1:1/2+6 UH“S(F; (2)1/2 i W1/4+6/8Q5/8606(nK)(2)6/8)
P Np2 e MY v Np

1 /24677146 y1/2
<5 Np C KT v, D

provided (9.44) holds. One can similarly show that the above is <5 XV (2)(Np)~! since z satisfies the
upper bound in (9.38)) and n > 7(9). O
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Lemma 9.4.6. Let 0 > 0 and assume z satisfies (9.38). For x > 2z,

1

Z — <5 (1—=p)logz
Np

z<Np<z

¥(p)=1

provided n > n(9).

Proof. From Lemma[9.3.1]and the condition « > 2z, notice

Z — < { —Np/z epr/z} — 51’
z<Np<z p z<Np<:1:
P(p)=1

say, so we estimate S7. Observe that

L A(n) —2Nn/z _ An) —Nn/z Nny g
So .—Zn: (Nn)ﬁe —zn:Nne -H1_5<—>Z ,

where H,(t) = te~! for e > 0 and t > 0. By calculus, H,(t) is maximized at t = € and H(¢) — 1 as
e — 0T. Moreover, 2! = 1 + O((1 — 8) log 2). Therefore, by (9.38),

M —Nn/z
So <5 ; Nn e
for 7 > (). Hence, using Lemma[9.3.1] we see that
& —Np/z _ ,—Np/z M —Nn/z
sisa<( 3 Np L e D(Z; Nn )
< Z { —Nn/zz _ ean/z} = Ss,

say. By both the lower and upper bound of (9.38)), we may lower bound S5 using Lemma [9.3.6] and
upper bound S5 using Lemma Combining these estimates and noting z'~# > 1 yields the desired
bound for S provided n > 7(6). O

9.5 Proof of Theorem

We claim Theorem[9.1.2]is a consequence of the following result.

Theorem 9.5.1. Let H (mod q) be a primitive congruence class group of a number field K. Suppose
¥ (mod H) is an real Hecke character of the number field K with associated real zero [3 as in (9.3). Let
C € CI(H) satisfy 1»(C) = 1 and § > 0 be given. Denote X as per Lemma Assume x satisfies
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both of the following

xz < Ms - (n}‘(KDKQ)H)O7 (9.45)
x> My {(ky," + 1) WU 5%, (9.46)

for Ms > 0 sufficiently large. If ¢ is quadratic then

>~ plp) > 0.00466 - X

Np<zx
peC
provided n > n(0) and additionally
x> Ms - {(ry! + 1)°W PU2R3 1+, (9.47)

Otherwise, if Y is principal then

> plp) >0.0557 - X

Np<zx
peC
provided n > n(6) and additionally
x> Ms - {(ry" + 1)PW, UK 11+, (9.48)

Remark. Recall k., Wy, Uy, are defined in (9.25)), (9.26), and (9.36)) respectively.

This section is dedicated to the proofs of Theorems[9.1.2]and [0.5.1]

9.5.1 Proof of Theorem from Theorem

By comparing notation} one can verify that it suffices show that (9.3) is implied by (9.46) and
when 1 is quadratic and similarly is implied by (9.46) and (9.48)) when ¢ is principal. If ¢ is quadratic,
then by Theorem[9.3.3]and Lemma[2.4.6]

-1 4 4,4 120 5+$ 5r—2 9 146

5
6+—— 2.5
(@1 + 1)5W12/2U1/2;h%1 <s {n}?”KDK ng Q3'5+nx .h%{}l—i-d.

Note that p(p) = 1 and Ay, = by, if 1 is principal, and p(p) = 2 and Ay, = L(1,v)by /2 if 1 is quadratic.



CHAPTER 9. SIEGEL ZEROS AND THE LEAST PRIME IDEAL

232

One can therefore see by inspection that (9.46) and indeed imply (9.3). If ¢ is principal, then

similarly

4
34—
(g + D)WL USRS, <5 (S Dy "< Q- hy 1™,

3
242>
(k! + 1> WPURRY <5 {nfP¥ Dy ™ Q05 n 3

Again, one can see by inspection that (9.46) and (9.48) imply (9.5).

9.5.2 Proof of Theorem

Let y € [1,10] be a parameter which is to be optimized later. Consider the sequenceﬁ
A = {a”}y givenby @ = p(n)e NV 1e(n),
where p(n) is defined in (9:23)). For Bs > 0 sufficiently large, choose
2= By {ry ' + 1Y W20,
so z indeed satisfies (9.38). Analogous to (9.39), define

B (x/y)1*45 _log Dy
YT R U T Togz

Furthermore, according to the notation of Lemma([9.4.1] denote

X = bd,lid,%, V(Z) = H (1 - g(p))
Np<z

Now, by Lemma (9.3.1, .A®) is supported on n satisfying p | n = (p) = 1. Thus, we have the

following Buchstab identity:

S(AW, Vz) = S(AW 2) = 37 S(AY ).

2<Np<+/z
P(p)=1

(9.49)

Noting al? < oV, it follows S(Aéy),p) < S(Af,l),p). Moreover, (1 — 3)logz <5 n~ ! by (9.43).

Thus, from (9.46) and Lemmas [9.4.3and [9.4.6] it follows that

ST S ) <50 XV(2)

2<Np<+/z
P(p)=1

3Comparing with the notation of (9.28), notice A(z/y) = A®).

(9.50)
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provided n > n(4d). Assumption (9.46) allows us to apply Proposition to S(AW, ) so, combined
with (9.49) and (9:50), we deduce that

S(AW, V) > ;{1 — Eo(Cy;7y) +O(0) + 05(10;33)} XV (2) ©.51)

provided n > 7(d). It remains to convert the “exponentially-weighted sieve” to the usual “cutoff sieve”.
Observe that

SAW V)= Y p)e™ e Y p(r)en

peC neC
Vr<Np<z (n,P(Vz))=1 (9.52)
Nn>x
=51+95

say. To complete the proof, it suffices to lower bound S; so we require an upper bound on S5. As
y > 1,z < /7 and z satisfies (9.46), it follows by Proposition that

1
log

Sy < e vHs AWM 2) < e—y+1{1 + B1(Cy; 1) + 0(3) + Os( )} XV (2).

Using the above, (9.51), and (9.52), we conclude for n > 1(¢) that

1
log x

) > g{;@ — Bo(Cyiry)) — e (14 Bi(Cyim)) +0(5) + Os(

- )}ox 053

after bounding V'(z) by Corollary Finally, we consider cases.

1 quadratic

Then and our choice of z imply 71 > 7, > 5, so ng(7y) > 6 and ni(71) > 5. Hence, by the
definitions in Theorem [9.2.1]

since Cy, = e?*9 by Corollary Substituting these bounds into (9.53), choosing roughly optimally
y = 7.37, and rescaling J appropriately completes the proof of Theorem [9.5.1] when 1) is quadratic.

1 principal

Then (9.48) and our choice of z imply 71 > 7, > 3, so ng(7,) > 4 and n1(71) > 3. Hence, by the
definitions in Theorem [9.2.1]
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since Cy, = e!*9 by Corollary Substituting these bounds into (9.53)), choosing roughly optimally
y = 4.54, and rescaling § appropriately completes the proof of Theorem[9.5.1|when ¢ is principal. [



Chapter 10

Elliptic curves and modular forms

“It is a lovely language, but it takes a very long time saying anything in it, because we
do not say anything in it, unless it is worth taking a long time to say, and to listen to.”

— Treebeard, The Lord of the Rings.
In this chapter, we present the proofs for the applications to elliptic curves and modular forms found
in Section Background on elliptic curves and modular forms can be found in [ST94, [Sil09]] and
[DS05,IMMO06, IOno04]] respectively. Aside from basic definitions in Chapters|l|and |2} the notation here

will be self-contained.

10.1 Reformulating Theorems and

First, we state slightly weaker (but more convenient) reformulations of Theorems|[1.3.2]and[I.3.3] For an
abelian extension L/ K, the max conductor quantity @ = Q(L/K), defined by (1.22)), and discriminant
Dy measures the ramification occurring in L/ K and K/Q respectively. However, it can be somewhat
cumbersome to use these in certain arithmetic applications. To measure the ramification of L/ K, we

will therefore avoid using Q and instead use the set
P(L/K) = {p prime : p prime ideal of K with p | (p) and p ramifies in L}. (10.1)

The following proposition allows us to reformulate our main results in terms of P(L/K).

Proposition 10.1.1 (Murty—Murty—Saradha). If L/K is an abelian extension of number fields then

2ng
o(L/K) < (IL: k) [ »)
peP(L/K)
Proof. See [MMSSS,|, Proposition 2.5], which proves a more general result. 0

Next, we record an alternate bound for Dy = |disc(K/Q)| using nx = [K : Q] and the squarefree

part of D For positive integers n, let w(n) = #{p : p [ n} and rad(n) = [],, -

235
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Proposition 10.1.2 (Serre). For any number field K,
Di < (ng)™ ' Pr)rad(Dg )" 1

If K is Galois over Q then w(Dy ) may be replaced by 1.
Proof. See [Ser81l, Proposition 6]. OJ
Combining these two propositions yields the following lemma.

Lemma 10.1.3. Letr A, B,C > 0. If L/ K is an abelian extension of number fields with max conductor
Q = Q(L/K) defined by (1.20) then

D?}QB(H?(K)C < [L : K]Bn?(w(DK)+Crad(DL)A+QB] nK

Proof. Since every prime p € P(L/K) divides the discriminant of L/Q, we have that Hpep( LK) P <
rad(Dy). Furthermore, rad(Dg) < rad(Dy) since Di | Dy. Combining these observations with
Propositions [T0.T.T]and [T0.1.2] yields the desired result. O

We may now reformulate two of our main theorems.

Theorem 10.1.4. Let L/F be a Galois extension of number fields with Galois group G, and let C be
any conjugacy class of G. Let H be an abelian subgroup of G such that H N C' is nonempty, and let
K # Q be the subfield of L fixed by H. Then

1 1€l a
(L : K]*rad(Dy)3nSe P8y |Gllogz

wo(z, L) F) >

forz > {[L: K]521rad(DL)1736n(;?4w(DK)+290}nK and ([L : K|ngrad(Dr))"5 sufficiently large. In
particular,
P(C,L/F) < {[L : K]"®'rad(Dy)™0p 524 (P 290 e,

Proof. Aside from the “sufficiently large” condition, this is an immediate consequence of Theorem|1.3.2]
and Lemma It remains to show that D Qn}* — oo if and only if ([L : K]ngrad(Dyp))"* —
oo. The “only if” direction follows from Lemma [10.1.3] Now consider the“if” direction. If ng — oo
or rad(Dg) — oo then we are done. By Lemma([7.3.1] if [L : K| — oo then we are done. Thus, we

may assume that H p — oo, where P(L/K) is given by (10.1)). By the conductor-discriminant

pEP(L/K)
ptDk
formula (2.21)) and the definition of Q in (7.20), any prime p € P(L/K) with p f D must divide the

norm of a conductor f, for some Hecke character x attached to L /K. By the definition of Q in (7.20),

this implies that
II »<]II»

pEP(L/K) p<Q
ptDK
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Thus, if the former quantity is unbounded then so is the max conductor Q. This completes the verifica-

tion of the “sufficiently large” condition. O
Remark.

e For comparison, if one uses [Ser81, Proposition 6] to bound Dy, then Theorem|1.3.1|implies that
P(C,L/F) < (nf(DL) rad(Dy))40"L. Thus, the above theorem gives an asymptotic improve-
ment when |H| = [L : K] is large.

e The arguments in the above proof may be used to quantify the “sufficiently large” condition in

terms of D Qn?(K . We omit these details for brevity.

Theorem 10.1.5. Let L/F be a Galois extension of number fields with Galois group G, and let C be
any conjugacy class of G. Let H be an abelian subgroup of G such that H N C is non-empty, and let K
be the subfield of L fixed by H. Define

M(L/K)=[L:KID/™ J[ » (10.2)
peP(L/K)

Iflogx > ng log(M(L/K)nk) then

O], .
oz, L/F) < @Ll(l‘).

Remark. Theorems|1.3.2]and|10.1.4|can be restated using M (L/K) as well; that is,

P(C,L/F) < (ngM(L/K))' %0,

since 1050 > max{694, 521 - 2,290}.
Proof. Using the definition of M (L/K), by Proposition [10.1.1} we see that (I.3T)) is

< (D Q(L/K)n)*0 <« (ngM(L/K))%x .

The claimed result now follows immediately from Theorem|1.3.3 O

10.2 Proofs of Theorems to

GL, extensions

We will now review some facts about GL, extensions of (Q and class functions to prove Theo-

rems to Let f(z) = Y07 ap(n)e*™ € Z[[e**]] be a non-CM newform of even

weight £ > 2 and level N > 1. By Deligne [Del71]], there exists a representation

Pre - Gal(@/@) — GLQ(]F@)
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with the property that if p { /N and o, is a Frobenius element at p in Gal(Q/Q), then p;,
is unramified at p, tr pre(0,) = as(p) (mod¥), and det pfe(o,) = p* ! (mod?). If £ is
sufficiently large (depending on f) then the representation is surjective. Let L = L, be the
subfield of Q fixed by the kernel of p 7¢. Then L/Q is a Galois extension unramified outside

¢N whose Galois group is ker py ¢, which is isomorphic to a subgroup of
G =Gy ={A € GLy(Fy): det Aisa (k — 1)-th power in F }.
If ¢ > 1 then the representation is surjective, in which case
ker pso = G. (10.3)

When k& = 2 and the level is N, f is necessarily the newform of a non-CM elliptic curve £/Q
of conductor N. In this case, we write ps¢ = pge, and L is the (-division field Q(E[¢]). It is
conjectured that ker pp y = GLy(IFy) for all £ > 37. When E/Q is non-CM and has squarefree
level, it follows from the work of Mazur [Maz78] that ker pg, = GLoy(IFy) for all ¢ > 11.

Lemma 10.2.1. Let L/Q be a GLy(F,) extension which is unramified outside of (N for some
N > 1. Let C C GLy(F,) be a conjugacy class intersecting the subgroup D of diagonal
matrices. There exists a prime p { {N so that [L;TQ] = Cand

< {62778rad(N)1736(€<£+ 1))694w(N)+984}€(Z+1).

Proof. If K = LP is the subfield of L fixed by D, then [L : K| = ({ — 1)? and [K : Q] =
0(¢ + 1). Moreover, rad(Dy,) | £ rad(N) and w(Dg) < w(Dy) < 1+ w(N). The result now
follows immediately from Theorem [10.1.4] O

Proof of Theorem [1.4.3]

It follows from the proof of [Mur94, Theorem 4] and Mazur’s torsion theorem [Maz78]] that it
suffices to consider ¢ > 11. Let L = Q(F[/]) be the ¢-division field of E/Q. For p { {Ng, we
have that £/(IF,) has an element of order / if and only if

tr po.p(o,) = det peg(o,) + 1 (mod 4), (10.4)

where o, is Frobenius automorphism at p in Gal(Q/Q). If Gal(L/Q) = GLy(F,), then the
pe.e(0,) € GLo(F,) which satisfy form a union of conjugacy classes in GLy(F,) which
includes the identity element. The subgroup D of diagonal matrices is a maximal abelian
subgroup of GLy(F,). Thus 7gqy(x, L/Q) is a lower bound for the function that counts the
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primes p < z such that p { {Ng and ¢ | #E(F,). Since rad(Dy) | ¢ rad(N), Lemma (10.2.1

exhibits a prime p with the desired arithmetic properties satisfying
p< {62778rad(N) 1736 (gw + 1))694w(N)+984}€(£+1)‘

Since ¢ > 11, we have that £(¢ 4 1) < (*%* and (¢ 4 1) < £2(*. Appropriately applying both
of these facts to the above bound yields the desired result.

Suppose now that Gal(L/Q) is not isomorphic to GLy(F,). The possible cases are de-
scribed in the proof of [Mur94, Theorem 4]. Applying similar analysis to all of these cases,
one sees that the above case gives the largest upper bound for the least prime p such that
¢ | #E(F,). This completes the proof. O

Class functions

Next, we require some basic results on class functions (cf. [Ser81, Zyw135]]) for the proof of
Theorem Let L/F be a Galois extension of number fields with Galois group G, and let
¢ : G — C be a class function. For each prime ideal p of F', choose any prime ideal 3 of L
dividing p. Let Dy and Iy; be the decomposition and inertia subgroups of G' at p, respectively.
We then have a distinguished Frobenius element o € Dy /Iys. For each m > 1, define

pFrob™ = —— S g(g).

I
el 5
g[mzo'%lEDm/qu

Note that ¢(Frob,") is independent of the aforementioned choice of 9. If p is unramified in L,
this definition agrees with the value of ¢ on the conjugacy class Frob, of G. For z > 2, we
define

m(r)= Y 6(Foby), T = Y (Fob])

p unramified in L p unramified in L
Npq p<z Np/g p"<z

Let C' C G be stable under conjugation, and let 1 : G — {0, 1} be the class function given
by the indicator function of C. Now, defindl|rc(z, L/F) = my(z) and 7ie (2, L/ F) = 71, (2).
Serre [Ser81, Proposition 7] proved that if z > 2, then

\mc(z, L/F) — 7c(x, L/ F)| < 4np((log Dr)/n + V). (10.5)

I'This agrees with our usual definition of 7 (z, L/F) in (T.13).
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Proof of Theorem
This is an immediate consequence of Theorem in the case k; = 2. ]

Proof of Theorem (1.4.7

Let ¢ be an odd prime such that (I0.3) is satisfied. Assuming ged(k — 1,¢ — 1) = 1, we have

G = GLy(Fy). To prove the theorem, we consider

Tz a,€) = #{p < x: p LN, ay(p) = a(mod ¢), ¢ splits in Q((as(p)* — 4p"~1)/?)}.

Note that for p { (N, af(p)? — 4p*~! = tr(pse(0,)) — 4det(pro(o,))?, where o, is Frobenius
at p in Gal(Q/Q). The subset C' C G given by

C ={A€G: tr(A) = a(mod¥), tr(A)* — 4det(A) is a square in F}

is a conjugacy-invariant subset of GG, so we bound 7 (z, L/Q). Let B C G denote the subgroup
of upper triangular matrices; the condition that tr(A)* — 4 det(A) is a square in F,* means that
op 18 conjugate to an element in B. If I' is a maximal set of elements v € B which are non-
Ler Ca(7), where Cg(7) denotes the
conjugacy class of 7 in GG. Since B is a subgroup of GG with the property that every element of

conjugate in G with tr(y) = a(modgq), then C' = | |

C is conjugate to an element of B, it follows from [Zyw15, Lemma 2.6] that

7~TCB(V)(x’ L/LB>
[Cent(7y) : Centp(y)]’

%C(xaL/@) = Z

yel

where Centg () is the centralizer of 7 in GG (and similarly for B). If C1 = | |, ¢ 1 yon-scatar CB(7)5
then it follows that 77 (z; L/Q) > ‘—é'%cl (x, L/LP) for all z > 2.

Case 1: [N sufficiently large, a # 0 (mod /)

Let U be the normal subgroup of B consisting of the matrices whose diagonal entries are
both 1. We observe that U - C'; C CY; therefore, using arguments from [Zyw15, Lemma 2.6],
we have that 7, (z, L/L?) = 7c,(x, LV/LP) for x > 2, where C is the image of C; N B
in B/U. Tt follows from (10.5) and Theorem that if /N is sufficiently large and z is
bounded below as in Theorem then

Toy(z, LV /LP) > 0 if and only if 7, (x, LY /L?) > 0. (10.6)

It is straightforward to compute n;s = ¢ + 1 and [LY : LP] = (¢ — 1)?. Since LY/L? is
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abelian and all of primes p ramifying in LY divide /N, we therefore obtain a prime p from
Theorem [I0.1.4] with the desired arithmetic properties and which satisfies

p< {61042(61,&(1(]\[))1736(6_{_1)694w(N)+984}5+1.

For ¢ > 3, we have ¢ + 1 < (%27, Appropriately applying this fact to the above yields the
desired bound.
Case 2: [N sufficiently large, a = 0 (mod /)

Let H be the normal subgroup of B consisting of matrices whose eigenvalues are both
equal. We have that H - C; C (' since multiplying a trace zero matrix by a scalar does not
change the trace. Let C'3 be the image of C'} N B in B/H. The arguments are now the same as
in the previous case, with L replacing LY. In fact, since B/H = F is abelian of order ¢ — 1
and Cj is a singleton, we obtain a slightly better exponent than what is stated in Theorem[1.4.7]
when a = 0 (mod ¢).

Case 3: [N not sufficiently large
Let Ay, = U and A3 = H. When /N is not sufficiently large (in which case /N < 1),
then the lower bound for 7, (z, LA /L) (i = 2 or 3) in Theorem[10.1.4/may have an implied
constant that is so small that (I0.6) becomes false in the range of  given by Theorem [10.1.4]
For these finitely many exceptional cases, we use Weiss’ lower bound on 7¢, (x, L4/ LP) that
follows [Wei83), Theorem 5.2], which holds uniformly for all choices of N and ¢. Continuing
the proof as in Case 1 (this requires us to take cio sufficiently small and c;; to be sufficiently
large in [Wei83, Theorem 5.2]), we see that the least prime p { /N such that a¢(p) = a (mod ¢)
is absolutely bounded in all of the finitely many exceptional cases. This proves Theorem|1.4.7
]

10.3 Lang-Trotter conjectures

For this subsection, fix a newform
o0
f(z) =) ap(n)e’™
n=1

of even integral weight k£ > 2, level Ny, and trivial nebentypus with integral Fourier coef-

ficients. For each prime p, we define w, = (af(p)? — 4p**~1)¥/2. From Deligne’s proof of
the Weil conjectures, we have that |a(p)| < 2p*s=1/2 for all p, so Q(w,) is an imaginary

quadratic extension of Q.
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For a fixed integer a € Z and fixed imaginary quadratic field k, we will estimate

Tf(x,a) .= #{p < x: p{ Ng, ay(p) = a},
w2, k) = #{p < x: pt Np, Q(w,) = k}.

The arguments found in this subsection closely follow the prior works of [MMSS8S], Mur97]
and especially [Zyw15]]. We begin by giving an upper bound for 7¢(z, a).

Proof of Theorem
For any prime ¢ > 3, set
mf(z,a;0) = #{p < x: as(p) = a (mod ¢) and ¢ splits in Q(w,)}.

Let /1 < {5 < --- < {; be any t odd primes, each less than exp(l‘;%). By [Wan90, Corollary

4.2],if t ~ @ log log x, then

x x
< (loglog x) 112?%% mw(x,a;l5) + oz 2)%"

t
Tz, a) K ZTrf(x,a;Ej) + ( (10.7)

2
st log x)

We proceed to bound 7¢(x, a; £), where ¢ < exp((log2)(log x)/(8loglog x)).

Let ¢ be prime, let IF, be the field of ¢ elements, and let Frob,, be the Frobenius automor-
phism of Gal(Q/Q) at p. For each /, there is a representation

pre: Gal(Q/Q) — GLo(F,) (10.8)

unramified outside N/, such that for all primes p { N¢¢, we have that tr(ps.(Frob,)) =
as(p) (mod ¢) and det(py¢(Frob,)) = p*~! (mod £). We have that p; , is surjective for all but
finitely many /. Let L = L, be the subfield of Q fixed by ker p;,. If ¢ is sufficiently large,
then L/Q is a Galois extension, unramified outside of N/, whose Galois group is G = {g €
GLy(Fy) : det g € (F))*—1}.

Define C' = {A € G: tr(A) = a (mod ) and tr(A)? — 4det(A) € F, is a square}. Let B
denote the upper triangular matrices in GLo(IFy) N G, and let L” be the subfield of L fixed by
B. Let U be the unipotent elements of B, and let LY be the subfield of L fixed by U. Note that
U is a normal subgroup of B and that B/U = Gal(LY/L?) is abelian. Let C’ be the image of
C'N Bin B/U. If x is sufficiently large, then by [Zyw15, Lemmas 2.7 and 4.3],

NG

iz, a;0) < mor(x, LY JLB) + s ( +log M(LU/LB)).

log x
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Applying Theorem to the Chebotarev prime counting functions for each conjugacy class
in C’, we have that if log z > nys log(M (LY /L®)n;5), then

) (S Vo U,rB
mr(x,a;l) < B/U|logx +nps (logaz +log M(L” /L ))
By [Zyw15, Lemma 4.4], we have |C'|/|B/U| < 1/, nys < (£, and log M (LY /LP) <y,
log ¢. Combining all of our estimates, we find that

x NG

(rail) < 22y
T, a; -
A llogz logx

+ Clog N4, logz > llog Ny/. (10.9)

Thus, taking ¢ ~ ¢’ log x/log(Ny log z) for some sufficiently small absolute constant ¢’ > 0,

xlog(Nylog x)

(z,a;l) < (log 12

(10.10)
Now, as before, let t € Z satisfy ¢ ~ @ loglog x, and let /1 < f5 < --- < {; be t consecutive
primes with ¢; ~ ¢’ log z/log(Nylog z). By the Prime Number Theorem, ¢; € [(;, 2{,] for all
1 < j < t. Therefore, if ¢’ is made sufficiently small, we have that

log(N¢ 1

max, log o7 (10.11)

Theorem [1.4.8] now follows from inserting the inequality (10.11) into the inequality (10.7).
]

Remark. The source of our improvement over [Mur97] stems solely from the application of
Theorem[I0.1.5] See the end of Section 9.1 in [TZ174a] for further discussion.

Proof of Theorem

In this case, we are estimating 7¢(x, k) for a fixed imaginary quadratic field k. The proof of
Theorem [1.4.9]is nearly identical to the proof of [Zyw15, Theorem 1.3(ii)] except that we use
Theorem [10.1.5] to bound the ensuing Chebotarev prime counting function instead of using
[Zyw135, Theorem 2.1(i1)]. The analytic details are very similar to the above proof of Theo-
rem but the particular Galois extension to which Theorem |1.3.3|is applied is different.
Following [Zyw15| Section 5.2], we apply Theorem|[I.3.3instead of [Zyw15| Theorem 2.1(ii)],
which allows us to choose

c log =

v= h_klog(lz—: log )

for some sufficiently small absolute constant ¢ > 0. Here Dy, is the absolute discriminant of k

and hy is the (broad) class number of £. This yields the claimed result. ]
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