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Abstract. Given a sublinear function κ, the κ-Morse boundary ∂κG of a

CAT(0) group was introduced by Qing and Rafi and shown to be a quasi-
isometry invariant and a metrizable space. In this paper, we prove several

properties of the κ-Morse boundary that further generalize useful properties

of the Gromov boundary. We first show that if X is a proper CAT(0) space,
then ∂κX is a strong visibility space. We also show that any CAT(0) group

G with nonempty κ-boundary contains a rank one isometry; furthermore, the

subspace consisting of strongly contracting rays is a dense subspace of ∂κG.
These results generate several applications: any CAT(0) group with nonempty

κ-Morse boundary is an acylindrically hyperbolic group; the collection of rank

one isometries G contains is exponentially generic. Furthermore, we show that
a homeomorphism f : ∂κG→ ∂κG′ comes from a quasi-isometry if and only if

f is Morse quasi-möbius and stable. Lastly, we characterize exactly when the
sublinearly Morse boundary is a compact space.

1. Introduction

Much of the geometric group theory originates from the studying of hyperbolic
groups and hyperbolic spaces. Hyperbolic groups have solvable word problem and
strong dynamical properties. One fundamental technique in the study of hyperbolic
groups is by constructing boundaries for these groups. Gromov took the collection
of all infinite geodesic rays (up to fellow traveling) in the associated Cayley graph,
equipped this set with cone topology on these geodesics, and defined the space to
be the boundary ∂G of the hyperbolic group G. The boundary ∂G is independent
of the choice of a generating set and has rich topological, dynamical, metric, quasi-
conformal, measure-theoretic and algebraic structures (see for example the survey
by Kapovich and Benakli [KB02]).

CAT(0) spaces enjoy locally non-negative curvature and are contractible. Ex-
tension of the boundary theory to CAT(0) spaces and groups has been developing
in the past decades. In this setting, the space of all geodesic rays together with the
cone topology is called the visual boundary and is denoted by ∂vX. It is shown
by Croke and Kleiner that the visual boundary of a CAT(0) space is not in gen-
eral a quasi-isometry invariant [CK00]. In [CS15], Charney and Sultan constructed
the first quasi-isometrically invariant boundary for CAT(0) spaces called the con-
tracting boundary. One consequence of being in the contracting boundary is that
a given geodesic ray spends uniformly finite amount of time in each product re-
gion. In [Qin16], it was shown that, in the Croke-Kleiner example, failure to obtain
quasi-isometry invariance comes from geodesic rays that spend linear amount of
time (with respect to total time travelled) in each product region.

Hence, one can consider geodesic rays that spend a sublinear amount of time
in each product region. In [QR19], Qing and Rafi introduce the sublinearly Morse
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boundary ∂κX of a CAT(0) metric space X and show that ∂κX is quasi-isometry in-
variant and metrizable. Qing and Tiozzo show that, for a right-angled Artin group
G, ∂κG is a model for Poisson boundaries associated to a random walk (G,µ). In-
tuitively, a (quasi-)geodesic ray is sublinearly Morse if it spends a sublinear amount
of time in each maximal product region, with respect to total time travelled when
it enters that product region.

In this paper we show that ∂κX enjoys a variety of hyperbolic-like properties. Let
X be a CAT(0) space, a subset S of the visual boundary ∂vX is said to be a strong
visibility space if given an element α(∞) ∈ S and an arbitrary element β(∞) ∈ ∂vX,
there exists a geodesic line γ such that γ is asymptotic in one direction to α(∞)
and to β(∞) in the other. We first prove:

Theorem A. Let X be a proper CAT(0) space and let κ be a sublinear function.
The κ-Morse boundary ∂κX is a strong visibility space.

Aside from serving as an evidence of a “hyperbolic-like” boundary, strong visibil-
ity gives rise to rank one isometries. A rank one isometry is a hyperbolic isometry
such that none of whose axes bounds a flat half-plane. We remark that a rank one
isometry is in general hard to establish directly, while the nonemptiness of ∂κX for
any κ serves as an alternative approach.

We say that a geodesic ray is strongly contracting if there exists a constant D
such that all balls disjoint from the geodesic ray projects to sets of diameter at
most D. We prove the following:

Theorem B. Suppose G is a group that acts geometrically on a CAT (0) space X.
If there exists a sublinear function κ such that ∂κX 6= ∅, then:

(1) The group G contains a rank one isometry.
(2) The subspace consisting of all strongly contracting geodesics is a dense sub-

space of ∂κX.
(3) For any point b ∈ ∂κX representing a strongly contracting geodesic, the

orbit Gb is dense in ∂κX.

We find necessary and sufficient conditions for ∂κG to be compact:

Theorem C. Suppose a group G acts geometrically on a proper CAT(0) space X
such that ∂κX 6= ∅, then the following are equivalent:

(1) Every geodesic ray in X is κ-contracting.
(2) Every geodesic ray in X is strongly contracting.
(3) ∂κX is compact.
(4) The space X is hyperbolic.

We have several applications of Theorem A and Theorem B. First we can de-
tect with weaker assumption when a group is acylindrically hyperbolic. Roughly
speaking, a group is acylindrically hyperbolic if its action on hyperbolic spaces is
less than properly continuously but still discrete (See Section 2.5 for definition).
Acylindrically hyperbolic groups includes mapping class groups.

Corollary D. Let G be a CAT(0) group which is not virtually cyclic. If ∂κG 6= ∅,
then G is acylindrically hyperbolic.

This theorem provides a new technique to prove that a CAT(0) group is acylin-
drically hyperbolic. This includes large classes of Artin groups. An example of an
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Artin group of large type (See Definition 2.21) is given in Example 5.2. In general,
it is open whether large type Artin groups are acylindrically hyperbolic.

Secondly, we use Theorem 1.9 in [Yan18] by Yang to provide a qualification
for when rank one isometries of CAT(0) spaces are exponentially generic. For
definitions, see Section 2.7.

Corollary E. Let G is a CAT(0) group with ∂κG 6= ∅, then the elements that are
rank one isometries are exponentially generic in G.

The last application concerns quasi-isometry rigidity of CAT(0) groups. In 1996,
Paulin gives the following characterization [Pau96]: if f : ∂X → ∂Y is a homeomor-
phism between the boundaries of two proper, cocompact hyperbolic spaces, then
the following are equivalent

(1) f is induced by a quasi-isometry h : X → Y .
(2) f is quasi-möbius.

Quasi-möbius maps are maps such that changes in the cross ratio are controlled
by a continuous function. As an application of Theorem B, we give a similar char-
acterization for sublinearly Morse boundaries. We note that Morse quasi-möbius
is different from quasi-möbius as it is a condition that needs to be checked for
infinitely many subspaces of ∂κX.

Corollary F. Let X,Y be proper cocompact CAT(0) spaces with at least 3 points
in their sublinear boundaries. A homeomorphism f : ∂κX → ∂κY is induced by a
quasi-isometry h : X → Y if and only if f is stable and Morse quasi-möbius.

History. The sublinearly Morse boundary is preceded by various other approaches
to construct a space at infinity for CAT(0) spaces and proper metric spaces in
general. In [CS15] Charney and Sultan introduced the Morse boundary of a CAT(0)
space which consists of geodesic rays such that the projection of disjoint balls to
them are bounded uniformly. The Morse boundary of a CAT(0) space is a quasi-
isometry invariant. This idea is generalized to proper geodesic metric space by
Cordes [Cor17]. However, the Morse boundaries in general is not first countable as
shown by Murray [Mur19] and is too small to be a model for Poisson boundaries
(G,µ) for random walks on general right-angled Artin groups G. Building on
[ACGH17], Cashen and Mackay put a metrizable topology on Morse boundary
of proper geodesic space in [CM19]. The Morse boundary and the Cashen-Mackay
boundary are shown to have many properties analogous to boundaries of hyperbolic
spaces, and much of the work in this paper is inspired by the methods in [CM17]
[CM19], [Liu19], [Mur19] and [Zal18].

Outline of the paper. In Section 2, we give all necessarily definitions and back-
ground. In Section 3, we prove Theorem A and Theorem B. In Section 4 we char-
acterize when ∂κX is a compact space and prove Theorem C. The last section con-
tains three applications: acylindrically hyperbolic groups, exponential genericity in
counting measure of CAT(0) groups and the connection between homeomorphisms
on ∂κX and quasi-isometries on X.

Acknowledgement. We thank Ruth Charney, Mathew Cordes, Jinying Huang,
Curt Kent and Kasra Rafi for helpful conversations.
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2. Preliminaries

2.1. Quasi-isometry and quasi-isometric embeddings.

Definition 2.1 (Quasi Isometric embedding). Let (X, dX) and (Y, dY ) be metric
spaces. For constants k ≥ 1 and K ≥ 0, we say a map f : X → Y is a (k,K)–quasi-
isometric embedding if, for all points x1, x2 ∈ X

1

k
dX(x1, x2)− K ≤ dY

(
f(x1), f(x2)

)
≤ k dX(x1, x2) + K.

If, in addition, every point in Y lies in the K–neighbourhood of the image of f , then
f is called a (k,K)–quasi-isometry. When such a map exists, X and Y are said to
be quasi-isometric.

A quasi-isometric embedding f−1 : Y → X is called a quasi-inverse of f if for
every x ∈ X, dX(x, f−1f(x)) is uniformly bounded above. In fact, after replacing
k and K with larger constants, we assume that f−1 is also a (k,K)–quasi-isometric
embedding,

∀x ∈ X dX
(
x, f−1f(x)

)
≤ K and ∀y ∈ Y dY

(
y, f f−1(x)

)
≤ K.

A geodesic ray in X is an isometric embedding β : [0,∞) → X. We fix a base-
point o ∈ X and always assume that β(0) = o, that is, a geodesic ray is always
assumed to start from this fixed base-point.

Definition 2.2 (Quasi-geodesics). In this paper, a quasi-geodesic ray is a contin-
uous quasi-isometric embedding β : [0,∞)→ X starting from the basepoint o.

The additional assumption that quasi-geodesics are continuous is not necessary
for the results in this paper to hold, but it is added for convenience and to make
the exposition simpler.

If β : [0,∞) → X is a (q,Q)–quasi-isometric embedding, and f : X → Y is a
(k,K)–quasi-isometry then the composition f ◦ β : [t1, t2]→ Y is a quasi-isometric
embedding, but it may not be continuous. However, one can adjust the map slightly
to make it continuous (see Lemma III.1.11 [BH09]). Abusing notation, we denote
the new map again by f ◦ β. Following Lemma III.1.11 [BH09], we have that f ◦ β
is a (kq, 2(kq + kQ + K))–quasi-geodesic.

Similar to above, a geodesic segment is an isometric embedding β : [t1, t2]→ X
and a quasi-geodesic segment is a continuous quasi-isometric embedding

β : [t1, t2]→ X.

Notation. In this paper we will use α, β... to denote quasi-geodesic rays. If the
quasi-geodesic constants are (1, 0), we use α0, β0, ... to signify that they are in fact
geodesic rays. Furthermore, let α be a (quasi-)geodesic ray α : [0,∞) → X. We
use α[s1, s2] to denote the segment of α between α(s1) and α(s2). On the other
hand, if x1, x2 are points on α, then the segment of α between x1 and x2 is denoted
[x1, x2]α. If a segment is presented without subscript, for example [y1, y2], then it
is a geodesic segment between the two points. Let β be a quasi-geodesic ray. For
r > 0, let tr be the first time where ‖β(t)‖ = r and define:

(1) βr := β(tr) and β|r := β[0, tr] = [β(0), βr]β

which are points and segments in X, respectively.
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2.2. CAT(0) spaces and their boundaries. A geodesic metric space (X, dX)
is CAT(0) if geodesic triangles in X are at least as thin as triangles in Euclidean
space with the same triple of side-lengths. To be precise, for any given geodesic
triangle 4pqr, consider the unique triangle 4pqr in the Euclidean plane with the
same side-lengths. For any pair of points x, y on edges [p, q] and [p, r] of the triangle
4pqr, if we choose points x and y on edges [p, q] and [p, r] of the triangle 4pqr so
that dX(p, x) = d(p, x) and dX(p, y) = d(p, y) then,

dX(x, y) ≤ dE2(x, y).

Figure 1. CAT(0) geometry

For the remainder of the paper, we assume X is a proper CAT(0) space. A
metric space X is proper if closed metric balls are compact. a CAT(0) space has
the following basic properties:

Lemma 2.3. A proper CAT(0) space X has the following properties:

(1) For any two points x, y in X, there exists exactly one geodesic connecting
them. Consequently, X is contractible via geodesic retraction to a base point
in the space.

(2) The nearest point projection from a point x to a geodesic line β0 is a unique
point denoted πβ0

(x), or simply xβ0
. In fact, the closest point projection

map to a geodesic
πβ0

: X → β0

is Lipschitz with respect to distances. The nearest point projection from a
point x to a qausi-geodesic line β exists and is not necessarily unique. We
denote the whole projection set πβ(x).

(3) For any x ∈ X, the distance function dX(x, ·) is convex. In other words,
for any given any geodesic [x0, x1] and t ∈ [0, 1], if xt satisfies dX(x0, xt) =
td(x0, x1) then we must have

dX(x, xt) ≤ (1− t)dX(x, x0) + tdX(x, x1).

In addition, we need the following geometric properties of CAT(0) spaces:

Lemma 2.4 ( [QR19]). Consider a (q,Q)–quasi-geodesic segment β connecting a
point z ∈ X to a point w ∈ X. Let x ∈ X and let y be a point in xβ, and let γ
be the concatenation of the geodesic segment [x, y] and the quasi-geodesic segment
[y, z]β ⊂ β. Then γ = [x, y] ∪ [y, z]β is a (3q,Q)–quasi-geodesic.

Theorem 2.5 (The flat plane theorem [BH09]). Suppose that X is a cocompact
CAT(0) space. If X is not hyperbolic, then X contains an isometrically embedded
copy of E2.
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Now we define the visual boundary of a CAT(0) space.

Definition 2.6 (visual boundary). Let X be a CAT(0) space. The visual boundary
of X, denoted ∂vX, is the collection of equivalence classes of infinite geodesic rays,
where α and β are in the same equivalence class, if and only if there exists some
C ≥ 0 such that d(α(t), β(t)) ≤ C for all t ∈ [0,∞). The equivalence class of α in
∂vX we denote α(∞).

Notice that by Proposition I. 8.2 in [BH09], for each α representing an element
of ∂X, and for each x′ ∈ X, there is a unique geodesic ray α′ starting at x′ with
α(∞) = α′(∞).

We describe the topology of the visual boundary by a neighbourhood basis: fix
a base point o and let α be a geodesic ray starting at o. A neighborhood basis for
α is given by sets of the form:

Uv
(
α(∞), r, ε) := {β(∞) ∈ ∂X|β(0) = o and d(α(t), β(t)) < ε for all t < r}.

In other words, two geodesic rays are close if they have geodesic representatives
that start at the same point and stay close (are at most ε apart) for a long time
(at least r). Notice that the above definition of the topology on ∂vX references a
base-point o. Nonetheless, Proposition I. 8.8 in [BH09] proves that the topology of
the visual boundary is base-point invariant.

x0 ξ

r

ε

Figure 2. A basis for open sets

2.3. Tits metric on ∂X. In order to prove strong visibility we need the notion
of angles. In this section we assume X to be a complete CAT(0) space. To begin
with, the notion of an angle is well defined in CAT(0) space. Let α, α′ denote two
infinite geodesic rays emanating from o and such that

α ∈ α(∞), α′ ∈ α′(∞).

We define the local angle to be

∠o(α(∞), α′(∞)) := ∠o(α, α′) := lim
t→0

2 arcsin
1

2t
dX(α(t), α′(t′)).

The angle between two points α(∞), β(∞) ∈ ∂X is defined to be:

∠(α(∞), β(∞)) := sup
x∈X
∠x(αx, βx),

where αx, βx are representatives of α(∞), β(∞) that originate from x. The Tits
metric, denoted by dT or ∠T is defined to be the length metric associated with
∠(·, ·).



RANK ONE ISOMETRIES IN SUBLINEARLY MORSE BOUNDARIES OF CAT(0) GROUPS 7

Lemma 2.7. let α(∞), β(∞) ∈ ∂X be where X is a complete CAT(0) spaces.
Their angle falls into one of the following cases:

• If dT (α(∞), β(∞)) < π, then for any point x ∈ X, the geodesic rays αx, βx
bounds a flat sector (Flat Sector Theorem, II.9.9 [BH09]).
• If dT (α(∞), β(∞)) = π, then by(II.9.20, [BH09]), there exists η ∈ ∂X such

that ∠T (η, α(∞)) = ∠T (η, β(∞)) = π/2.
• If dT (α(∞), β(∞)) > π, then there is a geodesic ray connecting α(∞) and
β(∞).(II.9.21 (1) [BH09])

Now we are ready to define rank one isometry. Formally, an isometry of X is
rank one if there exists an axis of this isometry which does not bound any half flat.
In [BB08], it is shown that one can detect rank one isometry from distance in Tits
metric, which is the approach in this paper.

Proposition 2.8. (Proposition 1.10 [BB08].) Suppose G is a group that acts
geometrically on a CAT(0) space X, then the following are equivalent.

• The group G contains a rank one isometry.
• For any ζ ∈ ∂X, there exists η ∈ ∂X with dT (ζ, η) > π.

2.4. Sublinearly Morse boundaries of CAT(0) spaces.

2.4.1. sublinear functions. Let κ : [0,∞) → [1,∞) be a sublinear function that is
monotone increasing and concave. That is

lim
t→∞

κ(t)

t
= 0.

The assumption that κ is increasing and concave makes certain arguments cleaner,
otherwise they are not really needed. One can always replace any sub-linear function
κ, with another sub-linear function κ so that

κ(t) ≤ κ(t) ≤ Cκ(t)

for some constant C and κ is monotone increasing and concave. For example, define

κ(t) = sup
{
λκ(u) + (1− λ)κ(v)

∣∣∣ 0 ≤ λ ≤ 1, u, v > 0, and λu+ (1− λ)v = t
}
.

The requirement κ(t) ≥ 1 is there to remove additive errors in the definition of
κ–contracting geodesics(See Definition 2.9).

2.4.2. κ–Morse geodesic rays. The boundary of interest in this paper consists of
points in ∂X that are in the “hyperbolic-like”. In proper CAT(0) spaces, they can
be characterized in two equivalence ways.

Definition 2.9 (κ–contracting sets). For x ∈ X, define ‖x‖ = dX(o, x). For a
closed subspace Z of X, we say Z is κ–contracting if there is a constant cZ so that,
for every x, y ∈ X

dX(x, y) ≤ dX(x, Z) =⇒ diamX

(
xZ ∪ yZ

)
≤ cZ · κ(‖x‖).

In fact, to simplify notation, we often drop ‖·‖. That is, for x ∈ X, we define

κ(x) := κ(‖x‖).

Definition 2.10 (κ–neighborhood). For a closed set Z and a constant n define the
(κ, n)–neighbourhood of Z to be

Nκ(Z, n) =
{
x ∈ X

∣∣∣ dX(x, Z) ≤ n · κ(x)
}
.
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o
≤ cακ(||x||) α

x

||x||

Figure 3. A κ–contracting geodesic ray.

o b

x

xb

n · κ(x)

||x||

(κ, n)–neighbourhood of b

Figure 4. A κ-neighbourhood of a geodesic ray b with multiplica-
tive constant n.

Definition 2.11 (κ–Morse sets). We say a closed subset Z of X is κ–Morse if
there is a function

mZ : R2
+ → R+

so that if β : [s, t]→ X is a (q,Q)–quasi-geodesic with end points on Z then

β[s, t] ⊂ Nκ
(
Z,mZ(q,Q)

)
.

We refer to mZ as the Morse gauge for Z. We always assume

(2) mZ(q,Q) ≥ max(q,Q).

A geodesic is κ–contracting if and only if it is κ–Morse ( [QR19]). In fact,
the following technical tool is used several times in this paper. It states that if a
geodesic ray Z is κ-contracting, then it is κ-strongly Morse. κ–Morse is defined in
Definition 2.11, while κ-strongly Morse only requires the endpoints of the quasi-
geodesic segment to be sublinearly close to Z, instead of on Z.

Theorem 2.12 ( [QR19]). Let X be a proper CAT(0) space. A geodesic ray α is κ–
contracting if and only if it is κ–Morse. Specifically, let Z be a closed subspace that is
κ–contracting. Then, there is a function mZ : R2 → R such that, for every constants
r > 0, n > 0 and every sublinear function κ′, there is an R = R(Z, r, n, κ′) > 0
where the following holds: Let η : [0,∞)→ X be a (q,Q)–quasi-geodesic ray so that
mZ(q,Q) is small compared to r, let tr be the first time ‖η(tr)‖ = r and let tR be the
first time ‖η(tR)‖ = R. Then

dX
(
η(tR), Z

)
≤ n · κ′(R) =⇒ η[0, tr] ⊂ Nκ

(
Z,mZ(q,Q)

)
.
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Next, we observe that a κ–Morse geodesic ray does not bound a sector or a half
flat.

Corollary 2.13. A κ-contracting geodesic ray does not bound a sector or a half
flat.

o

α(1) = α′(0)

α′(s)

α

quasi-geodesic ζs

β

Figure 5. Since α and β bounds a sector, α cannot be κ–Morse.
We show that ζs is a one-parameter family of quasi-geodesics,
such that they all have bounded constants, and for any (κ, n)–
neighbourhood, there exists an s such that the associated ζs does
not stay in the (κ, n)–neighbourhood.

Proof. Suppose α is κ–Morse and α, β bounds a flat sector, suppose they intersect
at angle u. At α(1), there exists a segment lying in the sector and is parallel to β,
which we denote α′. The concatenation

ζs := [α′(0), α′(s)] ∪ [α′(s), α′(s)α]

is a quasi-geodesic of bounded constant, since it is a concatenation of geodesics
intersecting at angle 1

2π− u. This quasi-geodesic exists for any s > 1 and for every
κ-neighbourhood there exists s such that this quasi-geodesic ζs is not contained in
the neighbourhood (See Figure 5). Therefore α cannot be κ–Morse. �

Quasi-geodesic rays in X are grouped into equivalence classes to form ∂κX.

Definition 2.14 (κ–equivalence classes in ∂κX). Let β and γ be two quasi-geodesic
rays in X. If β is in some κ–neighbourhood of γ and γ is in some κ–neighbourhood
of β, we say that β and γ κ–fellow travel each other. This defines an equivalence
relation on the set of quasi-geodesic rays in X (to obtain transitivity, one needs to
change n of the associated (κ, n)–neighbourhood).

We denote the equivalence class that contains β by [β]:

Definition 2.15 (Sublinearly Morse boundary). Let κ be a sublinear function as
specified in Section 2.4.1 and let X be a CAT(0) space.

∂κX := { all κ-Morse quasi-geodesics }/κ-fellow travelling

We will discuss the topology of ∂κX in Section 2.4.3.
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We also use a,b to denote κ-equivalence classes in ∂κX. It is shown that in
CAT(0) spaces there is a unique geodesic ray in each equivalence class.

Lemma 2.16 (Lemma 3.5, [QR19]). Let X be a CAT(0) space. Let b : [0,∞) →
X be a geodesic ray in X. Then b is the unique geodesic ray in any (κ, n)–
neighbourhood of b for any n. That is to say, distinct geodesic rays do not κ–fellow
travel each other.

Lemma 2.17. There is an 1-1 embedding of the set of points in ∂κX into the points
of ∂vX.

Proof. For each element a ∈ ∂κX, consider its unique geodesic ray α. The as-
sociated α(∞) is a element of ∂vX. By Lemma 2.16 each equivalence class con-
tains a unique geodesic ray. This map is well defined. Meanwhile, if two elements
a,b ∈ ∂κX contain the same geodesic ray, they are in fact the same set of quasi-
geodesics, therefore this map is well-defined. Therefore we have an embedding of
the set of points in ∂κX into the points of ∂vX. �

2.4.3. Coarse visual topology on ∂κX. We equip ∂κX with a topology which is a
coarse version of the visual topology. In visual topology, if two geodesic rays fellow
travel for a long time, then they are “close”. In this coarse version, if two geodesic
rays and all the quasi-geodesic rays in their respect equivalence classes remain close
for a long time, then they are close. Now we define it formally. First, we say a
quantity D is small compared to a radius r > 0 if

(3) D ≤ r

2κ(r)
.

Recall that given a κ–Morse quasi-geodesic ray β, we denotes its associated
Morse gauges functions mβ(q,Q). These are multiplicative constants that give the
heights of the κ–neighbourhoods.

Definition 2.18 (topology on ∂κX). Let a ∈ ∂κX and α0 ∈ a be the unique
geodesic in the class a. Define Uκ(a, r) to be the set of points b such that for any
(q,Q)-quasi-geodesic of b, denoted β, such that mβ(q,Q) is small compared to r,
satisfies

β|r ⊂ Nκ
(
α0,mα0

(q,Q)
)
.

Let the topology of ∂κX be the topology induced by this neighbourhood system.

o

geodesic β0

α0

(κ,mα0
(q,Q))-neighbourhood of α0

(q,Q)–quasi-geodesic β

r

Figure 6. b ∈ Uκ(a, r) because the quasi-geodesics of b such as
β, β0 stay inside the associated (κ,mα0

(q,Q))-neighborhood of α0

(as in Definition 2.10 ), up to distance r.
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Theorem 2.19 ( [QR19]). Let X be a proper CAT(0) space and let κ be a sublinear
function. The κ–boundary of X, denoted ∂κX, is a metrizable space. Furthermore,
∂κX is quasi-isometrically invariant.

2.5. Acylindrically hyperbolic groups. Let G be a group with an isometric
action on some geodesic hyperbolic metric spaceX. This action is called acylindrical
if for every R > 0 there exists N > 0, L > 0 such that for every x, y ∈ X with
d(x, y) > L one has

#{g ∈ G|d(x, gx) ≤ R, d(y, gy) ≤ R)} ≤ N.
Acylindricity is a weaker substitute for a proper action. It is shown that relative
hyperbolic groups and mapping class groups are acylindrically hyperbolic. We have
the following key result to decide when a CAT(0) group is acylindrically hyperbolic:

Theorem 2.20 ( [Osi16]). If a group G acts properly on a proper CAT(0) space
and contains an element that is a rank one isometry, then G is either virtually
cyclic or acylindrically hyperbolic.

In particular, consider the class of Artin groups. Artin groups are natural com-
binatorial generalizations braid groups. For every finite simple graph Γ with vertex
set S and with edges labeled by some integer in {2, 3, ...}, one associates the Artin-
Tits group A(Γ) with the following presentation:

A(Γ) = 〈S|∀{s, t} ∈ Γ(1), wm(s, t) = wm(t, s) if the edge {s, t} is labeled m.〉,
where wm(s, t) is the word stst... of length m. Note that when m = 2, then s

and t commute, and when m = 3, then s and t satisfy the classical braid relation
sts = tst. Also note that when adding the relation s2 = 1 for every s ∈ S, one
obtains the Coxeter group W (Γ) associated to Γ.

Definition 2.21. An Artin group can further be classified as follows. The Artin
group A(Γ) is called:

• large type if all labels are greater or equal to 3,
• extra large type if all labels are greater or equal to 4,
• right-angled if all labels are equal to 2,
• spherical if W (Γ) is finite, and
• type FC if every complete subgraph of Γ spans a spherical Artin subgroup.

Theorem 2.22 ( [BM00]). Let A(Γ) be an Artin group, if |S| = 3 and all labels
are greater or equal to 3, Then A(Γ) is a CAT(0) group.

It is in general an open question whether large type Artin group are acylindrically
hyperbolic, and we give a positive answer to one example using ∂κG in Example
5.2.

2.6. Morse boundary and Morse quasi-mobius maps. Recall a geodesic γ
is strongly contracting if it is in the sublinearly Morse boundary whose associated
sublinear function κ = 1: ∂1X. This implies the existence of a constant D such
that all disjoint balls project onto γ to a set of diameter at most D, in which case
we say γ is D-strongly contracting. Consider the set of all D-strongly-contracting
geodesic rays emanating from o. We can think of this set as a subspace of the
various boundaries we study in this paper: we use ∂DvX to denote the set of all
D-contracting geodesic rays emanating from o when equipped with the subspace
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topology of the visual boundary , and use ∂DκX when equipped with the subspace
topology of the κ-boundary.

Denote by ∂
(n,D)
κ X the collection of all n-tuples (a1, a2, ..., an) of distinct points

ai ∈ ∂κX such that every bi-infinite geodesic connecting ai to aj is D-strongly
contracting.

Definition 2.23. Let X,Y be proper geodesic CAT(0) space.

• A map f : ∂κX → ∂κY is said to be 1-stable if for every D, there exists D′

such that f(∂DκX) ⊆ ∂D′

κ Y.
• A map f : ∂κX → ∂κY is said to be 2-stable if for every D, there exists D′

such that

f(∂(2,D)
κ X) ⊆ ∂(2,D′)

κ Y.

Notice that it follows from the above definition that a 2-stable map f maps

∂
(n,D)
κ X to ∂

(n,D′)
κ X for all n ≥ 2. Hence, it makes sense to make the following

definition.
A map f : ∂κX → ∂κY is said to be stable if it is both 1 and 2 stable.

Definition 2.24. The cross-ratio of a four-tuple (a, b, c, d) ∈ ∂(4,D)
κ X is defined to

be [a, b, c, d] = ± sup
α∈(a,c)

d(πα(b), πα(d)), where the sign is positive if the orientation

of the geodesic (πα(b), πα(d)) agrees with that of (a, c) and is negative otherwise.

Definition 2.25. A stable map f : ∂κX → ∂κY is said to be D-quasi mobius if
for every D, there exists a continuous map ψD : [0,∞) → [0,∞) such that for all

4-tuples (a, b, c, d) ∈ ∂(4,D)
κ X, we have [f(a), f(b), f(c), f(d)] ≤ ψD(|[a, b, c, d]|).

Definition 2.26. Let X1 ⊂ X2 ⊂ X3 ⊂ ... be a nested sequence of topological
spaces. The direct limit of {Xi}, denoted by lim−→Xi, is the space consisting of the
union of all Xi given the following topology: A subset U is open in lim−→Xi if U ∩Xi

is open in Xi for each i.

The following is a standard way to establish continuous maps between two nested
sequences and the proof is left as an exercise for interested readers.

Lemma 2.27. Let {Xi}, and {Yj} be two sequences of nested topological spaces.
Let

X = lim−→Xi and Y = lim−→Yi

be the direct limit of {Xi} and {Yi} respectively. If f : X → Y is a map such that:

• For each i there exists some j with f(Xi) ⊆ Yj.
• f |Xi : Xi → Yj is continuous.

Then f is continuous.

Consider the topological spaces ∂DvX. The Morse boundary ∂?X is the direct
limit of the topological spaces ∂DvX where D ∈ N. In other words

∂?X = lim−→ ∂DvX

Hence, a set U is open in ∂?X if and only if U ∩ ∂DvX is open for each D.
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2.7. Genericity of elements in countable groups. Suppose that a countable
group G admits a geometric action on a proper geodesic metric space (X, d). Fix
a basepoint o ∈ X. Denote

N(n) := {g ∈ G : d(o, go) ≤ n}.
A subset W of G is said to be generic in the counting measure if as n→∞,

|W ∩N(n)|
|N(n)|

→ 1.

We say that W is exponentially generic if the rate of convergence happen exponen-
tially fast, that is to say:

1− |W ∩N(n)|
|N(n)|

< αn

for some α ∈ (0, 1).

3. strong visibility and rank one isometries

In this section, we prove that a sublinearly Morse boundary of a CAT(0) space is
a strong visibility space. We also prove that if G is a CAT(0) group, then ∂κG 6= ∅
implies there is a rank one isometry in G. We also prove that in the latter case, the
subspace consisting of strongly contracting geodesics is a dense subspace of the κ-
boundaries. To begin with, a subset S of ∂vX is a strong visibility space if given an
element of S and an element of ∂vX, there exists a bi-infinite geodesic connecting
these two elements.

Theorem 3.1. Let (X, o) be a proper CAT(0) space and let κ be a sublinear func-
tion. The κ-Morse boundary ∂κX is a strong visibility space. That is to say, given
an element a ∈ ∂κX, and a point β0(∞) ∈ ∂vX, there exists a bi-infinite geodesic
line γ : (−∞,∞)→ X such that γ[0,−∞) ∈ a and γ[0,∞) ∈ β0(∞).

Proof. Fix a basepoint o, let α0 be the unique geodesic representative of a em-
anating from go and let β0 denote the unique geodesic ray in β0(∞) emanating
from o. Consider dT (α0, β0) as defined in Section 2.3. By Lemma 2.7 (1), (2) and
Corollary 2.13, α0 does not bound a half flat or a sector, and thus dT (α0, β0) > π.

By Lemma 2.7, there exists a geodesic ray connecting α0(∞) and β0(∞). By
Lemma 2.17, α0(∞) is associated with a. Therefore there exists a geodesic ray
connecting a, β0(∞). Since this is true for any element of ∂κX, ∂κX is a strong
visibility space.

�

From this observation we obtain the existence of rank one isometry:

Corollary 3.2. Let G be a CAT(0) group acting geometrically on a CAT(0) space
X. Suppose there exists a sublinear function κ such that ∂κG 6= ∅. Then G contains
a rank one isometry of X.

Proof. Since ∂κG is nonempty, there is at least one element of ∂κG, which we denote
a with a geodesic ray α ∈ a. Consider an element β ∈ ∂vX. by Theorem 3.1, there
exists a bi-infinite geodesic line connecting α and β. That is to say, dT (α, β) ≥ π.
However since α ∈ ∂κX, by Corollary 2.13 it does not bound a half flat or a sector.
That is to say, dT (α, β)  π. By Lemma 2.17, α ∈ ∂vX. Thus for any point of
β ∈ ∂vX, we use α as a point of ∂vX to obtain dT (α, β)  π. By Proposition 2.8,
there exists a rank one isometry. �
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Next we want to show that if X is a space with geometric action by a group,
then rank-one isometries are in fact dense in ∂κX.

Theorem 3.3. Let X be a proper CAT(0) space and let G act on X geometrically.
Suppose κ is not a constant function. Then ∂1X is a dense subset of ∂κX.

Proof. The statement is trivial if ∂κX is empty. If ∂κX is non-empty, then by
Corollary 3.2, there exists at least one rank one isometry g ∈ G. The axis of g
defines two points in the κ-boundary, say g+ and g−. Let αg be a geodesic line
connecting g+ to g−, this is possible using Theorem 3.1. Notice that since g is rank
one, the line αg is a bi-infinite 1-Morse geodesic line. We may assume that the base
point o lives on the axis. Given any element b ∈ ∂κX, consider the unique geodesic
representative β0 ∈ b that emanates from o. Since the action is cocompact, there
exists a positive number C and a sequence {gi} such that each gio is within C of β0

and d(gio, o) ≥ i. Furthermore, since the actions are isometries of X, the translates
gi · αg are bi-infinite, 1-Morse geodesic lines that passes through the points gio.
Consider the segment [o, gio]. This segment forms two angles with two ends of the
Morse geodesic gi ·αg and one of the angles is greater than or equal to π/2. Denote
that end (+) and consider the concatenation

[o, gio] ∪ gi · αg[gio, (+)).

Since this is a concatenation of two geodesic segments at angle greater than or equal
to π/2, this is a (2, 0)-quasi-geodesic.

o
β0

gio

gi · αg

Figure 7. The concatenation [o, gio] ∪ gi · αg[gio, (+)), marked
red, is a (2, 0)–quasi-geodesic.

Let {`i} be the sequence of (2, 0)–quasi-geodesic rays constructed this way. Each
`i is in a C-neighbourhood of β0 for distance i. The equivalence classes of `i in ∂κX
we denote [`i]. Given any `i, let the first segment [o, gio] be denoted L1:

L1 := [o, gio],

and the rest of `i be denoted L2. Consider a (q,Q)–quasi-geodesic η ∈ [`i]. Without
loss of generality, we assume η to be a connected path. Rename pi := gio and project
the point pi to η, and consider a point from the projection set and denote it qi (see
Figure 8):

qi ∈ πη(pi).

Let Q1 denote the concatenation

Q1 = η[0, qi] ∪ [qi, pi].

By Lemma 2.4, Q1 is a (3q,Q)–quasi-geodesic. Similarly the concatenation
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Q2 = [pi, qi] ∪ [qi,∞)η

is also a (3q,Q)-quasi-geodesic.
Since αg is Morse, Q2 is in a bounded neighbourhood of L2. Let mL2

(·, ·) denote
the Morse gauge of L2. We have

(4) d(qi, L2) ≤ mL2
(3q,Q).

In particular, that implies d(pi, qi) ≤ mL2
(3q,Q). By construction, we now have:

(5) ‖qi‖ ≥ i− C−mL2(3q,Q)

Applying Lemma 2.4 to conclude also that Q1 is a (3q,Q)–quasi-geodesic with
endpoints on [o, pi]. But pi is distance at most C from β0. This means Q1 can be
replaced with a (3q,Q + C)–quasi-geodesic with endpoints on β0. Therefore

(6) d(qi, β0) ≤ mβ0
(3q,Q + C)κ(qi).

By Theorem 2.12, for a given pair (q,Q) and any given r such that mβ0
(q,Q) is

small enough compared to r, there exists

R = R(β0, r,mβ0
(3q,Q + C), κβ0

)

such that a (q,Q)–quasi-geodesic η ∈ [`i] satisfies

(7) d(η(tR), β0) ≤ mβ0(3q,Q + C)κβ0(R)

implies
η|r ⊂ Nκ(β0,mβ0

(q,Q)).

Equation 5 tells us we can find i large enough such that ‖qi‖ ≥ R. Therefore by
the continuity of η, there exists a point η(tR) satisfying Equation 7. Hence we
conclude, there exists larger and larger r such that

[`i] ∈ Uκ(β0, r).

Since one can find a subsequence of {[`i]} for which this is true for arbitrarily large
r, this subsequence converges to β0 ∈ b. Since each [`i] ∈ ∂1X and this holds for
any b, we conclude that ∂1X is a dense subset of ∂κX.

o
β0

piqi

gi · αg

η

Figure 8. A (q,Q)–quasi-geodesic η can be decomposed and mod-
ified into two quasi-geodesics each of which has endpoints on β0

and gi · αg, respectively.

�
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4. Compactness of κ-boundaries characterizes hyperbolicity

In [QR19], it is shown that if G = Z2 ? Z, then ∂κG is not compact. In this
section we show that the κ-boundary is compact if and only if the underlying space
is hyperbolic.

Consider the subset of all D-strongly contracting geodesic rays emanating from o
in a CAT(0) space X. The follwoing lemma states that equipping this subset with
the subspace topology of the visual boundary or the subspace topology of the κ-
boundary yields homeomorphic spaces. The intuitive reason for this is the following:
since quasi-geodesics stay uniformly close to D-strongly contracting geodesics, the
topology of fellow travelling of geodesics (the visual topology) and the topology of
fellow travelling of quasi-geodesics (the topology of the κ-boundary) coincide.

Recall that we use ∂DvX to denote the set of all D-contracting geodesic rays
emanating from o when equipped with the subspace topology of the visual boundary
, and use ∂DκX when equipped with the subspace topology of the κ-boundary.

Lemma 4.1. The identity map id : ∂DvX → ∂DκX is a homeomorphism.

Proof. We need to show that the map id : ∂DvX → ∂DκX is a homeomorphism. Since
∂DvX is closed (Lemma 3.2 in [CS15]) and X is proper, ∂DvX must be compact. Also,
the space ∂DκX is metrizable by Theorem D in [QR19]. Hence, it suffices to show
that the map id is a continuous map. Notice that since every geodesic ray in
∂DvX is D-strongly contracting for the same D, applying Theorem 2.12, we get an
associated Morse function such that every geodesic ray β0 is m-Morse, where m
depends only on D and satisfies the following: For every constants r > 0, n > 0 and
every sublinear function κ′, there is an R = R(β0, r, n, κ

′) > 0 where the following
holds: Let η : [0,∞)→ X be a (q,Q)–quasi-geodesic ray so that mβ0(q,Q) is small
compared to r, let tr be the first time ‖η(tr)‖ = r and let tR be the first time
‖η(tR)‖ = R. Then

dX
(
η(tR), β0) ≤ n ·κ′(R) =⇒ η[0, tr] ⊂ N1

(
β0,mβ0

(q,Q)
)
⊂ Nκ

(
β0,mβ0

(q,Q)
)
.

.
We claim the following:

Claim. Given b ∈ ∂DκX, each neighbourhood of b, denoted Uκ
(
b, r), must contain

a visual neighbourhood basis of β0, the unique geodesic ray in the class of b.

Proof. To see this, let β0 ∈ b be the unique geodesic ray starting at o. We wish to
show that for any r > 0, there exists r′ and ε such that Uv

(
b, r′, ε) ⊆ Uκ

(
b, r)

In other words, we want to show that for any r > 0, there exists r′ and ε if a
geodesic ray α0 ∈ a with α0(0) = o satisfies d(α0(t), β0(t)) < ε for t ≤ r′, then, any
(q,Q)-quasi-geodesic representative α of a with mβ0(q,Q) small compared to r, we
have

α|r ⊂ Nκ(ζ,mβ0(q,Q)).

Remember that α|r = α([0, tr]) where tr is the first time where ||α(t)|| = r.
Let r be given and let

n = max{mβ0
(q,Q) + 1|q,Q ≤ r}.

By Theorem 2.12, with Z = β0, there exists an R = R(r, n) such that any (q,Q)-
quasi-geodesic representative β of a with mβ(q,Q) small compared to r, we have

d(β(tR), b) < n⇒ βr ⊂ N1(β0,mβ(q,Q)).



RANK ONE ISOMETRIES IN SUBLINEARLY MORSE BOUNDARIES OF CAT(0) GROUPS17

Choose r′ = r + R and ε = 1. Hence, we want to show that if d(a(t), b(t)) < 1 for
t ≤ r +R, then βr ⊂ Nκ(b,mβ0(q,Q)) for β defined above. Since a is 1-Morse with
gauge m, the Hausdorff distance between a and β is at most m(q,Q). This implies
that for any 0 < t ≤ r +R, we have

d(a(t)), β(it)) < mβ0
(q,Q),

for some it.
Therefore, if tR is the first time with ‖β(tR)‖ = R, we must have

d(a, β(tR)) < mβ0(q,Q).

Now, since d(a(t), b(t)) < 1 for all t < r +R and as d(a, β(tR)) < mβ0(q,Q), the
triangle inequality gives

d(b, β(tR)) ≤ d(b, a) + d(a, β(tR)) ≤ 1 + mβ0
(q,Q),

which by Theorem 2.12 implies that βr ⊂ N1(b,mβ0
(q,Q)) ⊂ Nκ(b,mβ0

(q,Q))
which proves the claim. �

Now we are left to show that the map id is continuous. Let {cn}, c ∈ ∂DvX with
cn → c. Assume that cn → c in ∂DvX, we want to show that cn → c in ∂DκX.
Using the above claim, since each neighbourhood of c in ∂DκX contains an open
neighborhood of ∂DvX, the statement is immediate.

�

Corollary 4.2. For a CAT(0) space X, the natural map i : ∂?X ↪→ ∂κX is
continuous.

Proof. Since ∂?X = lim−→ ∂DvX, we need only to show that iD : ∂DvX ↪→ ∂κX is
continuous for each D, but that is Lemma 4.1. �

Corollary 4.3 (Weak minimality). Suppose G acts geometrically on a CAT(0)
space X with ∂κX 6= ∅. There exists a point b ∈ ∂κX such that the orbit Gb is
dense in ∂κX.

Proof. Using Theorem B, ∂κX contains an element b such that the unique geodesic
ray α0 representing b is strongly contracting. We claim that Gb is dense in ∂κX. To
see that, let c ∈ ∂κX and let β0 be the unique geodesic ray representing c. Suppose
Uκ(c, r) is an open neighborhood of c. Using Theorem B, the open set Uκ(c, r)
must contain an element d whose unique geodesic representative [γ0] is strongly
contracting. Now, notice that Uκ(c, r) ∩ ∂1X is open in ∂1X. Hence, by Corollary
4.2, i−1(Uκ(c, r) ∩ ∂1X) is an open set in ∂?X containing [γ0]. Using Theorem 4.1
in [Mur19], the open set i−1(Uκ(c, r) ∩ ∂1X) must contain some orbit point g[α0].
Hence, the open set Uκ(c, r) contains the orbit point gb. �

Notice that the argument above proves the following stronger statement.

Corollary 4.4. For any point b ∈ ∂κX representing a strongly contracting geodesic,
the orbit Gb is dense in ∂κX.

Corollary 4.5. Let X be a hyperbolic CAT(0) space, then ∂κX is compact.

Proof. If X is a hyperbolic space, then by Lemma 1.7 in [BH09] III.H every geo-
desic ray is 1-Morse, and hence every geodesic ray must be D-strongly contracting
(Theorem 2.12)for a uniform D. This implies that the subspace ∂DvX defined above
is the entire visual boundary, in other words, we have ∂DvX = ∂vX. Also, since every
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geodesic ray is D-strongly contracting, the subspace ∂DκX defined above is the entire
κ-boundary. That is to say, ∂DκX = ∂κX. Lemma 4.1 then yields a homeomorphism
between the visual boundary of X, ∂vX and the κ-boundary of X, ∂κX. Therefore,
as the visual boundary ∂vX of a hyperbolic space X is compact, the κ-boundary
∂κX must also compact. �

Theorem 4.6. Suppose a group G acts geometrically on a CAT(0) space X such
that ∂κX 6= ∅, then the following are equivalent:

(1) Every geodesic ray in X is κ–contracting.
(2) Every geodesic ray in X is strongly contracting.
(3) ∂κX is compact.
(4) The space X is hyperbolic.

Proof. We start by showing (3) implies (1). The statement is trivially true if ∂κX
is empty. If ∂κX is non-empty, then by Corollary 3.2, there exists some rank one
isometry g. This yields the existence of a geodesic line αg which is 1-Morse. Let
o be a point on the line αg and let α0 be an arbitrary geodesic ray emanating
from o. We will show now that α0 is κ-contracting. Since the action of G on X is
cocompact, there exists a C ≥ 0 and a sequence of group elements {gi} ⊆ G such
that d(α0(i), gio) ≤ C for each i ∈ N (the black dots in Figure 9). Now, consider
the geodesic lines given by giαg centered at gio near α0. We use [·, ·] to denote
a geodesic segment between two points. By CAT(0) geometry, the concatenation
of two geodesics at angle bounded below by π/2 form a (2,0)-quasi-geodesic. For
each i, consider the concatenation [o, gio]+[gio, αg(∞)] and [o, gio]+[gio, αg(−∞)].
It follows from construction that one of these two concatenations is a (2,0)-quasi-
geodesic ray starting at o. Let yi be the sequence of (2,0)–quasi-geodesic rays
defined by concatenating [o, gio] with either [gio, αg(∞)] or [gio, αg(−∞)] to form
a sequence of (2,0)–quasi-geodesic rays, as given in the figure (the blue quasi-
geodesic). Since ∂κX is compact, up to passing to a subsequence, [yi] converges
to some a ∈ ∂κX. Hence, for each r > 0, there exists k, such that if i ≥ k, the
sequence yi satisfies

yi|r ⊂ Nκ
(
a0,ma0(2, 0)

)
,

where a0 is the unique geodesic ray representing a. This implies that all initial
segments of α0 are in Nκ

(
a0,C + ma0(2, 0)

)
, and hence

α0 ∈ Nκ
(
a0,C + ma0(2, 0)

)
.

Lemma 2.16 then implies that α0 = a0 which finishes the proof.
Next we show that (1) implies (4). If every geodesic ray is κ-contracting, then X

doesn’t contain an isometric copy of E2, and hence, using Theorem 2.5, the space
X must be hyperbolic. The implication (4)⇒ (3) is Corollary 4.5.

Lastly, we prove the equivalence between (2) and (4). For (4)⇒ (2) notice that
Lemma 1.7 in [BH09] III.H states that if X is hyperbolic, then every geodesic ray
is N-Morse for the same N. Now, by Theorem 2.12, every geodesic ray must be
D-strongly contracting for the same D.

On the other hand, for (2) ⇒ (4), by way of contradiction, suppose X is not a
hyperbolic space, then it must isometrically contain a copy of E2 by the Flat Plane
Theorem (Theorem 2.5). Let o ∈ E2 and the geodesic rays that stays entirely in
the is not D–strongly contracting for any D. Therefore, (2)⇒ (4). �
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α0

o αg(∞)αg(−∞)

giαg(∞)giαg(−∞)

gio

Figure 9. Translates of αg by {gi} along α0

5. Applications

In this section, we present three applications of the main theorems. Direct conse-
quence of the existence of rank one isometry in κ–boundary result in Corollary 5.1
and Corollary 5.3. The fact that Morse geodesics are dense in ∂κG plays a key part
in the proof of Theorem 5.4.

5.1. Acylindrically hyperbolic groups. Theorem B gives a new way of showing
that a certain CAT(0) group is acylindrically hyperbolic.

Corollary 5.1. If G is a CAT(0) group such that ∂Gκ 6= ∅, then G must be
acylindrically hyperbolic.

Proof. If G is a CAT(0) group with ∂Gκ 6= ∅, then by Theorem B, G must contain a
rank one isometry. Hence, by Theorem [Osi16], the group G must be acylindrically
hyperbolic.

�

Example 5.2. Consider the Arin group defined by the following graph:

b c

a

3 3

3

Figure 10. The defining graph Γ of Artin group A(Γ)

The universal cover of the presentation complex, endowed with word metric,
consists of countably many copies of coarse “tree cross R”, which we call blocks.
One can define the intersection graph of the blocks: In this intersection graph IΓ,
every vertex is associated to a block. Two vertices in IΓ are adjacent if and only
if the two associated blocks intersect at a plane. The intersection graph of A(Γ)
is hyperbolic [JH17]. Furthermore, the projection (in word metric) of a block to
another one whose distance is far enough is a point. Since the blocks are convex
sets and their intersections are convex sets, a geodesic ray enters and leaves a
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(possibly infinite) sequence of them. Consider a unit-speed geodesic γ that spends
κ(t) amount of time in each block, where t is the time the geodesic enters the block.
Proposition A.12 in [QR19] can be similarly applied to show that γ is κ-contracting,
and hence a ∂κX is nonempty. Since by [BM00] we know A(Γ) is a CAT(0) group,
Theorem 2.5 tells us that it is in fact an acylindrically hyperbolic group.

5.2. Generic isometries in a CAT(0) group. Work of [Yan18] shows that if a
CAT(0) group contains a rank one isometry, then the subset of rank one isometries
in G is exponentially generic. Therefore we obtain:

Corollary 5.3. If G is a CAT(0) group such that ∂κG 6= ∅, then the collection of
rank one isometries are exponentially generic in G.

5.3. Morse quasi-möbius homeomophisms on the κ-boundaries. In [Pau96],
the author characterizes homeomorphisms between boundaries of cocompact hyper-
bolic spaces that are induced by quasi-isometries. They characterize such homeo-
morphisms as the ones that are quasi-möbius. In this section, as an application of
Theorem B and using work of [CM17], [CCM19], we prove a weaker version of this
characterization:

Theorem 5.4. Let X,Y be proper cocompact CAT(0) spaces with at least 3 points
in their sublinear boundaries. A homeomorphism f : ∂κX → ∂κY is induced by a
quasi-isometry h : X → Y if and only if f is stable and Morse quasi-möbius.

Corollary 5.5. Let G and H be CAT(0) groups. Then G is quasi-isometric to
H if and only if there exists a homeomorphism f : ∂κG → ∂κH which is Morse
quasi-möbius and stable.

Roughly speaking, the above corollary says that by understanding the κ–boundary
of two CAT(0) groupsG andH, we can tell if they belong to the same quasi-isometry
class or not.

Lemma 5.6. A (k,K)-quasi-isometry h : X → Y induces a stable homeomorphism

∂κh : ∂κX → ∂κY.

Proof. Fix o ∈ X and let o′ = h(o). Qing and Rafi show that a quasi-isometry h
induces a homeomorphism ∂h on their respective κ-boundaries. If γ is a D-strongly
contracting geodesic ray, then by Theorem 5.1 in [QR19], the unique geodesic ray
starting at h(o) and representing [f(γ)] must be D′-strongly contracting where D′

depends on D, k and K. This implies that ∂κh is 1-stable. Now, Theorem 5.8 of
states that the map induced by h on the Morse boundary is 2-stable. Hence, we
deduce that ∂κh is stable.

�

Lemma 5.7. Any homeomorphism f : ∂κX → ∂κY such that f, f−1 are 1-stable
induces a homeomorphism g : ∂?X → ∂?Y on their Morse boundaries, with g(x) =
f(x) for all x ∈ ∂?X.

Proof. Let f : ∂κX → ∂κY be a homeomorphism such that f and f−1 are 1-stable.
Notice that by Theorem E in [QR19], we have that if κ′ < κ, then the inclusion
map

i : ∂κ′X → ∂κX
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is continuous. Taking κ′ = 1, yields that i : ∂1X → ∂κX is continuous. Hence, since
both f and f−1 are 1-stable, the restriction of f to ∂1X induces a homeomorphism
f : ∂1X → ∂1Y , with f = f |∂1X where ∂1X and ∂1Y are given the subspace
topology of the κ-boundary. Meanwhile,

∂1X =

∞⋃
D=1

∂D1 X and ∂1Y =

∞⋃
D=1

∂D1 Y

. Since ∂D1 X is equipped with the subspace topology of ∂1X, the inclusion map

iD : ∂D1 X ↪→ ∂1X

is continuous. Using Lemma 4.1, we get that

iD : ∂DvX ↪→ ∂1X

is continuous for every D, where ∂DvX is given the subspace topology of the visual

boundary. Furthermore, since f is 1-stable, we have f ◦ iD : ∂DvX ↪→ ∂D
′

1 Y for some
D′ where f ◦ iD is continuous. Using Lemma 4.1, we obtain a continuous map

f ◦ iD : ∂DvX ↪→ ∂D
′

v Y

for each D. Hence, by Lemma 2.27, we get a continuous map g : ∂?X → ∂?Y .
Applying the same argument above to f−1 yields a continuous map g′ : ∂?Y → ∂?X
with

g ◦ g′ = id∂?X and g′ ◦ g = id∂?Y ,

which finishes the proof.
�

Regarding the homeomorphisms on Morse boundaries, the following is a charac-
terization of when a homeomorphism comes from quasi-isometry:

Theorem 5.8 ( [CCM19]). Let X,Y be proper cocompact CAT(0) spaces with at
least 3 points in their Morse boundaries. A homeomorphism f : ∂?X → ∂?Y is
induced by a quasi-isometry h : X → Y if and only if f is is 2-stable and Morse
quasi-möbius.

5.3.1. Proof of Theorem 5.4.

Proof. (⇒) If h is a quasi-isometry, then f := ∂h is stable by Lemma 5.6 . Also, f
is Morse quasi-möbius by Theorem 5.8.

(⇐) Using Lemma 5.7 any stable homeomorphism f : ∂κX → ∂κY induces a
homeomorphism g : ∂?X → ∂?Y on their Morse boundaries, with g(x) = f(x) for all
x ∈ ∂?X. Since f is Morse quasi-möbius and g(x) = f(x) for x ∈ ∂?X, Theorem 5.8
implies the existence of a quasi-isometry h : X → Y such that ∂h = g : ∂?X → ∂?Y .
We wish to show that the induced map

∂κh : ∂κX → ∂κY

agrees with f. Notice that as a set ∂?X = ∂1X, where ∂1X is the subset of ∂κX con-
sisting of equivalence classes having a strongly contracting representative. Hence,
we have ∂κh(x) = ∂h(x) for all x ∈ ∂1X ⊆ ∂κX. Now, since ∂h = g, and
g(x) = f(x) on ∂1X, we get that

∂κh(x) = ∂h(x) = g(x) = f(x)
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for all x ∈ ∂1X. Therefore, ∂κh(x) = f(x) for all x ∈ ∂1X ⊆ ∂κX. It remains to
show that ∂κh(x′) = f(x′) for all x′ ∈ ∂κX. Let x′ ∈ ∂κX, by Theorem 3.3, there
exists a sequence xn ∈ ∂1X that converges to x′

xn → x′

in ∂κX. Since f is continuous on ∂Xκ, we have convergence

f(xn) = ∂κh(xn)→ f(x′).

Also, since ∂κh is continuous on ∂κX, we get that

∂κh(xn)→ ∂κh(x′).

As ∂κY is Hausdorff, we obtain ∂κh(x′) = f(x′). �

We remark that this theorem is far from satisfying, since Morse quasi-möbius
requires one to check the quasi-möbius condition for every D, it is a much stronger
condition than quasi-möbius.
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