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Abstract. Given a sublinear function κ, κ-Morse boundaries ∂κX
of proper CAT(0) spaces are introduced by Qing, Rafi and Tiozzo.
It is a topological space that consists of a large set of quasi-geodesic
rays and it is quasi-isometrically invariant and metrizable. In this
paper, we study the sublinearly Morse boundaries with the assump-
tion that there is a proper cocompact action of a group G on the
CAT(0) space in question. We show that G acts minimally on ∂κG
and that contracting elements of G induces a weak north-south
dynamic on ∂κG. Furthermore, we show that a homeomorphism
f : ∂κG → ∂κG

′ comes from a quasi-isometry if and only if f is
successively quasi-möbius and stable. Lastly, we characterize ex-
actly when the sublinearly Morse boundary of a CAT(0) space is
compact.

1. Introduction

Much of the geometric group theory originates from the studying
of hyperbolic groups and hyperbolic spaces. Hyperbolic groups have
solvable word problem and strong dynamical properties. One funda-
mental technique in the study of hyperbolic groups is to study the
Gromov boundaries of these groups. Gromov took the collection of all
infinite geodesic rays (up to fellow traveling) in the associated Cayley
graph, equipped this set with cone topology, and defined the space to
be the boundary ∂G of the hyperbolic group G. The boundary ∂G is
independent of the choice of a generating set and has rich geometric,
topological, and algebraic structures (see for example the survey by
Kapovich and Benakli [KB02]).

If we view Gromov hyperbolic spaces as coarsely negatively curved,
then the notion of CAT(0) include spaces with both local and global
non-positive curvature. Accordingly the extension of the boundary
theory to CAT(0) spaces and groups has also been developing in re-
cent decades. In this setting, the space of all geodesic rays together
with the cone topology is called the visual boundary (denoted by
∂vX). It is shown by Croke and Kleiner that the visual boundary
of a CAT(0) space is not in general a quasi-isometry invariant [CK00].
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In [Qin16], it is shown that, in the Croke-Kleiner example, failure to ob-
tain quasi-isometry invariance can come from geodesic rays that spend
linear amount of time (with respect to total time travelled) in each
product region.

Hence, one can consider geodesic rays that spend a sublinear amount
of time in each product region. In [QRT22], Qing and Rafi introduce
the sublinearly Morse boundary ∂κX of a CAT(0) metric space X and
show that ∂κX is quasi-isometry invariant and metrizable. In [QRT22],
Qing and Tiozzo show that, for a right-angled Artin group G, ∂κG is a
model for Poisson boundaries associated to a random walk (G, µ). In-
tuitively, a (quasi-)geodesic ray is sublinearly Morse if it spends a sub-
linear amount of time in each maximal product region, with respect
to total time travelled when it enters that product region. Further-
more, in [GQR22], it is shown that for every CAT(0) group with a rank
one element, there exists a κ such that ∂κG can be identified with the
Poisson boundaries of the group. The authors of [GQR22] also show
that the sublinearly Morse directions in the visual boundary of a rank 1
CAT(0) space with a geometric group action are generic with respect to
Patterson-Sullivan measures. Most recently, it is shown that much like
the Gromov boundaries, sublinearly Morse boundaries are sublinearly
biLipschitz equivalence invariant [QP22], providing a new way to tell
when two groups are not sublinearly biLipschitz equivalence. These are
evidences that the sublinearly Morse directions behalf similar to direc-
tions in hyperbolic spaces. In this paper, we continue to contribute to
this comparison and focus on the dynamical property of the group ac-
tion on κ-Morse boundaries. Much of the work in this paper is inspired
by the methods in [CS15] and [CM19]. In more general proper geodesic
spaces, sublinearly Morse boundaries have been developed and studied
in [QRT,MQZ22,QN22, IMZ20,DZ20], for instance.

Minimality of the group action. A group is said to act minimally on
a topological space if every orbit is a dense subset of the space. We
show that this property is enjoyed by the κ boundaries. In contrast
with the identifications with Poisson boundaries in various settings, the
minimality result evidence the fact that the boundary is not too large
in excess of the orbit of a point under the group action.

Theorem A. (Theorem 3.3) Suppose G is a group that acts geometri-
cally on a CAT(0) space X. Then G acts minimally on ∂κG.

Based on this result, we illustrate that for a subset of the group ele-
ments, their actions induces the following form of north-south dynamics
on the boundary:
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Theorem B. (Theorem 3.6) Suppose G is a group that acts geometri-
cally on a CAT(0) space X. Let g ∈ G be a contracting element. For
every open set V containing g∞ and every compact set C ∈ (∂κG\[g∞]),
there exists an N such that for all n ≥ N , we have gnC ⊂ V .

Compact type κ-boundaries. In the examples shown in [QRT22], the
boundaries are not compact. We show that when X is a proper hy-
perbolic space, κ-boundary is homeomorphic to the associated Gro-
mov boundary. In fact, we show that this is exactly when a cocom-
pact CAT(0) space X has compact sublinear boundaries. On the other
hand, examples of CAT(0) space without a cocompact group action,
whose sublinearly boundaries are compact can be constructed easily.
However it remains open to find a CAT(0) space X with non-compact
sublinear boundary where ∂κX is a perfect space. When X is a hy-
perbolic CAT(0) space, then the κ-boundary agrees with the Gromov
boundary.

Theorem C. (Theorem 4.4) Suppose a group G acts geometrically on
a proper CAT(0) space X such that ∂κX 6= ∅, then the following are
equivalent:

(1) Every geodesic ray in X is κ-contracting.
(2) Every geodesic ray in X is strongly contracting.
(3) ∂κX is compact.
(4) The space X is hyperbolic.

Corollary D. (Theorem 4.4) If X is a proper CAT(0) hyperbolic space
then ∂κX ' ∂X.

Rigidity. In 1996, Paulin gives the following characterization [Pau96]:
if f : ∂X → ∂Y is a homeomorphism between the boundaries of two
proper, cocompact hyperbolic spaces, then the following are equivalent

(1) f is induced by a quasi-isometry h : X → Y .
(2) f is quasi-möbius.

Quasi-möbius maps are maps such that changes in the cross ratio
are controlled by a continuous function. We aim to give a similar
characterization for sublinearly Morse boundaries. We use the notion of
successively quasi-möbius discussed it [QRT22], which is a 1-parameter
family of quasi-möbius maps on ∂κX.

Theorem E. (Theorem 5.1) Let X, Y be proper cocompact CAT(0) spaces
with at least 3 points in their sublinear boundaries. A homeomorphism
f : ∂κX → ∂κY is induced by a quasi-isometry h : X → Y if and only
if f is stable and successively quasi-möbius.
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2. Preliminaries

2.1. Quasi-isometry and quasi-isometric embeddings.

Definition 2.1 (Quasi Isometric embedding). Let (X, dX) and (Y, dY )
be metric spaces. For constants k ≥ 1 and K ≥ 0, we say a map
f : X → Y is a (k,K)–quasi-isometric embedding if, for all points
x1, x2 ∈ X

1

k
dX(x1, x2)− K ≤ dY

(
f(x1), f(x2)

)
≤ k dX(x1, x2) + K.

If, in addition, every point in Y lies in the K–neighbourhood of the
image of f , then f is called a (k,K)–quasi-isometry. When such a map
exists, X and Y are said to be quasi-isometric.

A quasi-isometric embedding f−1 : Y → X is called a quasi-inverse
of f if for every x ∈ X, dX(x, f−1f(x)) is uniformly bounded above.
In fact, after replacing k and K with larger constants, we assume that
f−1 is also a (k,K)–quasi-isometric embedding,

∀x ∈ X dX
(
x, f−1f(x)

)
≤ K and ∀y ∈ Y dY

(
y, f f−1(x)

)
≤ K.

A geodesic ray in X is an isometric embedding β : [0,∞)→ X. We
fix a base-point o ∈ X and always assume that β(0) = o, that is, a
geodesic ray is always assumed to start from this fixed base-point.

Definition 2.2 (Quasi-geodesics). In this paper, a quasi-geodesic ray
is a continuous quasi-isometric embedding β : [0,∞) → X starting
from the basepoint o.

The additional assumption that quasi-geodesics are continuous is
not necessary for the results in this paper to hold, but it is added for
convenience and to make the exposition simpler.

If β : [0,∞)→ X is a (q,Q)–quasi-isometric embedding, and f : X →
Y is a (k,K)–quasi-isometry then the composition f ◦β : [t1, t2]→ Y is
a quasi-isometric embedding, but it may not be continuous. However,
one can adjust the map slightly to make it continuous (see Definition
2.2 [QRT22]) such that f ◦ β is a (kq, 2(kq + kQ + K))–quasi-geodesic
ray.

Similar to above, a geodesic segment is an isometric embedding
β : [t1, t2] → X and a quasi-geodesic segment is a continuous quasi-
isometric embedding

β : [t1, t2]→ X.
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Notation. In this paper we will use α, β... to denote quasi-geodesic
rays. If the quasi-geodesic constants are (1, 0), we use α0, β0, ... to
signify that they are in fact geodesic rays. Meanwhile, we use [α], [β], ...
to denote equivalence classes of quasi-geodesic rays, and we also use
a,b, ... to denote equivalence classes without referring an element in
each class. Furthermore, let α be a (quasi-)geodesic ray α : [0,∞) →
X, if x1, x2 are points on α, then the segment of α between x1 and x2
is denoted [x1, x2]α. If a segment is presented without subscript, for
example [y1, y2], then it is a geodesic segment between the two points.
Let β be a quasi-geodesic ray. For r > 0, let tr be the first time where
‖β(t)‖ = r and define:

(1) βr := β(tr) and β|r := β[0, tr] = [β(0), βr]β

which are points and segments in X, respectively.

2.2. Properties of CAT(0) spaces. A geodesic metric space (X, dX)
is CAT(0) if geodesic triangles in X are at least as thin as triangles in
Euclidean space with the same triple of side-lengths. To be precise, for
any given geodesic triangle 4pqr, consider the unique triangle 4pqr in
the Euclidean plane with the same triple of side-lengths. The triangle
4pqr is at least at thin as 4pqr in the following sense: For any pair of
points x, y on the triangle4pqr, without loss of generality let x, y be on
edges [p, q] and [p, r], if we choose points x and y on edges [p, q] and [p, r]
of the triangle 4pqr so that dX(p, x) = d(p, x) and dX(p, y) = d(p, y)
then,

dX(x, y) ≤ dE2(x, y).

A metric space X is proper if closed metric balls are compact. For
the remainder of the paper, we assume X is a proper CAT(0) space; a
proper CAT(0) space has the following basic properties that are needed
in this paper:

Lemma 2.3. A proper CAT(0) space X has the following properties:

(1) For any two points x, y in X, there exists exactly one geodesic
connecting them. Consequently, X is contractible via geodesic
retraction to a base point in the space.

(2) The nearest point projection from a point x to a geodesic line
β0 is a unique point denoted πβ0(x), or simply xβ0. In fact, the
closest point projection map to a geodesic

πβ0 : X → β0

is Lipschitz with respect to distances. The nearest point projec-
tion from a point x to a quasi-geodesic line β exists and is not
necessarily unique. We denote the whole projection set πβ(x).
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(3) For any x ∈ X, the distance function dX(x, ·) is convex. In
other words, for any given any geodesic [x0, x1] and t ∈ [0, 1], if
xt satisfies dX(x0, xt) = td(x0, x1) then we must have

dX(x, xt) ≤ (1− t)dX(x, x0) + tdX(x, x1).

In addition, we need the following redirecting surgery for all proper
metric spaces:

Lemma 2.4. Let X be a proper, complete metric space. Let b be a
geodesic ray and γ be a (q,Q)–quasi-geodesic ray. For r > 0, assume
that dX(br, γ) ≤ r/2. Then, there exists a (9q,Q)–quasi-geodesic γ′ so
that

γ′ ∈ [b], and γ|r/2 = γ′|r/2.
2.3. Boundaries of CAT(0) space.

2.3.1. Visual boundary. In this section we review a couple of topolog-
ical boundaries of CAT(0) spaces that are important to the study of
this paper.

Definition 2.5 (visual boundary). Let X be a CAT(0) space. The vi-
sual boundary ofX, denoted ∂vX, is the collection of equivalence classes
of infinite geodesic rays, where α and β are in the same equivalence
class, if and only if there exists some C ≥ 0 such that d(α(t), β(t)) ≤ C
for all t ∈ [0,∞). The equivalence class of α in ∂vX we denote α(∞).

Notice that by Proposition I. 8.2 in [BH99], for each α representing
an element of ∂X, and for each x′ ∈ X, there is a unique geodesic ray
α′ starting at x′ with α(∞) = α′(∞).

We describe the topology of the visual boundary by a neighbourhood
basis: fix a base point o and let α be a geodesic ray starting at o. A
neighborhood basis for α is given by sets of the form:

Uv
(
α(∞), r, ε) := {β(∞) ∈ ∂vX| β(0) = o and d(α(t), β(t)) < ε for all t < r}.

In other words, two geodesic rays are close if they have geodesic rep-
resentatives that start at the same point and stay close (are at most ε
apart) for a long time (at least r). Notice that the above definition of
the topology on ∂vX references a base-point o. Nonetheless, Proposi-
tion I. 8.8 in [BH99] proves that the topology of the visual boundary
is base-point invariant.

Definition 2.6. (Visibility) A point ζ in the visual boundary is said to
be a visibility point if any other point ζ ′ ∈ ∂∂X, there exists a geodesic
line l with l(∞) = ζ and l(−∞) = ζ ′. A subset Y ⊆ ∂X is said to be a
visibility space if for any ζ, ζ ′ ∈ Y with ζ 6= ζ ′, there is a geodesic line
l with l(∞) = ζ and l(−∞) = ζ ′.
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Related to the above, in [Zal22], it’s shown that each point of the
sublinearly Morse boundary ∂κX is a visibility point of ∂X.

o α

r

ε

Figure 1. A basis for open sets

2.3.2. Sublinearly Morse boundaries.
Let κ : [0,∞) → [1,∞) be a sublinear function that is monotone

increasing and concave. That is

lim
t→∞

κ(t)

t
= 0.

The assumption that κ is increasing and concave makes certain ar-
guments cleaner, otherwise they are not really needed. One can always
replace any sub-linear function κ, with another sub-linear function κ
so that

κ(t) ≤ κ(t) ≤ Cκ(t)

for some constant C and κ is monotone increasing and concave. For
example, define

κ(t) = sup
{
λκ(u)+(1−λ)κ(v)

∣∣∣ 0 ≤ λ ≤ 1, u, v > 0, and λu+(1−λ)v = t
}
.

The requirement κ(t) ≥ 1 is there to remove additive errors in the
definition of κ–contracting geodesics(See Definition 2.10).

2.3.3. κ–Morse geodesic rays. The boundary of interest in this paper
consists of points in ∂X that are in the “hyperbolic-like”. In proper
CAT(0) spaces, they can be characterized in two equivalence ways.

Definition 2.7 (κ–neighborhood). For a closed set Z and a constant
n define the (κ, n)–neighbourhood of Z to be

Nκ(Z, n) =
{
x ∈ X

∣∣∣ dX(x, Z) ≤ n · κ(x)
}
.
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o b

x

xb

n · κ(x)
||x||

(κ, n)–neighbourhood of b

Figure 2. A κ-neighbourhood of a geodesic ray b with
multiplicative constant n.

Definition 2.8 (κ-Morse I, κ-Morse II). Let Z ⊆ X be a closed set,
and let κ be a concave sublinear function. We say that Z is κ-Morse if
one of the following equivalent (see Proposition 3.10 [QRT]) condition
holds:

I There exists a proper function mZ : R2 → R such that for any
sublinear function κ′ and for any r > 0, there exists R such
that for any (q,Q)-quasi-geodesic ray β with mZ(q,Q) small
compared to r, if

dX(βR, Z) ≤ κ′(R) then β|r ⊂ Nκ
(
Z,mZ(q,Q)

)
II There is a function

m′Z : R2
+ → R+

so that if β : [s, t] → X is a (q,Q)–quasi-geodesic with end
points on Z then

[s, t]β ⊂ Nκ
(
Z,m′Z(q,Q)

)
.

Remark 2.9. By taking the maximum function of mZ ,m
′
Z , we may and

will always assume that both conditions hold for the same mZ . Further,

(2) mZ(q,Q) ≥ max(q,Q).

Definition 2.10 (κ–contracting sets). For x ∈ X, define ‖x‖ = dX(o, x).
For a closed subspace Z of X, we say Z is κ–contracting if there is a
constant cZ so that, for every x, y ∈ X

dX(x, y) ≤ dX(x, Z) =⇒ diamX

(
xZ ∪ yZ

)
≤ cZ · κ(‖x‖).

In fact, to simplify notation, we drop ‖·‖ when it appears in the κ
function and write κ(x) instead of κ(‖x‖).
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o
≤ cακ(||x||) α

x

||x||

Figure 3. A κ–contracting geodesic ray.

In CAT(0) spaces, a geodesic is κ–contracting if and only if it is κ–
Morse [QRT22].
κ-Morse quasi-geodesic rays inX are grouped into equivalence classes

to form ∂κX.

Definition 2.11 (κ–equivalence classes in ∂κX). Let β and γ be two
quasi-geodesic rays in X. If β is in some κ–neighbourhood of γ and γ
is in some κ–neighbourhood of β, we say that β and γ κ–fellow travel
each other. This defines an equivalence relation on the set of quasi-
geodesic rays in X (to obtain transitivity, one needs to change n of the
associated (κ, n)–neighbourhood).

We denote the equivalence class that contains β by [β]:

Definition 2.12 (Sublinearly Morse boundary). Let κ be a sublinear
function as specified in Section 2.3.2 and let X be a CAT(0) space.

∂κX := { all κ-Morse quasi-geodesics }/κ-fellow travelling

We define the topology of ∂κX in Section 2.3.4.

We also use a,b to denote κ-equivalence classes in ∂κX. We need
the following fact that since X is CAT(0) , there is a unique geodesic
ray in each equivalence class:

Lemma 2.13 (Lemma 3.5, [QRT22]). Let X be a CAT(0) space. Let
b : [0,∞) → X be a geodesic ray in X. Then b is the unique geodesic
ray in any (κ, n)–neighbourhood of b for any n. That is to say, there is
an 1-1 embedding of the set of points in ∂κX into the points of ∂vX.

Proof. For each element a ∈ ∂κX, consider its unique geodesic ray α.
The associated α(∞) is a element of ∂vX. By Lemma 3.5, [QRT22],
each equivalence class contains a unique geodesic ray. Meanwhile, if
two elements a,b ∈ ∂κX contain the same geodesic ray, they are in
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fact the same set of quasi-geodesics, therefore this map is well-defined.
Therefore we have an embedding of the set of points in ∂κX into the
points of ∂vX. �

2.3.4. Coarse cone topology on ∂κX. We equip ∂κX with a topology
which is a coarse version of the visual topology. In visual topology, if
two geodesic rays fellow travel for a long time, then they are “close”.
In this coarse version, if two geodesic rays and all the quasi-geodesic
rays in their respect equivalence classes remain close for a long time,
then they are close. Now we define it formally. First, we say a quantity
D is small compared to a radius r > 0 if

(3) D ≤ r

2κ(r)
.

Recall that given a κ–Morse quasi-geodesic ray β, we denotes its
associated Morse gauges functions mβ(q,Q). These are multiplicative
constants that give the heights of the κ–neighbourhoods.

Definition 2.14 (topology on ∂κX). Let a ∈ ∂κX and α0 ∈ a be the
unique geodesic in the class a. Define Uκ(a, r) to be the set of points
b such that for any (q,Q)-quasi-geodesic of b, denoted β, such that
mβ(q,Q) is small compared to r, satisfies

β|r ⊂ Nκ
(
α0,mα0(q,Q)

)
.

Let the topology of ∂κX be the topology induced by this neigh-
bourhood system. The following fact shows that a κ-boundary is well
defined with respect the associated group.

o

geodesic β0

α0

(κ,mα0(q,Q))-neighbourhood of α0

(q,Q)–quasi-geodesic β

r

Figure 4. b ∈ Uκ(a, r) because the quasi-geodesics of
b such as β, β0 stay inside the associated (κ,mα0(q,Q))-
neighborhood of α0 (as in Definition 2.7 ), up to distance
r.

Theorem 2.15 ( [QRT]). Let X be a proper metric space and let κ
be a sublinear function. The κ–boundary of X, denoted ∂κX, is a
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quasi-isometrically invariant topological space. Furthermore, ∂κX is
metrizable.

Proposition 2.16 (Proposition 4.4 [QRT]). For each b ∈ ∂κX and
r > 0, there exists a radius rb such that

(1) for any point a there exists ra so that

a ∈ Uκ(b, rb) =⇒ Uκ(a, ra) ⊂ Uκ(b, r).
(2) for any point a there exists ra so that

a /∈ Uκ(b, r) =⇒ Uκ(a, ra) ∩ Uκ(b, rb) = ∅.

3. Dense subsets and minimality of G-action

In this section we prove two results concerning dense subsets of ∂κG.
First we show that the set of all Morse directions, ∂1G is dense in
∂κG, secondly and more generally, the action of G is minimal on ∂κG
and as a consequence, a Morse element in G acts with North-South
dynamics on the boundary. To begin with, in this section, let G acts
geometrically on a CAT(0) space X.

Let A be a geodesic ray or a geodesic segment. We say that a se-
quence of group elements {gi} tracks A if there exists a strict funda-
mental domain D such that the union ∪igi ·D covers longer and longer
subsegment of A as i increases. Conventionally we order the elements
such that ∪i≤ngi · D covers a longer and longer segment of A as n
increases.

Definition 3.1 (Angles in CAT(0) spaces). ] [BH99, II.3.1] Let X be
a CAT(0) space and let ` : [0, a] → X and `′ : [0, a′] → X be two
geodesic paths issuing from the same point `(0) = c′(0). Then the
comparison angle ∠E(c(t), c′(t′)) is a non-decreasing function of both
t, t′ ≥ 0, and the Alexandrov angle ∠(c, c′) is equal to

lim
t,t′→0

∠c(0)(c(t), c
′(t′)) = lim

t→0
∠(c(t), c′(t)).

Hence, we define:

∠(c, c′) = lim
t→0

2 arcsin
1

2t
d(c(t), c′(t)).

We also refer to the Alexandrov angle as the local angle.

Lemma 3.2. Let c0 be a concatenation of a geodesic segment and an
infinite geodesic ray as follows:

• the geodesic segment is the initial segment of a κ-Morse geodesic
ray labelled b;
• the infinite geodesic ray is a κ-Morse geodesic ray labelled a.
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• Suppose in addition that the Alexandrov angle are the point of
concatenation is bounded below by the right angle.

o

a

b

≥ π
2

Figure 5. The local angle in a CAT(0) space.

Then c0 is κ-Morse, and its Morse gauge is bounded above by

mc0(q,Q) ≤ m′b(3q,Q) +ma(3q,Q)

Proof. We will show that c0 satisfies the κ-Morse II condition. Consider
a quasi-geodesic ray c′ that sublinearly tracks c0. Let p be the point of
concatenation on c0 and project p to c′ and label the projection as pc′ .
By The Surgery Lemma [QRT22, Lemma 2.5],

[o, pc′ ]c′ ∪ [p, pc′ ]

is a (3q,Q) quasi-geodesic segment whose endpoints are on b, thus
by κ-Morse II it is in the m′b(3q,Q) neighbourhood of b. Define c′′ to
to be the quasi-geodesic ray with c′′ ⊆ c′ and c′′(0) = pc′ . Again, by
The Surgery Lemma [QRT22, Lemma 2.5 ],

[p, pc′ ] ∪ c′′

is (3q,Q) quasi-geodesic ray that sublinearly tracks a. Likewise by
κ-Morse I it is in the ma(3q,Q) neighbourhood of a. Thus c′ is in a
m′b(3q,Q) +ma(3q,Q)-neighbourhood of c0. �

o
p

a

c′′

c′

b

pc′

Figure 6. The quasi-geodesic ray c′ is covered by the
union of a quasi-geodesic segment [o, pc′ ]c′ ∪ [p, pc′ ], and
a quasi-geodesic ray [p, pc′ ] ∪ c′′.
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Theorem 3.3. Suppose G acts geometrically on a proper CAT(0) space
X and |∂κX| ≥ 3. For each a ∈ ∂κX, such that G · a is dense in ∂κX.

Proof. By Theorem 1.1 in [Ham08], the action of G on its visual bound-
ary ∂X is minimal. In particular, no element in the visual boundary is
a global fixed point of G. Now, since elements of the κ-boundary ∂κX
are also elements in the visual boundary, we conclude that G.a 6= a for
any a ∈ ∂κX.

Fix a point a ∈ ∂κX, by the above, there exists a group element
g ∈ G such that ga 6= a. Sine ∂κX is a visibility space [Zal22], we can
choose a bi-infinite geodesic line, denoted `, that connects a and g · a
∂κG, we will write `+ for a and `− for g · a. Given any point b ∈ ∂κX
(not necessarily different from `+ or `−), and let b be a geodesic ray
representing b with b(0) = o. It suffices to show that a subset of the
points in G · a converges to b. If b = `+ or b = `− then we are done.
Otherwise fix a point p ∈ `.

Since G acts on X cocompactly, there exist a constant C and ele-
ments {gi ∈ G, i = 1, 2, 3, ...} such that d(gi · p, b(i)) ≤ C for all i ∈ N.

b

o

αi = gi`
−βi = gi`

+

pi

Figure 7. Translates of ` by {gi} along b

Denote li := gi ·`. Also let pi := gi ·p and consider the quasi-geodesics

αi := [o, pi] ∪ [pi, l
+
i ), βi := [o, pi] ∪ [pi, l

−
i ).

Since li is a line in a CAT(0) space, at least one of the local an-
gles ∠(o, pi, li(∞)), ∠(o, pi, li(−∞)) is greater than or equal π

2
. Con-

sequently, at least one of αi or βi is a (3, 0)-quasi-geodesic ray. For
each i, let γi ∈ {αi, βi} be such a (3, 0)-quasi-geodesic ray. Each γi is
κ-Morse as its tail is κ-Morse. By Lemma 3.2, for all i and for all q,Q
we have,

mγi(q,Q) < m′b(3q,Q) +ml(3q,Q) + C ′,

where C ′ is a constant depending only on C. Since mγi does not depend
on i we write it as mγ. Let q,Q be small compared to r. Let

κ′ = 3mγCκ+ C,
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Since b is κ-Morse I, we have that for each r > 0, and for each pair of
(q,Q) small compared to r, there exists R(q,Q, r, κ′) ≥ 1 such that the
conclusion of the κ-Morse I notion holds. Furthermore, by the proof
of Theorem 3.14 in [QRT22], since κ′ is concave, if R = R(q,Q, r, κ′)
satisfies the definition of κ-Morse I, then all R > R(q,Q, r, κ′) also
satisfies the definition of κ-Morse I.

Recall that γi ∈ {αi, βi}. Let i = dRe. By construction we have
d(bR, γdRe) ≤ C. Thus, there exist a point sdRe ∈ [0,∞) with d(bR, γdRe(sdRe)) ≤
C. In particular, since γdRe is a (3, 0)-quasi-geodesic, we have

R− C ≤ d(γ(sdRe), o) ≤ R + C =⇒ sdRe < 3(R + C)

Now it remains to show that γdRe ∈ U(b, r). Let ζ be a (q,Q)-quasi-
geodesic in the class of γdRe, then by [QRT, Lemma 3.4] , we get that

d(γdRe(sdRe), ζ) ≤ mγκ(si) as ζ and γdRe are both κ-Morse.

≤ mγκ(3(R + C)) as κ is monotone nondecreasing.

≤ mγκ(3CR) ≤ 3mγCκ(R) as κ is convex.

This provides a point x ∈ ζ with d(x, γi(si)) ≤ mγCκ(R). Hence, by
the triangle inequality, we get that d(x, b(R)) ≤ 3mγCκ(R) +C. Now,
recall that κ′ = 3mγCκ+ C, thus R(r, q, Q, κ′) is precisely that

d(x, b(R)) ≤ 3mγCκ(R) + C =⇒ ζr ⊆ Nκ(b, r).
This holds for every (q,Q)-quasi-geodesic representative of γi and

thus we have

(4) γdRe ∈ U(b, r)

That is to say, for larger and larger r we can find an associated sequence
of γi that is in U(b, r), Thus up to a subsequence γi = gi · a limits to b.

�

As a consequence of of the proof we can establish the following:

Corollary 3.4. Let b be a bi-infinite axis of a rank-one element g ∈ G
and let a be another element in ∂κX (not necessarily different from the
ends of b). Then for each r, there exists a large enough n such that
gk · a ∈ U([(b+∞], r) for all k ≥ n.

Proof. As established in the proof of Theorem 3.3, for a sequence of
larger and larger r one can construct as in the proof an associated
sequence of γi that is in U(b, r). Each γi has in its class a (3, 0)-quasi-
geodesic ray with an initial geodesic segment that is [o, gi · p], where
the sequence

{g1, g2, g3, ...}
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tracks b. Since b is rank-one, the tracking sequence becomes

{g, g2, g3, g4...}

thus γi consists of a initial segment [o, gi · p]. Thus for each r there
exists dR(r)e such that if i = dR(r)e then

[γi] ∈ U(b, r).

Furthermore, by the proof of Theorem 3.3, all R > R(r) works for the
definition of κ-Morse I, thus for all i ≥ dR(r)e, we also have that

[γi] ∈ U(b, r).

Combine the two we then have that there exists a large enough n such
that gk · a ∈ U([(b+∞], r) for all k ≥ n. �

Remark 3.5. Consider a point b ∈ ∂κX represented by a geodesic ray
b. Let p ∈ X, gi ∈ G and C > 0 be such that every point b(t) is within
C of gi · p for some i. The above argument shows that for any pair of
points a, a′ ∈ ∂κX, the orbit gi{a, a′} has a subsequence converging to
b. Suppose further that a 6= b. If we are provided that gia = a for all
gi, then gia

′ has a subsequence converging to b. This observation will
be used in the proof of Theorem 3.6.

Now we prove a weak version of North-South dynamics for the action
of a group on its κ-boundaries.

Theorem 3.6. Let g ∈ G be a rank-one element. For an open set U
containing g∞ and a compact set C ∈ (∂κG \ [g−∞]), there exists an N
such that for all n ≥ N , we have gn · C ⊂ U .

Proof. Fix an open set U containing g+∞ and let U(g+∞, r) be in U.
Let A be a line connecting g∞ and g−∞. That is, A is an axis of g
and {gi} tracks A. For a point a ∈ C ⊂ ∂κX, we let l be a geodesic
line connecting [g−∞] to a and fix a point p on l. let this point p be
a new basepoint. We can do this because ∂κG is basepoint invariant
there exists a natural homeomorphism of the boundaries when changing
basepoint. Define C := d(p,A), in particular, since g preserves the line
A, we have d(gnp, gA) = d(gnp,A) = C. Hence, for each n the quasi-
geodesic ray

γn := [o, gn · p] ∪ [gn · p, gn · a)

is a (3, 0)-quasi-geodesic.
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g−∞ g−∞

a

p
gn · p

gn · a

A

l

C

Figure 8. The quasi-geodesic ray c′ is covered by the
union of a quasi-geodesic segment [o, pc′ ]c′ ∪ [p, pc′ ], and
a quasi-geodesic ray [p, pc′ ] ∪ c′′.

By Corollary 3.4, we have for each R, there exists a large enough n
with gk · a ∈ U([g+∞], R) for all k ≥ n. This holds for each point in
C, i.e. for each point a ∈ C, there exists a large enough power na with
gna · a ∈ U([g+∞], R) ⊆ U. Now, notice that

gna · a ∈ U([g+∞], R) =⇒ a ∈ (gna)−1U([g+∞], R).

Since g is rank-one, (gna)−1 = g−na . We denote the open sets as

U(n, a) := g−naU(g∞, R).

Hence, the collection {U(n, a)|a ∈ C} forms a cover for C yielding a
finite subcover

{U(ni, ai)}i=1,2,3...m.

Now, choose N := max{n1, · · ·nm}, and let n be any natural number
such that n ≥ N . We get

gnC ⊆ gn(
⋃
i

U(ni, ai)) since
⋃
i

U(ni, ai) is a cover.

= gn(
⋃
i

g−naiU([g+∞], R)) Definition of U(ni, ai).

⊆
⋃
i

gmiU(g∞, R) Since n ≥ N ≥ ni. mi = n− ni.

⊆ U(g∞, R)

⊆ U.

concluding the proof. �
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4. Compact type κ-boundaries for CAT(0) spaces

In [QRT22], it is shown that if G = Z2 ?Z, then ∂κG is not compact.
In this section we show that the κ-boundary is compact if and only if
set of rays in this boundary lies in a subspace that is δ-hyperbolic and
proper. If G is δ-hyperbolic, then this compact boundary coincide with
the Gromov boundary. For a more interesting example, see [Beh17]
where there is a quasi-isometric copy of an embedded hyperbolic plane
in a non-hyperbolic group.

Consider the subset of all D-strongly contracting geodesic rays ema-
nating from o in a CAT(0) space X. The following lemma states that
equipping this subset with the subspace topology of the visual bound-
ary or the subspace topology of the κ-boundary yields homeomorphic
spaces. The intuitive reason for this is the following: since quasi-
geodesics stay uniformly close to D-strongly contracting geodesics, the
topology of fellow travelling of geodesics (the visual topology) and the
topology of fellow travelling of quasi-geodesics (the topology of the
κ-boundary) coincide.

Recall that we use ∂Dv X to denote the set of all D-contracting geodesic
rays emanating from o when equipped with the subspace topology of
the visual boundary , and use ∂DκX when equipped with the subspace
topology of the κ-boundary.

Proposition 4.1. The identity map id : ∂Dv X → ∂DκX is a homeomor-
phism.

Proof. We need to show that the map id : ∂Dv X → ∂DκX is a home-
omorphism. Since ∂Dv X is closed (Lemma 3.2 in [CS15]) and X is
proper, ∂Dv X must be compact. Also, the space ∂DκX is metrizable by
Theorem D in [QRT22]. Hence, it suffices to show that the map id
is a continuous map. Notice that since every geodesic ray in ∂Dv X is
D-strongly contracting for the same D, applying Definition 2.7, we get
an associated Morse function such that every geodesic ray β0 is m(D)-
Morse, where m(D) depends only on D and satisfies the following: For
every constants r > 0, n > 0 and every sublinear function κ′, there is an
R = R(β0, r, n, κ

′) > 0 where the following holds: Let η : [0,∞)→ X be
a (q,Q)–quasi-geodesic ray so that mβ0(q,Q) is small compared to r, let
tr be the first time ‖η(tr)‖ = r and let tR be the first time ‖η(tR)‖ = R.
Then

dX
(
η(tR), β0) ≤ n·κ′(R) =⇒ η[0, tr] ⊂ N1

(
β0,mβ0(q,Q)

)
⊂ Nκ

(
β0,mβ0(q,Q)

)
.

.
We first claim the following:
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Claim. Given b ∈ ∂DκX, each neighbourhood of b, denoted Uκ
(
b, r),

must contain a visual neighbourhood basis of β0, the unique geodesic
ray in the class of b.

Proof. To see this, let β0 ∈ b be the unique geodesic ray starting at
o. We wish to show that for any r > 0, there exists r′ and ε such that
Uv
(
β0, r

′, ε) ⊆ Uκ
(
b, r)

In other words, we want to show that for any r > 0, there exists r′ and
ε if a geodesic ray α0 ∈ a with α0(0) = o satisfies d(α0(t), β0(t)) < ε
for t ≤ r′, then, any (q,Q)-quasi-geodesic representative α of a with
mβ0(q,Q) small compared to r, we have

α|r ⊂ Nκ(ζ,mβ0(q,Q)).

Remember that α|r = α([0, tr]) where tr is the first time where ||α(t)|| =
r.

Let r be given and let

n = max{mβ0(q,Q) + 1|q,Q ≤ r}.

By Definition 2.7, with Z = β0, there exists an R = R(r, n) such
that any (q,Q)-quasi-geodesic representative β of a with mβ(q,Q) small
compared to r, we have

d(β(tR), b) < n =⇒ βr ⊂ N1(β0,mβ(q,Q)).

Choose r′ = r + R and ε = 1. Hence, we want to show that if
d(a(t), b(t)) < 1 for t ≤ r +R, then βr ⊂ Nκ(b,mβ0(q,Q)) for β defined
above. Since a is 1-Morse with gauge m, the Hausdorff distance between
a and β is at most m(q,Q). This implies that for any 0 < t ≤ r + R,
we have

d(a(t)), β(it)) < mβ0(q,Q),

for some it.
Therefore, if tR is the first time with ‖β(tR)‖ = R, we must have

d(a, β(tR)) < mβ0(q,Q).

Now, since d(a(t), b(t)) < 1 for all t < r + R and as d(a, β(tR)) <
mβ0(q,Q), the triangle inequality gives

d(b, β(tR)) ≤ d(b, a) + d(a, β(tR)) ≤ 1 + mβ0(q,Q),

which we can rewrite as

βr ⊂ N1(b,mβ0(q,Q)) ⊂ Nκ(b,mβ0(q,Q))

which proves the claim. �
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Now we are left to show that the map id is continuous. Let {cn}, c ∈
∂Dv X with cn → c. Assume that cn → c in ∂Dv X, we want to show
that cn → c in ∂DκX. Using the above claim, since each neighbourhood
of c in ∂DκX contains an open neighborhood of ∂Dv X, the statement is
immediate. �

Corollary 4.2. For a CAT(0) space X, the natural map i : ∂?X ↪→
∂κX is continuous.

Proof. By Lemma 4.1, iD : ∂Dv X ↪→ ∂κX is continuous for each D. Since

∂?X = lim−→ ∂Dv X,

by definition i : ∂?X ↪→ ∂κX is continuous. �

Corollary 4.3. Let X be proper CAT(0) hyperbolic space and let κ
be a sublinear function. The space ∂κX is compact, and the κ-Morse
boundary is homeomorphic to the Gromov boundary.

Proof. Since X is a hyperbolic space, there exists a uniform constant
D such that every geodesic ray is D-strongly contracting. This implies
that the subspace ∂Dv X defined above is the entire visual boundary,
in other words, we have ∂Dv X = ∂vX. Also, since every geodesic ray
is D-strongly contracting, the subspace ∂DκX defined above is the full
κ-boundary as a topological space. That is to say, ∂DκX = ∂κX as
topological spaces. Proposition 4.1 then yields a homeomorphism be-
tween the visual boundary of X, ∂vX and the κ-boundary of X, ∂κX.
Therefore as topological spaces, we have

∂X ∼= ∂κX.

Since X is proper, ∂X is compact, thus the κ-boundary ∂κX must
also be compact. �

Theorem 4.4. Suppose a group G acts geometrically on a CAT(0) space
X such that ∂κX 6= ∅, then the following are equivalent:

(1) Every geodesic ray in X is κ–contracting.
(2) Every geodesic ray in X is strongly contracting.
(3) ∂κX is compact.
(4) The space X is hyperbolic.

Proof. We start by showing (3) implies (1). The statement is vacuously
true if ∂κX is empty. If ∂κX is non-empty, then by [Zal22], there
exists a rank one isometry g. This yields the existence of a strongly
contracting geodesic line lg that is an axis for g. Let o be a point on
lg and let β be an arbitrary geodesic ray emanating from o. We show
now that β is κ-contracting. Since the action of G on X is cocompact,
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there exists a C ≥ 0 and a sequence of group elements {gi} ⊆ G
such that d(β(i), gi · o) ≤ C for each i ∈ N (the black dots in Figure
9). Now, consider the sets given by gilg. Since gi acts by isometry,
these are bi-infinite geodesic lines passing the points gio. Recall [·, ·]
denote a geodesic segment between two points. By CAT(0) geometry,
the concatenation of two geodesic segments at angle bounded below by
π/2 forms a (3,0)-quasi-geodesic segment. Lastly, we denote one end
of gilg by gilg(∞) and the other end by gilg(−∞).

For each i, consider the concatenation

[o, gio] ∪ [gio, gilg(∞)] and [o, gio] ∪ [gio, lg(−∞)].

By CAT(0) geometry, one of these two concatenations consists of ge-
odesic segments intersecting at angles bounded below by π/2. Thus
one of the two concatenations is a (3,0)-quasi-geodesic ray starting at
o. Relabel the sequence of (3,0)–quasi-geodesic rays defined by con-
catenating [o, gio] with either [gio, lg(∞)] or [gio, lg(−∞)] to form a
sequence of (3,0)–quasi-geodesic rays, by γi. Since ∂κX is compact, up
to passing to a subsequence, [γi] converges to an element b ∈ ∂κX. Let
b be the geodesic representative of b. The convergence implies that for
each r > 0, there exists k such that if i ≥ k, the sequence γi satisfies

γi|r ⊂ Nκ
(
b,mb(3, 0)

)
.

Since the subsegment of γi given by [o, gio] is in a C-neighbourhood
of β, we have for each r, β|r is in Nκ

(
b, C + mb(3, 0)

)
, and hence

β ∈ Nκ
(
b, C + mb(3, 0)

)
.

Lemma 2.13 then implies that β = b. Thus [β] = [b] = b ∈ ∂κX, which
finishes the proof.

β

o lg(∞)lg(−∞)

gilg(∞)gilg(−∞)

gio

Figure 9. Translates of lg by {gi} along α0
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Next we show that (1) implies (4). If every geodesic ray is κ-
contracting, then X does not contain an isometric copy of E2, and
hence, by the Flat Plane Theorem ( [BH99] III.Γ.3 Theorem 3.1), the
space X must be hyperbolic. The implication (4) ⇒ (3) is Corollary
4.3.

Lastly, we prove the equivalence between (2) and (4). Since every
geodesic ray is N-Morse for the same N in a δ-hyperbolic space, we have
(4) ⇒ (2). On the other hand, by way of contradiction, suppose X is
not a hyperbolic space, then it must contain isometrically a copy of E2

by the Flat Plane Theorem ( [BH99] Theorem 3.1). Let o ∈ E2 and the
geodesic rays that stays entirely in the is not D–strongly contracting
for any D. Therefore, (2)⇒ (4). �

Remark 4.5. As we can see in [Beh17], one can have part of the sublin-
early Morse boundary being compact while the rest of the sublinearly
Morse boundary is not compact. In this case the theorem can be ap-
plied to a part of the space X whose sublinear boundary is the compact
portion.

5. successively quasi-möbius homeomophisms on the
κ-boundaries

In [Pau96], the author characterizes homeomorphisms between bound-
aries of cocompact hyperbolic spaces that are induced by quasi-isometries.
They characterize such homeomorphisms as the ones that are quasi-
möbius. In this section, as an application of visibility [Zal22] and using
work of [CM17], [CCM19], we prove a weaker version of this character-
ization:

Theorem 5.1. Let X, Y be proper cocompact CAT(0) spaces with at
least 3 points in their sublinear boundaries. A homeomorphism f :
∂κX → ∂κY is induced by a quasi-isometry h : X → Y if and only if f
is stable and successively quasi-möbius.

The following is an immediate consequence.

Corollary 5.2. Let G and H be CAT(0) groups. Then G is quasi-
isometric to H if and only if there exists a homeomorphism f : ∂κG→
∂κH which is successively quasi-möbius and stable.

5.1. Contracting geodesic rays and quasi-möbius maps. We re-
mind the reader of a few terminologies from [CM17] and [CCM19].
Recall that a geodesic γ is strongly contracting if it is in the sublin-
early Morse boundary whose associated sublinear function κ = 1. This
implies the existence of a constant D such that all disjoint balls project
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onto γ to a set of diameter at most D, in which case we say γ is
D-strongly contracting. Consider the set of all D-strongly-contracting
geodesic rays emanating from o. We can think of this set as a subspace
of the various boundaries we study in this paper: we use ∂Dv X to de-
note the set of all D-contracting geodesic rays emanating from o when
equipped with the subspace topology of the visual boundary , and use
∂DκX when equipped with the subspace topology of the κ-boundary.

Denote by ∂
(n,D)
κ X the collection of all n-tuples (a1, a2, ..., an) of dis-

tinct points ai ∈ ∂κX such that every bi-infinite geodesic connecting ai
to aj is D-strongly contracting.

Definition 5.3. Let X, Y be proper geodesic CAT(0) space.

• A map f : ∂κX → ∂κY is said to be 1-stable if for every D,
there exists D′ such that f(∂DκX) ⊆ ∂D

′
κ Y.

• A map f : ∂κX → ∂κY is said to be 2-stable if for every D,
there exists D′ such that

f(∂(2,D)
κ X) ⊆ ∂(2,D

′)
κ Y.

Notice that it follows from the above definition that a 2-stable map

f maps ∂
(n,D)
κ X to ∂

(n,D′)
κ X for all n ≥ 2. Hence, it makes sense to

make the following definition.
A map f : ∂κX → ∂κY is said to be stable if it is both 1 and 2 stable.

Definition 5.4. The cross-ratio of a four-tuple (a, b, c, d) ∈ ∂
(4,D)
κ X

is defined to be [a, b, c, d] = ± sup
α∈(a,c)

d(πα(b), πα(d)), where the sign is

positive if the orientation of the geodesic (πα(b), πα(d)) agrees with that
of (a, c) and is negative otherwise.

A stable map f : ∂κX → ∂κY is said to be successively quasi-möbius
if for every D, there exists a continuous map ψD : [0,∞)→ [0,∞) such

that for all 4-tuples (a, b, c, d) ∈ ∂(4,D)
κ X, we have [f(a), f(b), f(c), f(d)] ≤

ψD(|[a, b, c, d]|).
Let X1 ⊂ X2 ⊂ X3 ⊂ ... be a nested sequence of topological spaces.

The direct limit of {Xi}, denoted by lim−→Xi, is the space consisting of
the union of all Xi given the following topology: A subset U is open in
lim−→Xi if U ∩Xi is open in Xi for each i.

The following is a standard way to establish continuous maps be-
tween two nested sequences and the proof is left as an exercise for
interested readers.

Lemma 5.5. Let {Xi}, and {Yj} be two sequences of nested topological
spaces. Let

X = lim−→Xi and Y = lim−→Yi
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be the direct limit of {Xi} and {Yi} respectively. If f : X → Y is a
map such that:

• For each i there exists some j with f(Xi) ⊆ Yj.
• f |Xi

: Xi → Yj is continuous.

Then f is continuous.

Consider the topological spaces ∂Dv X. The Morse boundary ∂?X is
the direct limit of the topological spaces ∂Dv X where D ∈ N. In other
words

∂?X = lim−→ ∂Dv X

Hence, a set U is open in ∂?X if and only if U ∩ ∂Dv X is open for each
D. We will often make use of the following theorem.

Theorem 5.6 ( [CCM19]). Let X, Y be proper cocompact CAT(0) spaces
with at least 3 points in their Morse boundaries. A homeomorphism
f : ∂?X → ∂?Y is induced by a quasi-isometry h : X → Y if and only
if f is is 2-stable and successively quasi-möbius.

Lemma 5.7. A quasi-isometry h : X → Y induces a stable homeo-
morphism ∂κh : ∂κX → ∂κY.

Proof. Fix o ∈ X and let o′ = h(o) where h is a (k,K)-quasi-isometry.
Qing and Rafi show that a quasi-isometry h induces a homeomorphism
∂h on their respective κ-boundaries. If γ is a D-strongly contracting ge-
odesic ray, then by [CS15], the unique geodesic ray starting at h(o) and
representing [f(γ)] must be D′-strongly contracting where D′ depends
on D, k and K. This implies that ∂κh is 1-stable. Now, Theorem 5.6
gives us that the map induced by h on the Morse boundary is 2-stable.
Hence, we deduce that ∂κh is stable.

�

Lemma 5.8. Any homeomorphism f : ∂κX → ∂κY such that f, f−1

are 1-stable induces a homeomorphism g : ∂?X → ∂?Y on their Morse
boundaries, with g(x) = f(x) for all x ∈ ∂?X.

Proof. Let f : ∂κX → ∂κY be a homeomorphism such that f and f−1

are 1-stable. Notice that by Theorem E in [QRT22], we have that if
κ′ < κ, then the inclusion map

i : ∂κ′X → ∂κX

is continuous. Taking κ′ = 1, yields that i : ∂1X → ∂κX is continuous.
Hence, since both f and f−1 are 1-stable, the restriction of f to ∂1X
induces a homeomorphism f : ∂1X → ∂1Y , with f = f |∂1X where ∂1X
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and ∂1Y are given the subspace topology of the κ-boundary. Mean-
while,

∂1X =
∞⋃

D=1

∂D1 X and ∂1Y =
∞⋃

D=1

∂D1 Y.

Since ∂D1 X is equipped with the subspace topology of ∂1X, the inclusion
map

iD : ∂D1 X ↪→ ∂1X

is continuous. Using Lemma 4.1, we get that

iD : ∂Dv X ↪→ ∂1X

is continuous for every D, where ∂Dv X is given the subspace topology of
the visual boundary. Furthermore, since f is 1-stable, we have f ◦ iD :
∂Dv X ↪→ ∂D

′
1 Y for some D′ where f ◦ iD is continuous. Using Lemma

4.1, we obtain a continuous map

f ◦ iD : ∂Dv X ↪→ ∂D
′

v Y

for each D. Hence, by Lemma 5.5, we get a continuous map g : ∂?X →
∂?Y . Applying the same argument above to f−1 yields a continuous
map g′ : ∂?Y → ∂?X with

g ◦ g′ = id∂?X and g′ ◦ g = id∂?Y ,

which finishes the proof.
�

5.2. Proof of Theorem 5.1.

Proof. (⇒) If h is a quasi-isometry, then f := ∂h is stable by Lemma
5.7 . Also, f is successively quasi-möbius by Theorem 5.6.

(⇐) Using Lemma 5.8 any stable homeomorphism f : ∂κX → ∂κY
induces a homeomorphism g : ∂?X → ∂?Y on their Morse boundaries,
with g(x) = f(x) for all x ∈ ∂?X. Since f is successively quasi-möbius
and g(x) = f(x) for x ∈ ∂?X, Theorem 5.6 implies the existence of a
quasi-isometry h : X → Y such that ∂h = g : ∂?X → ∂?Y . We wish to
show that the induced map

∂κh : ∂κX → ∂κY

agrees with f. Notice that as a set ∂?X = ∂1X, where ∂1X is the subset
of ∂κX consisting of equivalence classes having a strongly contracting
representative. Hence, we have ∂κh(x) = ∂h(x) for all x ∈ ∂1X ⊆ ∂κX.
Now, since ∂h = g, and g(x) = f(x) on ∂1X, we get that

∂κh(x) = ∂h(x) = g(x) = f(x)
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for all x ∈ ∂1X. Therefore, ∂κh(x) = f(x) for all x ∈ ∂1X ⊆ ∂κX. It
remains to show that ∂κh(x′) = f(x′) for all x′ ∈ ∂κX. Let x′ ∈ ∂κX,
by Corollary ??, there exists a sequence xn ∈ ∂1X that converges to x′

xn → x′

in ∂κX. Since f is continuous on ∂Xκ, we have convergence

f(xn) = ∂κh(xn)→ f(x′).

Also, since ∂κh is continuous on ∂κX, we get that

∂κh(xn)→ ∂κh(x′).

As ∂κY is Hausdorff, we obtain ∂κh(x′) = f(x′). �

This result is far from satisfying, since successively quasi-möbius
requires one to check the quasi-möbius condition for every D, it is
a much stronger condition than quasi-möbius. Currently there is no
results directly characterizing quasi-möbius maps on the κ-boundaries.
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