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Abstract. Given a right-angled Artin group defined by a simplicial graph: A(Γ) =
〈V |E〉 and an automorphism φ ∈ Aut(A(Γ)) there is a natural measure of how fast the
length of a word w of A(Γ) grows after n iterations of φ as a function of n, which we
call the dilatation of w under φ. We define the dilatation of φ as the supremum over
dilatations of all w ∈ A(Γ). Assuming that φ is a pure and square map, we show that
if the dilatation of φ is positive, then either there exists a free abelian special subgroup
on which the dilatation is realized; or there exists a strata of either free or free abelian
groups on which the dilatation is realized.

1. Introduction

Let Γ = (V,E) be a finite simplicial graph. The right-angled Artin group (RAAG)
associated to Γ is the group with presentation

A(Γ) = 〈v ∈ V |[v, w], (v, w) ∈ E〉

That is, the generators are in bijection with V , and the only relations are that two gener-
ators commute if the corresponding vertices form an edge in Γ. From their simple presen-
tations, we see that RAAGs encompass a spectrum of groups with free groups Fn at one
end and free abelian groups Zn at the other. RAAGs are a well-studied class of groups
with close connections to low-dimensional topology; they arise naturally in the study of
diffeomorphism groups of manifolds [KK17] and most recently, they played a key role in
Agol’s solution [Ago13] to the virtually Haken conjecture for hyperbolic 3-manifolds.

In this article, we study the automorphism groups of RAAGs. At one end of the spec-
trum, the study of GLn(Z) is classical, because of its relation to classification of lattices
in Rn and in turn, flat metrics on tori. At the other, Out(Fn), or the outer automorphism
group of the free group, became an active area of research beginning in the early 20th cen-
tury with the work of Nielsen and Magnus [LS77]. The introduction of Culler–Vogtmann
Outer space [CV86] provided a geometric action for Out(Fn), putting its study on equal
footing with that of lattices in semisimple Lie groups and perhaps more closely with the
mapping class group of an orientable surface of genus g.

Let Out(A(Γ)) denote the outer automorphism group of A(Γ). Out(A(Γ)) has been
shown to possess many of the same properties as Out(Fn) and GLn(Z). For example, it
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is known to be finitely generated [Ser89],[Lau95], finitely presented [Day09], and to have
finite virtual cohomological dimension [CV09], [BCV09], [DW17].

In what follows, we consider the algebraic and dynamical structure of automorphisms
of RAAGs, focusing specifically on the asymptotic growth of conjugacy classes of elements
under the action of an automorphism. Growth of automorphisms of GLn(Z) can be easily
obtained from the Jordan normal form of a matrix. For Out(Fn), on the other hand, a
characterization of the growth is obtained by demonstrating the existence of a train track
map or a relative train track map, first constructed in [BH92], [BFH00], [BFH05]. In either
the free or free abelian case, words grow either polynomially or exponentially under the
iterated application of an automorphism.

By work of Day [Day09], any automorphism of A(Γ) decomposes uniquely into an Fn-
part and a Zn-part, and one may hope that the dynamics of any automorphism admits
a similar structural decomposition. However, the construction of train tracks in the free
group case relies heavily on Culler–Vogtmann outer space. For certain classes of RAAGs, an
outer space has been constructed [CCV07], and Charney–Stambaugh–Vogtmann [CSV17]
have constructed an outer space for the “Fn”-part of Out(A(Γ)), but no outer space yet
exists in general. To overcome this difficulty, we restrict our attention to the collection
Φ ∈ Out(A(Γ)) which map 2-cells to 2-cells without folding the boundary edges (see Defi-
nition 2.11), and call such φ square maps.

Recall that an element Φ ∈ Out(A(Γ)) of is an equivalence class of automorphisms Φ =
[φ], defined up to conjugation by elements of A(Γ). Given an automorphism φ ∈ Aut(A(Γ))
and a word w ∈ A(Γ), we define the dilatation λφ(w) to be the logarithm of the length of
φn(w) divided by n. The dilatation captures the average exponential growth of the length
of w under iterated application of φ. The dilatation λφ is the supremum of λφ(w) over all
words w ∈ A(Γ).

Theorem A. Let Φ = [φ] ∈ Out(A(Γ)) be a pure square map. If the dilatation λφ is
positive, then there exists a φ–invariant induced subgraph ∆ ⊂ Γ where λφ|∆ = λφ and ∆
satisfies one of the following:

(i) ∆ is a complete graph.
(ii) ∆ contains an empty graph ∆e that is the union of all cycles in D∆.

To prove this theorem we define a finite directed graph D∆ which we call the auto-
morphism diagram (cf. §3). The automorphism diagram which keeps track of the verbal
substitution of each generator of A(Γ) under iterated application of φ.

Theorem A can be interpreted as saying that the growth of square automorphisms is
not more complicated than that of its free and free abelian subgroups. If the dilatation
of a word in A(Γ) is zero, this means that its length grows subexponentially. It follows
from relative train track theory for free groups [BH92],[BFH00] and from the Jordan normal
form for free abelian groups that if an automorphism has vanishing dilatation, then it grows
polynomially. We conjecture that the same is true for general RAAG automorphisms, and
in Theorem 4.1, we prove that if a pure, square map φ has an automorphism diagram
without cycles, then λφ = 0 and φ grows polynomially.
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The paper is organized as follows. In §2, we review relevant background information
on centralizers in right-angled Artin groups and automorphisms, and define the notions
of dilatation of an automorphism and of a square map for right-angled Artin groups. In
§3, we introduce the main technical tool of the paper, the automorphism diagram, and
analyze its key properties for square maps. We show that an automorphism with acyclic
automorphism diagram has polynomial growth in §4. Finally in §5, we apply the results
of §4 to find the system of free and free abelian subgraphs in Theorem A.

2. Background

2.1. Finite simple graphs. Let Γ = (V,E) be a finite simple graph. That is, a graph
in which each edge is uniquely determined by a pair of distinct vertices. By an induced
subgraph we mean a subgraph Γ′ = (V ′, E′) such that V ′ ⊆ V and given v1, v2 ∈ V ′

(v1, v2) ∈ E′ ⇐⇒ (v1, v2) ∈ E.
Given a vertex v0 ∈ V , the link of v0 is the induced subgraph on the set of vertices

{v|(v, v0) ∈ E}.
ln contrast, the star of a vertex v0 ∈ V is the induced subgraph on

{v|(v, v0) ∈ E} ∪ {v0}.

The complement of Γ = (V,E), denoted Γ, is the graph (V,E′) where

(v1, v2) ∈ E′ ⇐⇒ (v1, v2) /∈ E.

2.1.1. Directed graphs. By a directed graph we mean a finite graph where each edge is an
ordered pair (vi, vj) and (vi, vj) 6= (vj , vi). We also write vi → vj for a directed edge from
vi to vj . We can depict a directed graph by putting an arrow on each edge. A path γ is a
sequence of vertices

v0 → v1 → v2...→ vn

A cycle is a path as above such that v0 = vn. We will refer to a path by the tuple of
vertices i.e. γ = (v0, . . . , vn).

Remark 2.1. In contrast to standard definition of cycle in graph theory, we allow repeated
vertices.

2.2. Right-angled Artin groups. Let A(Γ) = 〈V |E〉 denote the right-angled Artin group
associated to Γ. The generators of A(Γ) are in one-to-one correspondence with the vertices
V , and two generators commute if and only if their corresponding vertices are connected
by an edge in Γ. A special subgroup of A(Γ) is any subgroup of the form A(∆), where
∆ ⊆ Γ is an induced subgraph.

Definition 2.2. We fix the generating set once and for all. Given word w ∈ A(Γ), we
say w is reduced if it cannot be shortened by successively applying commutation relations
and canceling vv−1 pairs, v ∈ V . We say w is cyclically reduced if w and all of its cyclic
conjugates are reduced. If w is a reduced, then the length of w, denoted |w|, is the number
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of letters in the spelling of w, and the support of w, denoted supp(w), is the set of elements
v in V such that v or v−1 occurs in the spelling of w.

2.3. Commuting elements in A(Γ). A(Γ) is a special case of a graph product, where
all the vertex groups are infinite cyclic. The general construction proceeds as follows. Let
Γ = (V,E) be a graph. To each v ∈ V , associate a vertex group Gv. Then, the graph
product of the {Gv} with respect to the graph (V,E) is defined as F/R where F is the
free product of the Gv and R is the normal subgroup generated by subgroups of the form
[Gu, Gv] whenever there is an edge joining u and v.

In [Ser89], Servatius studied graph products of groups and characterized when the sup-
port of two words commute pairwise. Given two words w1, w2, we will say that supp(w1)
commutes with supp(w2) if the elements of supp(w1) and supp(w2) pairwise commute.We
recall the relevant definitions and results here:

Definition 2.3. If u, v ∈ A(Γ) are reduced, then

|uv| ≤ |u|+ |v|.
and if equality holds we say that the product uv is a reduced factorization. If uv is not
reduced, then there exists a unique h such that we have that

u = u′h with |u| = |u′|+ |h|v = h−1v′ with |v| = |v′|+ |h|
and

uv = u′v′ with |uv| = |u′|+ |v′|.

Proposition 2.4. Suppose that u and v are commuting elements in A(Γ) such that

(1) uv is a reduced factorization, and
(2) the induced subgraph of Γ on supp(uv) has connected complement.

Then there exists an element h in A(Γ) such that both u and v belong to the cyclic
subgroup of A(Γ) generated by h.

Lemma 2.5. If a graph Γ = (V,E) has its complement Γ disconnected, then the graph is
a join. That is to say, there exists a partition of vertices into two set V1, V2, such that for
all v1 ∈ V1 and v2 ∈ V2,

(v1, v2) ∈ E

Proof. Since Γ is disconnected, the edge set of Γ, we call E can be partitioned into two sets
E1 and E2 such that all edges in Ei connect vertices in Vi. That is to say, all the edges
connecting vertices from V1 to V2 is in the complement of Γ, i.e. for every v1 ∈ V1 and
v2 ∈ V2,

(v1, v2) ∈ Γ = Γ.

That is to say there is a partition of vertices into two set V1, V2, such that for all v1 ∈ V1

and v2 ∈ V2,
(v1, v2) ∈ E.

�
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2.4. Out(RAAG). Let Aut(A(Γ)) be the automorphism group of A(Γ). Aut(A(Γ)) is
finitely generated [Ser89],[Lau95] by the Laurence–Servatius generators, which fall into the
following four types:

• Inversions: ιv : v 7→ v−1 and is the identity on all other generators.
• Graph isomorphisms: any automorphism of Γ induces a bijection of V which pre-

serves commutation relations,
• Transvections: if lk(v) ⊆ st(w),

τv,w : v 7→ wv

and fixes all other generators. τv,w is called a twist if v and w and a fold otherwise.
• Partial conjugations: if C is a component of Γrst(w),

χC,w : v 7→ wvw−1

and fixes all other generators.

We let Out(A(Γ)) denote the outer automorphism group of A(Γ); this is the quotient of
Aut(A(Γ)) by the normal subgroup of automorphisms generated by the action of A(Γ) on
itself by conjugation. Out(A(Γ)) is generated by images of the above Laurence–Servatius
generators in the quotient.

Remark 2.6. In what follows we will often define properties of elements Φ ∈ Out(A(Γ)).
Since Φ = [φ] is strictly speaking an equivalence class, when we say Φ has some property
P, we will mean that there is some representative φ ∈ Aut(A(Γ)) which has property P.
As an abuse of notation, we will not distinguish between φ and [φ], unless it is not clear
from the context.

2.4.1. Pure automorphisms of A(Γ). In this section we introduce the notion of a pure
automorphism in Out(A(Γ)). An element φ ∈ Aut(A(Γ)) is pure if it is cyclically reduced
and

s ∈ supp(φ(s)) for all s ∈ V.
An equivalence class [φ] ∈ Out(A(Γ)) is pure if it has a pure representative in Aut(A(Γ)).

Remark 2.7. If φ is a pure automorphism, then it follows from definition same representative
φk is also a pure automorphism.

Proposition 2.8. For every φ ∈ Aut(A(Γ)), there exists a positive integer N such that
φN is a pure automorphism.

Proof. The abelianization of A(Γ) is obtained from A(Γ) by making all generators commute.

Hence A(Γ)ab ∼= Z|V |, generated by the equivalence classes {[v]|v ∈ V }. For any word
w ∈ A(Γ) we write

[w] =
∑
v∈V

nv[v] ∈ Z|V |

where nv is just the exponent sum of all v’s occurring in w. By reducing coefficients modulo
2, there is a natural surjection Z|V | → (Z/2Z)|V |. Observe that if nv 6≡ 0 (mod 2), then we
must have v ∈ supp(w).
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Since the kernel of the surjection A(Γ)→ (Z/2Z)|V | is characteristic, any automorphism
φ of A(Γ) induces an automorphism Aφ ∈ GL(|V |,Z/2Z). The latter has finite order, hence

for some N , we have ANφ = Id. But this means that for any s ∈ V , if we write

[φN (s)] =
∑
v∈V

nv[v],

then

nv ≡
{

0 (mod 2), v 6= s
1 (mod 2), v = s

Hence φN is pure, as desired. �

2.5. Dilatation. Consider an infinite order automorphism φ of A(Γ). We will be interested
in the dynamics of φ acting on A(Γ). One way to do this is to measure the asymptotic
growth of the word length of elements of A(Γ) under powers of φ.

Definition 2.9. The dilatation of φ at w is

λφ(w) := lim
k→∞

log |φk(w)|
k

,

and the dilatation of φ is

λφ := sup
w∈A(Γ)

λφ(w)

Note that λφ(w) always exists since the sequence
{

log |φk(w)|
k

}
is subadditive. We claim

that the dilatation λφ is always realized by some word w, and in fact, we can take w to be
a generator:

Lemma 2.10.

λφ = max
s∈V
{λφ(s)}

In particular, λφ is always finite and realized by some (not necessarily unique) generator
si.

Proof. Given any word w in A(Γ) we can write w = s1s2 · · · sn for some generators si ∈ V .
Then

|φk(w)| = |φk(s1) · · ·φk(sn)|

≤ |φk(s1)|+ · · ·+ |φk(sn)|

≤ nmax
i
{|φk(si)|}

Taking log of both sides and dividing by k:

log |φk(w)|
k

≤ log(n)

k
+ max

i

{
log |φk(si)|

k

}
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Since n is fixed, the first term on the right goes to 0 as k →∞. We conclude that for any
w ∈ A(Γ)

λφ(w) ≤ max
s∈V
{λφ(s)}

and therefore

λφ = max
s∈V
{λφ(s)}.

In particular, λφ exists and is realized by a generator.
�

Given g ∈ A(Γ), let φg denote the composition of φ with conjugation by g. It is not
difficult to see that λφ = λφg . Indeed, given w ∈ A(Γ) we have:

|(gφg−1)k(w)| = |gφ(g) · · ·φk−1(g)φk(w)φk−1(g−1) · · ·φ(g−1)g−1|

≤ 2
(
|g|+ |φ(g)|+ · · ·+ |φk−1(g)|

)
+ |φk(w)|

≤ 2kmax{|g|, |φ(g)|, . . . , |φk−1(g)|, |φk(w)|}

Now applying log to both sides and dividing by k, this is at most λφ in the limit, since
log(2k)/k → 0. Thus, for all w, λφg(w) ≤ λφ. By symmetry, λφg ≥ λφ and the thus
λφ = λφg . Therefore, the dilatation is a well-defined invariant of the equivalence class
[φ] ∈ Out(A(Γ)). If λφ(s) > 0 or λφ > 0 is positive, we also say that the element s grows
exponentially under the map φ, or that φ is an exponentially growing map.

Furthermore, we say a subgraph ∆ ⊆ Γ, is invariant under φ if φ takes words whose
support is in ∆ to words whose support is in ∆. Given an invariant subgraph ∆ ⊂ Γ, one
can define

λ|∆ := sup
w∈A(∆)

λφ(w).

2.6. Square maps. If we identify A(Γ) with the fundamental group of a Salvetti complex
S(Γ), then elements of Out(A(Γ)) as homotopy classes of maps from S(Γ) to itself. Pairs
of commuting generators correspond to 2-tori in S(Γ), and we will be interested in when
Φ ∈ Out(A(Γ)) folds these tori nicely onto other tori in S(Γ). This idea is encoded in the
following definition.

Definition 2.11. Fixing the presentation of A(Γ) to be the one associated with Γ once
and for all. The map φ ∈ Aut(A(Γ)) is called a square map if for all s1, s2 ∈ S:

s1 commutes with s2 =⇒ supp(φ(s1)) commutes with supp(φ(s2)).

We say that Φ ∈ Out(A(Γ)) is a square map if there exists a representative φ of Φ which
is a square map.

We say that an automorphism φ is a positive automorphism if all generators are mapped
to words that do not contain negative powers of any generator.

Lemma 2.12. A positive automorphism φ is a square automorphism.
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Proof. Since φ(s1) and φ(s2) are primitive elements, they are not powers of any other
word. By assumption φ(s1) and φ(s2) commute. Also, since φ is a positive map, both
φ(s1)φ(s2) and φ(s2)φ(s1) are factorially reduced as defined in Definition 2.3. Therefore,
by Proposition 2.4, the subgraph of Γ generated by supp(φ(s1)) has disconnected com-
plement. By Lemma 2.5, that means the subgraph of Γ generated by supp(φ(s1)) is a
join of supp(φ(s1)) and supp(φ(s2)), which means elements of supp(φ(s1)) and supp(φ(s2))
pairwise commute. �

Remark 2.13. We show that square maps are not limited to positive maps with the following
example. Let A(Γ) = 〈a, b, c|[a, c], [b, c]〉:

φ :a→ aba−1

b→ ba−1

c→ c

Lemma 2.14. Let φ be a square map. Then φk is also a square map for any positive
integer k.

Proof. We prove the statement by induction on k.

φk−1(s1) = s11s12...s1m and φk−1(s2) = s21s22...s2n

Given that s1i and s2j commutes for all i, j then under the square map φ, supp(φ(s1i)) and

supp(φ(s1j)) pairwise commute for all i, j. That is to say, supp(φk(s1)) and supp(φk(s2))
pairwise commute. �

For the rest of the paper we assume φ is a pure, square automorphism.

3. Automorphism Diagram

The main tool of this paper is a directed graph Dφ that is defined on the generating set
of the group A(Γ). We deduce quantitative and structural information on the dilatation of
φ from the combinatorics of Dφ.

Definition 3.1. The vertex set of Dφ is V . Two vertices si, sj are connected by a directed
edge from si to sj if and only if sj ∈ supp(si).

In this paper we are only concerned with pure automorphisms; however, we do not add
directed edges from si to itself for any i. That is to say, only distinct vertices si, sj can be
connected by a directed edge in Dφ. On the other hand, it is possible to have a directed
edge from si to sj and from sj to si.

For the rest of the section, assume that φ is a pure square map and φ ∈ Out(A(Γ)).
Given a vertex s ∈ Dφ, the down-set of s is an induced subgraph whose vertex set is the
following union:

{v| there exists a directed path from s to v}.
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The induced graph on this set of vertices we call down− set and denote it by d(s). Note
that s ∈ d(s), as the constant path is directed. By construction,

(1) λs = λd(s).

Lemma 3.2. Suppose there is a directed path in Dφ of length n:

(s0, s1, s2, ...sn)

and suppose that s0 commutes with s1. Then {s0, s1, s2, ...sn} form a complete subgraph in
Γ.

Proof. First we show that si and si+1 commute for all i. Since s0 and s1 commute, φ(s0)
and φ(s1) commute. By assumption, φ is pure and a square map,

thus all elements of supp(φ(s1)) commute with all elements of supp(φ(s2)). In particular,

s1 ∈ supp(φ(s0)) and s2 ∈ supp(φ(s1)),

thus, s1 commutes with s2. Applying this argument to si and si+1 for all i, we conclude
that si commutes with si+1 for all i. We finish the proof by proving the following statement:
Suppose (s0, . . . , sn) is a directed path in Dφ in which si commutes with si+1 for all 0 ≤
i ≤ n− 1, then {si} form a complete subgraph.

We prove this statement by induction on n. The case n = 1 is trivial. Now consider a
path (s0, . . . , sn) such that si and si+1 commute for all i. The subpaths (s0, . . . , sn−1) and
(s1, . . . , sn) have length n− 1 hence by induction, it suffices to show that s0 and sn com-
mute. Since s0 and sn−1 commute, by the argument above, every element in supp(φ(s0))
commutes with every element in supp(φ(sn−1)). Since φ is pure, s0 ∈ supp(φ(s0)). Given
that sn ∈ supp(φ(sn−1)), φ is a square map means s0 commutes with sn. Therefore,
all pairs of elements in {s0, s1, s2, ...sn} commute and {s0, s1, s2, ...sn} forms a complete
subgraph in Γ.

�

Now suppose instead of a directed path, there is a cycle (s0, s1, s2, ...sn, s0) in Dφ,

Corollary 3.3. If an adjacent pair of elements of the cycle commute in A(Γ), then

{s0, s1, s2, ...sn}
form a complete subgraph in Γ.

Proof. Suppose si and si+1 commute, then consider the path

{si, si+1, si+2, ...sn, s1, s2, ...si−1}
is a directed path in Dφ. By Lemma 3.2, all elements on this path form a complete subgraph
in Dφ. �

Corollary 3.4. If a non-adjacent pair of elements of the cycle commute in A(Γ), then

{s0, s1, s2, ...sk}
form a complete subgroup in Γ.
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Proof. Without loss of generality, suppose s0 commutes with sj for some j 6= 2. We first
claim that φj inherits the desirable properties of φ:

Claim 3.5. Let Φ = [φ] ∈ Out(A(Γ)) be a pure, square automorphism. Then φj , j ∈ N is
also a pure, square automorphism.

The fact that φj is a square automorphism follows from Remark 2.14. The rest of the claim
follows from Remark 2.7.

�

From Corollary 3.3 and Corollary 3.4 we conclude that,

Proposition 3.6. Every cycle C ⊆ Dφ forms an induced subgraph in Γ that is either a
complete graph or an empty graph.

Proof. Combine Corollary 3.3 and Corollary 3.4; if there is any pair of elements of C
that commutes then elements of C form a complete subgraph in Γ. Otherwise no pair of
elements of C commute and the elements of C form an empty graph in Γ. �

Moreover, if two cycles in Dφ share a vertex, then the union of all vertices support an
empty or a complete subgraph in Γ:

Corollary 3.7. Let s ∈ V be part of two (directed) cycles C1, C2, and there is a pair
of commuting elements in C1 ∪ C2, then the union of the vertices of C1 and C2 form a
complete subgraph in Γ.

Proof. First suppose the two commuting vertices belong to one Ci and without loss of
generality that i = 1. By Corollary 3.4, elements of C1 form a complete subgraph. Every
element of C1 is connected by a directed path to every element of C2. Indeed, let s =
s(1,1) = s(2,1). To connect the i-th element in C1, s(1,i) and the j-th element in C2, s(2,j),
we have:

s(1,i), s(1,i+1), s(1,i+2)...s(1,1) = s(2,1), s(2,2), ...s(2,j).

Therefore by Lemma 3.2, every element of C1 commutes with every element of C2. It
remains to consider elements of C2.

It remains to consider the case when the commuting pair consists of one vertex from
each cycle. That is, there exists s(1,i) ∈ C1 and s(2,j) ∈ C2 commute. There exists a cycle
that contains s(1,i) and s(2,j). Indeed,

s(1,i), s(1,i+1)...s = s(2,1), s(2,2), ...s(2,j), s(2,j+1)...s = s(1,1), s(1,2)...s(1,i)

forms a cycle. By Corollary 3.4, all elements in C1 ∪ C2 form a complete subgraph. �

Remark 3.8. In short, it suffices to realize that

s = s(1,1), s(1,2)...s = s(2,1), s(2,2), ...s

is a cycle(with repeated vertex s), applying Corollary 3.3 and Corollary 3.4 proves Corol-
lary 3.7.
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Lastly, we use Dφ to denote the underlying graph of Dφ, that is, the graph whose vertex

set is the vertex set of Dφ, and (v, v′) is an (undirected) edge in Dφ if there is a directed

edge in Dφ either from v to v′ or from v′ to v. We say that Dφ is connected if Dφ is
connected. Otherwise we say that Dφ is disconnected. We make the following observation
about the dilatation of φ when Dφ is disconnected.

Lemma 3.9. Suppose the connected components of Dφ is (Dφ)1, (Dφ)2, ...(Dφ)k, then there
exists a (Dφ)i such that

λφ = λ|(Dφ)i .

Proof. For each generator s, by Equation 1,

λs = λ|d(s)

If s ∈ (Dφ)j , then d(s) ⊂ (Dφ)j , therefore

λ|(Dφ)j ≥ λ|(Dφ) = λs = λφ ≥ λ|(Dφ)j .

Therefore

λφ = λ|(Dφ)j

for the component that contains the dilatation-realizing generator. �

4. Growth of generators

Given Γ(A) and an automorphism φ, we say a word w grows polynomially under itera-
tions of φ if there exists n0, a constant C and a polynomial function p(n) such that

|φn(w)| ≤ Cp(n) ∀n > n0.

If w = s0 is the generator that realizes the dilatation of φ, and s0 grows polynomially under
the map φ, or then we say that φ is an polynomially growing map.

Theorem 4.1. If there is no cycle in Dφ, then φ is a polynomially growing map.

Before proving this theorem, we need some preliminary definitions for the case when Dφ
does not have any cycle.

Definition 4.2. A vertex s ∈ Dφ is terminal if d(s) = ∅.

There is a natural partition of the vertices of s ∈ Dφ, defined as follows. Let T0 be the
set of terminal vertices and inductively define Ti to be the set of terminal vertices of

Dφr ∪ij=0 Tj .

Definition 4.3. The collection T = {Ti} is called the terminal partition of V . The height
of T is the least k such that ∪kj=0Tj = V .

We now proceed with the proof of the theorem.
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Proof. Suppose Dφ has no cycle. We will in fact show that φ has polynomial growth of
degree bounded by the height h of T . More precisely, we will show that there exists a
polynomial p(n) of degree at most h such that for any w ∈ A(Γ) there exists a constant C
such that

|φn(w)| ≤ Cp(n).

Let Wi = ∪ij=0Tj and let Gi be the subgroup generated by Wi, and set G−1 = {1}.
Clearly, φ preserves Gi. Choosing s ∈ Ti, we can write

φ(s) = t0s
ε1 · · · sεktk.

where εi ∈ Z, and tj ∈ Gi−1.

Claim 4.4. In the above decomposition, k = 1, i.e. φ(s) = t0s
±1t1.

Proof. The proof is by induction on the height h of T . For the base case let A(Γ) be a
right-angled Artin group with height zero, h = 0. Then for each s ∈ V , φ(s) = sm for all
s ∈ V and some m ∈ Z. Since φ is an automorphism, m = ±1. Now assume the claim
has been established for all RAAGs A(Γ) and for any diagram of height at most h without
cycles, and suppose Dφ is a diagram of height h+ 1. In particular, Gh+1 = A(Γ). The key
observation is that Gh is a special subgroup and that φ|Gh = φh is an automorphism of Gh
whose corresponding diagram has height h and no cycle. By the induction hypothesis, for
0 ≤ i ≤ h and for any s ∈ Ti, we have that

φ(s) = t0st1

where tj ∈ Gi−1. We show that there exists an automorphism ψ such that τ = ψ−1 ◦ φ
is an automorphism of height at most 1 and ψ(s) = ussu

−1
s for all s ∈ Th+1. Indeed,

φh ∈ Aut0(Gh) and is therefore a product of partial conjugations and transvections. On
the other hand, φh is in the image of the restriction homomorphism ρh : Aut0(Gh+1;Gh)→
Aut0(Gh). We can lift φh to ψ : A(Γ)→ A(Γ) at the expense of some element in ker(ρh).
Observe that transvections lift directly, and partial conjugations lift at the expense of
possibly conjugating elements of Th+1 by elements of Wh. Thus ψ satisfies the following
two properties:

(1) ψ|Gh = φh,
(2) for every s ∈ Th+1, we have

ψ(s) = ussu
−1
s ,

where us ∈ Gh.

Now τ = ψ−1◦φ is a pure automorphism whose diagram Dτ also has no cycle, and which
has height at most 1, since

τ |Gh = ψ−1|Gh ◦ φ|Gh = φ−1
h ◦ φh = id.

By induction, we know that for every s ∈ Th+1, we have τ(s) = t′0s
±1t′1, where s is not

contained in supp(t′0) nor supp(t′1). From property (2), applying ψ to τ(s), we have

φ(s) = ψ ◦ τ(s) = ψ(t′0s
±1t′1) = ψ(t′0)(uss

±1u−1
s )ψ(t′1).
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As s does not occur in the support of ψ(t′0), us, or ψ(t′1), we conclude that k = 1 for all
s ∈ V , as desired. �

We now use Claim 4.4 to show that there is a polynomial p(n) such that for any t ∈ Gi
there exists C > 0 with

|φn(t)| ≤ Cp(n),

where p is a polynomial of degree at most i The proof is by induction on i, where the base
case is the observation above that φ(s) = s for s ∈ T0. Suppose we have established the
bound for all t ∈ Gi, and choose s ∈ Ti+1. By Claim 4.4 we can write

φ(s) = t0st1,

where the tj , j = 1, 2 are words in Gi. Let Cj , j = 1, 2 be constants such that

|φn(tj)| = Cjp(n)

and set C = max{Cj}. Then we have

|φn(s)| ≤ |φn−1(t0)|+ |φn−1(s)|+ |φn−1(t1)|
≤ 2Cp(n) + |φn−1(s)|

By iterating this procedure we have

|φn(s)| ≤ 2C
n−1∑
r=1

p(r) + 1.

We know that the partial sum of a polynomial of degree d can be written as a polynomial
of degree d+1. It follows that the right-hand side can be written as a polynomial of degree
at most i + 1. Finally, an arbitrary word in Gi+1 can be written as a finite product of
elements in some Tj , 0 ≤ j ≤ i+ 1. To finish the proof of the lemma, note that Gi = A(Γ)
for i large.

�

Corollary 4.5. Given a generator s and φ, if there is not a cycle in d(s), then s grows
polynomially.

Proof. This follows from Equation 1. �

5. Invariant subgroups

Now we are ready to prove the existence of a complete or empty subgraph inside a
subgraph that is invariant under exponentially growing square maps.

Theorem 5.1. Let Φ = [φ] ∈ Out(A(Γ)) be a pure square map. If the dilatation λφ is
positive, then there exists a φ–invariant, induced subgraph ∆ ⊂ Γ where λ|∆ = λφ, and ∆
is of one of the following cases:

(i) ∆ is a complete graph.
(ii) ∆ contains an empty graph ∆e that is the union of all cycles in D∆.
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Proof. By Lemma 2.10, there exists a generator s that realizes the dilatation of the group,
let’s denote it s0:

λs0 = λφ.

Consider the down-set of s0 in Dφ, recall λd(s0) is well defined and λd(s0) = λs0 = λφ. By
assumption there exists a cycle in Dd(s0). Now consider a “trim” of d(s0): a directed edge
is outgoing with respect to a vertex v if the edge is from v to v′ for some other v′. If a
vertex in a directed graph has only outgoing edges, then we say the vertex is a source. If
a vertex has only incoming edges, then we say the vertex is a sink. Consider the vertices
of d(s0) and consider the set of all the non-source vertices:

[d(s0)]1 := {v|v ∈ d(s0) and v is not a source }.
By an abuse of notation we also use [d(s0)]1 to denote the induced directed graph on this
set. [d(s0)]1 is φ–invariant. Now we trim [d(s0)]1 likewise: subtract from [d(s0)]1 any and
all of its source vertices and all directed edges incident to the source vertices. The trimming
process ends after finite steps since there exists a cycle in d(s0). The resulting directed
graph we denote by [d(s0)]t, which is also φ–invariant and contains a cycle. Since [d(s0)]t
is φ–invariant, one can consider the dilatation of φ restricted to [d(s0)]t. It is noted that
the trimming process does not change the dilatation, since a word of arbitrary length visit
a source vertex a finite number of times. Thus,

λφ = λs0 = λd(s0) = λ[d(s0)]1 = λ[d(s0)]2 = ... = λ[d(s0)]t .

Suppose [d(s0)]t has exactly one component in Dφ. Let ∆ := [d(s0)]t. Since ∆ contains
at least one cycle, let ∆e denote the subgraph of ∆ that is the union of all cycles. ∆e is
unique by maximality. If a pair of elements in ∆e commutes, then by Corollary 3.3 and
Corollary 3.4, ∆e is a complete graph. Furthermore, consider a vertex v ∈ ∆ and v /∈ ∆e.
Since ∆ is source-less and connected, there exists a directed path starting from an edge
in ∆e and ending at v. Therefore by Lemma 3.2, v forms a complete graph with ∆e.
Moreover, we show that two such vertices necessarily commute in the following lemma:

Lemma 5.2. Let φ be a pure, square map. Let A,B be a a pair of commuting vertices
and let v, v′ be two vertices that are each connected by a directed path from A and B,
respectively. Then v commutes with v′ in A(Γ).

A B

v1 v2

v

v′

Vertices that are in the down-set of two commuting vertices commute.
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Proof. Let v1 be the first vertex on the directed path from A to v and v2 be the first
vertex on the directed path from B to v′. By an abuse of notation, we use v, v1, v2, etc.
to denote also the generator that they represent in A(Γ). Since v1 ∈ supp(φ(A)) and
B ∈ supp(φ(B)), by Definition 2.11, v1 and B commute. Likewise v1 and v2 commute.
Using Definition 2.11, we can show that v1 commute with all successive elements of the
directed path originating from B, therefore v1 commute with v′. Now consider the next
vertex on the direct path from A, call it v11. Using Definition 2.11 again one can show
that v11 commute with all successive elements of the directed path originating from B and
hence v′. By moving down the directed path from A, one show that v and v′ commute. �

Therefore all vertices that are in ∆r∆e commute to each other, therefore, ∆ is a complete
subgraph in Γ. On the other hand, if there is no edge in ∆e then ∆ contains an empty
graph ∆e that is the union of all cycles in D∆.

It remains to consider the case when ∆ is not connected. In this case, each connected
component of [d(s0)]t is either a complete graph or contains an empty graph that is a union
of all cycles in that component in Dφ. By Lemma 3.9, there exists a component of ∆ with
desired property that realizes the dilatation.

�
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