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Abstract

Let Σ be a connected, orientable surface of infinite type. Assume that Σ con-
tains a nondisplaceable subsurface K of finite type, i.e. K intersects each of its
homeomorphic translates. Then the mapping class group Map(Σ) admits a contin-
uous nonelementary isometric action on a hyperbolic space, constructed from the
curve graphs of K and its homeomorphic translates via a construction of Bestvina,
Bromberg and Fujiwara. This has several applications: first, the second bounded
cohomology of Map(Σ) contains an embedded ℓ1; second, using work of Dahmani,
Guirardel and Osin, we deduce that Map(Σ) contains nontrivial normal free sub-
groups (while it does not if Σ has no nondisplaceable subsurface of finite type), has
uncountably many quotients and is SQ-universal.

Conversely, under the assumptions that Map(Σ) is generated by a coarsely
bounded set together with a tameness condition on the endspace of Σ, we show
that Map(Σ) does not act continuously nonelementarily by isometries on a hyper-
bolic space if Σ does not contain any nondisplaceable subsurface of finite type.

Introduction

Let Σ be a connected orientable surface, possibly of infinite type. We tackle the following
two questions. Under what conditions on Σ does the mapping class group Map(Σ) admit
a continuous nonelementary isometric action on a hyperbolic space? When it does, what
algebraic properties of Map(Σ) can one deduce from such an action?

Hyperbolic actions and nondisplaceable subsurfaces

Concerning the first of these questions, the case where Σ is a surface of finite type (i.e.
with finitely generated fundamental group) has been famously answered by Masur and
Minsky, who proved in [MM99] that the curve graph of any connected orientable surface
of finite type is hyperbolic and admits a nonelementary action of Map(Σ), except in a
few low-complexity cases. Their theorem is a milestone in the theory of mapping class
groups of finite-type surfaces, thus motivating the analogous question for infinite-type
surfaces.

There have been a lot of recent developments towards this question. In 2009, Calegari
defined the ray graph of a plane minus a Cantor set [Cal], and conjectured that it is
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hyperbolic and unbounded, and that there are elements of Map(Σ) acting loxodromically
on it. These conjectures have been answered positively by Bavard [Bav16], which was the
start of a lot of activity on big mapping class groups. Further developments, providing
actions of Map(Σ) on hyperbolic graphs under various topological conditions on the
surface, include [AFP17, DFV19, FGM20], for instance. The study of the geometry of
such graphs is still in constant expansion, see e.g. [BDR18, HMV18, AGK+19].

From a different viewpoint, Mann and the third named author suggested in [MR19]
that this question should be part of a more general framework, phrased in the language of
Rosendal’s approach to geometric group theory of (non-finitely generated, non-compactly
generated) Polish groups [Ros]. In particular, under a soft topological condition on
the endspace of Σ called tameness1, they classified which mapping class groups admit
unbounded continuous isometric actions at all on metric spaces; they also classified which
mapping class groups are CB-generated, i.e. have a generating set that has bounded
orbits in every continuous isometric action of Map(Σ). In addition, they coined the
notion of a nondisplaceable connected subsurface of Σ – defined as a subsurface K such
that φ(K) ∩ K 6= ∅ for every φ ∈ Homeo(Σ) – and established that the existence
of nondisplaceable subsurfaces of finite type yields the existence of unbounded length
functions on Map(Σ). The concept of nondisplaceable subsurfaces is key to our work, and
we prove the following classification theorem – in which we say that an isometric group
action on a hyperbolic space is nonelementary if it contains two independent loxodromic
elements.

Theorem 1. Let Σ be a connected orientable surface of infinite type.

1. If Σ contains a nondisplaceable subsurface K of finite type, then Map(Σ) acts
continuously, nonelementarily by isometries on a hyperbolic space X. In addition,
the action can be chosen such that every element of Map(Σ) which preserves the
isotopy class of K and restricts to a pseudo-Anosov mapping class of K has the
WWPD property with respect to the Map(Σ)-action on X.

2. Assume in addition that Map(Σ) is CB-generated and that the endspace of Σ is
tame. If Σ does not contain any nondisplaceable subsurface of finite type, then
Map(Σ) does not admit any continuous nonelementary isometric action on a hy-
perbolic space.

The WWPD property that arises in the first statement of the theorem, introduced
by Bestvina, Bromberg and Fujiwara in [BBF16], gives precisions on the dynamics of
the action. A possible definition is as follows. Let G be a group acting by isometries on
a hyperbolic space X, and let g ∈ G be a loxodromic element for the action. Denote by
(g−∞, g+∞) the pair of fixed points of g in the Gromov boundary of X. One says that
g has the WWPD property if the G-orbit of (g−∞, g+∞) is discrete in ∂∞X× ∂∞X \∆,
where ∆ denotes the diagonal. The WWPD property is a weakening of Bestvina and

1This is satisfied for instance if every end ξ of Σ has a neighborhood Uξ in the endspace which is
stable in the sense that every subneighborhood contains a copy of Uξ. See Section 4.1 for a complete
definition.
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Figure 1: An avenue of chimneys.

Fujiwara’s WPD property [BF02] that was proved to hold for the action of a finite-type
mapping class group on its curve graph – but one cannot hope to have WPD elements in
the infinite-type case in view of work of Bavard and Genevois [BG18]. Having WWPD
elements yields applications to bounded cohomology, as explained in Corollary 2 below
and the paragraph that follows.

The space X constructed in the proof of the first part of the theorem is a quasi-tree
of metric spaces in the sense of Bestvina, Bromberg and Fujiwara [BBF15], where the
pieces are the curve graphs of all subsurfaces of Σ in the Map(Σ)-orbit of K. The fact
that K is nondisplaceable is exactly the assumption one needs to define projection maps
(as in the work of Masur and Minsky [MM00]) between these various curve graphs. The
axioms needed to apply the Bestvina–Bromberg–Fujiwara machinery (and specifically,
the Behrstock inequality and the axiom on finiteness of large projections) are checked
as in the case of finite-type surfaces.

Let us now illustrate our proof of the second part of Theorem 1 on a concrete example,
namely our surface Σ is the avenue of chimneys illustrated in Figure 1. Assume that
Map(Σ) acts continuously on a hyperbolic space X. The surface Σ has two special ends,
namely the leftmost and rightmost ends in the picture. The existence of these special
ends is ensured in general by the assumptions made on Σ together with work of Mann and
the third named author [MR19]. Let Map0(Σ) ⊆ Map(Σ) be the finite-index subgroup
made of mapping classes that preserve each of these two special ends, as opposed to
permuting them. Then there is a shift homomorphism Map0(Σ) → Z, measuring the
average displacement of chimneys to the right – in general, one needs to consider finitely
many shift homomorphisms. The kernel of this homomorphism to Z contains all mapping
classes which are horizontally bounded, i.e. supported on a subsurface that avoids a
neighborhood of each of the two special ends (like R in the picture). In fact all mapping
classes in the kernel of the shift homomorphism are limits of mapping classes which are
horizontally bounded. But every horizontally bounded mapping class can be displaced
towards infinity, and by [MR19] this implies that it acts elliptically on X – in fact it
acts with bounded orbits in any continuous isometric action of Map(Σ). Now we have a
homomorphism to Z whose kernel is contained in the closure of a normal subgroup, all
of whose elements act elliptically on X; it is then an exercise in actions on hyperbolic
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spaces to conclude that the Map(Σ)-action on X is elementary.

Applications to largeness properties

We now discuss applications of our construction to algebraic properties of Map(Σ) in
the presence of nondisplaceable subsurfaces of finite type. In fact we derive largeness
properties for subgroups of Map(Σ) that contain sufficiently many elements acting as a
pseudo-Anosov homeomorphism on a nondisplaceable subsurface of finite type.

Let Σ be a connected, orientable surface, let K ⊆ Σ be a subsurface of finite type,
and let G ⊆ Map(Σ). We denote by StabG(K) the subgroup of G made of all mapping
classes that preserve the homotopy class of K. Denoting by K̂ a surface obtained from
K by gluing a once-punctured disk on every boundary component of K, every element
of StabG(K) induces a mapping class of K̂. We say that a subgroup G ⊆ Map(Σ) is
K-nonelementary if StabG(K) contains two elements that induce independent pseudo-
Anosov mapping classes of K̂. Our first application is to bounded cohomology.

Corollary 2. Let Σ be a connected orientable surface, and let K ⊆ Σ be a nondisplace-
able subsurface. Let G ⊆ Map(Σ) be a K-nonelementary subgroup.

Then the second bounded cohomology H2
b (G,R) contains an embedded copy of ℓ1.

This follows from a theorem of Handel and Mosher [HM19, Theorem 2.10], as Theo-
rem 1 ensures that G has a nonelementary action on a hyperbolic graph with at least one
WWPD element. Corollary 2 extends a theorem of Bestvina and Fujiwara for finite-type
surfaces [BF02], as well as earlier results of Bavard [Bav16, Théorème 4.8] (answering a
conjecture of Calegari [Cal]), Bavard and Walker [BW18, Theorem 9.1.1] and Rasmussen
[Ras19, Corollary 1.2] in the infinite-type setting.

Our next application provides further largenss properties of Map(Σ). We state it
here for the group Map(Σ) itself, but in fact the same statement holds true for many
interesting subgroups of Map(Σ), and we refer to Theorem 3.5 for the full statement.
We mention that the first conclusion of Theorem 3 partially answers a question raised
by McLeay in [McL20], by showing that the existence of a nondisplaceable subsurface
of finite type in Σ implies the existence of nongeometric normal subgroups of Map(Σ),
i.e. normal subgroups whose automorphism group is not equal to the extended mapping
class group of Σ.

Theorem 3. Let Σ be a connected orientable surface of infinite type which contains a
nondisplaceable subsurface of finite type. Then

1. Map(Σ) contains a normal nonabelian free subgroup;

2. Map(Σ) contains uncountably many normal subgroups;

3. every countable group embeds in a quotient of Map(Σ).

It is interesting that we manage to get similar conclusions as in acylindrically hyper-
bolic groups, despite Map(Σ) not being acylindrically hyperbolic [BG18]. Our proof of
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Theorem 3 relies on the geometric small cancellation tools that were developed by Dah-
mani, Guirardel and Osin in [DGO17], applied twice: once within the curve graph of a
finite-type nondisplaceable subsurface, and once within the quasi-tree of metric spaces
constructed in the proof of Theorem 1.

We also observe that the existence of nontrivial normal free subgroups, provided by
the second conclusion of Theorem 3, is in fact a characterization of the existence of a
nondisplaceable subsurface of finite type.

Theorem 4. Let Σ be a connected orientable surface of infinite type. Then Map(Σ)
contains a nontrivial normal free subgroup if and only if Σ contains a nondisplaceable
subsurface of finite type.

The only if statement is proved as follows. Assume that Σ contains no nondisplaceable
subsurface of finite type. Given a normal subgroup N EMap(Σ), we show that we can
always find a commutator of the form k = (ghg−1)h−1 = g(hg−1h−1) with g ∈ N and h
finitely supported which is nontrivial. Such an element k belongs to N , and is finitely
supported, being the product of the finitely supported elements ghg−1 and h. As we
are assuming that Σ has no nondisplaceable subsurface of finite type, the support of k
is displaceable off itself by a mapping class η, and k and ηkη−1 generate a noncyclic
abelian subgroup of N – in particular N is not free. Details are given in Section 3.3.

Organization of the paper. Section 1 collects background material regarding sur-
faces of infinite type and group actions on hyperbolic spaces. In Section 2, we study
the case of surfaces that have a nondisplaceable subsurface of finite type and establish
the first half of Theorem 1; we also give our application to bounded cohomology of sub-
groups of Map(Σ). The proofs of Theorems 3 and 4, which study normal subgroups of
Map(Σ) are given in Section 3. Finally, Section 4 is concerned with surfaces having no
nondisplaceable subsurface of finite type: we prove the second half of Theorem 1.
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1 General background

1.1 Surfaces

A surface is a (boundaryless) 2-dimensional topological manifold, i.e. a second-countable
Hausdorff space Σ such that every point in Σ has an open neighborhood homeomorphic
to an open subset of R2. The mapping class group of a connected, orientable surface
Σ is defined as the group Map(Σ) of all isotopy classes of orientation-preserving home-
omorphisms of Σ. The group Map(Σ) is equipped with the quotient topology of the
compact-open topology on the group Homeo+(Σ) of all orientation-preserving homeo-
morphisms of Σ.

Given a connected, orientable surface Σ, we let g(Σ) be the genus of Σ (possibly
infinite), we let E(Σ) be the end space of Σ and Eg(Σ) ⊆ E(Σ) be the subspace made
of ends that are accumulated by genus (non-planar in the terminology from [Ric63]).
By a theorem of Richards [Ric63], connected, orientable surfaces Σ are classified up to
homeomorphism by the triple (g(Σ), E(Σ), Eg(Σ)).

A surface Σ is of finite type if it has finitely many connected components and the
fundamental group of every such connected component is finitely generated. When Σ is
connected, we defined the complexity of Σ as ξ(Σ) = 3g(Σ) + |E(Σ)| − 3. Thus Σ is of
finite type if and only if ξ(Σ) < +∞.

A bordered surface is a topological space obtained from a surface Σ by removing
finitely many pairwise disjoint open disks. It is of finite type if the surface Σ can be
chosen to be of finite type.

A subsurface of a surface Σ is a closed subset of Σ whose boundary consists in a
finite number of pairwise nonintersecting simple closed curves, such that none of these
boundary curves bounds a disk or encloses an end of Σ. Every subsurface of Σ is
naturally a bordered surface; we say that a subsurface of Σ is of finite type if so is the
corresponding bordered surface.

Given a subsurface R ⊆ Σ, the endspace of R naturally embeds into the endspace of
Σ; we let Ends(R) ⊆ E(Σ) be the image of this embedding.
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As a matter of fact, every surface Σ can be exhausted by an increasing sequence of
subsurfaces of finite type, which in addition can be chosen to be connected. In particular
every compact subset of Σ is contained in a subsurface of Σ of finite type.

Every subsurface K ⊆ Σ of finite type determines a partition ΠK of the ends of Σ.
Given two subsets X,Y ⊆ E(Σ), we say that K separates X and Y if X and Y belong
to distinct subsets of the partition ΠK .

Lemma 1.1. Let Σ be a connected orientable surface, and let E be the end space of Σ.
Let X1, . . . ,Xk be finitely many pairwise disjoint closed subsets of E.

Then there exists a k-holed sphere K ⊆ Σ that pairwise separates X1, . . . ,Xk.

Proof. We can find a clopen partition E = Y1⊔ . . .⊔Yk such that for every i ∈ {1, . . . , k},
one has Xi ⊆ Yi. It is therefore enough to show that there exists a k-holed sphere in Σ
that pairwise separates Y1, . . . , Yk. For every i ∈ {1, . . . , k}, it follows from [Ric63] that
there exists a bordered surface Σi with a single boundary component whose endspace
is homeomorphic to Yi, so that the subspace made of ends accumulated by genus is
homeomorphic to Yi ∩ Eg. In addition we can ensure that the sum of the genera of
the surfaces Σi is equal to the genus of Σ. Gluing a k-holed sphere along the boundary
components of the surfaces Σi thus yields a surface which is homeomorphic to Σ by the
classification of surfaces [Ric63], and the lemma follows.

1.2 Nondisplaceable subsurfaces

A key concept in the work of Mann and the third named author [MR19], which is also
central in the present work, is that of a nondisplaceable subsurface of Σ – most specifically,
the important point is whether Σ contains nondisplaceable subsurfaces of finite type. As
in [MR19, Definition 1.8], we say that a connected subsurface K ⊆ Σ is nondisplaceable
if for every φ ∈ Homeo(Σ), one has φ(K) ∩ K 6= ∅. This definition can be extended
to disconnected subsurfaces of Σ in the following way (see [MR19, Definition 2.7]): a
subsurface K ⊆ Σ is nondisplaceable if for every φ ∈ Homeo(Σ) and every connected
component K1 of K, there exists a connected component K2 of K such that

φ(K1) ∩K2 6= ∅.

Notice that if K ⊆ K ′ are two subsurfaces with K nondisplaceable and K ′ connected,
then K ′ is nondisplaceable. In particular, whenever a connected orientable surface Σ
contains a nondisplaceable subsurface of finite type, it actually contains one which is
connected (since every connected surface has an exhaustion by connected subsurfaces of
finite type).

1.3 Hyperbolic actions and the WWPD property

We assume the reader to be familiar with basics on hyperbolic spaces in the sense of
Gromov [Gro87] and isometric group actions on those.

An isometric action of a group G on a hyperbolic space X is nonelementary if G has
unbounded orbits in X and does not have any finite orbit in the Gromov boundary ∂∞X
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– the terminology we use here departs from Gromov’s [Gro87], where this was called an
action of general type, but seems to prevail in the current literature.

In the present paper, we will consider certain dynamical properties of isometric group
actions on hyperbolic metric spaces. In particular, we will make use of the WWPD prop-
erty, introduced by Bestvina, Bromberg and Fujiwara in [BBF16] as a weakening of the
WPD property introduced by Bestvina and Fujiwara in [BF02]. A possible definition
is the following (see [HM19, Proposition 2.3] for its equivalence with the original def-
inition): given an isometric action of a group G on a hyperbolic space X, an element
g ∈ G is WWPD with respect to the G-action on X if g is loxodromic and the G-orbit of
(g−∞, g+∞) is a discrete subspace of (∂∞X × ∂∞X) \∆ – where ∆ denotes the diagonal
in ∂∞X × ∂∞X. It is WPD if in addition, the G-stabilizer of the pair (g−∞, g+∞) is
virtually cyclic (see [HM19, Corollary 2.4]).

2 Nondisplaceable subsurfaces and hyperbolic actions

Let Σ be an orientable surface. In this section, we prove that whenever Σ contains
a nondisplaceable subsurface K of finite type, then Map(Σ) admits a nonelementary
continuous action on a hyperbolic space. In addition this action can be constructed so
that elements of Map(Σ) that restrict to pseudo-Anosov mapping classes on K have the
WWPD property with respect to the action. As a consequence, using a theorem of Han-
del and Mosher [HM19], we deduce in Section 2.4 that the second bounded cohomology
H2

b (Map(Σ),R) is infinite-dimensional, and in fact contains an embedded copy of ℓ1.

2.1 Curves, homotopies and mapping class groups

2.1.1 Curve graphs

A simple closed curve on a surface Σ is essential if it does not bound a disk or a once-
punctured disk. Let Σ be a surface, and let K ⊆ Σ be a subsurface of finite type. We
let CΣ(K) be the graph whose vertices are the isotopy classes of simple closed curves on
Σ that have a representative contained in K which is essential in K (in particular not
homotopic to one of the boundary curves of K), where two distinct isotopy classes are
joined by an edge if they have disjoint representatives in Σ. As such the graph CΣ(K)
is an induced subgraph of the curve graph C(Σ) of Σ – i.e. the vertex set of CΣ(K) is a
subset of C(Σ), and two vertices are joined by an edge in CΣ(K) if and only if they are
joined by an edge in C(Σ). Viewing K as a bordered surface, we can also consider its
curve graph C(K); the following two lemmas show that the inclusion K ⊆ Σ induces an
inclusion of C(K) into C(Σ) whose image is precisely CΣ(K). Also CΣ(K) only depends
on the isotopy class of K: if K and K ′ are isotopic, then there is a natural identification
between CΣ(K) and CΣ(K

′).

Lemma 2.1. Let Σ be a surface, and let K ⊆ Σ be a subsurface of finite type. Let c and
c′ be two essential simple closed curves on Σ which are homotopic in Σ and both contained
and essential in K. Then c and c′ are homotopic within K, i.e. there exists a homotopy
H : S1 × [0, 1] → Σ with H(S1 × {0}) = c, H(S1 × {1}) = c′ and H(S1 × [0, 1]) ⊆ K.
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Proof. Let H : S1 × [0, 1] → Σ be a homotopy from c to c′. Then H(S1 × [0, 1]) is
compact, whence contained within a finite-type subsurface K ′ ⊆ K. The conclusion
therefore follows from the particular case where the ambient surface is of finite type,
established in [FM12, Lemma 3.16].

Similarly, the following lemma can be proved by reducing to the case of finite type
surfaces.

Lemma 2.2. Let Σ be a surface, and let K ⊆ Σ be a subsurface of finite type. Let c and
c′ be two essential simple closed curves on Σ which are both contained in K. If the isotopy
classes of c and c′ have disjoint representatives, then they have disjoint representatives
contained in K.

2.1.2 Restriction homomorphisms

Let Σ be a surface, and let K ⊆ Σ be an essential subsurface of finite type. Viewing K as
a bordered surface, we let K̂ be a surface obtained from K by gluing a once-punctured
disk on each boundary component of K. By [FM12, Proposition 3.9], the inclusion
K →֒ K̂ induces a homomorphism Map(K) → Map(K̂), whose kernel is free abelian,
generated by twists about the boundary curves of K.

Let now StabMap(Σ)(K) be the subgroup of Map(Σ) made of all mapping classes
that preserve the isotopy class of K. The following lemma yields a homomorphism
StabMap(Σ)(K) → Map(K̂).

Lemma 2.3. Let Σ be a surface, and let K ⊆ Σ be a subsurface of finite type. Then
every Φ ∈ StabMap(Σ)(K) has a representative φ ∈ Homeo(Σ) such that φ(K) = K, and

in addition any two such representatives induce the same element of Map(Σ̂).

Proof. Let φ0 be a representative of Φ in Homeo(Σ). Every isotopy K × [0, 1] → Σ
between K and φ0(K) has image contained in a subsurface of Σ of finite type, and
therefore can be extended to an isotopy of Σ. The first part of the lemma follows. The
additional part follows from the observation that any two such representatives have the
same action on homotopy classes of essential simple closed curves of K.

We also let FixMap(Σ)(K) be the subgroup of Map(Σ) made of all elements that have
a representative φ ∈ Homeo(Σ) such that φ(K) = K and φ|K = idK . We note that Dehn
twists about boundary curves of K belong to FixMap(Σ)(K).

Lemma 2.4. Let Σ be a surface, let K ⊆ Σ be a subsurface of finite type, and let K̂ be
a surface obtained from K by gluing a once-punctured disk on each boundary component
of K.

Then there exists a homomorphism StabMap(Σ)(K) → Map(K̂) whose kernel is equal
to FixMap(Σ)(K).
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Proof. Every element in the kernel of this homomorphism has a representative φ ∈
Homeo(Σ) such that φ(K) = K, and being in the kernel implies that this representative
φ is a product of peripheral Dehn twists. One can thus isotope φ to get a representative
φ′ such that φ′

|K = id.

Lemma 2.5. Let Σ be a surface, and let K ⊆ Σ be a subsurface of finite type.

1. The setwise stabilizer of CΣ(K) in the Map(Σ)-action on C(Σ) is equal to StabMap(Σ)(K).

2. The pointwise stabilizer of CΣ(K) in the Map(Σ)-action on C(Σ) is equal to FixMap(Σ)(K).

Proof. An element of Map(Σ) is in the stabilizer of C(Σ) if and only if it has a represen-
tative φ that fixes the boundary curves of K (and therefore such that φ(K) = K). The
second statement then follows from the case of finite-type surfaces.

2.2 Review on quasi-trees of metric spaces

We now review the celebrated construction of Bestvina, Bromberg and Fujiwara from
[BBF15] which will be used in the next section.

An action of a group G on a collection Y of metric spaces is metric-preserving if for
every g ∈ G and every Y ∈ Y, there exists an isometry ιYg : Y → gY , so that for all

g, h ∈ G and every Y ∈ Y, one has ιYgh = ιhYg ◦ ιYh . A G-equivariant projection family is
a pair (Y, (πY (Z))Y 6=Z∈Y) where

• Y is a collection of metric spaces equipped with a metric-preserving G-action,

• πY (Z) is a nonempty subset of Y for any two distinct Y,Z ∈ Y,

• for every g ∈ G and any two distinct Y,Z ∈ Y, one has πgY (gZ) = ιYg (πY (Z)).

Definition 2.6. Let G be a group. A G-equivariant projection family (Y, (πY (Z))Y 6=Z∈Y)
is a BBF family for G if, letting dY (X,Z) := diam(πY (X)∪πY (Z)) for every X,Y,Z ∈ Y

with Y 6= X,Z, there exists θ > 0 such that the following conditions hold:

(P0) For all distinct X,Y ∈ Y, one has dY (X,X) ≤ θ;

(P1) For all pairwise distinct X,Y,Z ∈ Y, if dY (X,Z) > θ then dX(Y,Z) ≤ θ;

(P2) For all X,Z ∈ Y, the set {Y 6= X,Z | dY (X,Z) > θ} is finite.

The following statement records the output of the Bestvina–Bromberg–Fujiwara con-
struction.

Theorem 2.7 (Bestvina–Bromberg–Fujiwara [BBF15]). Let G be a group. Assume that
there exists a BBF family (Y, (πY (Z))Y 6=Z∈Y) for G, with all spaces in Y uniformly hy-
perbolic. Then G acts by isometries on a hyperbolic metric space C(Y) with the following
properties:

1. every Y ∈ Y embeds as a geodesically convex subspace of C(Y),
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2. there exists D > 0 such that for all Y,Z ∈ Y with Y 6= Z, one has ∆C(Y)(Y,Z) < D,

3. for every Y ∈ Y and every g ∈ StabG(Y ), if g is loxodromic WPD for the action of
StabG(Y )/FixG(Y ) on Y , then g is loxodromic WWPD for the G-action on C(Y).

Proof. Let C(Y) be the quasi-tree of metric spaces defined in [BBF15, Definition 4.1].
As all spaces in Y are uniformly hyperbolic, the space C(Y) is hyperbolic [BBF15, The-
orem 4.17]. Every space in Y is geodesically convex in C(Y) by [BBF15, Lemma 4.2].
The existence of the constant D follows from the fact that projections have uniformy
bounded diameter in view of Axiom (P0) together with [BBF15, Corollary 4.10]. The
conclusion about WWPD isometries is given in [BBF15, Proposition 4.20].

2.3 Quasi-trees of curve graphs for big mapping class groups

Let Σ be a connected orientable surface. Assume that Σ contains a connected nondis-
placeable subsurface K of finite type, and denote by [K] the isotopy class of K. Then
Map(Σ) acts in a metric-preserving way on

YK := {CΣ([K
′])|[K ′] ∈ Map(Σ) · [K]}.

As K is nondisplaceable and of finite type, given any two distinct subsurfaces K1,K2 ∈
Homeo(Σ) ·K, at least one of the boundary components of K2 intersects the subsurface
K1 in an essential curve or arc. This observation yields, for every K1 ∈ Map(Σ) ·K, a
projection

πCΣ(K1)(CΣ(K2)) ⊆ CΣ(K1),

equal to the set of all isotopy classes of essential simple closed curves on K1 that are
disjoint from some boundary curve of K2 that intersects K1, see [MM00]. The family
YK together with these projections form a Map(Σ)-equivariant projection family.

Proposition 2.8. Let Σ be a connected orientable surface which contains a connected
nondisplaceable subsurface K of finite type.

Then the projection family (YK , (πY (Z))Y 6=Z∈YK
) is a BBF family for Map(Σ).

Proof. Given Y ∈ Y and X,Z ∈ Y \ {Y }, we let dY (X,Z) := diamY (πY (X) ∪ πY (Z)).
We will now check the various projection axioms from Definition 2.6.

Condition (P0) is satisfied because the projections have uniformly bounded diameter.
We now check Condition (P1). Let X,Y,Z ∈ Y be pairwise distinct – these are curve

complexes associated to finite-type subsurfaces KX ,KY ,KZ of Σ. As KX ∪ KY ∪ KZ

is compact, it is contained in some subsurface K̃ ⊆ Σ of finite type. By working within
the surface K̃, Condition (P1) follows from [BBF15, Lemma 5.2] – notice indeed that
the threshold constant θ given that lemma is independent from the topology of K̃.

We finally check Condition (P2). The proof comes from [BBF15, Lemma 5.3]. It is
enough to prove that given any two essential simple closed curves x, y on Σ, there are
only finitely many isotopy classes of subsurfacesK ′ in the Map(Σ)-orbit of K such that x
and y both intersect K ′, and whenever x′, y′ are simple closed curves that are contained
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and essential in K ′, and are disjoint from x and y, respectively, then dCΣ(K ′)(x
′, y′) > 10.

Let Kxy ⊆ Σ be the smallest subsurface of Σ (of finite type) that contains x and y: this
is well-defined up to isotopy. If K ′ cannot be isotoped to be contained in Kxy, then there
is a curve or an arc in K ′ \ Kxy, so dC(K ′)(x

′, y′) is bounded. We can thus restrict to
only considering subsurfaces K ′ with K ′ ⊆ Kxy, and in this case then the result follows
from the finite type case [BBF15, Lemma 5.3] – again it is important to observe that
the constants given by that lemma are independent from the topology of K ′.

Given a subsurface K of Σ, we say that an element f ∈ Map(Σ) is K-pseudo-Anosov
if f preserves the isotopy class of K and, denoting by K̂ a surface obtained from K by
gluing a once-punctured disk on every boundary component of K, the mapping class f
induces a pseudo-Anosov mapping class of K̂.

Theorem 2.9. Let Σ be a connected orientable surface with ξ(Σ) > 0, and assume that
Σ contains a nondisplaceable connected subsurface K of finite type.

Then there exists an unbounded hyperbolic space X equipped with a continuous nonele-
mentary isometric action of Map(Σ) such that every element of Map(Σ) which is K-
pseudo-Anosov is a WWPD loxodromic element for the Map(Σ)-action on X.

Proof. Let K ⊆ Σ be a nondisplaceable connected subsurface of Σ of finite type; without
loss of generality we can assume that K supports a pseudo-Anosov mapping class. All
graphs CΣ([K

′]) with [K ′] ∈ Map(Σ) · [K] are isomorphic to the curve graph of K;
in particular, in view of work of Masur and Minsky [MM99], they are all uniformly
hyperbolic and unbounded. Theorem 2.7 thus yields us an unbounded hyperbolic space
X = C(YK) associated to the BBF family (YK , (πY (Z))Y 6=Z∈YK

), on which Map(Σ) acts
by isometries.

The action of Map(Σ) on X is continuous because if f ∈ Map(Σ) and (fn)n∈N ∈
Map(Σ)N converges to f , then for every isotopy class K of finite-type subsurfaces, the
images fn(K) are eventually constant, and for every isotopy class c of essential simple
closed curves, the images fn(c) are eventually constant.

We finally check that all K-pseudo-Anosov elements of Map(Σ) are loxodromic
WWPD elements for the Map(Σ)-action on X. By work of Bestvina and Fujiwara [BF02,
Proposition 11], the action of every pseudo-Anosov element of Map(K̂) on the curve
graph C(K̂) is WPD. The conclusion therefore follows from Theorem 2.7, together with
the identification of StabMap(Σ)(CΣ(K))/FixMap(Σ)(CΣ(K)) with a subgroup of Map(K̂),
provided by Lemmas 2.4 and 2.5.

2.4 Application to bounded cohomology

Given a subgroup G ⊆ Map(Σ) and a subsurface K ⊆ Σ of finite type, we let StabG(K)
be the subgroup of G made of all mapping classes that preserve the isotopy class of K
– in other words StabG(K) = StabMap(Σ)(K) ∩G.

Definition 2.10. Let Σ be a connected orientable surface, and let K ⊆ Σ be a finite-type
subsurface. Let K̂ be a surface obtained from K by gluing a once-punctured disk on every
boundary component of K.
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A subgroup G ⊆ Map(Σ) is K-nonelementary if the image of StabG(K) in Map(K̂)
contains two independent pseudo-Anosov mapping classes of K̂.

A theorem of Handel and Mosher [HM19, Theorem 2.10] asserts that for every group
G acting isometrically on a hyperbolic space with two independent loxodromic elements
and at least one loxodromic WWPD element, the second bounded cohomology H2

b (G,R)
contains an embedded ℓ1. As a consequence of Theorem 2.9, we thus obtain the following
corollary, which generalizes earlier results of Bavard and Walker [BW18, Theorem 9.1.1]
and Rasmussen [Ras19, Corollary 1.2]. Again, the case of finite-type surfaces is due to
Bestvina and Fujiwara [BF02].

Corollary 2.11. Let Σ be a connected orientable surface with ξ(Σ) > 0, and assume that
Σ contains a nondisplaceable subsurface of finite type. Then H2

b (Map(Σ),R) contains an
embedded ℓ1.

More generally, let K be a nondisplaceable connected subsurface of finite type of Σ,
and let H ⊆ Map(Σ) be a subgroup which is K-nonelementary. Then H2

b (H,R) contains
an embedded ℓ1.

3 Normal subgroups via geometric small cancellation

The goal of the present section is to prove Theorem 3 from the introduction: if Σ con-
tains a nondisplaceable subsurface of finite type, then Map(Σ) contains uncountably
many normal subgroups, including nonabelian free normal subgroups. This is proved in
Section 3.2 below, after we recalled background on geometric small cancellation as devel-
oped by Dahmani, Guirardel and Osin [DGO17] in Section 3.1. Finally, in Section 3.3,
we show that in fact Map(Σ) contains nontrivial normal free subgroups exactly when Σ
has nondisplaceable subsurfaces of finite type.

3.1 Review on geometric small cancellation

We now review work of Dahmani, Guirardel and Osin [DGO17] that will be used in the
next section, following the exposition from [Gui14] and [Cou16].

Let X be a hyperbolic metric space equipped with an isometric action of a group G,
and let δ ≥ 0 be the hyperbolicity constant of X. Given a subset Q ⊆ X and r ≥ 0,
we denote by Q+r the closed r-neighborhood of Q. Given two subsets Q1, Q2 ⊆ X, we
define the overlap of Q1 and Q2 as

∆X(Q1, Q2) := diam(Q+20δ
1 ∩Q+20δ

2 ).

We say that Q is almost convex if given any two points x, y ∈ Q, there exist
x′, y′ ∈ Q with d(x, x′) ≤ 8δ and d(y, y′) ≤ 8δ, such that there exist geodesic segments
[x, x′], [x′, y′], [y′, y] that are contained in Q.

A moving pair for the G-action on X is a pair (H,Q), where Q is an almost convex
subset of X and H is a normal subgroup of the setwise G-stabilizer of Q, which we
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Figure 2: The small cancellation condition.

denote by StabG(Q). The injectivity radius of the pair (H,Q) is defined as

injX(H,Q) = inf{dX (x, hx)|x ∈ Q,h ∈ H \ {1}},

and its fellow traveling constant is

∆∗
X(H,Q) = sup{∆(Q, tQ)|t ∈ G \ StabG(Q)}.

Given A > 0 and ε > 0, we say that a moving pair (H,Q) satisfies the (A, ε)-small
cancellation condition if injX(H,Q) ≥ A and ∆∗

X(H,Q) ≤ ε · injX(H,Q).

Example 3.1. A first example to keep in mind is the following: let G be a group acting
on a hyperbolic space X, and let g ∈ G be a WPD loxodromic element. For simplicity,
let us assume that G is torsion-free and that g has an invariant axis Ag on which it acts
by translation – for example G could be a surface group acting properly discontinuously
on the hyperbolic plane H2. Then for every n ∈ N, the pair (Ag, 〈g

n〉) is a moving pair.
Using the WPD property, we can always choose n ∈ N large enough to ensure that the
overlap between distinct G-translates of Ag is always small compared to the translation
length of gn (as in Figure 2). In other words, for every A > 0 and ε > 0, there exists
n ∈ N so that the moving pair (Ag, 〈g

n〉) satisfies the (A, ε)-small cancellation condition.

We define the translation length of an isometry g of X as ||g||X = infx∈X d(x, gx).
The following theorem is (in a slightly simplified version) the main theorem of geometric
small cancellation theory, due to Dahmani, Guirardel and Osin [DGO17] (see also [Gui14,
Theorem 1.3]).

Theorem 3.2 (Dahmani–Guirardel–Osin [DGO17]). Let G be a group, and let X be a
hyperbolic metric space equipped with an isometric G-action. For every C ≥ 0, there
exist A = A(C) > 0 and ε = ε(C) > 0 such that for every moving pair (H,Q) satisfying
the (A, ε)-small cancellation condition, the following hold:
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1. there exists a subset Z ⊆ G such that the normal subgroup 〈〈H〉〉 of G generated
by H satisfies 〈〈H〉〉 = ∗t∈Z(tHt−1);

2. the projection G → G/〈〈H〉〉 induces an injective homomorphism StabG(Q)/H →
G/〈〈H〉〉;

3. all nontrivial elements of 〈〈H〉〉 act loxodromically on X with translation length at
least C.

Following [DGO17], given a group G and an element g ∈ G, we define the elementary
subgroup EG(g) as

EG(g) = {h ∈ G|∃n,m ∈ Z \ {0}, gm = hgnh−1}.

We will need the following proposition, which provides a situation where one can apply
the geometric small cancellation theorem. See [DGO17, Section 6.2] or [Gui14, Proposi-
tion 2.15].

Proposition 3.3. Let G be a group, and let X be a hyperbolic metric space equipped
with a nonelementary isometric G-action. Let H ⊆ G be a subgroup. Assume that H is
not cyclic, and that there exists g ∈ H which acts loxodromically on X, has the WPD
property with respect to the G-action on X, and such that EG(g) is isomorphic to Z.

Then for every A > 0 and every ε > 0, there there exists a rank 2 free subgroup
F ⊆ H and an almost convex subspace QF ⊆ X with StabG(QF ) = F , such that (F,Q)
satisfies the (A, ε)-small cancellation condition.

3.2 Abundance of normal subgroups

Given a group G and an element g ∈ G, we say that g is symmetryless if EG(g) = 〈g〉.
We recall the definition of a K-nonelementary subgroup from Definition 2.10

Definition 3.4. Let Σ be a connected orientable surface, and let K ⊆ Σ be a finite-type
subsurface. Let K̂ be a surface obtained from K by gluing a once-punctured disk on every
boundary component of K.

A subgroup G ⊆ Map(Σ) is K-generic if G is K-nonelementary, and in addition
G contains an element g supported on K whose image in Map(K̂) is a symmetryless
pseudo-Anosov mapping class.

Notice that when Σ is an infinite-type surface that contains a nondisplaceable sub-
surface of finite type, one can always find a nondisplaceable subsurface K ⊆ Σ of finite
type such that Map(Σ) is K-generic – this can be viewed using [DGO17, Lemma 6.18],
for instance. This condition is also satisfied by many interesting subgroups of Map(Σ),
such as the Torelli subgroup, the pure mapping class group (acting trivially on the space
of ends), or the countable subgroup made of finitely supported elements, for instance.

We would also like to observe that a K-generic subgroup G of Map(Σ) actually
contains many elements that are supported onK: indeed, starting from a pseudo-Anosov
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element f supported on K and an element g that preserves K and induces a pseudo-
Anosov mapping class of K̂, one builds a new element supported on K by considering
the commutator [f, g].

Recall that a group G is SQ-universal if every countable group embeds in some
quotient of G. The goal of the present section is to prove the following theorem, which
is an elaboration on Theorem 3 from the introduction.

Theorem 3.5. Let Σ be a connected orientable surface with ξ(Σ) > 0, and assume
that Σ contains a nondisplaceable subsurface K of finite type. Let G ⊆ Map(Σ) be a
K-generic subgroup. Then the following conclusions hold.

1. The group G contains a normal nonabelian free subgroup.

2. There exists a rank 2 free subgroup F ⊆ G such that for every countable group Γ,
there exists a quotient θ : G ։ G such that Γ embeds in θ(F ). In particular G is
SQ-universal and contains uncountably many normal subgroups.

Here is a comment about the second conclusion: the last part of this conclusion,
namely, that G contains uncountably many normal subgroups, follows from the first
in the following way. Since F is countable, any given quotient of F is countable, and
therefore can only contain countably many 2-generated subgroups. On the other hand,
there are uncountably many 2-generated groups, and every such group embeds in a
quotient of F of the form F/(F ∩N) for some normal subgroup N EG. Therefore, the
groups F ∩N take uncountably many values as N ranges over all normal subgroups of
G. This shows that G has uncountably many normal subgroups.

Remark 3.6. Theorem 3.5 shows in particular that every countable group embeds in a
quotient of Map(Σ). One can wonder whether a stronger statement holds, namely that
every countable group embeds in Map(Σ) itself without having to pass to quotients.

On the other hand, Theorem 3.5 also states the SQ-universality of many countable
subgroups of Map(Σ), for which this stronger conclusion cannot hold as there are un-
countably many 2-generated groups.

We now turn to the proof of Theorem 3.5. We make the following definition.

Definition 3.7. Let Σ be a connected orientable surface, let K ⊆ Σ be a connected
nondisplaceable subsurface of finite type, and let G ⊆ Map(Σ) be a subgroup. Let H ⊆
StabG(K) be a subgroup made of elements that are supported on K, and let Q ⊆ CΣ(K)
be a subspace. Denote by Ĝ and Ĥ the respective images of StabG(K) and H in Map(K̂),
and by Q̂ the image of Q under the natural identification between CΣ(K) and C(K̂).

Let A > 0 and ε > 0. We say that (H,Q) is an (A, ε)-small cancellation pair if the
following conditions hold:

1. (Ĥ, Q̂) is a moving pair and satisfies the (A, ε)-small cancellation condition with
respect to the Ĝ-action on C(K̂), and

2. the Ĝ-stabilizer of Q̂ has a lift in StabG(K) containing H and made of elements
that are supported on K.
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We say that H is an (A, ε)-small cancellation subgroup if there exists Q ⊆ CΣ(K) such
that (H,Q) is an (A, ε)-small cancellation pair.

Our proof of Theorem 3.5 relies on three essential steps: finding appropriate small
cancellation subgroups in StabG(K), applying small cancellation theory to the StabG(K)-
action on the curve graph CΣ(K), and applying small cancellation theory once more to
the G-action on the quasi-tree of metric spaces constructed in Theorem 2.9.

Step 1: Small cancellation on the curve graph of K̂.

Lemma 3.8. For every L > 0, there exist A = A(L) > 0 and ε = ε(L) > 0 such that
the following holds. Let Σ be a connected orientable surface which contains a connected
nondisplaceable subsurface K of finite type, and let G ⊆ Map(Σ) be a subgroup. Let H ⊆
StabG(K) be a subgroup made of elements supported on K, and let 〈〈H〉〉 be the normal
subgroup of StabG(K) generated by H. Assume that there exists a subset Q ⊆ CΣ(K)
such that (H,Q) is an (A, ε)-small cancellation pair.

Then (H,Q) is a moving pair and satisfies the (A, ε)-small cancellation condition
with respect to the action of StabG(K) on CΣ(K). In particular,

1. 〈〈H〉〉 is equal to a free product of conjugates of H;

2. denoting by GQ the setwise stabilizer of Q in StabG(K), the group H is normal in
GQ and the inclusion GQ ⊆ StabG(K) induces an injective homomorphism

GQ/H →֒ StabG(K)/〈〈H〉〉;

3. all nontrivial elements in 〈〈H〉〉 have translation length at least L on CΣ(K).

Proof. We focus on proving that (H,Q) is a moving pair and satisfies the (A, ε)-small
cancellation condition with respect to the action of StabG(K) on CΣ(K); the rest of the
conclusion then follows from Theorem 3.2. As in Definition 3.7, we will denote by Ĝ
and Ĥ the respective images of StabG(K) and H in Map(K̂), and by Q̂ the image of Q
under the natural identification between CΣ(K) and C(K̂).

We first prove that (H,Q) is a moving pair for the StabG(K)-action on CΣ(K). By
the first assumption from Definition 3.7, the pair (Ĥ, Q̂) is a moving pair for the Ĝ-action
on C(K̂), so Q̂ (and hence Q) is almost convex. Therefore, we only need to check that
H is normal in GQ. By the second assumption of Definition 3.7, the Ĝ-stabilizer of Q̂

has a lift S̃tab(Q̂) in GQ which contains H and is made of elements that are supported
on K. This implies that the extension

1 → FixG(K) → GQ → Stab
Ĝ
(Q̂) → 1

is split and every element of S̃tab(Q̂) commutes with every element of FixG(K). There-

fore GQ splits as a direct product isomorphic to S̃tab(Q̂)× FixG(K). In addition, as Ĥ

is normal in the Ĝ-stabilizer of Q̂, it follows that H is normal in S̃tab(Q̂), whence in GQ.
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We now prove that (H,Q) satisfies the (A, ε)-small cancellation condition with re-

spect to the action of StabG(K) on CΣ(K). As H ⊆ S̃tab(Q̂), we have H ∩ FixG(K) =
{1}, and therefore the injectivity radius of (H,Q) is equal to the injectivity radius of
(Ĥ, Q̂). Let now t ∈ StabG(K) \ GQ. Then the image t̂ of t in Ĝ does not stabilize Q̂,
and

∆CΣ(K)(Q, tQ) = ∆C(K̂)(Q̂, t̂Q̂).

As (Ĥ, Q̂) satisfies the (A, ε)-small cancellation condition (Assumption 1 from Defini-
tion 3.7), the conclusion follows.

Step 2: Construction of small cancellation subgroups. This is the crucial place
in the argument where we use the fact that G is K-generic.

Lemma 3.9. Let Σ be a connected orientable surface, let K ⊆ Σ be a connected nondis-
placeable subsurface of finite type, and let G ⊆ Map(Σ) be a K-generic subgroup. Let
g ∈ G be an element supported on K which induces a symmetryless pseudo-Anosov
mapping class of K̂.

Then for every A > 0 and ε > 0, there exists n ∈ N such that the cyclic group 〈gn〉
is an (A, ε)-small cancellation subgroup.

Proof. Let ĝ ∈ Ĝ be the image of g. By [BF02, Proposition 11], the pseudo-Anosov
element ĝ satisfies the WPD property for the action of Ĝ on C(K̂). As ĝ is symmetryless,
we deduce that there exist n ∈ N and a ĝ-invariant almost convex subset Q ⊆ C(K̂)
whose stabilizer in Map(K̂) is equal to 〈ĝ〉, such that (〈ĝn〉, Q) is a moving pair for
the Ĝ-action on C(K̂) which satisfies the (A, ε)-small cancellation condition (see e.g.
[Gui14, Proposition 2.8]). As 〈g〉 is a lift of 〈ĝ〉 to StabG(K), the second assumption
from Definition 3.7 is also satisfied. The lemma follows.

Lemma 3.10. Let Σ be a connected orientable surface, let K ⊆ Σ be a connected
nondisplaceable subsurface of finite type, and let G ⊆ Map(Σ) be a K-generic subgroup.

Then for every A > 0 and every ε > 0, there exist a rank two nonabelian free subgroup
F ⊆ StabG(K) made of elements supported on K, and a subspace Q ⊆ CΣ(K) stabilized
by F , such that for every normal subgroup N E F , the pair (N,Q) is an (A, ε)-small
cancellation pair.

Proof. Let g ∈ G be an element supported on K which induces a symmetryless pseudo-
Anosov mapping class of K̂ – this exists as G is K-generic. Let L > 0, and let A =
A(L) > 0 and ε = ε(L) > 0 be the constants provided by Lemma 3.8. By Lemma 3.9,
there exists n ∈ N such that 〈gn〉 is an (A, ε)-small cancellation subgroup. Applying
Lemma 3.8, the normal subgroup 〈〈gn〉〉 of StabG(K) generated by gn is free, and every
nontrivial element of 〈〈gn〉〉 induces a pseudo-Anosov mapping class of K̂ (because it
acts on CΣ(K) with translation length at least L by the third conclusion of Lemma 3.8).
In addition every element of 〈〈gn〉〉 is supported on K, and 〈〈gn〉〉 is not cyclic because
G is K-nonelementary. Let H = 〈〈gn〉〉, and let Ĥ be its image in Map(K̂). Notice that
the natural homomorphism StabG(K) → Map(K̂) restricts to a bijection H → Ĥ.
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By [BF02, Proposition 11], every pseudo-Anosov element of Map(K̂) has the WPD
property for the Map(K̂)-action on C(K̂). As E

Ĝ
(ĝ) is cyclic, we can apply Proposi-

tion 3.3 and get a rank 2 free subgroup F̂ ⊆ Ĥ and an almost convex subspace Q̂ ⊆ C(K̂)
such that F̂ = Stab

Ĝ
(Q̂) and the moving pair (F̂ , Q̂) satisfies the (A, ε)-small cancella-

tion condition with respect to the Ĝ-action on C(K̂).
Let F ⊆ H be the preimage of F̂ under the natural bijection H → Ĥ, so F is a

rank two nonabelian free subgroup of StabG(K) made of elements supported on K. Let
Q ⊆ CΣ(K) be the image of Q̂ under the natural identification between C(K̂) and CΣ(K).
Then Q is stabilized by F , and for every normal subgroup N E F , the pair (N,Q) is an
(A, ε)-small cancellation pair, as required.

Step 3: Small cancellation on the quasi-tree of metric spaces.

Lemma 3.11. Let Σ be a connected orientable surface, let K ⊆ Σ be a nondisplaceable
subsurface of finite type, and let G ⊆ Map(Σ). There exists L > 0 such that for every
normal subgroup N E StabG(K), if every element of N acts on C(K̂) with translation
length at least L, then

1. the normal subgroup 〈〈N〉〉 of G generated by N is a free product of conjugates of
N , and

2. the inclusion StabG(K) ⊆ G induces an injective homomorphism

StabG(K)/N →֒ G/〈〈N〉〉.

Proof. Let X be the quasi-tree of metric spaces associated to the BBF family YK pro-
vided by Proposition 2.8. For every K ′ ∈ Map(Σ) · K, the space CΣ(K

′) embeds as a
geodesically convex subspace in X (by the first conclusion of Theorem 2.7). Let D > 0
be a constant (provided by the second conclusion of Theorem 2.7) such that for any
two distinct K1,K2 ∈ Map(Σ) · K, one has ∆X(CΣ(K1), CΣ(K2)) < D. Let A > 0 and
ε > 0 be constants given by the small cancellation theorem (Theorem 3.2), applied to
the G-action on X with C = 0.

As recalled above, the first assertion of Theorem 2.7 ensures that CΣ(K) is geodesi-
cally convex in X. It is also StabG(K)-invariant, so we can (and shall) choose L > 0
such that for every g ∈ StabG(K), if ||g||CΣ(K) > L, then ||g||X > max{A,D/ε}.

We will now prove that (N, CΣ(K)) satisfies the (A, ε)-small cancellation condition
with respect to the G-action on X; the lemma will then follow from the geometric small
cancellation theorem (Theorem 3.2). First, the group N is normal in StabG(K), which
is equal to the G-stabilizer of CΣ(K) in X (Lemma 2.5). Second, the injectivity radius
of N is at least equal to max{A,D/ε}. Finally, for every t ∈ G \ StabG(K), we have

∆X(CΣ(K), tCΣ(K)) < D < ε injX(N, CΣ(K)).

The lemma follows.
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Conclusion.

Proof of Theorem 3.5. In the whole proof, we let L > 0 be the constant provided by
Lemma 3.11, and we let A = A(L) > 0 and ε = ε(L) > 0 be the constants provided by
Lemma 3.8.

We start by proving the existence of a normal nonabelian free subgroup of G. By
Lemma 3.9, there exists an element k ∈ StabG(K) supported on K such that 〈k〉 is an
(A, ε)-small cancellation subgroup. Applying Lemma 3.8, we deduce that the normal
subgroup N0 of StabG(K) generated by k is free and purely K-pseudo-Anosov, in fact
all nontrivial elements of N0 are supported on K and act on CΣ(K) with translation
length at least L. It is also nonabelian as G is K-nonelementary. It therefore follows
from Lemma 3.8 that the normal subgroup of G generated by N0 is a nonabelian free
group.

We now turn to proving the second conclusion of Theorem 3.5. By Lemma 3.10, we
can find a rank two nonabelian free subgroup F ⊆ StabG(K) and a subspace Q ⊆ CΣ(K)
stabilized by F such that for every normal subgroup N E F , the pair (N,Q) an (A, ε)-
small cancellation pair.

Let Γ be a countable group. We aim to embed Γ in a quotient G of G in such a way
that the image of Γ in G is contained in the image of F under the quotient map G ։ G.

As every countable group embeds in a two-generated group – in other words F2 is
SQ-universal [LS77, Theorem 10.3], we can find a normal subgroup N E F such that Γ
embeds in F/N . Our choice of F andQ ensures that (N,Q) is an (A, ε)-small cancellation
pair. Let N ′ be the normal closure of N in StabG(K). Let GQ be the setwise stabilizer
of Q in StabG(K). Then F/N embeds in GQ/N , and by Lemma 3.8 this in turns
embeds in StabG(K)/N ′, and all elements of N ′ act loxodromically on CΣ(K) with
translation length at least L. Denoting by N ′′ the normal subgroup of G generated by
N ′, Lemma 3.11 then ensures that StabG(K)/N ′ embeds in G/N ′′. In conclusion we
have proved that

Γ →֒ F/N →֒ StabG(K)/N ′ →֒ G/N ′′,

concluding our proof.

3.3 Normal free subgroups and nondisplaceable finite-type subsurfaces

In fact, nontrivial normal free subgroups in the mapping class group turns out to be a
characterization of surfaces that contain nondisplaceable subsurfaces of finite type.

Theorem 3.12. Let Σ be a connected orientable surface of infinite type. The following
statements are equivalent.

1. The surface Σ contains a nondisplaceable subsurface of finite type.

2. The group Map(Σ) contains a nontrivial normal free subgroup.

Proof. The fact that 1 ⇒ 2 has been proved in Theorem 3.5, so we focus on proving that
¬1 ⇒ ¬2. Assume that every subsurface of Σ of finite type is displaceable, and let N
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be a normal subgroup of Map(Σ). We will prove that N contains an abelian subgroup
of rank 2.

Let g ∈ N \ {id}. We first claim that there exists a Dehn twist h ∈ Map(Σ) that
does not commute with g. Indeed otherwise g would fix the isotopy class of every simple
closed curve on Σ, and it follows that g = id by [HMV19].

Let now f = [g, h], which is nontrivial. Writing f = (ghg−1)h−1, we see that f is a
product of two finitely supported mapping classes, so f is supported on a subsurface K
of finite type. In addition, writing f = g(hg−1h−1), we see that f ∈ N . By assumption,
there exists η ∈ Map(Σ) such that η(K) ∩K 6= ∅. Then the subgroup generated by f
and ηfη−1 is abelian of rank 2, concluding our proof.

4 Surfaces with no finite-type nondisplaceable subsurface

Under some light topological conditions on the surface Σ, we now aim to prove a converse
statement to the work from Section 2, saying that in the absence of nondispaceable sub-
surfaces, the mapping class group Map(Σ) does not have any nonelementary continuous
action on a hyperbolic space.

4.1 Statement

We now present the two conditions we will impose on the surface Σ.

Tameness of the end space. The first one is a topological condition giving some
control on the topology of the end space E of Σ. The space E is equipped with the
following partial order [MR19, Definition 4.1]: given x, y ∈ E, we let x 4 y if for every
open neighborhood U of x, there exist an open neighborhood V of y in E and f ∈ Map(Σ)
such that f(V ) ⊆ U and f(V ∩Eg) ⊆ U ∩Eg. We say that an end x ∈ E is of maximal
type if it is maximal for the order 4.

Let x ∈ E. A neighborhood U of x is stable [MR19, Definition 4.14] if for every
open neighborhood U ′ ⊆ U of x, there is a homeomorphic copy of (U,U ∩ Eg) inside
(U ′, U ′ ∩ Eg). Following [MR19, Definition 6.14], we say that Σ has tame endspace if
every x ∈ E which is either of maximal type, or an immediate predecessor of an end
of maximal type (for the order 4) has a stable neighborhood. We refer to [MR19,
Section 6.3] for a thorough discussion of this condition. Also, we mention that even
if we restrict to surfaces with tame endspace, we are still considering a large class, in
particular there are uncountably many pairwise non-homeomorphic surfaces with tame
endspace, see [FGM20, Remark 5.5].

CB generation of the mapping class group. The second condition we impose on Σ
roughly says that the mapping class group Map(Σ) has a well-controlled geometry, from
the point of view of geometric group theory of Polish groups as developed by Rosendal
in [Ros]. Let G be a Polish topological group. A subset A ⊆ G is coarsely bounded,
abbreviated CB, if for every continuous isometric G-action on a metric space X, the
diameter of every A-orbit in X is finite. The group G is CB-generated if it admits a

21



generating subset which is coarsely bounded. Among surfaces with tame end spaces,
surfaces whose mapping class group is CB-generated have been fully characterized by
Mann and the third named author in [MR19, Theorem 1.6].

The goal of the present section is to prove the following theorem.

Theorem 4.1. Let Σ be a connected orientable surface with tame end space such that
Map(Σ) is CB-generated. Assume that Σ does not contain any nondisplaceable subsurface
of finite type.

Then Map(Σ) does not have any continuous nonelementary isometric action on a
hyperbolic metric space.

Remark 4.2. It would be interesting to know whether the continuity assumption can be
removed from the statement of Theorem 4.1, in other words, whether Map(Σ) admits
any nonelementary isometric action on a hyperbolic metric space X at all. A related
question is whether Map(Σ) satisfies an automatic continuity property, saying that every
homomorphism from Map(Σ) to a separable topological group (e.g. to Isom(X) where
X is a separable metric space) is continuous. This question has been recently answered
in a positive way by Mann [Man20] in some cases, when the end space of Σ is the union
of a Cantor set and a finite set. The question however seems to remain open in general.

4.2 An obstruction to continuous isometric actions on hyperbolic spaces

Our proof of Theorem 4.1 relies on the following general criterion. We will check that
Map(Σ) satisfies this criterion in the next section.

Lemma 4.3. Let G be a topological group. Assume that there exists a split short exact
sequence

1 → N → G → A → 1

with A abelian and N contained in the closure of a normal subgroup H E G such that
for every element h ∈ H, there exists a CB subgroup of G that contains h.

Then G does not have any continuous nonelementary isometric action on a hyperbolic
space.

Proof. Let X be a hyperbolic space equipped with a continuous isometric action of G.
We aim to prove that either all G-orbits in X have finite diameter, or else that G has a
finite orbit in ∂∞X.

Since every element h ∈ H is contained in some CB subgroup of G (that might
depend on h), it follows that every element of H acts elliptically on X. Using Gro-
mov’s classification of isometric group actions on hyperbolic spaces ([Gro87], see also
e.g. [CdCMT15, Proposition 3.1]), we deduce that either all H-orbits in X have finite
diameter, or else the H-action on X is horocyclic. In the latter case, as H is normal in
G, the unique point of ∂∞X in the limit set of H is G-invariant.

We can therefore assume that all H-orbits in X have finite diameter. As the G-action
on X is continuous and N is contained in the closure of H, it follows that all N -orbits
in X have finite diameter.
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Let T be a lift of A in G. Then every element of G is a product of an element of
N and an element of T . As T is abelian, either all T -orbits in X have finite diameter,
or else its limit set Λ∞T ⊆ ∂∞X has cardinality 1 or 2. If all T -orbits in X have finite
diameter, then the same holds true for all G-orbits and we are done.

We finally assume that |Λ∞T | ∈ {1, 2}. Let M ≥ 0 be sufficiently large so that
YM := {x ∈ X|diam(N · x) ≤ M} is nonempty. By normality of N , the set YM is
G-invariant. In particular YM is T -invariant, so denoting by Λ∞YM ⊆ ∂∞X its limit
set, we have Λ∞T ⊆ Λ∞YM . In addition, it follows from the definition of YM that every
point in Λ∞YM is fixed by N . In particular Λ∞T is N -invariant. As G is generated by
N and T it follows that Λ∞T is a finite G-invariant set in ∂∞X. This concludes our
proof.

4.3 Avenue surfaces and proof of Theorem 4.1

4.3.1 Avenue surfaces

In proving Theorem 4.1, we can always assume that Map(Σ) itself is not CB, as otherwise
the conclusion is obvious (every continuous isometric action of Map(Σ) on any metric
space has bounded orbits). For the remainder of this section, we will therefore assume
that the surface Σ is of the following form.

Definition 4.4. An avenue surface is a connected orientable surface Σ which does not
contain any nondisplaceable subsurface of finite type, whose end space is tame, and whose
mapping class group Map(Σ) is CB-generated but not CB.

The terminology avenue surface comes from the fact that Σ has exactly two maximal
ends, as established in our next lemma. An example to keep in mind is the avenue of
chimneys from the introduction, depicted in Figure 1. We recall (see Section 4.1) that
the endspace E of Σ is equipped with a partial order 4. This induces an equivalence
relation on E, where two ends x, y are equivalent if and only if x 4 y and y 4 x. In the
sequel, when we talk about equivalence classes of ends, this will always be with respect
to this equivalence relation.

Lemma 4.5. Let Σ be an avenue surface. Then Σ has either 0 or infinite genus, and Σ
has exactly two ends of maximal type.

Proof. Notice first as in [MR19, Example 2.4] that the genus of Σ is either 0 or infinite,
as otherwise any finite type subsurface of Σ whose genus matches that of Σ would be
nondisplaceable.

Let E be the end space of Σ, and let M be the set of all maximal elements in E.
We aim to prove that |M| = 2. By [MR19, Proposition 4.7], the set M is nonempty.
Also |M| 6= 1: otherwise [MR19, Lemma 4.12] implies that (E,Eg) is self-similar in the
sense of [MR19, Section 3.1].2 As Σ has 0 or infinite genus, [MR19, Proposition 3.1] then

2This means that for any partition E = E1 ⊔ · · · ⊔ En into clopen subsets, there exist i ∈ {1, . . . , n}
and a clopen subset D ⊆ Ei such that (D,D ∩ Eg) is homeomorphic to (E,Eg).
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K Σ′ X ′

X1

X2

Figure 3: The situation in the third paragraph of the proof of Lemma 4.5.

implies that Map(Σ) is globally CB, contradicting our assumption that Σ is an avenue
surface.

We first claim that M does not contain any infinite equivalence class. Indeed, oth-
erwise, let X be such an equivalence class. By [MR19, Proposition 4.7], the class X,
viewed as a subspace of E, is a Cantor set. If X is the unique maximal equivalence class,
then [MR19, Lemma 4.13] implies that (E,Eg) is self-similar, and therefore Map(Σ)
is globally CB as above, a contradiction. So assume that there exists another maximal
equivalence class X ′ (that may be finite or infinite). We can partition X into two disjoint
closed subsets X1,X2. As X

′ is a closed subset of E (see [MR19, Lemma 4.6]), it follows
from Lemma 1.1 that there exists a finite-type subsurfaceK of Σ that pairwise separates
X1,X2 and X ′ – see Figure 3. We now claim that this subsurface K is nondisplaceable,
which gives a contradiction.

To prove our claim that K is nondisplaceable, let Σ′ be the connected component of
Σ \K whose end set contains X ′, and assume towards a contradiction that there exists
f ∈ Homeo(Σ) such that f(K)∩K = ∅. Then f(K) cannot be contained in a component
of Σ \K distinct from Σ′, as otherwise one of the complementary components of f(Σ)
would contain ends in both X and X ′. And f(K) cannot be contained in Σ′ either as
otherwise only one complementary components of f(Σ) would contain ends in X. This
contradiction shows that K is nondisplaceable.

Therefore, every equivalence class of maximal elements is finite, and by [MR19,
Lemma 5.3], there are finitely many such classes. So M is finite. There remains to
prove that |M| ≤ 2, so assume towards a contradiction that |M| ≥ 3. By Lemma 1.1,
there exists a finite-type subsurface K of Σ that pairwise separates all ends in M.
We claim that the surface K is nondisplaceable. Indeed, otherwise, there would ex-
ist f ∈ Homeo(Σ) such that K is contained in one complementary component Σ′ of
f(K). Thus Ends(Σ′) would contain two ends in M, which is impossible as f−1(Σ′) is a
complementary component of K. We have thus proved that K is nondisplaceable: this
contradiction completes our proof.
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Lemma 4.6. Let Σ be an avenue surface, let E be its endspace, and let xA, xB be the
two maximal ends of Σ. Then for every x ∈ E \ {xA, xB}, the equivalence class of x
accumulates to both xA and xB.

Proof. Let [x] be the equivalence class of x. Assume towards a contradiction that [x]
does not accumulate to xB . The set [x] ∪ {xA} is a closed subset of E of cardinality at
least two, so it admits a nontrivial partition [x]∪{xA} = X1⊔X2 into two subsets which
are both closed in E. By Lemma 1.1, there exists a finite-type subsurface K ⊆ Σ that
pairwise separates the closed sets X1,X2 and {xB}. We claim that K is nondisplaceable:
this will give a contradiction, showing that [x] accumulates to xB . By symmetry [x] also
accumulates to xA, which completes our proof.

We are thus left proving the above claim, that K is nondisplaceable. Assume towards
a contradiction that there exists f ∈ Homeo(Σ) such that f(K) ∩ K 6= ∅. Let ΣB

be the complementary component of Σ \ K that contains xB . Then f(K) cannot be
contained in a complementary component of K distinct from ΣB, as otherwise one
complementary component of f(K) would contain both xB and ends in [x] – while no
complementary component ofK does. And f(Σ) cannot be contained in ΣB, as otherwise
one of the complementary components of f(K) would contain both xA and all ends in
[x] – while no complementary component of K does. This contradiction shows that K
is nondisplaceable.

4.3.2 Horizontally bounded mapping classes

Definition 4.7. Let Σ be an avenue surface, and let xA, xB be the two maximal ends of
Σ.

A subsurface R of Σ (possibly of infinite type) is horizontally bounded if R is disjoint
from some neighborhood of xA and from some neighborhood of xB, i.e. if Ends(R) ∩
{xA, xB} 6= ∅.

An element f ∈ Map(Σ) is horizontally bounded if f has a representative in Homeo(Σ)
which is supported on a horizontally bounded subsurface.

An example of a horizontally bounded subsurface is the subsurface R represented
in Figure 1 on the avenue of chimneys. We will also say that a horizontally bounded
subsurface is standard if it is bounded by exactly two separating curves. Notice that
every horizontally bounded subsurface is contained in a standard one (because every
neighborhood of either xA or xB in Σ ∪ E(Σ) contains a subneighborhood bounded
by a single separating curve, as follows from Lemma 1.1). Therefore, every horizontally
bounded mapping class has a representative in Homeo(Σ) that is supported on a standard
horizontally bounded subsurface.

We let Map0(Σ) be the subgroup of Map(Σ) of index at most 2 made of all mapping
classes that fix the two maximal ends xA and xB, as opposed to permuting them. We
denote by HB(Σ) the subset of Map0(Σ) made of all horizontally bounded mapping
classes.

Lemma 4.8. Let Σ be an avenue surface. The subset HB(Σ) is a normal subgroup of
Map0(Σ).
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Proof. That HB(Σ) is a subgroup follows from the observation that the union of two
horizontally bounded subsurfaces is again horizontally bounded. Normality follows from
the fact that if f ∈ HB(Σ) and g ∈ Map0(Σ), then the support of gfg−1 is equal to the
g-translate of the support of f , again a horizontally bounded subsurface.

4.3.3 Horizontally bounded mapping classes are contained in CB subgroups

Lemma 4.9. Let Σ be an avenue surface, with maximal ends xA and xB. Let R1, R2 ⊆ Σ
be two standard horizontally bounded subsurfaces. Assume that

1. R1 and R2 have the same genus (possibly infinite),

2. for every maximal countable equivalence class C of ends in E \ {xA, xB}, the in-
tersections C ∩ Ends(R1) and C ∩ Ends(R2) have the same cardinality, and

3. R1 and R2 both contain a representative of every uncountable equivalence class of
ends.

Then K1 and K2 are homeomorphic.

Proof. The proof is analogous to the argument found in [MR19, Lemma 6.17]. For every
i ∈ {1, 2}, let Xi be the set of ends that are maximal in E \ {xA, xB} and contained in
Ends(Ri), and whose equivalence class in E is countable. By [MR19, Observation 6.12],
the sets X1 and X2 are finite, and our second assumption ensures that there is a bijection
θ : X1 → X2 such that for every y ∈ X1, the ends y and θ(y) are equivalent. As Σ has
tame endspace, for every i ∈ {1, 2}, every end y ∈ Xi has a stable neighborhood Vi,y. As
any two stable neighborhoods of equivalent ends are homeomorphic [MR19, Lemma 4.17],
for every y ∈ X1, the neighborhoods V1,y and V2,θ(y) are homeomorphic.

For every i ∈ {1, 2}, let

Wi = Ends(Ri)−
⋃

y∈Xi

Vi,y.

We claim that for every i ∈ {1, 2}, the space Wi ∪ Ends(R3−i) is homeomorphic to
Ends(R3−i) by a homeomorphism preserving the subspace made of ends that are accu-
mulated by genus. Indeed, using [MR19, Proposition 4.7], we see that for every point
w ∈ Wi, there exists a point w′ ∈ Ends(R3−i) of maximal type in E \ {xA, xB} such
that w′ is an accumulation point of E(w). As Σ has tame endspace, the point w′ has
a stable neighborhood. By [MR19, Lemma 4.18], there exist a clopen neighborhood Uw

of x and a stable neighborhood Vw′ of w′ such that Uw ∪ Vw′ is homeomorphic to Vw′ .
As Wi is compact, it is covered by finitely many neighborhoods Uw. By considering all
intersections of these neighborhoods, we can in fact write Wi as the disjoint union of
finitely many neighborhoods Uw with the above property. The claim follows.

The above claim implies that Ends(R1) is homeomorphic to

W2 ∪ Ends(R1) = W1 ∪


W2 ∪

⋃

y∈X1

V1,y


 ,
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which in turn is homeomorphic to

W1 ∪ Ends(R2) = W1 ∪


W2 ∪

⋃

y∈X1

V2,θ(y)


 ,

and finally to Ends(R2). All these homeomorphisms preserve the subspaces made of ends
accumulated by genus. So R1 and R2 have homeomorphic endspaces. As in addition
they have the same genus, and they both have two boundary curves (because they are
standard), the conclusion follows from Richards’s classification of infinite-type surfaces
[Ric63].

Lemma 4.10. Let Σ be an avenue surface, let xA, xB be the two maximal ends of Σ,
and let R be a standard horizontally bounded subsurface of Σ.

Then for every neighborhood U of either xA or xB in Σ, there exists a homeomorphism
η of Σ such that η(R) ⊆ U .

Proof. Let E be the endspace of Σ. By Lemma 4.6, every equivalence class of ends in
E \ {xA, xB} accumulates to both xA and xB . In addition, as Map(Σ) is CB-generated,
it follows from [MR19, Lemma 6.4] that no end set of Σ has limit type in the sense of
[MR19, Definition 6.2]. Up to increasing R, we can therefore assume that R contains an
end from every equivalence class in E \ {xA, xB}.

We denote by Emc(xA, xB) the subspace of E \ {xA, xB} made of all ends that are
maximal in E \ {xA, xB} and whose equivalence class in E is countable. By [MR19,
Lemma 6.13], the set Emc(xA, xB) is a union of finitely many equivalence classes of ends.
Without loss of generality, we will assume that the neighborhood U is standard, i.e.
bounded by a single separating curve α on Σ. As U contains a representative of every
equivalence class in E \ {xA, xB} (Lemma 4.6) and the endspace of Σ is not of limit
type, we can find a separating curve β so that denoting by R′ the subsurface bounded
by α and β, the set Ends(R′) contains a representative of every equivalence class of
ends in E \ {xA, xB}, and contains at least as many representatives from every class of
Emc(xA, xB) as R. Up to removing a stable neighborhood of some of the equivalence
classes in Emc(xA, xB), we can assume that Ends(R) and Ends(R′) have the same number
of representatives in each of these classes. By adjusting the genus, we can arrange that
R and R′ are homeomorphic, and the lemma follows.

Lemma 4.11. Let Σ be an avenue surface. Every element in HB(Σ) is contained in a
CB subgroup of Map(Σ).

Proof. By [MR19, Theorem 5.7], there exists a finite-type subsurface K ⊆ Σ such that
the subgroup H ⊆ Map(Σ) made of all mapping classes which are represented by a
homeomorphism of Σ supported on Σ \ K is CB in Map(Σ). Now let f ∈ HB(Σ). By
definition, the mapping class f has a representative supported on a standard horizontally
bounded subsurface R. Lemma 4.10 therefore ensures that that there exists a homeo-
morphism η of Σ such that η(R) ⊆ Σ \K. It follows that ηfη−1 ∈ H. Therefore f is
contained in η−1Hη, which is a CB subgroup of Map(Σ).
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4.3.4 The kernel of the twist homomorphisms

Lemma 4.12. Let Σ be an avenue surface. There exist n ∈ N and a split exact sequence

1 → N → Map0(Σ) → Zn → 1

such that N is contained in the closure of HB(Σ).

Proof. Let E be the end space of Σ. By [MR19, Proposition 5.4], the space E has a
partition E = A⊔B into two disjoint self-similar subsets, each of which contains exactly
one of the two ends of Σ of maximal type xA, xB . Following [MR19, Definition 6.11], we
let Emc(xA, xB) be the subspace of E \ {xA, xB} made of all ends that are maximal in
E \ {xA, xB} and whose equivalence class in E is countable.

We aim to define a homomorphism Φ : Map0(Σ) → Zn for some n ∈ N. Let k be
the number of equivalence classes of ends contained in Emc(xA, xB), which is finite by
[MR19, Lemma 6.13], and let [y1], . . . , [yk] be these equivalence classes. In other words
Emc(xA, xB) = ∪k

i=1[yi]. Consider the map

Ψ: Map0(Σ) → Zk, Ψ(f) = (n1(f), . . . , nk(f)),

where for every i ∈ {1, . . . , k}, we let

ni(f) =
∣∣∣
{
x ∈ [yi]

∣∣∣ x ∈ A, f(x) ∈ B
}∣∣∣−

∣∣∣
{
x ∈ [yi]

∣∣∣ x ∈ B, f(x) ∈ A
}∣∣∣ .

Notice that this is well-defined: indeed, every mapping class f ∈ Map0(Σ) fixes xA and
xB , and as the equivalences classes [yi] are countable – whence discrete in E, see [MR19,
Observation 6.12] – it follows that the two quantities that appear in the definition of
ni(f) are finite. In addition Ψ is a homomorphism: indeed, one checks that ni(g ◦ f) =
ni(g) + ni(f) by partitioning the points x ∈ E into eight subsets, depending whether x
belongs to A or B, whether f(x) belongs to A or B, and whether g ◦ f(x) belongs to A
or B, counting the points in each of these subsets of recording their contribution to ni.

If some end in E \ {xA, xB} is accumulated by genus, or if Σ has genus 0, then we
let n = k and Φ = Ψ.

If Σ has infinite genus and no end in E \ {xA, xB} is accumulated by genus, then we
let n = k + 1. In this case, following work of Aramayona, Patel and Vlamis [APV17,
Section 3], we define an extra homomorphism Φg : Map0(Σ) → Z in the following
way (and we let Φ = (Ψ,Φg)). Let c be a separating curve on Σ which separates
the two ends xA, xB , and let f ∈ Map0(Σ). Let R ⊆ Σ be a horizontally bounded
subsurface of Σ which is bounded by two separating curves αA, αB which both separate
xA from xB , such that both c and f(c) are contained in R – with αA closer to xA than
αB . Then c separates R into two subsurfaces RA (containing αA in its boundary) and
RB (containing αB in its boundary), while f(c) separates R into two subsurfaces R′

A

(containing αA in its boundary) and R′
B (containing αB in its boundary). We then let

Φg(f) = genus(R′
A) − genus(RA). This quantity does not depend on the choice of R,

and Φg is the desired homomorphism, see [APV17, Proposition 3.3].
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We claim that in all cases, the homomorphism Φ : Map0(Σ) → Zn is surjective and
admits a section. Indeed, a section of Ψ was constructed in Step 3 of the proof of [MR19,
Proposition 6.18]. When Σ has infinite genus and no end in E \{xA, xB} is accumulated
by genus, a section of Φg is given by the cyclic subgroup generated by a handle shift as
defined in [PV18, Section 6] (see also [MR19, Definition 6.20]).

Finally, let N EMap0(Σ) be the kernel of Φ, and let f ∈ N ; we aim to prove that f
belongs to the closure of HB(Σ). Using Lemma 4.10 (applied to a horizontally bounded
subsurface R such that Ends(R) contains a representative of every equivalence class of
ends in E\{xA, xB}), we can find an exhaustion of Σ by subsurfaces Rj (with j ∈ N) that
are all horizontally bounded, so that the boundary of each Rj consists of two separating
curves, and for every j ∈ N, each of the two connected components of Rj \Rj−1 contains
a representative of every uncountable equivalence class in E \ {xA, xB}. We can assume
that for every j ∈ N, one of the complementary components of Rj has all its ends
contained in A and the other has all its ends contained in B, and the same holds true
for f(Rj).

Let ℓ : N → N be a map such that for every j ∈ N we have

f(Rj) ⊆ Rℓ(j)−1.

Then (Rℓ(j)−Rj) and (Rℓ(j)− f(Rj)) both have two connected components. We denote

the components of (Rℓ(j) − Rj) by Q−
j and Q+

j and the components of (Rℓ(j) − f(Rj))

by T−
j and T+

j . Since f ∈ N , for every i ∈ {1, . . . , k}, we have

|Q−
j ∩ [yi]| = |T−

j ∩ [yi]| and |Q+
j ∩ [yi]| = |T+

j ∩ [yi]|,

genus(Q−
j ) = genus(T−

j ) and genus(Q+
j ) = genus(T+

j ).

Furthermore, the choice of our exhaustion ensures that Q+
j , Q

−
j , T

+
j , T−

j all contain a
representative of every uncountable equivalence class in E (notice here that it was im-
portant to assume that f(Rj) is contained in Rℓ(j)−1 and not only in Rℓ(j)). Therefore,

Lemma 4.9 ensures that Q−
j is homeomorphic to T−

j and Q+
j is homeomorphic to T+

j .

Therefore, there is a homeomorphism fj ∈ Map(Rℓ(j)) such that fj
∣∣
Rj

= f
∣∣
Rj
. As

fj ∈ HB(Σ), it follows that f is in the closure of HB(Σ), as desired.

We are now in position to conclude our proof of the main theorem of the section.

Proof of Theorem 4.1. We can assume that Map(Σ) is not CB, as otherwise the conclu-
sion is obvious. Therefore Σ is an avenue surface. In view of Lemmas 4.8, 4.11 and 4.12,
the group G = Map0(Σ) satisfies all assumptions from Lemma 4.3, with H = HB(Σ).
Therefore every continuous isometric action of Map0(Σ) on a hyperbolic space is ele-
mentary. As Map0(Σ) has finite index in Map(Σ), the same conclusion holds true for
Map(Σ).
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