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Motivation

Question: Are balls in CVn convex ?

Results:

•Out-going balls are weakly convex.

• In-coming balls in general are not convex.

Theorem

Theorem 1. Given points x, y ∈ CVn, there exists a geodesic [x, y]bf from x to
y so that, for every loop α, and every time t,

|α|t ≤ max
(
|α|x, |α|y

)
.

Theorem 2. Given a point x ∈ CVn, a radius R > 0 and points y, z ∈
Bout(x,R),

[y, z]bf ⊂ Bout(x,R).

where
Bout(x,R) =

{
y ∈ CVn

∣∣ d(x, y) ≤ R
}
.

That is, the ball Bout(x,R) is weakly convex.

Set-up

Out(Fn): the outer automorphism group of Fn.

Outer Space CVn: the space of all marked metric graphs of total length 1.

Lipschitz metric: let x, y ∈ CVn. A map φ : x→ y is a difference of markings map
if φ ◦ fx ' fy. We only consider Lipschitz maps and we denote by Lφ the Lipschitz
constant of φ. The Lipschitz metric on CVn is defined to be:

d(x, y) := inf
φ

logLφ

where the infimum is taken over all differences of markings maps. Equivalently:

d(x, y) = sup
α

log
|α|y
|α|x

, (0.1)

where α is an immersed loop, or Equivalently a conjugacy class in Fn.

A geodesic in CVn is a map γ : [a, b]→ CVn so that, for a ≤ t ≤ b, we have

d
(
x, γ(t)

)
+ d
(
γ(t), y

)
= d(x, y).

The difference of marking map φ : x → y defines a gate structure on x. Folding
paths with respect to the gate structure yields a large class of geodesics.

Key Question

How much length loss does each sub-gate account for?
Answer:
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Combinatorial length loss: c(σ6, p) = 1, c(σ7, p) = 1, c(σ5, p) = 0, c(σ4, p) = 3− 1 = 2.
c(σ2, p) = c(σ3, p) = 1

2, c(σ1, p) = 1.∑
c(σ, p) = 1 + 1 + 0 + 2 + 1

2 + 1
2 + 1 = 6 = |Pre(p)| − 1

Balanced Folding Path

Fold each sub-gate with respect to its contribution to the lengths loss at the destination
point.

•Metric lengths loss: `σ =
∫
Tȳ
c(σ, p) dp

•Equivariant speed assignment: sτ =
∑

τ̂⊇τ
`τ̂
|τ̂ |−1

Example:

sτ1 = 1

sτ2 = 2

Example

F = 〈a, b, c〉. The labels of edges of the rose indicates the associated difference of
markings map.
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That is to say, since ac2 wraps over c twice while bc wraps over c once, infinitesimally,
the folding associated to the former is twice as fast.

Decorated Difference of Markings Map

Modify the graphs x and y such that the tension graph after modification is
all of x.

v1v0 v2 v3

v4

φd(v4)

φd(v1)

φd(v0) = φd(v2) φd(v3)

Obstructions to stronger properties

•Lengths cannot be made convex.

•Liberal folding paths do not stay in the ball.

y, z ∈ Bout(x, 2) and [y, z]ng 6⊂ Bout(x,R).

• Standard geodesics do not stay in the ball or the quasi-ball.

y, z ∈ Bout(x,R) and [y, z]std 6⊂ Bout(x, 2R− c).

•Greedy folding paths do not stay in the ball.

y, z ∈ Bout(x,R) but [y, z]gf 6⊂ Bout(x,R).

Uniqueness of Geodesics

Theorem 3. For points x, y ∈ CVn, the geodesic from x and y is unique
if and only if there exists a rigid folding path connecting x to y.
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In-coming Balls

In-coming balls are:

Bin(x,R) =
{
y ∈ CVn

∣∣ d(y, x) ≤ R
}
.

Theorem 4. For any constant R > 0, there are points x, y, z ∈ CVn
such that, y, z ∈ Bin(x, 2) but, for any geodesic [y, z] connecting y to z,

[y, z] 6⊂ Bin(x,R).


