Convexity Properties in the Outer Space: Balls are Weakly Convex

Motivation

Question: Are balls in CV_n convex ?

Results:

- Out-going balls are weakly convex.
- In-coming balls in general are not convex.

Theorem

Theorem 1. Given points $x, y \in CV_n$, there exists a geodesic $[x, y]_{bf}$ from x to y so that, for every loop α , and every time t,

 $|\alpha|_t \le \max\left(|\alpha|_x, |\alpha|_y\right).$

Theorem 2. Given a point $x \in CV_n$, a radius R > 0 and points $y, z \in CV_n$ $B_{\mathrm{out}}(x,R),$

$$[y, z]_{\mathrm{bf}} \subset B_{\mathrm{out}}(x, R).$$

where

 $B_{\text{out}}(x,R) = \{ y \in CV_n \, \big| \, d(x,y) \le R \}.$ That is, the ball $B_{out}(x, R)$ is weakly convex.

Set-up

 $\operatorname{Out}(\mathbb{F}_n)$: the outer automorphism group of \mathbb{F}_n .

Outer Space CV_n : the space of all *marked metric graphs* of total length 1. Lipschitz metric: let $x, y \in CV_n$. A map $\phi: x \to y$ is a difference of markings map if $\phi \circ f_x \simeq f_y$. We only consider Lipschitz maps and we denote by L_{ϕ} the Lipschitz constant of ϕ . The Lipschitz metric on CV_n is defined to be:

$$d(x,y) := \inf \log L_{\phi}$$

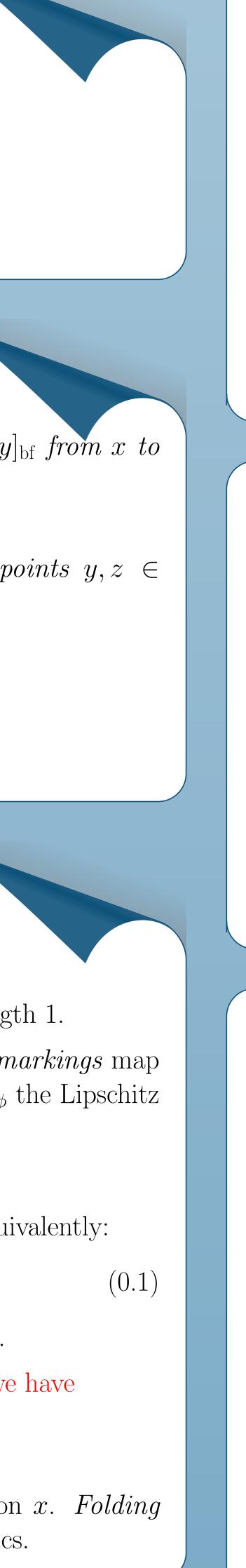
where the infimum is taken over all differences of markings maps. Equivalently:

$$d(x, y) = \sup_{\alpha} \log \frac{|\alpha|_y}{|\alpha|_x},$$

where α is an immersed loop, or Equivalently a conjugacy class in \mathbb{F}_n . A geodesic in CV_n is a map $\gamma: [a, b] \to CV_n$ so that, for $a \leq t \leq b$, we have $d(x,\gamma(t)) + d(\gamma(t),y) = d(x,y).$

The difference of marking map $\phi: x \to y$ defines a gate structure on x. Folding *paths* with respect to the gate structure yields a large class of geodesics.

Yulan Qing & Kasra Rafi



Key Question

How much length loss does each sub-gate account for? Answer:

Combinatorial length loss: $c(\sigma_6, p) = 1, c(\sigma_7, p) = 1, c(\sigma_5, p) = 0, c(\sigma_4, p) = 3 - 1 = 2.$ $c(\sigma_2, p) = c(\sigma_3, p) = \frac{1}{2}, c(\sigma_1, p) = 1.$ $\sum c(\sigma, p) = 1 + 1 + \tilde{0} + 2 + \frac{1}{2} + \frac{1}{2} + 1 = 6 = |\operatorname{Pre}(p)| - 1$

Balanced Folding Path

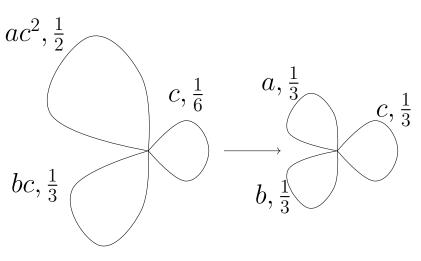
Fold each sub-gate with respect to its contribution to the lengths loss at the destination point.

- Metric lengths loss: $\ell_{\sigma} = \int_{T_{\bar{u}}} c(\sigma, p) dp$
- Equivariant speed assignment: $s_{\tau} = \sum_{\hat{\tau} \supset \tau} \frac{\ell_{\hat{\tau}}}{|\hat{\tau}| 1}$ Example:

$s_{\tau_1} = 1$		
•	\longrightarrow	• • •
$s_{\tau_2} = 2$		

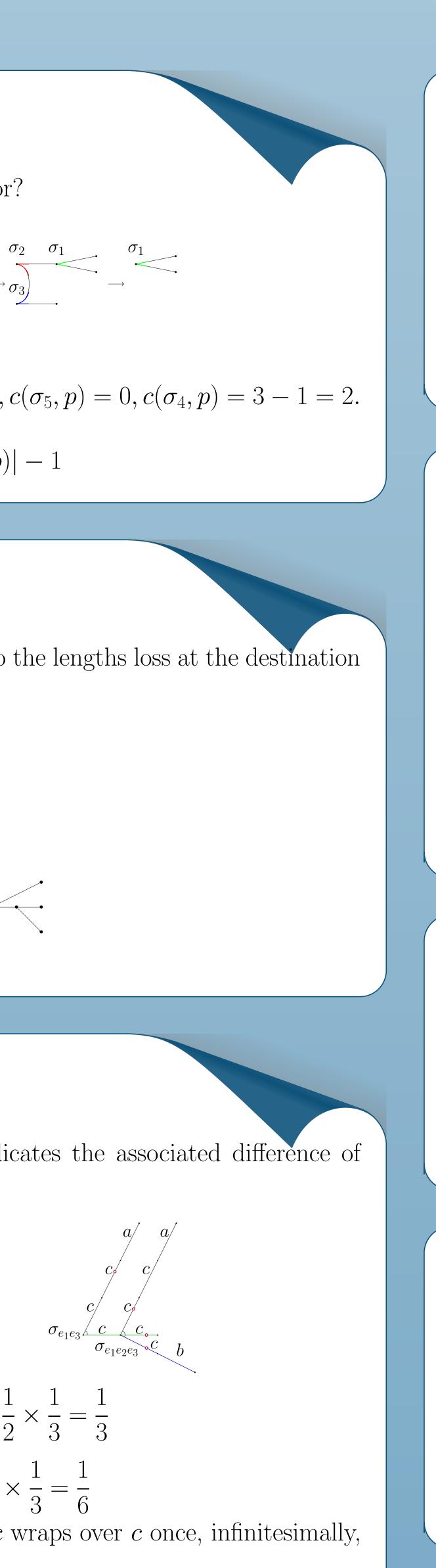
Example

 $\mathbb{F} = \langle a, b, c \rangle$. The labels of edges of the rose indicates the associated difference of markings map.



$$s_{e_1e_3} = l_{e_1e_3} + \frac{1}{2}\ell_{e_1e_2e_3} = \frac{1}{6} + \frac{1}{2}$$
$$s_{e_1e_2} = s_{e_2e_3} = \frac{1}{2}\ell_{e_1e_2e_3} = \frac{1}{2} \times$$

That is to say, since ac^2 wraps over c twice while bc wraps over c once, infinitesimally, the folding associated to the former is twice as fast.



Decorated Difference of Markings Map

Modify the graphs x and y such that the tension graph after modification is all of x.

$$v_0$$
 v_1 v_2

Obstructions to stronger properties

- Lengths cannot be made convex.
- Liberal folding paths do not stay in the ball.
- Standard geodesics do not stay in the ball or the quasi-ball.
- Greedy folding paths do not stay in the ball.

Uniqueness of Geodesics

Theorem 3. For points $x, y \in CV_n$, the geodesic from x and y is unique if and only if there exists a rigid folding path connecting x to y. \overline{e}

In-coming Balls

In-coming balls are:

 $v_3 \quad \phi^d(v_0) = \phi^d(v_2) \quad \phi^d(v_3)$

 $y, z \in B_{\text{out}}(x, 2)$ and $[y, z]_{\text{ng}} \not\subset B_{\text{out}}(x, R)$. $y, z \in B_{\text{out}}(x, R)$ and $[y, z]_{\text{std}} \not\subset B_{\text{out}}(x, 2R - c).$ $y, z \in B_{\text{out}}(x, R)$ but $[y, z]_{\text{gf}} \not\subset B_{\text{out}}(x, R)$.

 $B_{\rm in}(x,R) = \{ y \in {\rm CV}_n \, \big| \, d(y,x) \le R \}.$ **Theorem 4.** For any constant R > 0, there are points $x, y, z \in CV_n$ such that, $y, z \in B_{in}(x, 2)$ but, for any geodesic [y, z] connecting y to z, $[y, z] \not\subset B_{\mathrm{in}}(x, R).$