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1. Introduction and preliminary results

Given a family of sets Sy, S,, . . ., S, one can form the intersection graph G of the family by associating a vertex of G with
each set and joining two distinct vertices with an edge if their corresponding sets have a nonempty intersection. Conversely,
any finite graph can be viewed as the intersection graph of a family of sets in many different ways. If each set is a line segment
in the plane, then G is called a segment intersection graph [1]. The most interesting problem for segment intersection graphs
has been Scheinerman’s conjecture, which asks whether all planar graphs are segment intersection graphs [2]. Hartman
et al. [5] and deCastro et al. [4] answered this question in the affirmative in the cases of bipartite and triangle-free graphs,
respectively. Recently Chalopin and Gongalves have announced a proof that all planar graphs are segment intersection
graphs [3].

If each set S; is an affine subspace of k for some field k, then G has an affine representation in k®. For a given k, the smallest
d for which G has an affine representation is the affine dimension of G. If each set is a subspace of k¢, and two vertices are
adjacent if and only if their corresponding subspaces have a nontrivial intersection, then G has a projective representation
in k% and the smallest such d is the projective dimension of G [6,7]. Pudlak and Rédl investigated the affine dimension and
projective dimension of bipartite graphs arising from Boolean functions, and gave asymptotic bounds on these dimensions.
They left the explicit construction of a graph with large affine or projective dimension as an open problem [6].

In this paper we consider graphs representable by e-dimensional affine subspaces of RY, where e < d. Though similar to
both segment intersection graphs and graphs with an affine representation, these graphs have not been previously studied.

Formally, we say thata graph Gis a (d, e)-subspace intersection graph or (d, e)-SI graph if there exists a set of e-dimensional
affine subspaces R in R¢ and a one-to-one correspondence between vertices in G and subspaces in R, such that two vertices
v and w in G are adjacent if and only if their corresponding subspaces intersect. Note that since R is a set, the subspaces
are required to be distinct. For a given graph G, if such a set of subspaces R exists, R is called a (d, e)-subspace intersection
representation or (d, e)-SI representation of G. For ease of reference, if G is a (d, e)-SI graph with (d, e)-SI representation R,
we denote the vertices of G using lower-case letters, and the corresponding subspaces in R using upper-case letters. For
example, if a and b are vertices of G, then we denote their corresponding subspaces by A and B.
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Fig. 1. The graph G,.

In this paper, we seek to order the classes of (d, e)-SI graphs by set containment. Fig. 2 shows a partial order which
summarizes our results. In this figure, edges represent set containment, and the graphs labeling the edges are separating
examples.

Lemma 1. Every (d, e)-SI graph is a (d + k, e + j)-SI graph, for allk > j > 0.

Proof. Given a (d, e)-SI representation of a graph G, we can consider it in (d + k)-space, and use j of these new dimensions
to increase the dimension of each of the affine subspaces to (e +j). O

Recall that a complete multipartite graph is a graph whose vertices can be partitioned into sets so that u ~ v if and only
if u and v belong to different sets of the partition.

Proposition 2. A graphis a (d, d — 1)-SI graph if and only if it is a complete multipartite graph, for alld > 2.

Proof. If G is a (d, d — 1)-SI graph, then G has a representation with (d — 1)-dimensional hyperplanes in d-space. Note
that two hyperplanes are disjoint if and only if they are not parallel. Hence G is a complete multipartite graph, with sets
of vertices represented by parallel classes of hyperplanes forming the partite sets. Similarly, given a complete multipartite
graph G, we can form a (d, d — 1)-SI representation of G by taking parallel classes of hyperplanes in d-space. O

Corollary 3. Agraphisa (d,d — 1)-SI graph if and only ifitis a (2, 1)-SI graph. O

Let G; be the graph with vertices a, b, and c, and the single edge {a, b}. Note that G; cannot be represented as the
intersection graph of lines in the plane, since line C cannot be parallel with both line A and line B. However, G; can be
easily represented as the intersection graph of lines in 3-space. Hence we have the following proposition.

Proposition 4. The graph G, is a (3, 1)-SI graph but not a (2, 1)-SI graph.
2. Main results

Let G, be the graph formed by adding a single edge to the complete bipartite graph K3 3. We label the vertices of G, as
shown in Fig. 1.

Theorem 5. The graph G, is a (4, 2)-SI graph but not a (d, 1)-SI graph for any d > 2.

Proof. We present a (4, 2)-SI representation of G, by giving equations for the six planes in the representation. Using the
convention that the four coordinates of R* are x, y, z, and w, define these six planestobeA:z =1, w =0,B:z =2, w =
0,C:z=3,w=0,l:x=1,y=2z,J:x=1,y=—z,andK : x=0,w = 0.

Now we prove that G, is not a (d, 1)-SI graph for any d. Suppose by way of contradiction thatRis a (d, 1)-SI representation
of G with lines A, B, C, I, ], and K. Since I and ] intersect, they determine a plane P. Since A, B and C are mutually disjoint,
at most one of them contains the intersection of I and J. Hence two of them (without loss of generality A and B) are both
also contained in P. So A and B are parallel. Since K intersects both A and B, K is also in P. Since the induced subgraph on the
vertices i, j, and k is isomorphic to G4, this contradicts Proposition 4. Therefore G, is not a (d, 1)-SI graph foranyd > 2. O

Lemma 6. A graph Gis a (d, e)-SI graph if and only if itis a (d — 1, e)-SI graph for alld > 2e + 1.

Proof. By Lemma 1, every (d — 1, e)-SI graph is also a (d, e)-SI graph. Conversely, suppose that G is a (d, e)-SI graph with
n vertices, and R is a (d, e)-SI representation of G consisting of the set of affine subspaces Sy, . .., S, in R%. We construct a
(d — 1, e)-SI representation R’ of G by projecting R onto a (d — 1)-dimensional subspace V of R?. We prove that we may
choose V so that it has the following properties:

(1) dim(projy (S;)) = dim(S;) forall 1 <i <n.

(2) For any two subspaces S; and S; in R, projy (S;) and projy (5;) intersect if and only if S; and S; intersect.

If we have found such a subspace V, then the new set of subspaces {projy (S;) | S; € R} will be a (d — 1, e)-SI representation
of G, and the proof will be complete.

Recall that, for a subspace V in R, the orthogonal complement V= is the subspace {v € R? | v L V}. Every (d — 1)-
dimensional subspace V in R? corresponds to a unique line through the origin V. We say that a projection onto V is a
projection along V. Also, given an affine subspace S; in R, let S{ be the unique subspace in RY parallel with S; and passing
through the origin. Note that dim(projy, (S;)) = dim(S;) if and only if V* is not contained in S!.
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Fig. 2. The hierarchy of classes of (d, e)-SI graphs.

For two affine subspaces S; and S; in R, let p; and p; be points in S; and S;, respectively. Given a (d — 1)-dimensional
subspace V of RY, the projection onto V maps p; and p; onto the same point in V if and only if the projection is along
the line spanned by the vector p; — p;. Given a pair of non-intersecting affine subspaces S; and S;, consider the span of
all such vectors, Aj;. Note that Aj is also the span of all vectors in S and S; and a single vector of the form p; — p;. Since
dim(S;) = dim(S;) = e, dim(4;) < 2e+ 1.

Since R has a finite number of subspaces, and d > 2e + 1 by hypothesis, the union 4 of all the sets A; and all the sets S/
cannot be all of R%. So there exists some other line I through the origin, not contained in 4. Therefore the (d — 1)-dimensional
subspace I is the required subspace. 0O

The following theorem follows directly from Lemma 6.

Theorem 7. A graph Gis a (d, e)-SI graph if and only ifitis a (2e + 1, e)-SI graph for alld > 2e + 1. In particular, Gis a (d, 1)-SI
graph if and only if it is a (3, 1)-SI graph foralld > 3.0

We conjecture that Theorem 7 can be strengthened as follows.

Conjecture 1. A graph Gis an (e + k, e)-SI graph if and only if Gis an (e + 2, e)-SI graph, for k > 2. In particular, we conjecture
that if Gis a (5, 2)-SI graph then G is a (4, 2)-SI graph.

Theorem 8. Given a finite graph G, there exist positive integers d and e such that G is a (d, e)-SI graph.

Proof. Suppose G is a finite graph with vertices vy, ..., v,. Let & = {e, ..., e} be the set of all unordered pairs of vertices
of G (so k = (})). Note that E(G) C &.

We define the affine subspace V; € R in the following way. Let P; be the set of positive integers p such that e, contains
v; and is not an edge of G. Then V; = {x | x has an i in coordinate p for all p € P;}. We modify the subspaces V; so that they
all have the same dimension. So let D be the largest dimension of any V;, and d be the smallest dimension of any V;. For each
1 < i < nlet U; be any affine subspace of R°~¢ of dimension D — dim(V;), and let V! = V; x U;. We claim that the set
R={V{}isa (k+ D — d, D)-Sl representation of G.

We must prove that two vertices v, and v, of G are adjacent if and only if their corresponding subspaces V, and V;
intersect. So first, suppose that v, 7 vy in G, and e, = {v,, v} in &. Then the pth coordinate of every point in V, is a and the
pth coordinate of every point in V; is b. Thus V, N V; = @.

On the other hand, suppose that v, ~ v, in G, and p is a coordinate in which every point in V, has the same value x. Note
that x must be either a or 0 by the definition of V. If x = q, then e, is a non-edge containing v,. Since v, ~ vy, e, does not
contain vy, and so points in V, can take on any value in their pth coordinate. If x = 0, then p > k, and so points in V; can
take on 0 as their pth coordinate. Hence we can find a point in both V; and V;,so V; NV} # @. O

It is likely that the (d, e)-SI representation of G constructed in the proof of Theorem 8 is not the smallest such represen-
tation with respect to either d or e.

By Corollary 3, the classes of (2, 1)-SI graphs, (3, 2)-SI graphs, etc., are all the same class of graphs, and by Lemma 1, this
class of graphs is contained in all other classes of (d, e)-SI graphs. Similarly by Theorem 7, the classes of (3, 1)-SI graphs,
(4, 1)-SI graphs, etc., are all the same class of graphs, and by Lemma 1, this class of graphs is contained in all classes of
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(d, e)-SI graphs other than the (2, 1)-SI graphs. Furthermore, if Conjecture 1 is true, then the class of (2, 1)-SI graphs and
the classes of (e + 2, e)-SI graphs are all of the distinct classes of (d, e)-SI graphs. Fig. 2 shows the first few classes of this
hierarchy, which summarizes the theorems in this paper.

Recall that the affine dimension of G is the smallest value of d such that G is representable as the intersection graph of
affine subspaces of d-space. Since there is only one choice for e if d = 2, the graphs with affine dimension 2 are precisely
the complete multipartite graphs by Proposition 2. Pudlak and Rodl ask for explicit constructions of graphs with large affine
dimension [6]. We have been unable to find a graph which is not a (4, 2)-SI graph, so we do not know a graph with affine
dimension greater than 4.

Open Question 1. Find a graph which is not a (4, 2)-SI graph. More generally, find a graph with large affine dimension.
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