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a b s t r a c t

Given a set R of affine subspaces in Rd of dimension e, its intersection graph G has a vertex
for each subspace, and two vertices are adjacent in G if and only if their corresponding
subspaces intersect. For each pair of positive integers d and e we obtain the class of (d, e)-
subspace intersection graphs.We classify the classes of (d, e)-subspace intersection graphs
by containment, for e = 1 or e = d − 1 or d ≤ 4.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and preliminary results

Given a family of sets S1, S2, . . . , Sn, one can form the intersection graph G of the family by associating a vertex of Gwith
each set and joining two distinct vertices with an edge if their corresponding sets have a nonempty intersection. Conversely,
any finite graph can be viewed as the intersection graph of a family of sets inmany differentways. If each set is a line segment
in the plane, then G is called a segment intersection graph [1]. The most interesting problem for segment intersection graphs
has been Scheinerman’s conjecture, which asks whether all planar graphs are segment intersection graphs [2]. Hartman
et al. [5] and deCastro et al. [4] answered this question in the affirmative in the cases of bipartite and triangle-free graphs,
respectively. Recently Chalopin and Gonçalves have announced a proof that all planar graphs are segment intersection
graphs [3].

If each set Si is an affine subspace of kd for some field k, then G has an affine representation in kd. For a given k, the smallest
d for which G has an affine representation is the affine dimension of G. If each set is a subspace of kd, and two vertices are
adjacent if and only if their corresponding subspaces have a nontrivial intersection, then G has a projective representation
in kd and the smallest such d is the projective dimension of G [6,7]. Pudlák and Rödl investigated the affine dimension and
projective dimension of bipartite graphs arising from Boolean functions, and gave asymptotic bounds on these dimensions.
They left the explicit construction of a graph with large affine or projective dimension as an open problem [6].

In this paper we consider graphs representable by e-dimensional affine subspaces of Rd, where e < d. Though similar to
both segment intersection graphs and graphs with an affine representation, these graphs have not been previously studied.

Formally, we say that a graphG is a (d, e)-subspace intersection graph or (d, e)-SI graph if there exists a set of e-dimensional
affine subspaces R in Rd and a one-to-one correspondence between vertices in G and subspaces in R, such that two vertices
v and w in G are adjacent if and only if their corresponding subspaces intersect. Note that since R is a set, the subspaces
are required to be distinct. For a given graph G, if such a set of subspaces R exists, R is called a (d, e)-subspace intersection
representation or (d, e)-SI representation of G. For ease of reference, if G is a (d, e)-SI graph with (d, e)-SI representation R,
we denote the vertices of G using lower-case letters, and the corresponding subspaces in R using upper-case letters. For
example, if a and b are vertices of G, then we denote their corresponding subspaces by A and B.
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Fig. 1. The graph G2 .

In this paper, we seek to order the classes of (d, e)-SI graphs by set containment. Fig. 2 shows a partial order which
summarizes our results. In this figure, edges represent set containment, and the graphs labeling the edges are separating
examples.

Lemma 1. Every (d, e)-SI graph is a (d + k, e + j)-SI graph, for all k ≥ j ≥ 0.
Proof. Given a (d, e)-SI representation of a graph G, we can consider it in (d + k)-space, and use j of these new dimensions
to increase the dimension of each of the affine subspaces to (e + j). �

Recall that a complete multipartite graph is a graph whose vertices can be partitioned into sets so that u ∼ v if and only
if u and v belong to different sets of the partition.

Proposition 2. A graph is a (d, d − 1)-SI graph if and only if it is a complete multipartite graph, for all d ≥ 2.
Proof. If G is a (d, d − 1)-SI graph, then G has a representation with (d − 1)-dimensional hyperplanes in d-space. Note
that two hyperplanes are disjoint if and only if they are not parallel. Hence G is a complete multipartite graph, with sets
of vertices represented by parallel classes of hyperplanes forming the partite sets. Similarly, given a complete multipartite
graph G, we can form a (d, d − 1)-SI representation of G by taking parallel classes of hyperplanes in d-space. �

Corollary 3. A graph is a (d, d − 1)-SI graph if and only if it is a (2, 1)-SI graph. �

Let G1 be the graph with vertices a, b, and c , and the single edge {a, b}. Note that G1 cannot be represented as the
intersection graph of lines in the plane, since line C cannot be parallel with both line A and line B. However, G1 can be
easily represented as the intersection graph of lines in 3-space. Hence we have the following proposition.

Proposition 4. The graph G1 is a (3, 1)-SI graph but not a (2, 1)-SI graph.

2. Main results

Let G2 be the graph formed by adding a single edge to the complete bipartite graph K3,3. We label the vertices of G2 as
shown in Fig. 1.

Theorem 5. The graph G2 is a (4, 2)-SI graph but not a (d, 1)-SI graph for any d ≥ 2.

Proof. We present a (4, 2)-SI representation of G2 by giving equations for the six planes in the representation. Using the
convention that the four coordinates of R4 are x, y, z, and w, define these six planes to be A : z = 1, w = 0, B : z = 2, w =

0, C : z = 3, w = 0, I : x = 1, y = z, J : x = 1, y = −z, and K : x = 0, w = 0.
Nowweprove thatG2 is not a (d, 1)-SI graph for any d. Suppose byway of contradiction that R is a (d, 1)-SI representation

of G with lines A, B, C, I, J , and K . Since I and J intersect, they determine a plane P . Since A, B and C are mutually disjoint,
at most one of them contains the intersection of I and J . Hence two of them (without loss of generality A and B) are both
also contained in P . So A and B are parallel. Since K intersects both A and B, K is also in P . Since the induced subgraph on the
vertices i, j, and k is isomorphic to G1, this contradicts Proposition 4. Therefore G2 is not a (d, 1)-SI graph for any d ≥ 2. �

Lemma 6. A graph G is a (d, e)-SI graph if and only if it is a (d − 1, e)-SI graph for all d > 2e + 1.
Proof. By Lemma 1, every (d − 1, e)-SI graph is also a (d, e)-SI graph. Conversely, suppose that G is a (d, e)-SI graph with
n vertices, and R is a (d, e)-SI representation of G consisting of the set of affine subspaces S1, . . . , Sn in Rd. We construct a
(d − 1, e)-SI representation R′ of G by projecting R onto a (d − 1)-dimensional subspace V of Rd. We prove that we may
choose V so that it has the following properties:
(1) dim(projV (Si)) = dim(Si) for all 1 ≤ i ≤ n.
(2) For any two subspaces Si and Sj in R, projV (Si) and projV (Sj) intersect if and only if Si and Sj intersect.
If we have found such a subspace V , then the new set of subspaces {projV (Si) | Si ∈ R} will be a (d − 1, e)-SI representation
of G, and the proof will be complete.

Recall that, for a subspace V in Rd, the orthogonal complement V⊥ is the subspace {v ∈ Rd
| v ⊥ V }. Every (d − 1)-

dimensional subspace V in Rd corresponds to a unique line through the origin V⊥. We say that a projection onto V is a
projection along V⊥. Also, given an affine subspace Si in R, let S ′

i be the unique subspace in Rd parallel with Si and passing
through the origin. Note that dim(projV (Si)) = dim(Si) if and only if V⊥ is not contained in S ′

i .
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Fig. 2. The hierarchy of classes of (d, e)-SI graphs.

For two affine subspaces Si and Sj in R, let pi and pj be points in Si and Sj, respectively. Given a (d − 1)-dimensional
subspace V of Rd, the projection onto V maps pi and pj onto the same point in V if and only if the projection is along
the line spanned by the vector pi − pj. Given a pair of non-intersecting affine subspaces Si and Sj, consider the span of
all such vectors, Aij. Note that Aij is also the span of all vectors in S ′

i and S ′

j and a single vector of the form pi − pj. Since
dim(Si) = dim(Sj) = e, dim(Aij) ≤ 2e + 1.

Since R has a finite number of subspaces, and d > 2e + 1 by hypothesis, the union S of all the sets Aij and all the sets S ′

i
cannot be all ofRd. So there exists some other line l through the origin, not contained in S. Therefore the (d−1)-dimensional
subspace l⊥ is the required subspace. �

The following theorem follows directly from Lemma 6.

Theorem 7. A graph G is a (d, e)-SI graph if and only if it is a (2e+1, e)-SI graph for all d ≥ 2e+1. In particular, G is a (d, 1)-SI
graph if and only if it is a (3, 1)-SI graph for all d ≥ 3. �

We conjecture that Theorem 7 can be strengthened as follows.

Conjecture 1. A graph G is an (e+ k, e)-SI graph if and only if G is an (e+ 2, e)-SI graph, for k ≥ 2. In particular, we conjecture
that if G is a (5, 2)-SI graph then G is a (4, 2)-SI graph.

Theorem 8. Given a finite graph G, there exist positive integers d and e such that G is a (d, e)-SI graph.

Proof. Suppose G is a finite graph with vertices v1, . . . , vn. Let E = {e1, . . . , ek} be the set of all unordered pairs of vertices
of G (so k =

 n
2


). Note that E(G) ⊆ E .

We define the affine subspace Vi ⊆ Rk in the following way. Let Pi be the set of positive integers p such that ep contains
vi and is not an edge of G. Then Vi = {x | x has an i in coordinate p for all p ∈ Pi}. We modify the subspaces Vi so that they
all have the same dimension. So let D be the largest dimension of any Vi, and d be the smallest dimension of any Vi. For each
1 ≤ i ≤ n let Ui be any affine subspace of RD−d of dimension D − dim(Vi), and let V ′

i = Vi × Ui. We claim that the set
R = {V ′

i } is a (k + D − d,D)-SI representation of G.
We must prove that two vertices va and vb of G are adjacent if and only if their corresponding subspaces V ′

a and V ′

b
intersect. So first, suppose that va ≁ vb in G, and ep = {va, vb} in E . Then the pth coordinate of every point in V ′

a is a and the
pth coordinate of every point in V ′

b is b. Thus V
′
a ∩ V ′

b = ∅.
On the other hand, suppose that va ∼ vb in G, and p is a coordinate in which every point in V ′

a has the same value x. Note
that x must be either a or 0 by the definition of V ′

a. If x = a, then ep is a non-edge containing va. Since va ∼ vb, ep does not
contain vb, and so points in V ′

b can take on any value in their pth coordinate. If x = 0, then p > k, and so points in V ′

b can
take on 0 as their pth coordinate. Hence we can find a point in both V ′

a and V ′

b, so V ′
a ∩ V ′

b ≠ ∅. �

It is likely that the (d, e)-SI representation of G constructed in the proof of Theorem 8 is not the smallest such represen-
tation with respect to either d or e.

By Corollary 3, the classes of (2, 1)-SI graphs, (3, 2)-SI graphs, etc., are all the same class of graphs, and by Lemma 1, this
class of graphs is contained in all other classes of (d, e)-SI graphs. Similarly by Theorem 7, the classes of (3, 1)-SI graphs,
(4, 1)-SI graphs, etc., are all the same class of graphs, and by Lemma 1, this class of graphs is contained in all classes of
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(d, e)-SI graphs other than the (2, 1)-SI graphs. Furthermore, if Conjecture 1 is true, then the class of (2, 1)-SI graphs and
the classes of (e + 2, e)-SI graphs are all of the distinct classes of (d, e)-SI graphs. Fig. 2 shows the first few classes of this
hierarchy, which summarizes the theorems in this paper.

Recall that the affine dimension of G is the smallest value of d such that G is representable as the intersection graph of
affine subspaces of d-space. Since there is only one choice for e if d = 2, the graphs with affine dimension 2 are precisely
the complete multipartite graphs by Proposition 2. Pudlák and Rödl ask for explicit constructions of graphs with large affine
dimension [6]. We have been unable to find a graph which is not a (4, 2)-SI graph, so we do not know a graph with affine
dimension greater than 4.

Open Question 1. Find a graph which is not a (4, 2)-SI graph. More generally, find a graph with large affine dimension.
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