Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Subspace intersection graphs

Joshua D. Laison^{a,*}, Yulan Qing^b

^a Mathematics Department, Willamette University, 900 State Street, Salem, OR 97301, United States ^b Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, United States

ARTICLE INFO

Article history: Received 15 August 2006 Received in revised form 24 June 2010 Accepted 25 June 2010 Available online 16 September 2010

Keywords: Intersection graphs Affine dimension

ABSTRACT

Given a set *R* of affine subspaces in \mathbb{R}^d of dimension *e*, its intersection graph *G* has a vertex for each subspace, and two vertices are adjacent in *G* if and only if their corresponding subspaces intersect. For each pair of positive integers *d* and *e* we obtain the class of (d, e)-subspace intersection graphs. We classify the classes of (d, e)-subspace intersection graphs by containment, for e = 1 or e = d - 1 or $d \le 4$.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and preliminary results

Given a family of sets S_1, S_2, \ldots, S_n , one can form the intersection graph *G* of the family by associating a vertex of *G* with each set and joining two distinct vertices with an edge if their corresponding sets have a nonempty intersection. Conversely, any finite graph can be viewed as the intersection graph of a family of sets in many different ways. If each set is a line segment in the plane, then *G* is called a *segment intersection graph* [1]. The most interesting problem for segment intersection graphs has been Scheinerman's conjecture, which asks whether all planar graphs are segment intersection graphs [2]. Hartman et al. [5] and deCastro et al. [4] answered this question in the affirmative in the cases of bipartite and triangle-free graphs, respectively. Recently Chalopin and Gonçalves have announced a proof that all planar graphs are segment intersection graphs [3].

If each set S_i is an affine subspace of k^d for some field k, then G has an *affine representation* in k^d . For a given k, the smallest d for which G has an affine representation is the *affine dimension* of G. If each set is a subspace of k^d , and two vertices are adjacent if and only if their corresponding subspaces have a nontrivial intersection, then G has a *projective representation* in k^d and the smallest such d is the *projective dimension* of G [6,7]. Pudlák and Rödl investigated the affine dimension and projective dimension of bipartite graphs arising from Boolean functions, and gave asymptotic bounds on these dimensions. They left the explicit construction of a graph with large affine or projective dimension as an open problem [6].

In this paper we consider graphs representable by *e*-dimensional affine subspaces of \mathbb{R}^d , where e < d. Though similar to both segment intersection graphs and graphs with an affine representation, these graphs have not been previously studied.

Formally, we say that a graph *G* is a (d, e)-subspace intersection graph or (d, e)-SI graph if there exists a set of *e*-dimensional affine subspaces *R* in \mathbb{R}^d and a one-to-one correspondence between vertices in *G* and subspaces in *R*, such that two vertices v and w in *G* are adjacent if and only if their corresponding subspaces intersect. Note that since *R* is a set, the subspaces are required to be distinct. For a given graph *G*, if such a set of subspaces *R* exists, *R* is called a (d, e)-subspace intersection representation or (d, e)-SI representation of *G*. For ease of reference, if *G* is a (d, e)-SI graph with (d, e)-SI representation *R*, we denote the vertices of *G* using lower-case letters, and the corresponding subspaces in *R* using upper-case letters. For example, if *a* and *b* are vertices of *G*, then we denote their corresponding subspaces by *A* and *B*.

* Corresponding author. E-mail addresses: jlaison@willamette.edu (J.D. Laison), yulan@math.mit.edu (Y. Qing).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter s 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2010.06.042

Fig. 1. The graph G_2 .

In this paper, we seek to order the classes of (d, e)-SI graphs by set containment. Fig. 2 shows a partial order which summarizes our results. In this figure, edges represent set containment, and the graphs labeling the edges are separating examples.

Lemma 1. Every (d, e)-SI graph is a (d + k, e + j)-SI graph, for all $k \ge j \ge 0$.

Proof. Given a (d, e)-SI representation of a graph *G*, we can consider it in (d + k)-space, and use *j* of these new dimensions to increase the dimension of each of the affine subspaces to (e + j). \Box

Recall that a *complete multipartite graph* is a graph whose vertices can be partitioned into sets so that $u \sim v$ if and only if u and v belong to different sets of the partition.

Proposition 2. A graph is a (d, d-1)-SI graph if and only if it is a complete multipartite graph, for all $d \ge 2$.

Proof. If *G* is a (d, d - 1)-SI graph, then *G* has a representation with (d - 1)-dimensional hyperplanes in *d*-space. Note that two hyperplanes are disjoint if and only if they are not parallel. Hence *G* is a complete multipartite graph, with sets of vertices represented by parallel classes of hyperplanes forming the partite sets. Similarly, given a complete multipartite graph *G*, we can form a (d, d - 1)-SI representation of *G* by taking parallel classes of hyperplanes in *d*-space. \Box

Corollary 3. A graph is a (d, d - 1)-SI graph if and only if it is a (2, 1)-SI graph. \Box

Let G_1 be the graph with vertices a, b, and c, and the single edge $\{a, b\}$. Note that G_1 cannot be represented as the intersection graph of lines in the plane, since line C cannot be parallel with both line A and line B. However, G_1 can be easily represented as the intersection graph of lines in 3-space. Hence we have the following proposition.

Proposition 4. The graph G_1 is a (3, 1)-SI graph but not a (2, 1)-SI graph.

2. Main results

Let G_2 be the graph formed by adding a single edge to the complete bipartite graph $K_{3,3}$. We label the vertices of G_2 as shown in Fig. 1.

Theorem 5. The graph G_2 is a (4, 2)-SI graph but not a (d, 1)-SI graph for any $d \ge 2$.

Proof. We present a (4, 2)-SI representation of G_2 by giving equations for the six planes in the representation. Using the convention that the four coordinates of \mathbb{R}^4 are x, y, z, and w, define these six planes to be A : z = 1, w = 0, B : z = 2, w = 0, C : z = 3, w = 0, I : x = 1, y = z, J : x = 1, y = -z, and K : x = 0, w = 0.

Now we prove that G_2 is not a (d, 1)-SI graph for any d. Suppose by way of contradiction that R is a (d, 1)-SI representation of G with lines A, B, C, I, J, and K. Since I and J intersect, they determine a plane P. Since A, B and C are mutually disjoint, at most one of them contains the intersection of I and J. Hence two of them (without loss of generality A and B) are both also contained in P. So A and B are parallel. Since K intersects both A and B, K is also in P. Since the induced subgraph on the vertices i, j, and k is isomorphic to G_1 , this contradicts Proposition 4. Therefore G_2 is not a (d, 1)-SI graph for any $d \ge 2$.

Lemma 6. A graph G is a (d, e)-SI graph if and only if it is a (d - 1, e)-SI graph for all d > 2e + 1.

Proof. By Lemma 1, every (d - 1, e)-SI graph is also a (d, e)-SI graph. Conversely, suppose that *G* is a (d, e)-SI graph with *n* vertices, and *R* is a (d, e)-SI representation of *G* consisting of the set of affine subspaces S_1, \ldots, S_n in \mathbb{R}^d . We construct a (d - 1, e)-SI representation R' of *G* by projecting *R* onto a (d - 1)-dimensional subspace *V* of \mathbb{R}^d . We prove that we may choose *V* so that it has the following properties:

(1) $\dim(\operatorname{proj}_{V}(S_{i})) = \dim(S_{i})$ for all 1 < i < n.

(2) For any two subspaces S_i and S_j in \overline{R} , $\operatorname{proj}_V(S_i)$ and $\operatorname{proj}_V(S_j)$ intersect if and only if S_i and S_j intersect.

If we have found such a subspace V, then the new set of subspaces $\{\text{proj}_V(S_i) \mid S_i \in R\}$ will be a (d - 1, e)-SI representation of G, and the proof will be complete.

Recall that, for a subspace V in \mathbb{R}^d , the *orthogonal complement* V^{\perp} is the subspace { $\mathbf{v} \in \mathbb{R}^d | \mathbf{v} \perp V$ }. Every (d - 1)dimensional subspace V in \mathbb{R}^d corresponds to a unique line through the origin V^{\perp} . We say that a projection onto V is a projection *along* V^{\perp} . Also, given an affine subspace S_i in R, let S'_i be the unique subspace in \mathbb{R}^d parallel with S_i and passing through the origin. Note that dim(proj_V(S_i)) = dim(S_i) if and only if V^{\perp} is not contained in S'_i .

Fig. 2. The hierarchy of classes of (d, e)-SI graphs.

For two affine subspaces S_i and S_j in R, let p_i and p_j be points in S_i and S_j , respectively. Given a (d - 1)-dimensional subspace V of \mathbb{R}^d , the projection onto V maps p_i and p_j onto the same point in V if and only if the projection is along the line spanned by the vector $p_i - p_j$. Given a pair of non-intersecting affine subspaces S_i and S_j , consider the span of all such vectors, A_{ij} . Note that A_{ij} is also the span of all vectors in S'_i and S'_j and a single vector of the form $p_i - p_j$. Since dim $(S_i) = \dim(S_i) = e$, dim $(A_{ij}) \le 2e + 1$.

Since *R* has a finite number of subspaces, and d > 2e + 1 by hypothesis, the union \mathscr{S} of all the sets A_{ij} and all the sets S'_i cannot be all of \mathbb{R}^d . So there exists some other line *l* through the origin, not contained in \mathscr{S} . Therefore the (d-1)-dimensional subspace l^{\perp} is the required subspace. \Box

The following theorem follows directly from Lemma 6.

Theorem 7. A graph *G* is a (d, e)-SI graph if and only if it is a (2e + 1, e)-SI graph for all $d \ge 2e + 1$. In particular, *G* is a (d, 1)-SI graph if and only if it is a (3, 1)-SI graph for all $d \ge 3$. \Box

We conjecture that Theorem 7 can be strengthened as follows.

Conjecture 1. A graph *G* is an (e + k, e)-SI graph if and only if *G* is an (e + 2, e)-SI graph, for $k \ge 2$. In particular, we conjecture that if *G* is a (5, 2)-SI graph then *G* is a (4, 2)-SI graph.

Theorem 8. Given a finite graph G, there exist positive integers d and e such that G is a (d, e)-SI graph.

Proof. Suppose *G* is a finite graph with vertices v_1, \ldots, v_n . Let $\mathcal{E} = \{e_1, \ldots, e_k\}$ be the set of all unordered pairs of vertices of *G* (so $k = \binom{n}{2}$). Note that $E(G) \subseteq \mathcal{E}$.

We define the affine subspace $V_i \subseteq \mathbb{R}^k$ in the following way. Let P_i be the set of positive integers p such that e_p contains v_i and is not an edge of G. Then $V_i = \{\mathbf{x} \mid \mathbf{x} \text{ has an } i \text{ in coordinate } p \text{ for all } p \in P_i\}$. We modify the subspaces V_i so that they all have the same dimension. So let D be the largest dimension of any V_i , and d be the smallest dimension of any V_i . For each $1 \leq i \leq n$ let U_i be any affine subspace of \mathbb{R}^{D-d} of dimension $D - \dim(V_i)$, and let $V'_i = V_i \times U_i$. We claim that the set $R = \{V'_i\}$ is a (k + D - d, D)-SI representation of G.

We must prove that two vertices v_a and v_b of G are adjacent if and only if their corresponding subspaces V'_a and V'_b intersect. So first, suppose that $v_a \not\sim v_b$ in G, and $e_p = \{v_a, v_b\}$ in \mathcal{E} . Then the *p*th coordinate of every point in V'_a is *a* and the *p*th coordinate of every point in V'_b is *b*. Thus $V'_a \cap V'_b = \emptyset$.

On the other hand, suppose that $v_a \sim v_b$ in G, and p is a coordinate in which every point in V'_a has the same value x. Note that x must be either a or 0 by the definition of V'_a . If x = a, then e_p is a non-edge containing v_a . Since $v_a \sim v_b$, e_p does not contain v_b , and so points in V'_b can take on any value in their pth coordinate. If x = 0, then p > k, and so points in V'_b can take on 0 as their pth coordinate. Hence we can find a point in both V'_a and V'_b , so $V'_a \cap V'_b \neq \emptyset$. \Box

It is likely that the (d, e)-SI representation of *G* constructed in the proof of Theorem 8 is not the smallest such representation with respect to either *d* or *e*.

By Corollary 3, the classes of (2, 1)-SI graphs, (3, 2)-SI graphs, etc., are all the same class of graphs, and by Lemma 1, this class of graphs is contained in all other classes of (d, e)-SI graphs. Similarly by Theorem 7, the classes of (3, 1)-SI graphs, (4, 1)-SI graphs, etc., are all the same class of graphs, and by Lemma 1, this class of graphs is contained in all classes of

(d, e)-SI graphs other than the (2, 1)-SI graphs. Furthermore, if Conjecture 1 is true, then the class of (2, 1)-SI graphs and the classes of (e + 2, e)-SI graphs are all of the distinct classes of (d, e)-SI graphs. Fig. 2 shows the first few classes of this hierarchy, which summarizes the theorems in this paper.

Recall that the affine dimension of *G* is the smallest value of *d* such that *G* is representable as the intersection graph of affine subspaces of *d*-space. Since there is only one choice for *e* if d = 2, the graphs with affine dimension 2 are precisely the complete multipartite graphs by Proposition 2. Pudlák and Rödl ask for explicit constructions of graphs with large affine dimension [6]. We have been unable to find a graph which is not a (4, 2)-SI graph, so we do not know a graph with affine dimension greater than 4.

Open Question 1. Find a graph which is not a (4, 2)-SI graph. More generally, find a graph with large affine dimension.

Acknowledgements

The authors thank Wojciech Kosek, Paul Humke, and Colin Starr for helpful conversations, and the reviewers for many helpful suggestions.

References

- Lowell W. Beineke, Robin J. Wilson (Eds.), Graph Connections: Relationships Between Graph Theory and Other Areas of Mathematics, in: Oxford Lecture Series in Mathematics and its Applications, vol. 5, The Clarendon Press Oxford University Press, New York, 1997.
- [2] Peter Brass, William Moser, János Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.
- [3] Jérémie Chalopin, Daniel Gonçalves, Every planar graph is the intersection graph of segments in the plane, in: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, 2009.
- [4] Natalia de Castro, Francisco Javier Cobos, Juan Carlos Dana, Alberto Márquez, Marc Noy, Triangle-free planar graphs as segment intersection graphs, J. Graph Algorithms Appl. 6 (1) (2002) 7–26. (electronic), Graph drawing and representations (Prague, 1999).
- [5] I.Ben-Arroyo Hartman, Ilan Newman, Ran Ziv, On grid intersection graphs, Discrete Math. 87 (1) (1991) 41-52.
- [6] P. Pudlák, V. Rödl, A combinatorial approach to complexity, Combinatorica 12 (2) (1992) 221–226.
- [7] A.A. Razborov, Applications of matrix methods to the theory of lower bounds in computational complexity, Combinatorica 10 (1) (1990) 81–93.