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Abstract. A sublinearly biLipschitz equivalence (SBE) between metric spaces is a map from

one space to another that distort distances with bounded multiplicative constants and sublinear
additive error. Sublinear Morse boundaries are defined for all proper metric spaces as a quasi-

isometrically invariant and metrizable topological set of quasi-geodesic rays. In this paper, we

show that κ-Morse quasi-geodesics are mapped to uniformly sublinear neighbourhoods of κ-Morse
geodesic rays. Thus a κ boundary of a proper metric space is invariant under any SBE. As an

application we show that with mild assumptions random walks on countable groups are (q, θ)-rays.

1. Introduction

Sublinear biLipschitz equivalence between metric spaces is a generalization of quasiisometry
that is natural with respect to asymptotic cones; it appeared first without a name, and then more
explicitely in the work of Cornulier on asymptotic cones of Lie groups [Cor08, Cor11], before being
studied for its own sake [Cor19, Pal20]. Following Cornulier we will abbreviate this relation as
SBE. Because Gromov hyperbolicity admits a characterization in terms of asymptotic cones, it is
an SBE-invariant among compactly generated locally compact groups; this was noted by Cornulier
[Cor08, Theorem 4.3].

In this project we extend this result to groups and spaces beyond the ones that are Gromov hy-
perbolic. Precisely, this generalization is made in the following sense. Given a proper geodesic space
that is not strictly Gromov hyperbolic, one can study its large scale hyperbolicity-like structure by
describing the sublinearly Morse boundary of the group [QRT20]. The latter is a topological space
collecting a large set of geodesic rays behaving in a hyperbolic fashion; when the space is Gromov-
hyperbolic, this is simply the Gromov boundary. In this paper we show that this set of directions
is invariant under sublinear bilipschitz equivalence. We then go further to obtain a simultaneous
generalization of two distinct previous results in the litterature :

(1) (See §1.1 below) Qing, Rafi and Tiozzo’s theorem that the homeomorphism type of the
sublinearly Morse boundary is a quasi-isometry invariant among proper geodesic metric
spaces [QRT20, Theorem A (2)].

(2) (See §1.2 below) Cornulier’s theorem that the homeomorphism type of the Gromov bound-
ary is SBE invariant among Gromov-hyperbolic groups [Cor19].

We recall some context on these two theorems in the following.

1.1. Boundaries. In his seminal article [Gro87], Gromov introduced the class of hyperbolic groups
and attached to such groups an equivariant bordification, now called the Gromov boundary. The
class of Gromov-hyperbolic group is closed under quasiisometry, and the quasiisometries extend
equivariantly to the Gromov boundaries.
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The class of Gromov hyperbolic groups and spaces is however not vast enough to include natural
examples such as CAT(0) groups, or the mapping class groups of surfaces of finite type, despite the
fact that these exhibit some of the symptoms of nonpositive or negative curvature; for instance,
their asymptotic cones are CAT(0) spaces for some word metric. For these, the visual boundary
(the set of all geodesic rays emanating from a fixed base-point (X, o), up to fellow travel) does
not provide a good large-scale invariant (as indicated by the works from Croke-Kleiner [CK00] to
Qing [Qin16]). In [QRT19], the second named author and Rafi consider the set of quasi-geodesic
rays whose Morse property is weakened compared to that of geodesic rays in Gromov spaces. In
particular, given a sublinear function κ, Qing-Rafi define a quasi-geodesic ray γ to be sublinearly
κ-Morse if any other geodesic segment with endpoints on γ is uniformly κ-close to γ, i.e. their
distances to γ is bounded above by n(q,Q)κ(‖x‖), where n(q,Q) is a constant depends only on the
quasi-geodesic constants (q,Q) of the segment, and the distance of each point on the segment to
the origin, ‖x‖ = d(o, x). The collection of all such quasi-geodesic rays, together with a coarse cone
topology, is refered to as the κ boundary of X, and denoted ∂κX. These boundaries are shown to be
a quasi-isometrically invariant topological space for all proper geodesic spaces [QRT20]. Therefore
one can denote a κ-boundary of a group with ∂κG. Furthermore, they are metrizable topological
spaces ([QRT20]). Since its introduction, sublinearly Morse boundaries are studied and compared
to Gromov boundaries in various ways, such as via visibility, divergence and contracting properties
(See[MQZ21], [IZ] and [Zal21] ).

One important application of the sublinear boundaries is that, for appropriately chosen κ, ∂κG
is a topological model for the Poisson boundaries of simple random walks on various groups, such as
right-angled Artin groups [QRT19], mapping class groups and relative hyperbolic groups [QRT20],
hierarchically hyperbolic groups [NQ22], CAT(0) groups [GQR22] and Teichmüller spaces [GQR22].
The sublinearly Morse directions are also shown to be generic in Patterson Sullivan measure under
suitable conditions [GQR22]. Most recently, Choi [Cho] claim this result to hold for all groups with
two independent isometries with contracting axes.

1.2. Sublinear bilipschitz equivalence. Sublinear bilipschitz equivalence (SBE) appeared in
works of Cornulier, where it was motivated by the quasiisometry classification of connected Lie
groups. Cornulier noted that while the quasiisometry classification of all such groups reduces to
that of closed subgroups of real upper triangular matrices, the sublinear billipschitz classification
reduces to that of a smaller class, and that it was completely treated by the literature in the
nilpotent case [Cor11]. In [Cor19] Cornulier asked about the SBE classification for other classes of
groups, especially the word-hyperbolic groups.

As mentionned above, the first SBE invariant is the asymptotic cone; it is also the most natural
one, since SBE may be defined as the largest class of maps inducing bilipschitz homeomorphisms
between asymptotic cones with fixed basepoints. A geodesic metric space X is Gromov-hyperbolic if
and only if all its asymptotic cones are real trees, for every choice of sequence of base-points [Gro93,
2.A] [Dru02, Proposition 3.A.4]. It follows that Gromov-hyperbolicity is an SBE-invariant among
compactly generated locally compact groups, and especially among finitely generated groups)[Cor19,
Theorem 4.3]. Cornulier proved that SBEs between Gromov-hyperbolic groups induce biHölder
homeomorphisms between their Gromov boundaries; this was slightly improved by the first named
author showing that a sublinear conformal structure in the Gromov boundary is actually preserved
[Cor19, Pal20].

Theorem A. (Theorem 4.4) Let Φ be an SBE between two proper geodesic spaces X and Y . Then
Φ induces a bijection Φ? : ∂κX → ∂κY . Moreover Φ? is a homeomorphism.
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The proof of Theorem 4.4 makes use of (L, θ)-rays, introduced in [Pal20] (there called (λ,O(v))-
rays). These are images of the half-line under a map that is sublinear bi-Lipschitz. As such,
they are analogues of quasigeodesics, but with an additive constant of quasigedoesicity that grows
sublinearly. The degree of growth is precised by the function θ, while L is the large-scale Lipschitz
constant. (L, θ)-rays also play an important role in the statement of our second result.

1.3. Random walks. Similar to the development of sublinearly Morse boundaries, an important
motivation behind this project stems from simple random walk on finitely generated groups. In
[Tio15], Tiozzo show that given a surface S, in the Teichmüller space T (S), a generic random walk
tracks a geodesic sublinearly. In Section 5 of this paper, we show that this is equivalent to say that
a generic random walk is a (L, κ)-ray for some sublinear function κ.

Theorem B. (Theorem 5.1) Let G be the mapping class group Mod(S) of a finite type surface,
or let G be a relatively hyperbolic group. Let (X, d) be a Cayley graph of G. Let µ be a probability
measure on G with finite first moment with respect to the metric d, such that the semigroup generated
by the support of µ is a non-amenable group. Then there exists a constant A such that almost every
sample path (wn) is such that (wno) is a (A, κ)-ray. Moreover, one can take κ(r) = log(2 + r).

In fact, this result hold in more generality: we combine the proof of Theorem 5.1 together
Theorem 6 in [Tio15] to obtain Theorem 5.2.

While Theorem 5.1 is logically independent from Theorem 4.4, both theorems promote the use
of (L, θ)-rays. Whereas a generic random walk is not a quasigeodesic, it is an (L, θ) ray, and many
of the geometric techniques devised for quasigeodesics can be employed to treat (L, θ)-rays as if
they were quasigeodesics.

1.4. Organization of the paper. Section 2 collects preliminary material; especially we recall the
relevant definitions and facts concerning sublinear bilipschitz equivalence, rays, and the sublinearly
Morse boundaries. Beware that we chose to adapt the notation from [QRT20] so that the notation
for sublinear bilipschitz equivalence is not the usual one. Section 3 is a preparation for Section 4,
which is itself devoted to the proof of Theorem 4.4. Section 5 is about Theorem B. It only builds
on the preliminaries and can be read without Sections 3 and 4.

2. Preliminaries

2.1. Notation and convention for the sublinear functions. Throughout this paper, let X
and Y denote pointed proper geodesic metric spaces. The basepoints in both spaces are denoted o.
The distance to the basepoint is denoted ‖x‖ = d(x, o) for all x ∈ X or x ∈ Y . Let κ be a concave
nondecreasing and strictly sublinear function. The last condition means that κ(r)/r goes to 0 as r
tends to +∞. We also assume κ > 1.

By κ(x) for x ∈ X or Y we mean κ(‖x‖). Let Z ⊆ X be a closed subspace of X and D > 0,
then Nκ(Z,D) will denote {x ∈ X : d(x, Z) 6 Dκ(x)}. We say that D is small with respect to r,
and write D� r, if D 6 r/(2κ(r)).

2.2. Sublinear estimates. The following basic sublinear estimate that is needed:

Lemma 2.1 (Sublinear Estimation Lemma). For any D0 > 0, there exists D1,D2 > 0 depending
on D0 and κ so that, for x, y ∈ X,

d(x, y) ≤ D0 · κ(x) =⇒ D1κ(x) ≤ κ(y) ≤ D2κ(x).
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Proof. Since κ is sublinear, there is R > 0 such that κ(x) 6 1
2D0
‖x‖ as soon as ‖x‖ > R. And then

d(x, y) 6 D0κ(x) implies that ‖y‖ 6 3‖x‖2 by the triangle inequality, so that, in all cases,

κ(y) 6

[
sup
r>R

κ(3r/2)

κ(r)
+ κ(3R/2)

]
κ(x)

where we used that κ(x) > 1. We may define D2 = supr>R
κ(3r/2)
κ(r) + κ(3R/2). On the other hand,

if ‖x‖ > R then ‖y‖ > ‖x‖/2 so that

κ(y) >

[
inf
r>R

κ(r/2)

κ(r)

]
κ(x)

Setting D1 = min(infr>R
κ(r/2)
κ(r) , 1/κ(R)) finishes the proof. �

2.3. Quasigeodesics and θ-rays. Here, θ is a function with the same properties as κ, that were
specified in §2.1.

Definition 2.2 (θ-ray). Let X be a proper pointed geodesic metric space. Let L > 1 be a constant.
Say that γ : [0,+∞)→ X with γ(0) = o is a (L, θ)-ray, or a θ-ray for short, if for every s, t ∈ [0,+∞)

(2.1)
1

L
|s− t| − θ(max(s, t)) 6 d(γ(s), γ(t)) 6 L|s− t|+ θ(max(s, t)).

Beware that in [Pal20] we did not ask γ(0) = o in the definition of a ray but we do it here. The
difference is not a serious one, as one may simply advance the function θ (i.e. replace θ with θ(D+ ·)
to accomodate for the change.

Remark 2.3 (compare [Pal20, Lemma 3.2]). If γ is a (L, θ)-ray then for s large enough 1
2L |s| 6

‖γ(s)‖ 6 2L|s| (apply (2.1) with fixed t), hence there exists θ̂ = O(θ) such that for s and t large
enough,

(2.2)
1

L
|s− t| − θ̂(max(‖γ(s)‖, ‖γ(t)‖)) 6 d(γ(s), γ(t)) 6 L|s− t|+ θ̂(max(‖γ(s)‖, ‖γ(t)‖)).

When θ is a constant, the Definition 2.2 is that of a quasigeodesic ray. For our purposes, it is
however necessary to treat the latter specifically because they play a special role in the definition
of the sublinearly Morse boundary. Hence, we will use q for L and Q for θ when we want to denote
a quasigeodesic ray.

Lemma 2.4 (Connect-the-dots for θ-rays). Let γ be a (L, θ)-ray into a proper geodesic metric space
X. Then there exists n > 0 and γ̂ which is a (L, n · θ)-ray into X with the property that

• γ(t) = γ̂(t) for all nonnegative integer t.
• γ̂ is continuous.

Moreover, there exists n > 0 such that

(2.3) d(γ(t), γ̂(t)) 6 n · θ(t)
for all t.

We will refer to γ̂ as a continuous completion of γ.

Proof. For every t ∈ N, choose a geodesic segment σt from γ(t) to γ(t + 1) at unit speed and
denote its length `t. Note that `(t) 6 L+ θ(t+ 1) by the inequality on the right in (2.1). Now for
all t ∈ [0,+∞) set γ̂(t) = σt(`t · {t}) where {t} denotes the fractional part of t. In this way γ̂ is
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α

β

2n

2n

2n−1

2n−1

Figure 1. Counterexample to the conclusion of Lemma 2.6 when the left inequal-
ity of (2.1) is not respected by one of the rays (namely, β). Note that both ‖α(t)‖
and ‖β(t)‖ here are bounded between linear functions of t.

continuous by construction. Let t, s ∈ [0,+∞) be such that t 6 s. Then, either bsc = btc, in which

case d(̂(γ(t), γ(s)) 6 `btc 6 θ(t+ 1) 6 n0θ(t) for some n0 by the properties of θ, or

d(γ(t), γ(s)) 6 d(γ(t), γ(dte)) + d(γ(dte), γ(bsc)) + d(γ(bsc), γ(s))

6 L(bsc − dte)) + 2θ(s+ 1)

6 L|s− t|+ 2θ(s+ 1).

and

d(γ(t), γ(s)) > d(γ(dse), γ(btc))− d(γ(s), γ(dse))− d(γ(btc), γ(t))

> L−1(dse − btc))− 2θ(s+ 1)

> L−1|s− t|+ 2θ(s+ 1).

Finally, 2θ(s+ 1) 6 n1θ(s) for some n1, it remains to set n = max(n0, n1). �

Definition 2.5. Let α, β be quasi-geodesic rays or (L, θ)-rays for some L and θ into a proper
geodesic space. We say α ∼ β if either of the following holds:

(1) limt→∞
d(α(t),β)

t = 0.

(2) limt→∞
d(β(t),α)

t = 0.

Lemma 2.6. (1) and (2) are equivalent.

Beware that Lemma 2.6 is false if one replaces α and β with arbitrary maps, even proper maps
from the half-line to X that respect the inequality on the right hand side of (2.1). For instance, if one
considers the plane parametric curve β parametrized by arclength pogressing along the horizontal
axis and making jumps of height 2n at time 2n for all n > 0, and the parametrization of the
horizontal axis α, then this pair has (1) but not (2). See Figure 1.

Proof. Assume (1) holds and define η(s) = d(α(s), β) for s ∈ [0,+∞); this function η is sublinear.
Let us introduce the set

T = {t ∈ [0,+∞) : ∃s ∈ [0,+∞), d(α(s), β(t)) 6 2d(α(s), β)} .
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αβ

β(tn−1)

β(tn)

α(sn) α(sn + 1)

pn
qn

β(tn(1 + ε))β(tn(1− ε))

Figure 2. Proof of Lemma 2.6.

We claim that T cannot have large holes, more precisely there is no ε > 0 and sequence (tn)
with limit +∞ such that

(2.4) (tn(1− ε); tn(1 + ε)) ∩ T = ∅

for all n. Indeed, assume the contrary and define

sn = sup{s : ∃t < tn, d(α(s), β(t)) 6 2d(α(s), β)}

It can be checked that sn is well defined for all n and tends to +∞, since α is proper while β[0, tn] is
bounded and X is proper. Now consider a nearest point projection pn of α(sn+1) on β. Necessarily,
t > tn(1 + ε) for every t such that pn = β(t), in view of the definition of sn and tn. Let qn be a
nearest-point projection of α(sn) on β; by the same argument, if qn = β(t) then t < tn(1−ε). Now,
on the one hand by the triangle inequality,

d(pn, qn) 6 d(pn, α(sn + 1) + d(α(sn + 1), α(sn)) + d(α(sn), qn))

6 L+ θ(sn+1) + η(sn) + η(sn + 1).(2.5)

On the other hand, by the left-hand side of (2.1),

d(pn, qn) > 2L−1εtn − θ̂(max(‖pn‖, ‖qn‖))(2.6)

where θ̂ = O(θ). However, there is a constant M > 0 such that M−1tn 6 sn 6 Mtn for n large
enough; one can take M = 2L2(1 + ε), by considering the first inequality in Remark 2.3.

Making n → +∞ and using that θ, θ̂ and η are sublinear, (2.5) and (2.6) are in contradiction
with one another. Thus (2.4) cannot be. It follows that there is a sublinear function µ such that for
all t > 0, there is t′ with |t− t′| 6 µ(t) and t′ ∈ T . And then d(β(t), α) 6 d(β(t), β(t′))+d(β(t′), α),
which is bounded above by a sublinear function of t involving η, µ and L in view of the definition
of T and the linear control between s and t when β(t′) is a closest point projection of α(s) on β.
We proved that (1) implies (2) for (L, θ) rays; the converse implication holds by symmetry, and
quasigeodesics are θ-rays, hence the Lemma is proved.

�

2.4. Definition of the sublinearly Morse boundary ∂X. For more extensive references on
sublinearly Morse boundaries, see [QRT19] and [QRT20]. A (q,Q)-quasigeodesic is a map γ :
[0,+∞)→ X such that 1

qd(x, y)− Q 6 d(γ(x), γ(y)) 6 qd(x, y) + Q for all x, y ∈ [0,+∞).

Definition 2.7 (κ-Morse quasigeodesic [QRT20, Definition 3.2]). Let Z ⊆ X be a closed subspace.
Let mZ : R2 → R be a proper function. Say that Z is κ-Morse with Morse gauge mZ if for every
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sublinear function κ′, for every r > 0 such that mZ(q,Q)�κ r, there exists R > 0 such that if β is
a (q,Q)-quasigeodesic then

dX(βR, Z) 6 κ′(R)=⇒β|r ⊂ Nκ(Z,mZ(q,Q)).

Proposition 2.8 ([QRT20, Lemma 3.4 and Corollary 3.5]). Let α and β are quasi-gedodesic rays
into X, such that β is (q,Q)-quasi-geodesic and α is κ-Morse. If α ∼ β then β is κ-Morse with
gauge mα + 4mα(q,Q).

We will reprove this in a greater generality in Proposition 3.1.
Define ∂κX as the set of κ-Morse quasigeodesic up to ∼. For any κ-Morse β , define ∂U(β, r) as

{a : α ∈ a is a (q,Q)-quasigeodesic and r �κ mβ(q,Q)=⇒α|r ⊆ Nκ(β,mβ(q,Q))},

and then

∂B(b) = {V ⊆ ∂κX : ∃β ∈ b,∃r > 0,V ⊇ ∂U(β, r)}.
The topology on ∂κX is defined as the unique one so that the ∂B(b) are the neighborhood systems
at b [QRT20, Lemma 4.5]; it is metrizable [QRT20, Lemma 4.8]. Finally, the sublinearly Morse
boundary is defined as ∂X = ∪κ ↑ ∂κX.

2.5. Sublinear bilipschitz equivalence. In this paragraph, θ is a sublinear function with the
same properties as κ.

Definition 2.9. Let Z and Z ′ be two closed unbounded subsets in X. Say that Z and Z ′ linearly
separate if d(Z ∩ S(o, r), Z ′)− r stays bounded as r → +∞.

Definition 2.10 (θ-SBE). Let (X, o) and (Y, o) be proper geodesic pointed metric spaces. Let
L > 1 be a constant, and let θ be a sublinear function as before. Say that Φ : X → Y is a
(L, θ)-sublinear bilipschitz equivalence (θ-SBE for short) if

1

L
d(x1, x2)− θ(max(‖x1‖, ‖x2‖)) 6 d(Φ(x1),Φ(x2))) 6 Ld(x1, x2) + θ(max(‖x1‖, ‖x2‖))

and Y = Nθ(Φ(X), D) for some D > 0.

Proposition 2.11 (Inverses). Let Φ : X → Y be a θ-SBE. Then there exists Φ : Y → X a θ-SBE
and n > 0 such that for all x ∈ X,

(2.7) d(x,Φ(Φ(x))) 6 n · θ(x)

and for all y ∈ Y ,

(2.8) d(y,Φ(Φ(y))) 6 n · θ(y).

Proof. This follows from [Cor19, Proposition 2.4], however, let us give here a self-contained proof.
For simplicity, let us assume for now that Φ(X) is closed in Y ; we will see in the end how to remove
this assumption if necessary. For every y ∈ Y , define Φ(y) as some x ∈ X such that Φ(X) is
a nearest-point projection of y on Φ(X). By assumption, Φ is a θ-SBE, hence applying the last
property in Definition 2.10 one gets that

(2.9) d(y,Φ(Φ(y))) 6 Dθ(Φ(x)),

for some D > 0. This is almost (2.8); let us rework this inequality slightly. Since we know
that d(y,Φ(x)) 6 Dθ(‖y‖), when y is far enough from o, there is some constant K so that as
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soon as ‖y‖ > K, ‖y‖/2 6 ‖Φ(x)‖ 6 2‖y‖. It follows that for some constant K ′, for all y,
‖Φ(x)‖ 6 2‖y‖+K ′. Hence

d(y,Φ(Φ(y))) 6 Dθ(Φ(x)) 6 Dθ(2‖y‖+K ′) = O(θ(y)).

Thus we proved (2.8). Now for (2.7), note that x and Φ(Φ(x)) have the same image, namely Φ(x),
through Φ. So 1

Ld(x,Φ(Φ(x))− θ(max(‖x‖, ‖Φ(Φ(x))‖) 6 d(Φ(x),Φ(x)) = 0, whence

(2.10) d(x,Φ(Φ(x)) 6 Lθ(max(‖x‖, ‖Φ(Φ(x))‖).
But also 1

L‖Φ(Φ(x)‖ − θ(Φ(Φ(x))) 6 ‖Φ(x)‖ 6 L‖x‖ + θ(x). There exists K such that θ(r) 6
K + r/(2L)), and then

1

2L
‖Φ(Φ(x)‖ 6 L‖x‖+

‖x‖
2L

+ 2K.

Plugging this into (2.10),

d(x,Φ(Φ(x)) 6 Lθ(max(‖x‖, (2L2 + 1)‖x‖+ 2LK) = O(θ(‖x‖)).
Finally we need to prove that Φ is a θ-SBE. Applying the inequality on the right in Definition 2.10
for Φ,

d(Φ(y),Φ(y′)) 6 Ld(ΦΦ(y),ΦΦ(y′)) + θ(max(‖Φ(y)‖, ‖Φ(y′)‖))
6 Ld(y, y′) + 2θ(max(‖y‖, ‖y′‖, ‖Φ(y)‖, ‖Φ(y′)‖))

Note that
1

L
‖Φ(y)‖ − θ(‖Φ(y)‖) 6 d(ΦΦ(y),Φ(o)) 6 ‖y‖+O(θ(‖y‖)).

so that ‖Φ(y)‖ 6 2L‖y‖+M for some constant M . Thus

d(Φ(y),Φ(y′)) 6 Ld(y, y′) + 2θ(max(‖y‖, ‖y′‖, ‖Φ(y)‖, ‖Φ(y′)‖)) 6 Ld(y, y′) + 2Pθ(max(‖y‖, ‖y′‖)
for some P > 0. This proves the inequality on the right in Definition 2.10 for Φ ; in the exact same
way, the left inequality on the left is obtained by using the inequality on the left for Φ.

It remains to check that X = Nθ(Φ(Y ), D) for some D > 0. This follows from (2.7) exactly the
same way that we deduced (2.8) from (2.9).

Finally, Φ(X) may not be closed in Y , but in the construction of Φ(y), we can relax the con-
dition defining Φ(y) by replacing the nearest-point projection of y with some point at distance at
most 2d(y,Φ(X)) from y. All the estimates afterwards go through with additional multiplicative
constants. �

Remark 2.12. When θ = 1, the proof is easier and it is one of the first exercises on quasiisometries
in textbooks; see e.g. [DK18, Exercise 8.12].

Lemma 2.13. Let α be an (L, θ)-ray. Let Φ and Φ be as in Proposition 2.11. Let α̂ and Φ̂Φα be
continuous completions of α and ΦΦα. Then there exists n depending on L and θ and n′ depending

on L, θ and Φ, such that α̂ ⊂ Nθ(Φ̂Φα, n) and Φ̂Φα ⊂ Nθ(α̂, n′).

Proof. By Proposition 2.11, there exists n0 such that for every x in α, d(x,ΦΦx) 6 n0θ(x). Hence
α ⊂ Nθ(ΦΦα, n0). Morever, by Equation (2.3) and Remark 2.3, there is n1 depending on L and θ
such that

d(γ̂(t), γ(t) 6 n1θ(max(‖γ(t)‖, ‖γ̂(t)‖)
for all t. It follows that

α ⊂ Nθ(ΦΦα, n0 + n1).
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By Lemma 2.1, since d(x,ΦΦx) 6 n0κ(x) for all x in α, there are D1, D2 such that D1κ(x) 6
κ(ΦΦx) 6 D2κ(x) for every x on α. Finally, ΦΦα is a (L′, θ) ray where L′ depends on L and Φ. So
applying again Equation (2.3) and Remark 2.3, there exists n′1 such that

d(Φ̂Φγ(t),ΦΦγ(t)) 6 n1θ(max(‖ΦΦγ(t)‖, ‖Φ̂Φγ(t)‖).
Setting n′ = n0 + n′1 finishes the proof. �

There exist several degree of closeness between κ-rays. The first is the ∼ relation defined earlier.

Definition 2.14 (κ-fellow travelling rays). Given two rays α and β (which are frequently either
quasi-geodesic rays or θ-rays in this paper) we say, α and β κ-fellow travel each other if there exists
n and for all t > 0, we have

d(α(t), β(t)) ≤ n · κ(t).

Further, we say that α and β κ-track each other if there exists n1 such that

d(αr, βr) ≤ n1 · κ(r).

for all r.

Note that if α and β κ-fellow travel each other, then they κ-track each other, however the
converse is not true.

3. θ-SBE invariance of the κ-Morse quasi-geodesic rays, when θ = O(κ)

In this section we establish what happens to κ-Morse quasi-geodesic rays under (L, θ) maps. We
prove that they behave well in the sense that they are sent to images sublinearly tracking sublinearly
Morse geodesic rays, provided that κ dominates θ.

Precisely, given two sublinear functions κ, θ, we say κ dominates θ if there exists constants C1, C2

and some t0 such that for all t > t0,

κ(t) ≥ C1θ(t) + C2.

Therefore in the results proven, we show frequently a ray is (κ + θ)-Morse, which implies it is
κ-Morse if θ � κ and it is θ-Morse if κ � θ.

3.1. κ-Morse rays. Assume that α is a κ-Morse (L, θ)-ray in a proper metric space. Then we can
establish that a quasi-geodesic ray that tracks α sublinearly is itself κ-Morse.

Proposition 3.1. Let α be an (L, θ)-ray that is κ-Morse with its Morse gauge mα, and let β ∼ α
be a (q,Q)-quasigeodesic ray that tracks α sublinearly. Then β is κ-Morse.

Proof. The proof is similar to that of [QRT20, Lemma 3.4] where β is also (q,Q)-quasigeodesic but
α is a κ-Morse quasigeodesic instead of a κ-Morse (L, θ)-ray. First, assume that β is continuous.
We will see in the end how to remove the assumption.

Define κ′(r) := dX(αr, βr). By definition of ∼, the function κ′ is sublinear. Let us now prove
that β is κ-Morse. Let r > 0 and let β′ be a (q′,Q′)-quasi-geodesic ray such that

dX(β′R, β) ≤ κ′(R)

for some sufficiently large R. Let pR be a nearest point projection of β′R to β; by construction and
by triangle inequality, we have

‖pR‖ ≤ 2‖β′R‖ = 2R.
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o α

β

β′

≤ κ′(R)

≤ κ′(R+ κ′(R))

yt

qt

st

β′R

pR

Figure 3. The setup in the proof of Proposition 3.1.

Then, by the triangle inequality,

dX(β′R, α) ≤ dX(β′R, pR) + dX(pR, α)

≤ κ′(R) +mα(q,Q) · κ(‖pR‖) β is a quasi-geodesic ray and hence

is in a κ-neighbourhood of α.

≤ κ′(R) +mα(q,Q) · κ(2R).

Since κ′′(R) := κ′(R) + m(q,Q) · κ(2R) is also a sublinear function, and since α is κ-Morse, this
implies that

(3.1) β′|r ⊆ Nκ(α,mα(q′,Q′)).

Let yt be any point on β′ with ‖yt‖ = t ≤ r. By construction and triangle inequality, if qt is a
nearest point projection of yt to α, we have

‖qt‖ ≤ 2‖yt‖ = 2t.

Now, if q is any point on α and s is a nearest point projection of q to β, by the triangle inequality
and the Morse property,

‖q‖ ≥ ‖s‖ − dX(s, q) ≥ ‖s‖ −mα(q,Q) · κ(‖s‖).
Moreover, again by construction and triangle inequality, ‖s‖ ≤ 2‖q‖, hence by concavity

dX(s, q) ≤ mα(q,Q) · κ(‖s‖) ≤ 2mα(q,Q) · κ(‖q‖).
Thus, let st be a nearest point projection of qt to β, the above estimate yields

dX(qt, st) ≤ 2mα(q,Q) · κ(‖qt‖)
≤ 4mα(q,Q) · κ(t)

hence, putting everything together,

dX(yt, β) ≤ dX(yt, qt) + dX(qt, st)

≤ mα(q′,Q′) · κ(t) + 4mα(q,Q) · κ(t)

which, by setting mβ(q′,Q′) := mα(q′,Q′) + 4mα(q,Q), proves the claim. �

Building on these results we are now ready to establish the map on ∂κX that is induced by an
SBE.
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Lemma 3.2. If α is a (q, Q)-κ-Morse quasi-geodesic ray in X, and Φ is an (L, θ)-sublinear bi-
Lipschitz equivalence between two proper metric spaces X and Y . Then ΦΦα is (κ+ θ)-Morse.

Proof. Consider α,ΦΦα. By Proposition 2.11, every point x of α is θ(x) away from the point ΦΦ(x).
Consider a (q,Q)-quasi-geodesic γ that is sublinearly tracking ΦΦα. Let this tracking function be
denoted κ′.

Then, there exists a constant C such that any point y on γ is distance at most C(κ′(y) + θ(y))

from α. Indeed, d(y,ΦΦα‖y‖) 6 κ′(y) and then by Proposition 2.11, d(y, α) 6 κ′(y) + θ̂(y) where

θ̂ 6 Cθ for some C by (2.2).
Since α is κ-Morse and C(κ′(y) + θ(y)) is a sublinear function, by Proposition 3.1 we have that

γ is in a κ-neighbourhod of α and γ is κ-Morse.
Therefore we have that γ is in Nκ(α,m) for some m. Since α is θ-tracking ΦΦα, we have that γ

is m · κ+ θ tracking ΦΦα. Thus we have shown that any quasi-geodesic ray that sublinearly tracks
ΦΦα with rate m · κ+ θ. Thus ΦΦα is (κ+ θ)-Morse. �

α

γ

ΦΦα

Figure 4. Proof of Lemma 3.2.

Proposition 3.3. If α is a (q, Q)-κ-Morse quasi-geodesic ray in X, and Φ is an (L, θ)-sublinear
bi-Lipschitz equivalence between two proper metric spaces X and Y . Then Φα is (κ+ θ)-Morse.

Proof. Consider a (q,Q)-quasi-geodesic ray γ that sublinearly tracks Φα and let the tracking func-
tion be κ′. Consider the image Φγ. Φγ is distance θ + κ′ from ΦΦα. Since ΦΦα is θ-tracking α
we have that Φγ is 2θ + κ′-tracking α. By Proposition 3.1, Φγ is κ-Morse. Therefore, since α is a
quasi-geodesic that sublinearly tracks Φγ, we have that α and Φγ are κ-close.

Now apply Φ to both α and Φγ. Φα and ΦΦγ are κ + θ apart. Since ΦΦγ and γ are θ apart,
then we have that Φα and γ are at most κ + 2θ apart. This holds for every γ and thus we have
that Φα is (κ+ θ)-Morse.

�

These two results guarantees that the image of a κ-Morse quasi-geodesic ray, under SBE, is an
(L, θ)-ray that carries the κ-Morse property, i.e. any quasi-geodesic ray that sublinearly tracks this
set tracks it with a uniformly controlled sublinear function. The next two results shows that the
latter set, i.e. a κ-Morse (L, θ)-ray still has strong association with a geodesic ray and thus can be
connected with a κ-Morse equivalence class in ∂κX in Section 4.

Lemma 3.4. Let α be a κ-Morse (L, θ)-ray. Then there exists a geodesic ray a such that a and α
κ- track each other.
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α

a
α(i1) α(i2) α(i3)

Figure 5. Proof of Lemma 3.4.

Proof. Since α is κ-Morse, let mα(q,Q) be its κ-Morse gauges. Consider the geodesic segments
connecting the basepoint and α(i), i = 1, 2, 3 . . ..

Since α is κ-Morse, for every r > 0, there exists ir such that

α(ir) ∈ N1(α, 1) =⇒ [o, α(r)] ∈ Nκ(α,m(1, 0)).

The space X is assumed to be proper. Thus by the Arzelá-Ascoli Theorem, for some extraction
{in}, the subsequence {[o, α(in)], n = 1, 2, 3 . . .} converges to a geodesic ray a.

For each n, all but the first n−1 segments in this sequence has the property that the intersection
of them with the ball of radius in is in the neighbourhood Nκ(α,m(1, 0), thus their limit a is in the
neighbourhood Nκ(α,m(1, 0)). Thus a and α κ-track each other. �

Note that we used the κ-Morse property in an essential way.
When X is Gromov hyperbolic, Lemma 3.4 is a consequence of [Pal20, Lemma 3.4].

Proposition 3.5. If α is an (L, θ)-ray that is κ-Morse, then α is in a κ-neighbourhood of a unique
κ-Morse geodesic ray, up to sublinear tracking. Thus a κ-Morse (L, θ)-ray is associated with a
unique equivalence class a ∈ ∂κX.

Proof. By Lemma 3.4, there exists a geodesic ray a such that a and α κ-tracks each other. Then
Proposition 3.1 implies that a is κ-Morse. Since every κ-Morse geodesic ray is in a unique equivalence
class a ∈ ∂κX, we get that α is associated with a ∈ ∂κX. Suppose α is in a κ-neighbourhood of
another κ-Morse geodesic ray a′, we have that a′ and a κ-track each other and thus a′ ∈ a. �

4. SBE on sublinearly Morse boundaries

In this section we look at the induced map of an given SBE Φ: X → Y on ∂κX. To begin
with, we need the following basic observation about (L, θ)-ray and geodesics that are in sublinear
neighbourhoods of each other. The proof is identical to the analogous claim in [QRT20] regarding
quasi-geodesic rays and geodesic rays:

Lemma 4.1. Let β be a (L, θ)-ray and a be a geodesic ray, both based at o ∈ X. Suppose that

β ⊆ Nκ(a,m)

for some function κ and some constant m. Then we also have

a ⊆ Nκ(β, 2m).

Proof. The proof is the same as that of [QRT20, Lemma 3.1]; we reproduce it here for completeness.
First, assume for simplicity that β is a continuous θ-ray. Let y ∈ α be a point and let r := ‖y‖. Let
z ∈ β be a point such that ‖z‖ = r and let q be a nearest point projection of z to a. By assumption,

dX(z, q) ≤ m · κ(r).
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o a

β

yq

z

Figure 6. ‖y‖ = ‖z‖ and q ∈ πa(z) as in the proof of Lemma 4.1.

On the other hand,

dX(y, q) = |‖y‖ − ‖q‖| since a is geodesic

= |‖z‖ − ‖q‖|
≤ dX(z, q) by the triangle inequality.

Therefore we have

dX(y, β) ≤ dX(y, z) ≤ dX(y, q) + dX(q, z)

≤ 2dX(z, q)

≤ 2m · κ(r)

which completes the proof. Now, β may not be continous. However, by Lemma 2.4 there is a
continuous θ-ray that θ-fellow travels with β. �

Let Φ: X → Y be a (L, θ)-SBE; we are now ready to define the induced map Φ?.
Given a (q,Q)-quasi-geodesic ray ζ : [0,∞) → X in X, we assume without loss of generality

that the image of ζ is a continuous path. Let Φζ be the (Lq, θ)-ray in Y constructed from the
composition of ζ and Φ.

Proposition 4.2. Assume that κ dominates θ, and let Φ be a (L, θ)-sublinear bi-Lipschitz equiva-
lence from X to Y , where X and Y are proper geodesic metric spaces. Two κ-Morse quasi-geodesics
α and β in X κ-fellow travel each other if and only if Φα and Φβ κ-fellow travel each other in Y .

Proof. If α and β in X κ-fellow travel each other with multiplicative constant n, then at radius r,
the distances between points of Φα and Φβ is apart by

L(n · κ(r)) + θ(r) ≤ (Ln+ 1)κ(r)

thus Φα and Φβ κ-fellow travel each other in Y . By Proposition 2.11, there exists an inverse, Φ,
that is also an (L, θ)-SBE. Thus we have that if Φα and Φβ are n′κ(r)-tracking, then ΦΦα and
ΦΦβ are (Ln′ + 1)κ(r)-tracking each other by the preceding argument. Furthermore, α, β are θ(r)
tracking ΦΦα and ΦΦβ, respectively. Thus α, β are tracking each other with distance at most

(Ln′ + 1)κ(r) + θ(r) + θ(r) ≤ (Ln′ + 3)κ(r). �

Definition 4.3. It follows from Proposition 4.2 that two quasi-geodesics ζ and ξ in X κ–fellow
travel each other if and only if Φζ and Φξ κ-fellow travel each other in Y . Also by Corollary 3.3, the
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property of being in Morse-neighbourhood of a Morse geodesic ray is preserved under an (L, θ)-SBE.
Hence, [ζ] ∈ ∂κX if and only if [Φζ] ∈ ∂κY . We write a = [ζ] and b = [Φζ] and we thus define

Φ?(a) = b.

Theorem 4.4. Consider proper geodesic metric spaces X and Y , let Φ: X → Y be a (L, θ)-
sublinear bi-Lipschitz equivalence between X and Y and let Φ denote its inverse as in Proposi-
tion 2.11. Let Φ? be defined by Definition 4.3. Then for every sublinear function κ that dominates
θ, Φ? : ∂κX → ∂κY is a homeomorphism.

Proof. By Definition 4.3, Φ? defined as above gives a bijection between ∂κX and ∂κY . We need to
show that (Φ?)

−1 is continuous. Then, the same argument applied in the other direction will show
that Φ? is also continuous which means Φ? is a homeomorphism.

Let V be an open set in ∂κX, bX ∈ V and Uκ(bX , r) be a neighborhood of bX that is contained
in V. Let bY = Φ?(bX). We need to show that there is a constant r′ such that, for every point
aY ∈ Uκ(bY , r

′), we have

(Φ?)
−1(aY ) = aX ∈ Uκ(bX , r).

V

Uκ(bX , r) Uκ(bY , r
′)

bX

aX

bY

aY
Φ?

Figure 7. Φ? is a homeomorphism.

First, we find the upper bound for the constants q′,Q′ where

(1) mbX (q,Q) is small compared to r, and
(2) If ζ is a (q,Q)–quasi-geodesic ray in X then Φζ is in a n · κ-neighborhood of a κ Morse

geodesic ray (Lemma 3.6).

We obtain this by using Theorem A.4 and let q′ = kq and Q′ = qK+κ(qr) be constants (depending
on q,Q, L and K).

Next, let bY be the representative geodesic ray in bY and let mbX and mbY be their κ-Morse
gauges respectively. By Lemma 4.1, there is a constant n1 depending on L, κ and mbY ∩ B(o, r)
such that

ΦbX ⊂ Nκ(bY , n1).

Next, we let
n = L

(
n+ n1

)
(L+ 1) + 1

and let R = R(bX , r, n, κ) as in Definition 2.7 and choose r′ such that:

(1) r′ ≥ LR + κ(r), and
(2) n is small compare to r′.

Now we are ready to consider any given α ∈ aX be a (q,Q)–quasi-geodesic in X, where
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(1) q,Q is such that mbX (q,Q) is small compared to r; and
(2) Φα is a ray that is in Uκ(bY , r

′).

By the choice of r′, n is small compared to r′. Hence,

Φα|r′ ⊂ Nκ
(
bY , n

)
Pick x ∈ αX |R. Then Φx ∈ Φα|r′ and we have

dX(x, bX) ≤ L(dY (Φ(x),ΦbX) + θ(x)

≤ L
(
dY (Φ(x), bY ) + n1 · κ(Φx)

)
+ θ(x)

≤ L
(
n+ n1

)
· κ(Φx) + θ(x)

≤ L
(
n+ n1

)
· κ(Φx) + κ(x)

We also have

κ(Φx) ≤ Lκ(x) + θ(x) ≤ (L+ 1)κ(x)

Combine the preceding inequalities we have

dX(x, bX) ≤ L
(
n+ n1

)
· (L+ 1)κ(x) + κ(x)

≤
(
L
(
n+ n1

)
(L+ 1) + 1

)
κ(x)

imply that

α|R ⊂ Nκ(bX , n).

Now, Definition 2.7 implies that

α|r ⊂ Nκ(bX ,mbX ).

Therefore, aX ∈ Uκ(bX , r) and

(Φ?)
−1Uκ(bY , r

′) ⊂ Uκ(bX , r).

But Uκ(bY , r
′) contains an open neighborhood of bY , therefore, bY is in the interior of ΦV. This

finishes the proof. �

5. Application: random walk on groups

Random walks. Let G be a countable group, and let µ be a probability measure on a symmetric
generating set of G. We consider the step space (GN, µN), whose elements we denote as (gn). The
random walk driven by µ is the G-valued stochastic process (wn), where for each n we define the
product

wn := g1g2 . . . gn.

We denote as (Ω,P) the path space, i.e. the space of sequences (wn), where P is the measure induced
by pushing forward the measure µN from the step space. Elements of Ω are called sample paths and
will be also denoted as ω. Finally, let T : Ω→ Ω be the left shift on the path space.
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Background on boundaries. Let us recall some fundamental definitions from the boundary
theory of random walks. For more extensive background, see [Kai00]. Let (B,A) be a measurable
space on which G acts by measurable isomorphisms; a measure ν on B is µ-stationary if ν =∫
G
g?ν dµ(g), and in that case the pair (B, ν) is called a (G,µ)-space. Recall that a µ-boundary

is a measurable (G,µ)-space (B, ν) such that there exists a T -invariant, measurable map bnd :
(Ω,P)→ (B, ν), called the boundary map.

Moreover, a function f : G → R is µ-harmonic if f(g) =
∫
G
f(gh) dµ(h) for any g ∈ G. We

denote by H∞(G,µ) the space of bounded, µ-harmonic functions. One says a µ-boundary is the
Poisson boundary of (G,µ) if the map

Φ : H∞(G,µ)→ L∞(B, ν)

given by Φ(f)(g) :=
∫
B
f dg?ν is a bijection. The Poisson boundary (B, ν) is the maximal µ-

boundary, in the sense that for any other µ-boundary (B′, ν′) there exists a G-equivariant, mea-
surable map p : (B, ν) → (B′, ν′). The result of this section concerns the shape of all sample
paths.

Theorem 5.1. Let G be the mapping class group Mod(S) of a finite type surface, or let G be a
relative hyperoblic group. Let µ be a probability measure on G with finite first moment with respect
to the metric d, such that the semigroup generated by the support of µ is a non-amenable group.
Then there exists a constant A such that almost every sample path (wn) is such that (wno) is a
(A, κ)-ray. Moreover, one can take κ(r) = log(2 + r).

Proof. By Theorem C in [QRT20],

lim sup
n→∞

dw(wn, γω)

log n
< +∞.

Thus there exists a C such that

lim sup
n→∞

dw(wn, γω) ≤ C log n

By [MT18], weakly hyperbolic groups have positive drift on their respective associated hyperbolic
spaces. And by the Distance Formula (Masur-Minsky [MM00]), distance (to the origin) in the
random walk on the group is coarsely bounded by the distance to the origin in the associated curve
graph dS . Thus random walks on a mapping class groups have positive drifts ([MT18]) That is to
say, there exists an A such that for n large enough

d(wno, o) ≥ An.

Let pn denotes the nearest point projection of wn to γω. We have by triangle inequality

d(o, pn) ≥ d(wno, o)− d(wno, pn)) ≥ An− C log n.

We have that as n→∞

An ≥ lim d(o, pn) lim ≥ An− C log n = An = d(o, γ(An)),

where the last equality comes from the fact that γ is unit speed. Therefore

d(wno, pn) = C log n = d(wno, γ(An)).

Next we construct a map on γ such that for each i ∈ N and t ∈ [i− 1
2 , i+ 1

2 ) we define:

Φ(γ(At)) := wi.
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We need to show that this is a sublinear bi-Lipschitz equivalence. For any given t, t′, assume that
t ∈ [i − 1

2 , i + 1
2 ) and t′ ∈ [j − 1

2 , j + 1
2 ) and also assume without loss of generality that j − i, we

have that

d(Φ(γ(At), γ(At′)) = d(wi, wj) ≤ d(wi, γ(Ai)) + |j − i|A+ d(wj , γ(Aj))

≤ A|j − i|+ 2C logwj

≤ A|t− t′ + 1|+ 2C logwj

≤ |t− t′|+A2C logwj

On the other hand we have

d(Φ(γ(At), γ(At′)) = d(wi, wj)

≥ A|j − i| − d(wi, γ(Ai))− d(wi, γ(Ai))

≥ A|j − i| − 2C log j

≥ A|t− t′| −A− 2C logwj .

Thus Φ is an SBE and the image of the geodesic γω contains the sample path and is an (A, log n)-
ray. The proof for G is a relative hyperbolic group is identical, using also the facts that relative
hyperbolic group is weakly hyperbolic and there is also a distance formula that is similar to that
of the mapping class group [Sis13]. �

More generally, aside from the aforementioned two groups, the conclusion can be applied to a
wider range of countable groups with a compact boundary. We combine the same argument as
Theorem 5.1 and apply Theorem 6 in [Tio15] to obtain the following:

Theorem 5.2. Let G be a countable group acting via isometries on a proper, geodesic, metric space
(X, d) with a non-trivial, stably visible compactification X. Let G be a finitely generated group, and
let (X, d) be a Cayley graph of G. Let µ be a probability measure on G with finite first moment with
respect to d, such that the semigroup generated by the support of µ is a non-amenable group. Then
there exists a constant A and a sublinear function κ such that almost every sample path (wn) is
such that (wno) is a (A, κ)-ray.

Example of such compactifications includes but are not limited to:

(1) the hyperbolic compactification of Gromov hyperbolic spaces;
(2) the end compactification of Freudenthal and Hopf [Hop44];
(3) the Floyd compactification (Section 3.2, [Tio15]);
(4) the visual compactification of a large class of CAT(0) spaces (Section 3.4, [Tio15]).
(5) the redirecting compactification of asymptotically tree-graded spaces ([QRT22]).

Appendix A. SBE and κ-contracting quasi-geodesic rays

In this section we check a phenomenon that is independent of the rest of the paper, that is, if an
(L, θ)-ray sublinearly tracks a κ-Morse set, then it tracks that κ-Morse set uniformly, i.e. with a
well-defined sublinear function that is related to κ and not the function that governs the tracking.
As always let X is a proper geodesic metric space. We define below κ-projections and κ-weakly
contracting according to [QRT20, Definition 5.3].
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Definition A.1 (κ-projection, κ-weakly contracting). Let Z ⊆ X a closed subset, and let κ be a
sublinear function with properties as prescribed in §2.1. A map πZ : X → P(Z) is a κ-projection
if there exist constants D1, D2 such that for any points x ∈ X and z ∈ Z,

(A.1) diamX({z} ∪ πZ(x)) ≤ D1 · dX(x, z) +D2 · κ(x).

Further, we say that Z is κ-weakly contracting with respect to πZ if there are constants C1, C2 > 0
such that for all x, y ∈ X,

d(x, y) 6 C1d(x, Z) =⇒ diam(πZ(x) ∪ πZ(y)) 6 C2κ(x).

Remark A.2. Cornulier has defined the notion of a (non set-valued) O(κ)-retraction ([Cor19, Def-
inition 2.5], there called O(v)-retraction) in reformulating the main theorem of [Cor11]. Though
the two notions look similar, they do not coincide. An O(κ)-retraction in Cornulier’s sense is only
asked to satisfy dX(x, z) +D2 · κ(max(‖x‖, ‖z‖)) instead of the right-hand side of Equation (A.1).

Lemma A.3. Let πZ be a κ-projection on Z. For any x ∈ X

diamX({x} ∪ πZ(x)) ≤ (D1 + 1) · dX(x, Z) +D2 · κ(x).

Proof. See [QRT20, Lemma 5.2]. �

Let κ be a concave sublinear function and let Z be a closed subspace of X. Let πZ be a
κ-projection onto Z and suppose that Z is κ-weakly contracting with respect to πZ . Then, (L, θ)-
rays that end sublinearly close to Z stay in a κ-neighbourhood of Z whose constants only depends
on Z,L, θ. Specifically,

Theorem A.4 ((L, θ)-rays that sublinearly track a κ-contracting geodesic ray uniformly track the
κ-contracting geodesic ray; compare [QRT20, Theorem A.1].). Assume that κ dominates θ. Let Z
be a κ-weakly contracting subset of a proper geodesic space X. Then there is a function nZ(L, θ)
such that, for every r ≥ Lθ(r) and every sublinear function κ′, there is an R = R(Z, r, κ′, θ) > 0
where the following holds: Let η : [0,∞) → X be a (L, θ)-ray. Let tr be the first time ‖η(tr)‖ = r
and let tR be the first time ‖η(tR)‖ = R. Then

dX
(
η(tR), Z

)
≤ κ′(R) =⇒ η([0, tr]) ⊂ Nκ

(
Z, nZ(L, θ)

)
.

Proof. The proof originates in [QRT19, Theorem 3.16]. We shall reproduce its reinstalment in
[QRT20, Appendix], though not all of it. The main change being that η is now a (L, θ)-ray rather
than a (q,Q)-geodesic.

Let C1, C2, D1, D2 be the constants which appear in the definitions of κ-projection and κ-weakly
contracting (Definition A.1).

Note that the condition of being κ-weakly contracting becomes weaker as C1 gets smaller, hence
we can assume that C1 ≤ 1/2. We first set

(A.2) m0 := max

{
L(LC2 + q + 1) + 1

C1
,

2C2(D1 + 1)

L
+ 1

}
, m1 := L(C2 + 1)(D1 + 1).

Claim A.5. Consider a time interval [s, s′] during which η is outside of Nκ(Z,m0). Then there
exists a constant A depending only on {C1, C2, D1, D2, L}, such that

(A.3) |s′ − s| ≤ m1

(
dX
(
η(s), Z

)
+ dX

(
η(s′), Z

))
+ A · κ(η(s′)).
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Z

Nκ(Z,m0)η0
η`

η`−1η1

ηi

ηi+1
C1di

di

πi

dπi

Figure 8. Proof of Claim A.5.

Proof of Claim A.5. Let

s = t0 < t1 < t2 < · · · < t` = s′

be a sequence of times such that, for i = 0, . . . , `− 2, we have ti+1 is a first time after ti where

(A.4) dX
(
η(ti), η(ti+1)

)
= C1dX(η(ti), Z) and dX

(
η(t`−1), η(t`)

)
≤ C1dX(η(t`−1), Z).

To simplify the notation, we define

ηi := η(ti), ri := ‖η(ti)‖

and moreover, we pick some πi ∈ πZ(ηi) and let

dπi := dX(ηi, πi), di := dX(ηi, Z).

Note that, by assumption

(A.5) dπi ≥ di = dX(ηi, Z) ≥ m0 · κ(ri).

The following estimate is obtained inside the proof of [QRT20, Claim A.3], using all the assump-
tion C1 6 1/2. Though η is actually a (q,Q)-quasigeodesic rather than a (L, θ)-ray there, the
quasigeodesicity is not used for this estimate, so we do not reproduce the proof.

Claim A.6. We have the inequality dπ`−1 ≤ 2(D1 + 1) dπ` +D2 · κ(η`−1).

Now, since Z is κ-weakly contracting with respect to πZ , by Definition A.1 we get

dX
(
π0, π`

)
≤

`−1∑
i=0

dX
(
πi, πi+1

)
≤

`−1∑
i=0

C2 · κ(ri).
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But η is (L, θ)-ray, hence,

|s′ − s| ≤ LdX(η0, η`) + θ(η`)

≤ L
(
dπ0 + dX

(
π0, π`

)
+ dπ`

)
+ θ(η`)(A.6)

≤ LC2

(
`−1∑
i=0

κ(ri)

)
+ L (dπ0 + dπ` ) + θ(η`).

On the other hand,

(A.7) |s′ − s| =
`−1∑
i=0

|ti+1 − ti| ≥
1

L

`−1∑
i=0

(dX(ηi, ηi+1)− θ(η`)) .

Meanwhile, for i = 0, . . . , ` − 2, we have dX(ηi, ηi+1) = C1dX(ηi, Z). Furthermore, we have by
the triangle inequality,

dX(η`−1, η`) + dπ` + dX(π`−1, π`) ≥ dπ`−1 ≥ dX(η`−1, Z),

which gives

(A.8) dX(η`−1, η`) ≥ dX(η`−1, Z)− dπ` − C2 · κ(r`−1).

In the last inequality, we used that dX(π`−1, π`) 6 C2 ·κ(r`−1) since Z is κ-weakly contracting with
respect to πZ . Hence, together with Equation (A.5) and using C1 ≤ 1 we have

|s′ − s| ≥ 1

L

`−1∑
i=0

(C1dX(ηi, Z)− θ(η`))−
dπ` + C2 · κ(r`−1)

L
by Equations (A.7) and (A.8)

≥ 1

L

`−1∑
i=0

(C1m0 · κ(ri)− θ(η`))−
dπ`
L
− C2

κ(r`−1)

L
by Equation (A.5)

≥
(
C1m0 − 1

L

) `−1∑
i=0

κ(ri)−
dπ`
L
− C2

κ(r`−1)

L
since κ dominates θ.

Combining the above inequality with Equation (A.6) we get

L (dπ0 + dπ` ) + θ(η`) +
dπ`
L

+ C2
κ(r`−1)

L
≥ |s− s′| ≥

(
C1m0 − 1

L
− LC2

) `−1∑
i=0

κ(ri)(A.9)

≥ (L+ 1)

`−1∑
i=0

κ(ri),

where in the last step we plugged in the definition of m0 from (A.2).
Applying Claim A.5 to its last term, the left side of Equation (A.9) is also bounded above:

L (dπ0 + dπ` ) + θ(η`) +
dπ`
L

+ C2
κ(r`−1)

L
≤ L (dπ0 + dπ` ) + θ(η`) +

dπ`
L

+ C2
dπ`
m0L
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Let the right-hand side above be labelled ?, we then have

? ≤ L (dπ0 + dπ` ) + θ(η`) +
dπ`
L

+
C2

m0L
[2(D1 + 1)dπ` +D2κ(η`−1)] by Claim A.6

= L (dπ0 + dπ` ) + θ(η`) +
dπ`
L

+
C2

m0L
2(D1 + 1)dπ` +

C2D2

m0L
κ(η`−1)

= L (dπ0 + dπ` ) +
dπ`
m0

+
dπ`
L

+
C2

m0L
2(D1 + 1)dπ` +

C2D2

m0L
κ(η`−1)

= L (dπ0 + dπ` ) +

(
1

m0
+

1

L
+
C2(D2 + 1)

m0L

)
dπ` +

C2D2

m0L
κ(η`−1)

≤ L (dπ0 + dπ` ) + dπ` +
C2D2

m0L
κ(η`−1) by Definition of m0 in Equation (A.2)

≤ (L+ 1)(dπ0 + dπ` ) +
C2D2

m0L
κ(η`−1).

Plugging this inequality into Equation (A.9) and dividing by L+ 1 on both sides, we get

`−1∑
i=0

κ(ri) ≤ dπ0 + dπ` +
C2D2

m0 L(L+ 1)
· κ(η`−1)

≤ (D1 + 1)(d0 + d`) +D2(κ(η0) + κ(η`)) +
C2D2

m0 L(L+ 1)
· κ(η`−1)

where we recall di = dX(ηi, Z), and the last inequality comes from Lemma A.3 (note the difference
between di and dπi = dX(ηi, πi)).

Recall that by construction s′ > ti and we can take s′ to be big enough such that s′ > θ(s′):

|‖ηi‖ − ‖η(s′)‖| ≤ d(ηi, η(s′))

≤ L|s′ − ti|+ θ(‖s′‖)
≤ L|s′|+ θ(s′)

≤ (L+ 1)|s′|
≤ (L+ 1)

(
L‖η(s′)‖+ θ(‖s′‖)

)
≤ (L+ 1)2‖η(s′)‖

Thus we have ‖ηi‖ ≤ ((L+ 1)2 + 1)‖η(s′)‖. Hence κ(ηi) ≤ ((L+ 1)2 + 1) ·κ(η(s′)); thus, to shorten
the preceding expression,

let A be a constant, depending on {C1, C2, D1, D2, L, θ, κ}, such that

L(C2 + 1)D2(κ(η0) + κ(η`)) + θ(η`) +
C2

2D2

m0(q + 1)
· κ(η`−1) ≤ A · κ(η(s′)).

By Equation (A.6) and the definition m1 = L(C2 + 1)(D1 + 1) from (A.2),

|s′ − s| ≤ m1(d0 + d`) + A · κ(η(s′)).

This proves Claim A.5. �
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o Z

m0 · κ(R)

nZ(L, θ) · κ(r)

Rr

κ′(R)

tlast
s

s′

Figure 9. Proof of Theorem A.4

Now let tlast be the last time η is in Nκ(Z,m0) and consider the path [η([tlast), η(tR)]η. Since
this path is outside of Nκ(Z,m0), by Claim A.5 we have

|tR − tlast| ≤ m1 (dX(η(tlast), Z) + dX(η(tR), Z)) + A · κ(R).

But

dX(η(tlast), Z) ≤ m0 · κ(η(tlast)) by the choice of tlast

≤ m0 · κ(R) since κ is nondecreasing

and we have by assumption dX(η(tR), Z) ≤ κ′(R). Therefore,

(A.10) |tR − tlast| ≤ m0m1 · κ(R) +m1 · κ′(R) + A · κ(R).

Since η is a (L, θ)-ray, we obtain R = dX(η(0), η(tR)) ≤ LtR + θ(tR), hence

tR ≥
R− θ(tR)

L
.

Since m0 and m1 are given and κ, κ′ and θ are sublinear, there is a value of R depending on m0,
m1, r, A, κ, κ′ and θ such that

m0 ·m1 · κ(R) +m1 · κ′(R) + A · κ(R) ≤ R− θ(tR)

L
− r.

For any such R, we then have

tlast ≥ tR −
R− θ(tR)

L
+ r ≥ r.

We show that η([0, tlast]) stays in a larger κ-neighborhood of Z. Consider any other subinterval
[s, s′] ⊂ [0, tlast] where η exits Nκ(Z,m0). By taking [s, s′] as large as possible, we can assume
η(s), η(s′) ∈ Nκ(Z,m0). In this case,

dX(η(s), Z) ≤ m0 · κ(η(s)) and dX(η(s′), Z) ≤ m0 · κ(η(s′)).

Again applying Claim A.5, we get

(A.11) |s′ − s| ≤ m0m1 ·
(
κ(η(s)) + κ(η(s′))

)
+ A · κ(η(s′))

and thus

dX(η(s′), η(s)) ≤ Lm0m1 ·
(
κ(η(s)) + κ(η(s′))

)
+ qA · κ(η(s′)) + θ(η(s′))

≤ (2Lm0m1 + LA + 1) ·max
(
κ(η(s)), κ(η(s′))

)
.
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as κ dominates θ. Applying Lemma 2.1 we obtain

κ(η(s′)) ≤ m2 · κ(η(s))

for some m2 depending on q, θ and κ. Therefore, by plugging this inequality back into Equa-
tion (A.11), we have for any t ∈ [s, s′]

(A.12) |t− s| ≤ (m0m1(1 +m2) + Am2) · κ(η(s)) = m3 · κ(η(s)).

with m3 = (m0m1(1 +m2) + Am2). As before, this implies

dX(η(t), η(s)) ≤ Lm3 · κ(η(s)) + θ(η(s)) ≤ (Lm3 + 1) · κ(η(s)),

where the last inequality comes from the fact that θ ≤ κ. Applying the Estimation Lemma again,
we have

(A.13) κ(η(s)) ≤ m4 · κ(η(t)),

for some m4 depending on q, θ and κ.
Now, for any t ∈ [s, s′] we have

dX(η(t), Z) ≤ dX(η(t), η(s)) + r0

≤ L |t− s|+ θ(s) +m0 · κ(η(s))

≤ (Lm3 + 1 +m0) · κ(η(s))(Equation (A.12))

≤ (Lm3 + 1 +m0) m4 · κ(η(t)).(Equation (A.13))

Now setting

(A.14) nZ(L, θ) = (Lm3 + 1 +m0) m4

we have the inclusion

η([s, s′]) ⊂ Nκ
(
Z, nZ(L, θ)

)
and hence η([0, tlast]) ⊂ Nκ

(
Z, nZ(L, θ)

)
.

�

There are strong connections between κ-Morse and κ-contracting quasi-geodesic rays. In partic-
ular we have the following two facts:

(F1). [QRT19] Let X be a proper, complete CAT(0) space. The a (q,Q)-quasi-geodesic ray is
κ-Morse if and only if it is κ-contracting.

(F2). [QRT20] Let X be a proper, geodesic space and let α be a (q,Q)-quasi-geodesic ray. If α is
κ-contracting then it is κ-Morse. If α is κ-Morsre then it is κ′-contracting for some other κ′.
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[DK18] Cornelia Druţu and Michael Kapovich. Geometric group theory, volume 63 of American Mathematical

Society Colloquium Publications. American Mathematical Society, Providence, RI, 2018. With an appendix

by Bogdan Nica.



24 GABRIEL PALLIER AND YULAN QING

[GQR22] Ilya Gekhtman, Yulan Qing and Kasra Rafi QI-invariant model of Poisson boundaries of CAT(0) groups
arXiv:2208.04778

[Gro87] Mikhael L. Gromov. Hyperbolic groups. Essays in group theory, volume 8 of Math. Sci. Res. Inst. Publ.,

pages 75–263. Springer, New York, 1987.
[Gro93] Mikhael L. Gromov. Asymptotic invariants of infinite groups. Geometric group theory, Vol. 2 (Sus-

sex, 1991), volume 182 of London Math. Soc. Lecture Note Ser., pages 1–295. Cambridge Univ. Press,
Cambridge, 1993.

[Hop44] Hopf, H., Enden offener Räume und unendliche diskontinuierliche Gruppen, Comment. Math. Helv. 16

(1944), 81–100.
[IZ] Merlin Incerti-Medici and Abdul Zalloum Sublinearly Morse boundaries from the view point of combina-

torics arXiv:2101.01037

[Kai00] V. Kaimanovich, The Poisson formula for groups with hyperbolic properties, Ann. of Math. (2) 152 (2000),
no. 3, 659–692.

[Mah10] J. Maher, Linear progress in the complex of curves, Trans. Amer. Math. Soc. 362 (2010), no. 6, 2963–2991.

[Mah12] J. Maher, Exponential decay in the mapping class group, J. Lond. Math. Soc. (2) 86 (2012), no. 2, 366–386.
[MT18] J. Maher and G. Tiozzo, Random walks on weakly hyperbolic groups, J. Reine Angew. Math. 742, (2018),

187–239.

[MM00] H. Masur and Y. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct.
Anal. 10 (2000), no. 4, 902–974.

[MQZ21] Devin Murray, Yulan Qing and Abdul Zalloum Sublinearly Morse geodesics in CAT(0) spaces: lower

divergence and hyperplane characterization to appear in Algebraic & Geometric Topology.
[MS20] P. Mathieu and A. Sisto, Deviation inequalities for random walks, Duke Math. J. 169 (2020), no. 5,

961–1036.
[Mor24] H. M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Trans.

Amer. Math. Soc. 26 (1924), 25–60.

[NQ22] Hoang Thanh Nguyen, Yulan Qing Sublinearly Morse Boundary of CAT(0) admissible groups
arXiv:2203.00935

[Pal20] Gabriel Pallier. Large-scale sublinearly Lipschitz geometry of hyperbolic spaces. J. Inst. Math. Jussieu,

19(6):1831–1876, 2020.
[Pau96] Frédéric Paulin. Un groupe hyperbolique est déterminé par son bord. J. London Math. Soc. (2), 54(1):50–
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