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Abstract

In [CK00], Croke and Kleiner present a torus complex whose universal cover has a non-

locally connected visual boundary. They show that changing the intersection angle of the

gluing loops in the middle torus changes the topological type of the visual boundary. In this

thesis we study the effect on the topology of the boundary if the angle is fixed at π{2 but the

lengths of the π1-generating loops are changed. In particular, we investigate the topology

of the set of geodesic rays with infinite itineraries. We identify specific infinite-itinerary

geodesics whose corresponding subsets of the visual boundary change their topological type

under the length change in the space. This is a constructive and explicit proof of a result

contained in Croke and Kleiner’s more general theorem in [CK02]. The construction and

view point of this proof is crucial to proving the next result about Tits boundary: we show

that the Tits boundaries of Croke Kleiner spaces are homeomorphic under lengths variation.

Whether this is true for the general set of CAT p0q 2-complexes is still open. We also study

the invariant subsets of the set of geodesic rays with infinite itineraries.

In the next chapter, we consider the geometry of actions of right-angled Coxeter groups

on the Croke-Kleiner space. We require the group act cocompactly, properly discontinu-

ously and by isometries and determine that the resulting gluing angles of the loops must be

π
2 . Together with the first result we show that right-angled Coxeter groups does not have

unique G-equivariant visual boundaries. This study aims to contribute to the investigation

of whether right-angled Coxeter groups have unique boundaries.
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Lastly, we begin the study of uniqueness of right-angled Coxeter groups that acts geometri-

cally on a given CAT(0) space. We start the project by letting right-angled Coxeter groups

at on a regular, infinite, 4-valence tree and provide a geometrical proof that if a right-angled

Coxeter group acts geometrically on Tr4, then it is an amalgamated product of finite copies

of groups of the form Z2 or Z2 ˆ Z2. The last the result is the beginning of the project

that aims to determine all the right-angled Coxeter groups that can act geometrically on

the Croke-Kleiner space.
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Chapter 1

Introduction

1.1 History

Geometric group theory studies groups by observing and creating the connections between

geometry and group theory. The leading idea in geometric group is: suppose a group G acts

geometrically on a metric space X, and ask how do the geometric properties of X determine

group theoretical properties of G, and conversely, how do the group theoretical properties

of G determine the geometric properties of X? An interesting set of problems is to come up

with suitable spaces for the groups to act upon. The first of these spaces to be considered

are the Cayley graphs of groups. The Cayley graphs in this context are metric spaces with,

in addition to the graph structure, the word metric. However, Cayley graphs of a group G

with different generating sets have different local geometry. To resolve this issue there is the

seminal concept of ”quasi-isometry”, which is meant to capture the large scale geometry

of a metric space. Then the central problem in geometric group theory is to study and

classify finitely generated groups according to quasi-isometry class. Therefore, any space

or property that is associated with a group is hoped to be well-defined with respect to the

whole quasi-isometric class of groups or spaces. The space we study in this document is the

boundary of a group. We show that, with respect to a particular type of quasi-isometries,

some CAT p0q groups’ boundary are not well-defined.
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2

CAT p0q spaces are metric spaces in which every pair of points can be joined by an arc

isometric to a compact interval of the real line and in which every triangle satisfies the

CAT p0q inequality. This inequality captures the essence of non-positive curvature without

requiring smoothness. Spaces which satisfy this condition display properties of both hyper-

bolic spaces as well as those of flat spaces.

Associated to any complete CAT p0q space is a boundary at infinity BX, which can be con-

structed as the set of equivalence classes of geodesic rays in X. Two rays are equivalent

if their images are a bounded Hausdorff distance apart. There is a natural topology on

X “ X Y BX called the cone topology. If X is a Riemannian manifold, BX is a sphere and

X Y BX is X is homeomorphic to a closed ball, but for more general CAT(0) spaces the

topology of BX can be rather complex. We use B8X to denote BX together with the cone

topology.

What motivated the investigation of CAT p0q groups is what is known about hyperbolic

groups. A space is δ-hyperbolic if for all geodesic triangle in this space, any edge of the

triangle lies in the δ-neighborhood of the other two edges. A group is hyperbolic if its

Cayley graph is δ-hyperbolic. The visual boundary of a hyperbolic space is independent of

the space’s local geometry [Gro87]:

”If a finitely generated group G acts discretely, cocompactly and by isometries on two

Gromov hyperbolic metric spaces X1, X2, then there is a G-equivariant homeomorphism

B8X1 Ñ B8X2.”

Gromov asked in [Gro93] whether this is still the case when the hyperbolicity assumption

is dropped. In [CK00], Croke and Kleiner show that the answer is no. They give a con-

struction of a family of CAT p0q spaces tXα : 0 ă α ď π
2 u each admitting a geometric action

by the same group G. They showed that B8Xα ‰ B8Xπ
2

for any 0 ă α ă π
2 . We will
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call their construction the Croke-Kleiner Space (α), where α is an angle in the construction

that preserves the quasi-isometry type of the space. In [Wil05], Wilson shows that in fact

B8Xα ‰ B8Xβ for all α ‰ β, so that G is a CAT p0q group with uncountably many non-

homeomorphic visual boundaries.

So far the focus of the geometric changes that impact the topology of the boundary con-

centrate on the angle changes. We are motivated by a different question. We want to know

if we change the geometry in a different way, will the spaces be homeomorphic under the

equivariant map, or if not, are they homeomorphic as topological spaces. We start with

the original space X with gluing angle π{2 and instead vary the lengths of the gluing loops.

This can be viewed as taking the space X - which is a CAT p0q cube complex when the

angle is π{2 - and changing the lengths of the sides of the squares that form a fundamental

domain for the action of G. The resulting space, denoted Xl, has a rectangular structure

instead of a cubical structure. Since both Xl and X admit a geometric group action by G,

they are quasi-isometric as metric spaces. The following are natural questions to ask:

Question 1: Is B8X G-equivariantly homeomorphic to B8Xl?

Question 2: If the answer to Question 1 is negative, then is the core of B8X homeomorphic

to the core of B8Xl? What about their Tits boundaries?

Question 3: If the answer to Question 1 is negative, then is B8X homeomorphic to B8Xl

as topological spaces?

Independently, we want to study further the Tits boundary of the space. The Tits metric

on the boundary induces a very different topology called the Tits topology, with the same

underlying point set. Tits boundaries of δ-hyperbolic spaces are of little interest because

they are all discrete sets regardless of the geometric dimension of the space. Since CAT p0q

spaces can contain hyperbolic sections as well as flat sections, its Tits boundary is more

interesting topologically and group theoretically. In [Xie05], Xie shows that away from the
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endpoints, a geodesic segment in the Tits boundary is the visual boundary of an isomet-

rically embedded Euclidean sector. Xie also shows that if two CAT p0q 2-complexes are

quasi-isometric, then the cores of their Tits boundaries are bi-Lipschitz. It is open whether

the whole Tits boundaries are homeomorphic under quasi-isometry. In this document we

prove that for the Croke-Kleiner example there is a homeomorphism between the cores in

the Tits boundaries and in fact the whole Tits boundaries are homeomorphic as well.

Another open question that motivated part of this thesis is the boundary of a right-angled

Coxeter group. It is unknown whether right-angled Coxeter groups have unique boundaries.

We began an investigation of whether the Croke-Kleiner examples could be used as counter-

examples for this class of CAT(0) groups. We show that this question is related to the

larger question of whether a lengths change changes the homeomorphism type of the visual

boundary of the space. O’Brien [O08] studies carefully in his thesis the existence and

uniqueness of strict fundamental domains of right-angled Coxeter group acting on a CAT p0q

space. The work in the final chapter of this document is largely applications of his main

results.

1.2 Right-angled Artin and Coxeter Groups

The fundamental group of the Croke-Kleiner construction is an example of a right-angled

Artin group G. Therefore it is our goal to understand how the actions of this group G

on these different CAT p0q geometries interact with the topology of the ideal boundaries of

these spaces. Our main theorem shows that certain length variations preserve the core com-

ponents of the visual boundary and Tits boundary. However, if we change the translation

distance of the actions, the G-equivariant map between the corresponding ideal boundaries

does not extend to a homeomorphism. This latter result is proved by explicitly identifying

a dense subset of components in the “irrational” part of the boundary we call the dust,

whose homeomorphism type changes. We borrow terminology and ideas from Croke and
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Kleiner [CK02]. In that paper, they study the question in a much more generalized setting

of fundamental groups of 3-dimensional graph manifolds, of which of our result is a specific

case. However, our proof and view point here is crucial to proving Theorem 1.4 about the

Tits boundary.

Theorem 1.1. On the components of BX other than the safe-path component, the G-

equivariant action does not extend to a homeomorphism under the visual topology between

BX and BXl, where Xl has a nontrivial different set of length data.

We explicitly identify a subset of the boundary whose homeomorphism type is changed

under the G´equivariant homeomorphism. We also describes all length data changes that

can be detected by these subset of the boundaries. These sets are termed n´self-similar

templates, by Croke and Kleiner.

The next natural question is to decide whether there is any homeomorphism between the two

boundaries. If the answer is affirmative, then we have a case of two spaces whose boundaries

are not G-equivariantly homeomorphic via the natural extension, but are homeomorphic

nonetheless, i.e. the group that acts geometrically on the spaces does not prescribe the

homeomorphism type of their boundaries. If the answer is negative, we can see that the

G-equivariant homeomorphisms indeed capture the topology of the spaces sufficiently.

Meanwhile we take a look at the core component of the visual boundary prove the following:

Theorem 1.2. Let X be the Croke-Kleiner space with length data (1,1,1,1), and let Xl be

the Croke-Kleiner space with length data pa, b, c, dq, where at least one of a, b, c, d is not 1.

There is an isometry between Tits boundaries:

CorepBTXq „ CorepBTXlq

Theorem 1.3. Let X be the Croke-Kleiner space with length data (1,1,1,1), and let Xl be the

Croke-Kleiner space with length data pa, b, c, dq, where at least one of a, b, c, d is not 1. The
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G-equivariant map between the CorepB8Xq and CorepB8Xlq gives rise to homeomorphism.

It is worth noting that the G-equivariant map between the spaces X and Xl does not extend

to a homeomorphism on the visual boundary, as pointed out to me by Professor Mooney

and Professor Ancel. In Chapter 3 we include an example to show that the G-equivariant

map between CorepB8Xq and CorepB8Xlq is not by itself a homeomorphism.

In contrast to the conclusion we make about visual boundary, the study of the irrational

rays allow us to prove the following new result:

Theorem 1.4. Croke-Kleiner spaces of different lengths data have homeomorphic Tits

boundaries.

In contrast, for Right-angled Coxeter groups, it is still an open question as to whether a

RACG can have more than one boundary up to homeomorphism. Thus it is natural to

ask whether the Croke-Kleiner examples can be adjusted to give a RACG example with a

non-unique boundary. There is an obvious RACG that acts geometrically on the three-tori

space with π
2 angle, but we can show there is more than one group with that property.

More illuminatingly, Theorem 0.2 states that a Right-angled Coxeter group can only act

geometrically on spaces with translation distance variation. This result together with the

result from RAAG motivates the conjecture that for a specific class of torus complexes,

right-angled Coxeter groups act without unique boundary.

Right-angled Coxeter groups are generated by order-two elements whose two-element sub-

sets either commute or have no relation at all. We assume here that a RACG acts geomet-

rically on the three-torus example, and ask what we can conclude about the action and the

group. The main results is the following:

Theorem 1.5. Let G, an essential right-angled Coxeter group, acts geometrically on X,

the universal cover of the three-torus complex, then the intersecting angle on the middle

torus must be a right angle.
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1.3 Quasi-isometry Class of Right-angled Coxeter Groups

While working on the project described in the previous section, a question that arises

naturally is: what are all the right-angled Coxeter groups that are quasi-isometric to the

Croke-Kleiner space; in other words, how much of the geometry of the space determines the

group. One typical theorem in this direction is ”any group that is quasi-isometric to a tree

is virtually free”. Since Croke-Kleiner space is a concrete space and we add the assumption

that the group should be a right-angled Coxeter group to begin with, we expect the result-

ing groups fit a narrow description. To begin answering the question, we start by asking:

Question 4: What are all the right-angled Coxeter groups that can act geometrically on

an infinite, regular, 4-valence tree?

The main result is the following:

Theorem 1.6. If a right-angled Coxeter group acts geometrically on an infinite, regular,

4-valence tree, then it is an amalgamated product of finite copies of groups of the form Z2

or Z2 ˆ Z2.

The next step is to ask the same question about the space ”T ˆ R”. Since the boundary

of ”treeˆ R” contains exactly two points whose neighborhood is a cone over a Cantor set,

which is distinguishable from other points in the boundary, we invoke the following theorem:

Theorem 1.7. Suppose a group G acts geometrically on a CAT(0) space X. Then a group

element g P G is virtually central if and only if the induced action of g on the visual boundary

B8X is an identity action.

At the end of chapter 4 we give an outline of our work in progress to answer this question.

1.4 Outline of the Thesis

Chapter 2 serves as a review of basics in geometric group theory that is relevant to this

document. Readers can skip or reference this section as needed. Chapter 3 discusses the



8

main results that pertain to the Croke-Kleiner space. Chapter 4 discusses the results about

the local geometry when a right-angled Coxeter group acts on the Croke-Kleiner space.

Chapter 5 starts a investigation of the isometry class of right-angled Coxeter groups of a

given CAT p0q space.



Chapter 2

Preliminaries

In this chapter , we collect all basic definitions and facts used in this thesis. This section

loosely follows the notation of [BH99] and can be skipped by readers who are experienced

with CAT p0q geometry and CAT p0q groups.

2.1 Group Actions

A group with the presentation xS|Ry is defined to be the quotient of the free on on the

generating set S by the normal closure of the set of relations R. A group is finitely

generated if there exists a presentation where S is finite. In the rest of the thesis we are

interested mainly in the following two classes of finitely generated groups:

Definition 2.1. An Artin group A is a group with presentation of the form

A “ xs1, s2.., sn|psisjq
mij “ psjsiq

mji for all i ‰ jy

where mij “ mji P t2, 3, ...8u.

psisjq
mij denotes an alternating product of si and sj of length mij , beginning with si. If

mij “ 8 , then there is (by convention) no relation for si and si.

A right-angled Artin group [Cha07] is one in which mij P t2,8u for all i, j. In other

9
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words, in the presentation for the Artin group, all relations are commutator relations:

sisj “ sjsi

The easiest way to specify a presentation for a right-angled Artin group is by means of a

defining graph. This is a graph whose vertices are labeled by the generators S “ ts1, ..., snu

and whose edges connect pairs of vertices si, sj if and only if mij “ 2. Note that any finite,

simplicial graph Γ is the defining graph for a right-angled Artin group.

Definition 2.2. Formally, a Coxeter group can be defined as a group with a presentation

of the following form:

ts1, s2, ...sn|psiq
2 “ 1, psisjq

mij “ 1, where mij P t2, 3, 4, ...8uu

A right-angled Coxeter Group [MRT07] is where mij P t2,8u

Here are more basic facts of right-angled Coxeter Groups [GP08]:

• If si is not adjacent to sj , then the order of sisj is infinite

• A right-angled Coxeter group is abelian if and only if it is finite.

• If w has finite order, then w2 “ 1. Right-angled Coxeter groups are distinguished

from other Coxeter groups by this fact. That is, if every finite order element of a

Coxeter group is two, then the Coxeter group is right-angled.

• A right-angled Coxeter group has a non-trivial center if and only if it can be written

as W ˆ Z2

A left group action of G on a set X is a map GˆX Ñ X such that:

1. ex “ x @x

2. gphxq “ pghqx
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1. An action of a group G is transitive if for some x P X,G.x “ X.

2. An action of a group G is faithful if kerpρq “ 1G.

3. An action of a group G is free if for every x P X, stabilizer pxq “ 1G

Definition 2.3. An action of G on X is cocompact if X{G is compact in the topology

induced by (1.3).

A group action is properly discontinuous if for every bounded open set B, the set

|tg P G|g.B XB “ φu|

is finite.

Definition 2.4. An isometry from one metric space pX, dq to anther pX 1, d1q is a bijection

f : X Ñ X 1

such that d1pfpxq, fpyqq “ dpx, yq for all x, y. If such a map exists then pX, dq and pX 1, d1q

are isometric.

A group G acts geometrically on a metric space X if it acts properly discontinuously, cocom-

pactly, and by isometries.

The group of all isometries from a metric space pX, dq to itself will be denoted Isom(X). If

G Ă IsompXq, then we say that G acts on X by isometries.

Definition 2.5. The fixed point set of S Ă G on the space X is the set

tx P X|g.x “ x for all g P Su
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2.2 CAT(0) Spaces and their Boundaries

Let X be a metric space. For any x P X and any r ą 0, Bpx, rq “ tx1 P X : dpx, x1q ă 1u

and B̄px, rq “ tx1 P X : dpx, x1q ď 1u are respectively the open and closed metric balls

with center x and radius r. For any subset A Ă X and any ε ą 0, the ε-neighborhood

of A is NεpAq “ tx P X : dpx, aq ď ε for some a P Au. For any two subsets A,B Ă X,

the Hausdorff distance between A and B is dHpA,Bq “ inftε : A Ă NεpBq, B Ă NεpAqu;

dHpA,Bq is defined to be 8 if there is no ε ą 0 with A Ă NεpBq and B Ă NεpAq.

A function is proper if the inverse image of every compact set is compact. A metric space

X is said to be proper if the distance function is proper.

The Euclidean cone over a metric space X is the metric space CpXq defined as follows.

As a set CpXq “ X ˆ r0,8q{X ˆ t0u. We use tx to denote the image for px, tq. We define

dpt1x1, t2x2q “
b

t21 ` t
2
2 ´ 2t1t2cospdpx1, x2qq

if dpx1, x2q ď π and

dpt1x1, t2x2q “ t1 ` t2

if dpx1, x2q ě π. The point O “ X ˆ t0u is called the cone point of CpXq.

Let X be a metric space. A geodesic joining x, y P X is a map c from a closed interval

r0, ls Ă R to X such that cp0q “ x, cplq “ y and dpcptq, cpt1q “ |t ´ t1|q for all t, t1 P r0, ls.

pX, dq is a geodesic metric space if every two points are joined by a geodesic.

A triangle in a metric space X is the union of three geodesic segments where c1pb1q “

c2pa2q, c2pb2q “ c3pa3q and c3pb3q “ c1pa1q. For any real number κ, let M2
κ stand for the

2-dimensional ci : rai, bis Ñ Xpi “ 1, 2, 3q simply connected complete Riemannian manifold



13

with constant sectional curvature κ, and Dpκq denote the diameter of M2
κpDpκq “ 8 if κ ď

0q. Given a triangle ∆ “ c1
Ť

c2
Ť

c3 in X where ci : rai, bis Ñ Xpi “ 1, 2, 3q, a triangle

∆1 in M2
κ is a comparison triangle for ∆ if tehy have the same edge lengths, that is , if

∆1 “ c11
Ť

c12
Ť

c13 and c1i : rai, bis Ñ Xpi “ 1, 2, 3q. A point x1 P ∆1 corresponds to a

point x P ∆ if ther is some i and some ti P rai, bis with x1 “ c1iptiq and x “ ciptiq. We

notice if the perimeter of a triangle ∆ “ c1
Ť

c2
Ť

c3 in X is less than 2Dpκq, that is, if

lengthpc1q` length pc2q`lengthpc3q ă 2Dpκq, then there is a unique comparison triangle

(up to isometry) in M2
κ for ∆.

Definition 2.6. Let κ P R. A complete metric space X is called a CAT(κ) space if:

1. Every two points x, y P X with dpx, yq ă Dpκq are connected by a minimal geodesic

segment;

2. For any triangle ∆ in X with perimeter less than 2Dpκq and any two points x, y P ∆,

the inequality dpx, yq “ d1px1, y1q holds, where x1 and y1 are the points on a comparison

triangle for ∆ corresponding to x and y respectively.

Definition 2.7. A geodesic metric space X is a CAT(0) space if for all geodesic triangles

4pp, q, rq Ă X and points x P rp, qs, y P rp, rs, dpx, yq ď dpx̄, ȳq for comparison points on

4pp̄, q̄, r̄q Ă E2.

Figure 2.1: CAT p0q geometry

Examples of CAT p0q spaces
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• En, in this case all geodesic triangles are identical to their comparison triangles in

Euclidean spaces.

• Trees. Trees are 1-dimensional CAT p0q spaces and 0-hyperbolic space.

Figure 2.2: infinite, 4-valence tree

• Universal covers of compact Reimannian manifolds of non-positive curvature are

CAT p0q spaces, as CAT p0q spaces can be alternatively characterized as locally CAT p0q,

contractible spaces.

• Convex subspaces of CAT p0q spaces are CAT p0q

• If X and Y are two CAT p0q spaces, then with the product metric, X ˆ Y is also

CAT p0q.

• If two spaces X, XY are CAT p0q, then the new space obtained from gluing X and Y

along a complete, convex subspace is also CAT p0q.

Follows immediately from the definition is the fact that CAT p0q spaces are uniquely geodesic.

Otherwise, consider the geodesic triangle whose vertices are a pair of points with two

geodesics between them and a third point on one of the geodesic. Applying the CAT p0q

inequality to this triangle shows that it is in fact a degenerative triangle. Therefore CAT p0q

spaces are uniquely geodesic. Therefore, CAT p0q spaces are contractible (having the homo-

topy type of a point) via the unique geodesic ray emanating from a base point to any point

in the space.
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Specifically, a geodesic ray in X is a geodesic c : r0,8q Ñ X. Consider the set of geodesic

rays in X. Two geodesic rays c1 and c2 are said to be asymptotic if fptq :“ dpc1ptq, c2ptqq

is a bounded function. It is easy to check that this defines an equivalence relation. The set

of equivalence classes is denoted by BX and called the boundary of X. If ξ P BX and c is a

geodesic ray belonging to ξ, we write cp8q “ ξ. For any ξ P BX and any x P X, there is a

unique geodesic ray cxξ : r0,8q Ñ X with cxξp0q “ x and cxξp8q “ ξ. The image of cxξ is

denoted by xξ.

There are two topologies we can put on BX. Set X̄ “ X
Ť

B8X. The cone topology on X̄

has as a basis the open sets of X together with the sets

Upx, ξ,R, εq “ tz P barX|x R Bpx,Rq, dpcxzpRq, cxξpRqq ă εu

where x P X, ξ P B8X and R ą 0, ε ą 0. The topology on X induced by the cone topology

coincides with the metric topology on X.

x0 ξ

r

ε

Figure 2.3: A basis for open sets

The set BX together with the cone topology is called the visual boundary of X, denoted

B8X.

There is another metric on BX. Let c1, c2 : r0,8q Ñ X be two geodesic ray with c1p0q “

c2p0q “ x. For t1, t2 P p0,8q, consider the comparison angle =xpc1pt1q, c2pt2qq. Let ξ1 and

ξ2 be points of BX represented by c1 and c2. We define the Alexandrov angle between ξ1
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Table 2.1: Visual Boundary vs. Tits Boundary

X B8X BTX

En Sn Sn

Regular-valence, infinite tree Cantor set discrete set

Hn Sn discrete set

and ξ2 at point x to be

=xpξ1, ξ2q :“ limtiÑ0=xpc1pt1q, c2pt2qq

We define the Tits angle between ξ1 and ξ2 to be

=T pξ1, ξ2q :“ sup
xPX

=xpξ1, ξ2q

The Tits metric dT on B8X is the path metric induced by =T . We denote BTX :“

pB8X, dT q. From the definition we see that

=xpξ1, ξ2q ď =T pξ1, ξ2q

and it can be shown that if X is a CAT p0q space, and ξ1, ξ2 P BTX, then BTX is a CAT p1q

space.

The set BX together with the topology arising from dT is called the Tits boundary of X,

denoted B8X.

In general the visual boundary of the space is different from the Tits boundary of the space.

The following table list the ideal boundaries and the Tits boundaries of three basic spaces.
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Consider H2. In the disk model, BX can be identified with the unit circle. For any two

points ξ, η on the boundary, there is a geodesic line in H2 joining ξ and η. Therefore

=pξ, ηq “ π for any two distinct points one the boundary, hence BTH2 is a discrete set.

2.3 Quasi-isometry

The first examples of space on which the group acts are Cayley graphs. Cayley graphs of

the same group with different generating set ”look” different. To establish a well-defined

correspondence between a group and the set of spaces on which it acts nicely, quasi-isometry

is a needed concept that captures the ”large-scale” geometry of spaces.

Theorem 2.8. If X is isometric to X 1, then their boundaries are homeomorphic, i.e.

B8X » B8X
1 and BTX » BTX

1.

Definition 2.9. Let pX1, d1q and pX2, d2q be metric spaces. A (not necessarily continuous)

map f : X1 Ñ X2 is called a pλ, εq-quasi-isometric embedding if there exist constants λ ě 1

and ε ě 0 such that for all x, y P X1

1

λ
d1px, yq ´ ε ď d2pfpxq, fpyqq ď λd1px, yq ` ε

If, in addition, there exists a constant C ě 0 such that every point of X2 lies in the

Cneighborhood of the image of f , then f is called a pλ, εq-quasi-isometry. When such a

map exists, X1 and X2 are said to be quasi-isometric.

If a finitely generated group G acts cocompactly, properly discontinuously and by isometries

on a metric space X, then we say that G is quasi-isometric to X.

If X,Y are metric spaces and f : X Ñ Y , then, f is an isometric embedding if @x, x1 P X,

dXpx, x
1q “ dY pfpxq, fpx

1qq If X,Y are metric spaces and f : X Ñ Y then f is a quasi-

isometric embedding if DC ě 1s.t.@x, x1
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1

C
dXpx, x

1q ´ C ď dY pfpxq, fpx
1qq ď CdXpx, x

1q ` C

f is not necessarily continuous.

Theorem 2.10. (Švarc-Milnor lemma) If X is a complete, locally compact geodesic metric

space and G acts geomet- rically on X, then G is finitely generated and X is quasi-isometric

to every Cayley graph for G.

2.4 Bass-Serre Theory and Group Amalgamation

In this section we present a basic introduction to the Bass-Serre theory according to [Ser80].

The Bass-Serre theory is a fundamental structure theorem in group theory that relates ge-

ometric and combinatorial aspects of a group. Generally speaking, a group that acts on a

tree decomposes into smaller pieces encoded in the stabilizer data via iterated applications

of HNN extensions and free products with amalgamation. We will only be concerned with

amalgamated products in this thesis.

We begin by constructing the notion of graphs. A graph is a pair A “ pV,Eq comprising

a set V of vertices together with a set E of unoriented edges, which are 2-element subsets

of V . If and edge e is the pair pv1, v2q, then we say the edge e is incident to the vertex v1

(resp. v2), and the v1 is adjacent to v2. This type of graph may be described precisely as

undirected and simple.

A graph A1 is a subgraph of A if it forms a graph in itself and V pA1q Ă V pAq, EpA1q Ă EpAq.

An edge path is a sequence of edges e1, e2, ...en such that each adjacent pair of edges in the

sequence shares a vertex, and non-adjacent edges do not share any vertex. A cycle is an

edge path except for that e0 and en shares a vertex and n ě 3.

A graph is connected if there is a path between any two distinct vertices. A tree is an

undirected simple graph that is connected and has no cycles.
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Definition 2.11. A graph of groups Γ “ pΓ,G q is a connected graph Γ equipped with the

following

• to each vertex v P V pΓq, an assignment of a group Gv (called the vertex group of v)

• to each edge e P EpΓq, an assignment of a group Ge (called the edge group of e).

• to each edge e “ pvi, vtq P EpΓq, an assignment of an injective group homomorphisms

hi, ht where:

hi : Ge Ñ Gvi

ht : Ge Ñ Gvt

Now we define Serre’s fundamental groups of a graph of groups. Let Γ be a simple graph.

The fundamental group of the graph of groups π1pΓ,G q is the quotient of the free product

of groups Gv and Ge by the normal subgroup generated by elements

thiαpgqhtαpgq
´1|g P Geα , eα P EpΓqu

Suppose the graph Γ is a single edge with vertex groups Γ1, Γ2, edge group H and injective

homomorphisms φ1, φ2, then the amalgamated free product of Γ1 and Γ2 along H is the

fundamental group the graph of groups, i.e. it is the quotient of the free product Γ1 ˚Γ2 by

the normal subgroup generated by the conjugates of the elements

tφ1phqφ2phq
´1|h P Hu

We write the amalgamated product as Γ1 ˚H Γ2

Definition 2.12. The Bass-Serre tree T associated to an amalgamated free product Γ “

Γ1 ˚H Γ2 is constructed as follows: take disjoint union of Γ ˆ r0, 1s, i.e. copies of r0, 1s

indexed by elements of Γ, then quotient by the equivalence relation generated by

pγγ1, 0q „ pγ, 0q
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pγγ2, 1q „ pγ, 1q

pγh, tq „ pγ, tq

for all γ P Γ, γ1 P Γ1, γ2 P Γ2 h P H and t P r0, 1s

The action of Γ by left translation on the index set of the disjoint union permutes the edges

and is compatible with the equivalence relation, therefore it induces an action Γ on T by

isometries. The quotient of the tree T by this action is an interval r0, 1s; the subgroup

H Ă Γ is the stabilizer of an edge in T and the stabilizers of the vertices of this edge are

the subgroups Γ1 Ă Γ and Γ2 Ă Γ.

Theorem 2.13. If a group Γ has a amalgamated product decomposition, then Γ acts on the

corresponding Bass-Serre tree with quotient an edge.

2.5 Strict Fundamental Domain

One of the key ideas in geometric group theory is to view groups are geometric objects. A

strict fundamental domain and all its translates can be thought of as geometric represen-

tations of each group element in the space. In this section, we suppose that G is a group

acting on a metric space X by isometries.

For each point x P X, the orbit of x is the set

ty P X|y “ gx for some g P Gu

Definition 2.14. Let K be a closed subset of X. K is a strict fundamental domain of G

on X if every orbit meets K exactly once.

According to Bass-Serre Theory, in the case of a group acting on a tree, the strict funda-

mental domain determines an amalgamated product decomposition of the group with the

amalgamating groups finite. Conversely, if the original group has this decomposition, then

there is a tree in which the group acts geometrically. The critical tools to our study come

from the thesis of O’Brien.
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Proposition 2.15. [O08]

Suppose G acts geometrically on a uniquely geodesic space X with a strict fundamental

domain K whose translates are locally finite. Then

1. K is convex, and

2. the the quotient X{G is isometric to K

The full strength of O’Brien’s result generalize the Bass-Serre theory from trees to uniquely

geodesic spaces. Once we obtain a strict fundamental domain K, we can study the stabilizer

groups of the topological boundaries of K and recover the amalgamated product decompo-

sition of the group. Specific to our result, we let a right-angled Coxeter group act on the

nerve tree of the Croke-Kleiner space and use the following theorem:

Theorem 2.16. [O08] If a G acts geometrically on a tree, then there is a fundamental

domain that is a finite sub-tree.

In Chapter 3 and Chapter 4, we will apply specific construction of the strict fundamental

domain to obtain the desired results.



Chapter 3

The Croke Kleiner Space

In this chapter we examine a concrete counterexample of the conjecture that if a finitely

generated group G acts properly discontinuously, cocompactly and by isometries on two

CAT(0) spaces X1, X2, then there is a G-equivariant homeomorphism between their ideal

boundaries B8X1 Ñ B8X2.

The example is first constructed by Croke and Kleiner. In their original construction of a

class of spaces CKθ, they prove that the ideal boundaries B8CKθ is different for θ “ π{2

from that of θ ‰ π{2. They show that the two boundaries with different values of θ are not

homeomorphic as topological spaces. We follow the construction and let θ be fixed at π{2

and vary other geometric data of the space to show that there are cases when two boundaries

agree on a dense subset, but the G-equivariant homeomorphism types differ on the whole

space. The main theorem we prove in this chapter states that with all above assumptions

the two boundaries are not G-equivariantly homeomorphic. It remains an open question

whether the two boundaries as topological spaces are homeomorphic or not.

It is worth noting that a more general construction of this class of space is studied in [CK02].

In [CK02], the authors study discrete, cocompact, isometric actions of groups on a class of

graph manifolds and the induced actions on ideal boundaries. In [CK02], the Bass-Serre

22
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tree of the space is isomorphic to that of the Croke-Kleiner space. However, in the general-

ization, each vertex in the Bass-Serre tree is a hyperbolic-by R space and each edge is E2.

The fundamental group is a graph of groups where each vertex group is F ˆ Z where F

is a non-elementary hyperbolic group, and each edge group is Z2. With a group that acts

discretely, cocompactly and by isometries on the space, they specify ”geometric data”MLSv

and ”τv”. In their notation, the geometric data we consider in this space all have τv “ 0.

[CK02] proves that the geometric data determines the equivariant homeomorphism type of

the boundary by studying templates and the method of ”shadowing”. In this document we

will be only considering the case where τv “ 0 and we will be using template as well, but we

argue straight from the CAT p0q geometry of the template. While Theorem 1.1 is a special

case of the general result in [CK02], the technique in the proof of Theorem 1.1 is crucial to

proving Theorem 1.4.

In the last section we study the set of points in the boundary with infinite itineraries, which

we call the ”dust”. We show that the set of isolated points and interval components are

both uncountable. We also give examples of subsets of the dust that are invariant under

the G-equivariant map, in the sense that points are mapped to points, and intervals are

mapped to intervals.

Before we prove the theorem about the equivariant homeomorphism type of the boundary,

we also study the core component of the boundary, the union of all circles, more carefully

and we prove

1. The G-equivariant map on the Croke-Kleiner space with length variation is an isom-

etry of the cores with the Tits metric.

2. There is an homeomorphism on the cores (of the boundary) with visual topology.
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3.1 Construction

The space X constructed by Croke and Kleiner in [CK00] is the universal cover of a torus

complex Y . Start with a flat torus T2 with the property that a pair b, c of unoriented,

π1-generating simple closed curves in T2 meets at a single point at an angle α, 0 ă α ď π
2 .

Let b, c have length 1. Let T1, T3 be flat tori containing simple closed essential loops, a, b1

and c1, d, respectively, such that lengthpb1q “ lengthpbq, lengthpc1q “ lengthpcq. Let a, d

also have length 1. Let Y be the union of T1, T2, T3 with b1 identified isometrically with b

and c1 with c. Let X be the universal cover of Y . Let Y1 “ T1 Y T2, and let Y2 “ T3 Y T2,

Xi be the universal cover of Yi in X.

T1 T2 T3

Figure 3.1: Tori Complex

Definition 3.1. A barrier is a maximal connected component of the universal cover of T2

in X. A block, B, is a maximal, connected component of the universal cover of Yi in X,

which we denoted Xi.

Each block, as well as each barrier is a closed, connected and locally convex subset of X.

Let B and W denote respectively the collection of all blocks and barriers. We will prove

later that B and W are countably infinite sets.

Let T4 be the regular 4-valence, infinite tree that is isomorphic to the Cayley graph of

F2 “ xa, by. A block is isometric to the metric product of T4 with the real line R. The

intersection of two blocks can be either an empty set or a barrier. Two blocks are adjacent

if and only if their intersection is a barrier.

Definition 3.2. The geometric data associated with the Croke-Kleiner space consists of

three intersecting angles and four translation distances. The three intersection angles are
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Figure 3.2: A Block

that of the intersecting angle of the three pairs of π1-generating, simple closed curves on

the three tori, which we denote θ1, θ2, θ3. In this chapter we fix θ1 “ θ2 “ θ3 “ π{2 unless

otherwise specified. The four lengths are the translation distance of a, b, c, d. Since the θi

are right angles, we can use |a|, |b|, |c|, |d| to denote the translation distance, or by abuse of

notation a, b, c, d. It can be easily checked that length variation is a quasi-isometry but not

an isometry on the space.

3.1.1 The boundaries of X

Let B8X and BTX denote respectively the visual boundary and the Tits boundary of the

space X. B8B is homeomorphic to the suspension of a Cantor set and BTB is the suspension

of an uncountable discrete set with each suspension arc having length π{2.

Definition 3.3. The two suspension points of B8B, called poles of the block, are the

equivalence classes of geodesics correspond with the pair tbnpxq, b´npxqu, or the pair tcnpxq,

c´npxqu, as nÑ8.

Definition 3.4. A longitude of the block is an arc in B8B joining the two poles. It can

also be thought of as the suspension of a point in the Cantor set.

We say that a geodesic ray ξ enters a plane V if there are values r ă R in the domain of ξ

such that ξprr,Rsq Ă V . ξ enters a block if it enters a non-barrier plane of the block.

Definition 3.5. An itinerary of a geodesic ray, Itpξq, is the sequence of blocks that the

geodesic ray enters in order. An itinerary can be either finite or infinite.
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We say that ξ P B8X is a vertex if there is a neighborhood U of ξ such that the path

component of ξ in U is homeomorphic to the cone over a Cantor set, with ξ corresponding

to the vertex of the cone.

A path c : r0, 1s Ñ B8X is safe if cptq is a vertex for only finitely many t P r0, 1s. Since

the property of being joinable by a safe path is an equivalence relation on pairs of points,

and since B8B1 Y B8B2 is safe path connected when B1 is adjacent to B2, it follows that

Ť

BPB B8B is safe path connected. It is shown in [CK00] that
Ť

BPB B8B is a safe-path

component of B8X.

3.1.2 The Right-Angled Artin Group

One way to specify a presentation for a right-angled Artin group is by means of a defining

graph. Given a presentation:

G “ xs1, s2, ...sn|sisj “ sjsi for some pairs of i, j P t1, 2, ...nuy

A defining graph is a simple graph whose vertices are labeled by the generators S “

ts1, ..., snu and whose edges are pairs of vertices psi, sjq if and only if sisj “ sjsi. Note

that any finite, simplicial graph Γ is a defining graph for some right-angled Artin group.

Figure 3.3: Defining graph of an RAAG

The group that acts properly discontinuously, cocompactly, and by isometries on the Croke-

Kleiner space is among the smallest non-trivial right-Angled Artin groups. We define this

group as:

G “ xa, b, c, d|aba´1b´1, bcb´1c´1, cdc´1d´1y

G is the fundamental group of the space X. The covering space action of the group satisfies

the assumption of a geometric action. Alternatively, we can see that the group G is an
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amalgamated product of groups that act geometrically on spaces that are glued equivariantly

along subspaces that are acted on geometrically by a common subgroup that embeds into

both amalgams. Therefore, by Theorem II 11.18 of [BH99], G acts geometrically on the

space constructed. The amalgamated product decomposition is not unique. Let

G1 “ G2 “ pZˆ Zq ˚Z pZˆ Zq

then let H “ Zˆ Z, G can be expressed as

G “ G1 ˚H G2

The elements of H act geometrically on the barrier, the elements of G1 and G2 act geomet-

rically on the respective T ˆ R where T is an infinite, 4-valence tree. The amalgamated

product induces a rooted Bass-Serre tree with the vertices corresponding to cosets of Gi

and edges corresponding to cosets of H [Ser80].

Recall that an itinerary of a geodesic ray, Itpξq, is the sequence of blocks that the geodesic

ray enters in order. An infinite itinerary geodesic ray corresponds to an infinite path in the

Bass-Serre tree starting at the root x0.

A finer decomposition of G is the amalgamated product of three copies of Zˆ Z:

G “ pZˆ Zq ˚Z pZˆ Zq ˚Z pZˆ Zq

The corresponding induced tree we will define later as the nerve.

3.1.3 The Bass-Serre Trees

The Bass-Serre tree is a simplicial tree which when quotiented by an amalgamated product

results in an edges whose vertex stabilizers are the amalgams. In the context of the Croke

Kleiner space, the first tree described above records the blocks and their intersections. Let
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ρ be the following projection from the space X to a graph:

• Each block is projected onto a vertex

• two vertices are adjacent if and only if two blocks are adjacent

We call the image of ρ the Bass Serre covering tree, or simply the Bass-Serre tree with

respect to the amalgamated product decomposition G “ G1 ˚H G2. A group or a space

does not necessarily have a unique Bass-Serre tree. We study another Bass-Serre tree of

the space in the next section.

Let x0 be the base point in X. Consider the block containing x0 and all the adjacent

blocks. There is a bijection between the set of adjacent blocks and the cosets of H in G1

(or G2). The vertices are indexed by G{Gi, i “ 1, 2, the edges are indexed by G{H. By this

construction the Bass-Serre tree is a locally countably infinite tree.

Using the Bass-Serre tree we make the following observation:

Proposition 3.6. Given any two blocks B and B1, B8B X B8B
1 is either φ, S0 or S1.

Proof. If two blocks are adjacent in the Bass-Serre tree, then they share a common barrier

W , their boundaries meet exactly in B8W „ S1. If they are at distance two in the Bass-Serre

tree, then the vertex in between the two vertices that represents the two blocks represents

a block in which there are two disjoint barriers which are shared respectively with the two

blocks. The boundary of barriers are circles and these two circles intersects at exactly two

points, which is S0. If the two blocks are at distance 3 or more in the Bass-Serre tree then

their intersection is φ.

3.1.4 The Nerve

There is another Bass-Serre tree of the space that corresponds to the second amalgamated

product decomposition (In the original paper [CK00], however, the term ”nerve” refers to
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the tree associated with the first decomposition). By abuse of notation, let Ti denote the

fundamental groups of the tori.

Ti “ Zˆ Z, i “ 1, 2, 3

Lj “ Z, j “ 1, 2

G “ T1 ˚J1 T2 ˚J2 T3

The nerve is a simplicial tree that records the intersections of planes that are lifts of the

tori. Each vertex in the nerve represent a plane that is a lift of T1, T2 or T3, two vertices

are adjacent if and only if two planes intersect along a line. The nerve is also a regular,

infinite and locally infinite tree. Each vertex is adjacent to countably many other vertices.

The vertices representing lifts of T1 (and respectively T3) are adjacent to countably infinite

copies of vertices representing lifts of T2, while the lifts of T2 are adjacent to both countably

many T1 and countably many T3.

T2

T1

T1

T1

T3

T3

T3

T2

T2

T2

T2

T2

T2

...

...

...

...

Figure 3.4: The Nerve
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Table 3.1: Path component, safe-path component and the core component

Visual boundary Tits boundary

core component union of all circles union of all circles

safe-path component union of all circles union of all circles

path component union of all circles union of all circles
and the points in the dust

3.2 The Core Component

In this CAT p0q 2-complex X, let

CorepB8Xq “ Yc where c varies over all the topological circles in B8X

CorepBTXq “ Yc where c varies over all the topological circles in BTX .

In this section we will study the Tits boundary of the space X under length variation and

its core; we will also study the core of the visual boundary. Before we proceed, we first

compare the core to a couple of other concepts.

Two points x, y in a topological space X are said to be in the same path component if there

exists a path from x to y in X. The equivalence classes of X under this equivalence relation

are called the path components of X.

Two points x, y in the Croke-Kleiner space are said to be in the same safe-path component

if there exists a path from x to y in X that passes only finitely many poles. The equiv-

alence classes of X under this equivalence relation are called the safe-path components of X.

Let dc be the induced path metric of BT on CorepBTXq. For ξ, µ P CorepBTXq, dcpξ, µq ă 8

if and only if ξ, µ lie in the same path component of Core(BTX) and in this case there

is a minimal Tits geodesic contained in Core(BTX) that connects ξ and µ. In particular,
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dcpξ, µq “ dT pξ, µq if dcpξ, µq ă 8.

Xie [Xie05] shows that if two CAT(0) 2-complexes are quasi-isometric then the cores of

their Tits boundaries are bi-Lipschitz. We show that in the case of this particular example,

even stronger is true: the Tits boundaries of X and Xl are homeomorphic, and the cores

of the ideal boundaries are homeomorphic. Recall by Xl, we mean a Croke-Kleiner space

with non-trivial lengths data pa, b, c, dq and where the angles θ1 “ θ2 “ θ3 “ π{2

Theorem 3.7. Let X be the Croke-Kleiner space with length data (1,1,1,1), and let Xl be

the Croke-Kleiner space with length data l “ pa, b, c, dq, where at least one of a, b, c, d is not

1. There is an isometry between Tits boundaries:

CorepBTXq w CorepBTXlq

Proof. We define the isometry map as follows. On the core component, each pole is the

pole of a unique block, which is indexed by G{Gi. Each circle is indexed by G{Ti. We

first map poles and circles one-to-one G-equivariantly. Each circle either has two poles or

four poles. On the circles with two poles, each half-circle between two pole points has Tits

length π. The arc is between two pole with representatives tlimnÑ8 b
n, limnÑ8 b

´nu or

tlimnÑ8 c
n, limnÑ8 c

´nu . We parametrize the arc from the positive representative to the

negative representative, by its Tits distance dt from the positive pole dT P r0, πs. For the

circles with four poles, we parametrize the arcs from the b-type poles to the c-type poles,

by its Tits distance dT from the b-type poles, dT P r0,
π
2 s.

Therefore, each ξ is denoted by a 2-tuple coordinate

pg, dT q

where g P G{Ti and dT P r0, πs
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The map between CorepBTXq and CorepBTXlqmaps bijectively an element of index pgi, pdT qiq

to the element of the same index. This is a homeomorphism since an open set away from

the pole is an open subinterval on a single arc.

Next we construct a homeomorphism between the ideal boundaries.

Theorem 3.8. Let X be the Croke-Kleiner space with length data (1,1,1,1), and let Xl be

the Croke-Kleiner space with length data pa, b, c, dq, where at least one of a, b, c, d is not 1.

The G-equivariant map between the CorepB8Xq and CorepB8Xlq is a homeomorphism.

Proof. We map the circles and poles G-equivariantly as in the previous proof. On each

circle, each point represents an equivalence class of infinite geodesics in that plane that are

parallel. Let ξ be an equivalence class in the plane indexed by tgiu. The plane is stabilized

by a conjugate of one of the following pairs of elements:

ta, bu, tb, cu, tc, du

Let b8 and c8, respectively, denote the tails of the principal axes in the respective planes.

Suppose θ is the angle between ξ and the principle axis, θ P r0, πs. Suppose tanpθq P Q,

then

tanpθq “
p

q
, p, q P N

in lowest terms. If the plane is stabilized by a conjugate of ta, bu, consider the sequence of

group elements tgi “ aipbiq, i P Nu. Conjugate the sequence to the plane. The orbit of a

point of choice in the plane, x, under this sequence, is x, g1pxq, g2pxq, g3pxq.... This sequence

necessarily has a limit that is a point in the visual boundary of this plane, denoted ξl. Let

the map f : CorepB8Xq ÝÑ CorepB8Xlq be defined equivariantly as

fpξq “ ξl
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Since Q is a dense subset of R, the map extends to the whole core component. Consider

any sequence of points in B8X with a limit in B8X. An Arzelà-Ascoli argument shows that

this map respect limits in the visual boundary by construction.

Remark. The G-equivariant map, between X and Xl is not a homeomorphism that extends

from the space to the core. For example, let x0 be the base-point in the block spanned by

generators b, c, d, where the length data is pb, c, dq “ p1, 1, 1q. Let pbcq8 denoted the infinite

word

bcbcbcbcbc...

and rws, with w an infinite word, denotes the geodesic in the equivalence class of the infinite

word w.

Consider the following sequence of geodesics

ξi “ rpcdq
ipbcq8s

Each geodesic in this sequence is at Tits distance arctanp1q from one of the poles of the

block. The limit of the sequence:

lim
iÑ8

ξi “ lim
iÑ8

rpcdqipbcq8s “ rpcdq8s

which is also at Tits distance arctanp1q from one of the poles.

However, if we let the lengths data be pb, c, dq “ p1, 2, 1q and apply the G-equivariant

identity map f , then

rfpξqs

is a sequence of geodesics at Tits distance arctanp1q 1 from the pole, while

rfppcdq8qs
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is a geodesic at Tits distance arctanp1{2q from the pole. Since the Tits distance function is

continuous on the visual boundary, this shows that the G-equivariant map is not an home-

omorphism on the visual boundary of the core component.

Remark. Given the example above, we can conjecture that any map that comes from a

group automorphism cannot be extended to a homeomorphism on the visual boundary. It

remains open whether there is a homeomorphism between the visual boundaries of the core

components that comes from a map of the space.

Conjecture. Any G-equivariant map between the spaces X and Xl does not extend to a

homeomorphism on the visual boundary.

3.3 Proof of the Theorem 1.1

Recall Theorem 1.1:

On the components of BX other than the safe-path component, the G-equvariant action does

not extend to a homeomorphism under the visual topology between BX and BXl, where Xl

has a nontrivial different set of length data.

In this section we present the complete proof of Theorem 1.1.

Since blocks are convex, a geodesic cannot revisit any block which it left. Therefore a

geodesic visits a finite, or infinite set of blocks, sequentially. If the whole geodesic visits

a finite set of blocks, then it must stabilize in the last block of that sequence. Let ξ be

a geodesic that does not stabilize in any block. We project the geodesic on to the first

Bass-Serre tree TBS . The projection is well defined because the space is simply connected

and contractible. The image of the projection of ξ onto the Bass-Serre tree is an half-infinite

path with one end point at the base vertex and the other end correspond to a end of the
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tree. On the other hand, if the whole geodesic visits only a finite set of blocks, then it

projects onto a finite-length path in the Bass-Serre tree. This gives a map

f : BX ÝÑ tfinite segments in TBS u Y ends of TBS

Similarly each geodesic can be projected onto the nerve tree and the image is a finite or

infinite path in the nerve. Each vertex on this path represents a plane and each edge an

intersection between two planes. The planes and the intersections are respectively indexed

by G{Ti and G{Lj .

Definition 3.9. The union of all the planes on the path we define as the pre-template.

Two adjacent planes intersect in an R-line, corresponding to a coset of Z. Consider the

sequence of all R-lines. Two consecutive R-lines lie in the plane ”between” them, in which

they either intersect or are parallel. It is straight forward to see that the sequence of R-lines

can be grouped into a new sequence of collections of R-lines if we group all the maximal

subsequences of consecutive parallel R-lines together. Take the subset of the pre-template

that’s bounded by each pair of consecutive R-lines. It should be noted that if two consecu-

tive R-lines are perpendicular to one another, then they cut the plane into four quadrants.

Of the four quadrants, there is exactly one that is disjoint from the R-lines immediately

before and after this pair, namely the portion ”between” this pair of R-lines. The union

of all R-lines and the subset of the pre-template bounded between them we call the template.

Consider all the R-lines that are perpendicular to its preceding line. These are the lines via

which the geodesic ray exits the preceding block and enters a new block. The intersecting

point with its preceding line divides the line into two halves. Out of these two halves,

there is exactly one that lies in the same half-plane as the next intersecting point. That

half-infinite line, together withe the intersecting point, we will define as a half-exit.

Given any infinite-itinerary geodesic ray, we can collect the following sets:

• points txi : i “ 0, 1, 2, ...u
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• strips: tSi : i “ 1, 2, ...uWe combine all the parallel strips in succession into one bigger

parallel strip. By doing this, the two borders of the big strip necessarily intersect the

previous entrance and next exit perpendicularly. The two perpendicular pairs yields

two points that are intersections of entrances and exits. The second intersection point

picks out one of the two quarter-planes in the first perpendicular pair that ensures the

local geodesity of the geodesics. Since the path is infinite, at every perpendicular pair,

there is a unique quarter plane that is traversed by the geodesic. The template can

be reduced to the alternating sequence of quarter-planes and strips that are spliced

successively along entrances and exits.

3.3.1 Coordinates and Adjusted Coordinates

Let txi : i “ 0, 1, 2...u denote the sequence of intersecting points in the template, with x0

being the base-point. We let x0 have coordinate p0, 0q. l1 and ε1 measures the dimensions

of the unique rectangle whose diagonal corners are x0 and x1. One side of the rectangle is

path traced by a power of b (respectively a power of c) and let l1 be the power, i.e. one side

of the rectangle is a path traced by the word bl1 . Likewise, the other side of the rectangle

is a word in xa, cy (respectively, xb, dy). a and c are not commutative, but we sum up the

powers of a and the powers of c and ε1 “ pε11, ε12q is an ordered pair where ε11 is the sum

of the power of a and ε12 is the sum of power of c. In general, εi “ pεi1, εi2q is an ordered

pair where εi1 is the sum of the power of a (resp. d) and εi2 is the sum of power of c (resp. b).

Similarly, pli, εiq measures the coordinate of xi with respect to xi´1. The collection tpli, εiq :

i “ 1, 2, 3...u we call the coordinates of the template.

With coordinates we can calculate the adjusted coordinates tpai, bi : i “ 0, 1, 2, ...qu as

follows:
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x0

ε1

`1

ε2

`2

ε3

`3half-exit

Figure 3.5: Template

a1 “ l1, b1 “ ε1

a2 “ l1 ` ε2, b2 “ ε1 ` l2

a3 “ l1 ` ε2 ` l3, b3 “ ε1 ` l2 ` ε3

a4 “ l1 ` ε2 ` l3 ` ε4, b4 “ ε1 ` l2 ` ε3 ` l4

...

This notation is not ideal in the following sense: when adding the coordinates together,

we simply add the powers of the same generators together. thus, ai and bi are essentially

4-tuples recording the corresponding accumulative power of a, b, c, and d.

Having established templates and adjusted coordinates for each infinite itinerary geodesic ξ,

we show that given an infinite itinerary tBgiu, there exists a template such that all geodesic

rays with that itinerary travel on this template. More specifically we will show that there

is a unique half-exit between two consecutive blocks in an infinite itinerary.

Proposition 3.10. Given any four consecutive blocks in the itinerary Bgi , Bgi`1 , Bgi`2 , Bgi`3,

there is a unique half-exit between Bgi , Bgi`1, i.e. all geodesics following the itinerary

Bgi , Bgi`1 , Bgi`2 intersect that half-exit as they exit Bgi and enter Bgi`1.
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Proof. Let Wi be the barrier that separates separating Bgi , Bgi`1 . The intersection:

clpBgi`1{Wiq XWi

consists of a countable set of infinite lines that any geodesic leaving Bgi and entering Bgi`1

have to intersect. Similarly, letWi`1 be the barrier that separates separatingBgi`1 , Bgi`2 .consider

the intersection:

clpBgi`1{Wi`1q XWi`1

consists of a unique infinite line.

The block Bgi`1 , like any other block, is a product T4 ˆ R which corresponds to to the

algebraic decomposition F2 ˆ Z. The two sets of infinite lines corresponds to copies of R

indexed by vertices of the T4. Since the countable set of infinite lines lies on a path in the

tree, which the second set that is made up of a single infinite line is at a point in the tree

not on this path. By the structure of T4 there is a unique infinite line from the first set

that is at the shortest distance (in the tree) from the singleton in the second set. That

unique line we identify as the exit between Bgi and Bgi`1 . Similarly we identify the unique

exit between Bgi`1 and Bgi`2 , call these two exits Ei, Ei`1. Consider the two intersections

xi, xi`1

pclpBi{Wiq XWiq X Ei

pclpBi`1{Wi`1q XWi`1q X Ei`1

The projection of xi`1 onto Ei, i.e. the point on Ei that is closest in the CAT p0q geometry

to xi`1 lies on one of the two half infinite lines of Ei cut by xi. That unique half of Ei we

call the half-exit between Bgi and Bgi`1 .
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3.3.2 n-Self similar templates

In this section, we construct a countable set of geodesic rays, each with infinite itinerary

S such that the G-equivariant homomorphism on each element of S is not homeomorphic

when the lengths pa, b, c, dq are not p1, 1, 1, 1q.

We define the n-self-similar template to be the templates such that for some n P N and all

i, j P N, we have

li`2j “ njli,

εi`2j “ njεi

Therefore we have: l1 “ l1, l3 “ nl1, l5 “ n2l1, l7 “ n3l1...

ε1 “ ε1, ε3 “ nε1, ε5 “ n2ε1, ε7 “ n3ε1...

The template is specified by the data pn, l1, ε1, l2, ε2q and the adjusted coordinates are:

x0 : p0, 0q

x1 : pl1, ε1q

x2 : pl1 ` ε2, ε1 ` l2q

x3 : ppn` 1ql1 ` ε2, pn` 1qε1 ` l2q

x4 : ppn` 1ql1 ` pn` 1qε2, pn` 1qε1 ` pn` 1ql2q

...

xi : p
1´ nk

1´ n
l1 `

1´ nk´1

1´ n
ε2,

1´ nk

1´ n
ε1 `

1´ nk´1

1´ n
l2q, if i “ 2k ` 1

xi : p
1´ nk

1´ n
l1 `

1´ nk

1´ n
ε2,

1´ nk

1´ n
ε1 `

1´ nk

1´ n
l2q, if i “ 2k
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Limit of the tangent of the angles of geodesic rays passing through xeven is

lim
kÑ8

1´ nk

1´ n
ε1 `

1´ nk

1´ n
l2

1´ nk

1´ n
l1 `

1´ nk

1´ n
ε2

“ lim
kÑ8

p
1´ nk

1´ n
q
ε1 ` l2
l1 ` ε2

“
ε1 ` l2
l1 ` ε2

Limit of the tangent of the angles of geodesic rays passing through xodd is

lim
kÑ8

1´ nk

1´ n
ε1 `

1´ nk´1

1´ n
l2

1´ nk

1´ n
l1 `

1´ nk´1

1´ n
ε2

“ lim
kÑ8

p
1

nk´1
´ nqε1 ` p

1

nk´1
´ 1ql2

p
1

nk´1
´ nql1 ` p

1

nk´1
´ 1qε2

“ lim
kÑ8

nε1 ` l2
nl1 ` ε2

“
nε1 ` l2
nl1 ` ε2

If the two above limits overlap, then the itinerary corresponds to an arc, otherwise, the

itinerary corresponds to a point. That is to say, given n P N , if

ε1 ` l2
l1 ` ε2

ą
nε1 ` l2
nl1 ` ε2

then the collection of geodesic rays forms an interval at infinity; otherwise, if

ε1 ` l2
l1 ` ε2

ď
nε1 ` l2
nl1 ` ε2
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the boundary component consists of a point.

Meanwhile, compute from the data
ε1
l1

and
ε1 ` l2
l1 ` ε2

also shows if the two tangent lines overlap

in the first two strips. Therefore it suffices to point out that

ε1 ` l2
l1 ` ε2

ą
nε1 ` l2
nl1 ` ε2

if and only if
ε1
l1
ă
ε1 ` l2
l1 ` ε2

Therefore we have the following main lemma:

Lemma 3.11. An n-self-similar template pl1, ε1, l2, ε2q corresponds to a point if and only if

the set of geodesics allowed by the first two strips is a point.

Example Let the self-similar data be (2,1,2,1) and let n “ 2, the first strip has sides a, b2,

the second strip has sides d, c2.

The adjusted coordinates of the xeven are (3,3), (9,9), (21,21)... The adjusted coordinates

of xodd are (2,1), (7,5), (17, 13), (37, 25), ...p2k`1 ` 2k´1 ´ 3, 2k`1 ´ 3q, if n “ 2k ´ 1

The tangent of angle of the half-exits originated from xeven is 1
1 “

3
3 “

9
9 ... “ 1; The tangent

of angle of the half-exits originated from xodd is:

lim
nÑ8

2k`1 ´ 3

2k`1 ` 2k´1 ´ 3

“ lim
nÑ8

2k`1 ` 2k´1 ´ 3´ 2k´1

2k`1 ` 2k´1 ´ 3

“1` lim
nÑ8

´
2k´1

2k`1 ` 2k´1 ´ 3

“1´
1

4

“0.75

Since 1´ 0.75 ą 0, the image at infinity is an interval.

In Xl let the geometric data be p|a| “ 2, |b| “ 1, |c| “ 1, |d| “ 2q, then
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ε1 ` l2
l1 ` ε2

“ 1 “
2ε1 ` l2
2l1 ` ε2

Hence the image is a point under the G-equivariant map.

Proof of Theorem 1.1:

Proof. Given a non-trivial length change, it is straightforward to check that there exist

choices of the first two strips such that the set of geodesic allowed by them changes its

cardinality from uncountably infinite to one, or one to uncountably infinite. From Lemma

3.12, we see that the n-self-similar templates constructed from those chosen first two strips

will have visual boundaries whose homeomorphism type change with the corresponding

lengths change. Since a group equivariant map acts on itineraries, i.e. block sequences,

by identity, then it will map the corresponding visual boundaries of the templates to their

counterparts in Xl. Since the cardinality of the interval is different from the cardinality of

a single point, the map cannot be homeomorphic.

We make specific what are the sets of trivial length data.

Proposition 3.12. Two length data pa, b, c, dq and pa1, b1, c1, d, q are equivalent if either of

the following is true:

• a
a1 “

b
b1 “

c
c1 “

d
d1 “ r, for some r P R`, or

• b
a “

b
c “

d
c “ r for some r P R` and b1

a1 “
b1

c1 “
d1

c1 “ r1 for some r1 P R`.

Proof. If we view the template as entirely embedded in a rectangle as in Figure 3.5, the

first equivalence changes the dimension of the template by multiplying both sides by the

same fraction. In the second equivalence relation, the entire (infinite) rectangle is stretched

by a factor of r or r’, in either case, stretching the whole template does not change the

homeomorphism type of its boundary. It can be observed from the form of the adjusted

coordinates that
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xi : pn1|b| ` n2|d|, n3|a| ` n4|c|q, n1, n2, n3, n4 P N

are the vertices of the half-exits, therefore b
a “

b
c “

d
c “ r for some r P R` and b1

a1 “
b1

c1 “

d1

c1 “ r1 for some r1 P R`, does not change whether the limits is an arc or a point.
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3.4 Dust

We refer to the set of points in B8X whose itineraries are infinite as the dust and denote

this set by D . D is the complement of the safe-path component in B8X. The set D with

its topology being the subspace topology is of independent interest, see Section 3.7. As a

subset of B8X we are interested in D for the following reasons:

• As previously shown if we vary the length data, then the G-equivariant map is home-

omorphic on the core but not homeomorphic on the D .

• D is a dense subset of B8X and exhibits Cantor-set-like properties.

• A poisson boundary is [KM99] the ergodic components of the time shifts of the random

paths space. Nevo and Sageev define that an ultra-filter which has the property

that no descending collection of half-spaces terminates is called nonterminating, let

UNT pXq denote the collection of nonterminating ultra-filters, and let BpXq denote

the closure of UNT pXq in the Tychonoff topology on the set of all ultra-filters. It can

be conjectured that the Poisson boundary of X has its support on D .

We are now ready to fully describe the visual boundary: any given point in B8X is an

equivalence class of geodesics ξ with either a finite itinerary or an infinite itinerary. If ξ has

a finite itinerary, then it is in the core, if ξ has an infinite itinerary then it is in the dust.

Therefore

B8X “ CoreYD

Next consider the G-equivariant map on the Tits boundaries,

Theorem 3.13. If we vary length data pa, b, c, dq, the G-equivariant map on the Tits bound-

aries of the X takes the core isometrically to the core, and when restricted to the dust is a

homotopy equivalence.

Proof. The first half of the statement is true by section 3.2. To see the map on the dust,

consider the G-equivariant map built in the Theorem 1.1, the map takes connected com-

ponents to connected components. A priori, some of the points are mapped to intervals
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or intervals to points. So it is a homotopy equivalence away from the dust, the map maps

poles to poles , blocks to blocks.

Consider all the connected components of D .

Proposition 3.14. There are two types of set in D ,

• An interval, as the limit of arcs with pole points as endpoints. The intervals are closed.

There is no path in B8X between points of one of the intervals and the core. For an

explicit proof of this, see [CMT06].

• A point, as the shared limit of two sequences of pole points.

Proof. Let Si Ă B8X be the set of all geodesic rays that reaches the strip Si and the half-

exit between Si and Si`1, and stabilize in the barrier that contains the half-exit. Since

geodesic rays exit each strip via a half-exit, the set of all geodesic rays that reaches the

half-exit and stays in the barrier spans an arc in the visual boundary whose Tits length is

π/2. Since the arc is in the boundary of a barrier, and one of its endpoint is a pole, i.e. the

end that consists of a geodesic that is parallel to the half-exit, then the other end of the

π/2 arc also is a pole point. Consider the sequence of all arcs constructed in this manner

for each half-exit. By the visual topology, the limit of the sequence is the boundary of this

template, and each arc has Tits length π{2.

Let x0 be the base point, consider the angle at x0 of the geodesics in each of the arcs in

the sequence described above. The angles are closed sub-intervals of r0, π{2s of the form

r0, αs or rβ, π{2s. The Tits boundary of the template is an infinite intersection of closed

intervals of the form r0, αs or rβ, π{2s and hence is closed. Since we are taken intersections

of closed sub-intervals of the interval r0, π{2s, the intersection can be either a point or a

closed interval. Therefore, both the points in the dust and the intervals in the dust are limit

of arcs with pole points as endpoints. Since the Tits boundary and visual boundary shares

the same underlying points, the corresponding visual boundary is also a closed subinterval

or a point, and hence a closed set.
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x0

Figure 3.6: An isolated interval in D

x0

Figure 3.7: An isolated point in D

Remark. The path component of B8X contains the safe-path component and all the points

in D .

Furthermore, the set D has ”Cantor-set-like” properties, i.e. The set of intervals are dense

in D ; the set of points are dense in D as well. This is because whether an infinite-itinerary

corresponds to a point or an intervals depends on its ”tail” behavior.

The set of self-similar templates constructed in the previous section is a countably infinite

set. In the set D each component is in one-to-one correspondence with an infinite-itinerary.

To specify an infinite-itinerary, we have an infinite sequence of blocks, each block is chosen
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from a countably infinite set. Therefore, D corresponds to the ends of the Bass-Serre tree,

or equivalently, the set of all infinite sequences of natural numbers, which is uncountable.

Let’s study the cardinality of D .

Proposition 3.15. Let X be the universal cover of the three-tori complex studied in this

paper with any geometric data, there are uncountably many isolated points and uncountably

many isolated intervals in D .

Proof. To show that there are uncountably many intervals, we prove that there is a surjective

function from a subset of all intervals to the real numbers p1,8q, i.e. for every real number

r P p1,8q, there is an interval in the dust whose Tits length is π
4 ´ tan´1prq. To produce

an itinerary that corresponds to an arc of Tits length π
4 ´ tan´1prq, we first suppose r is

rational, r “ p
q , p ą q. Suppose the geometric data are |a| “ |b| “ |c| “ |d| “ 1. Given any

finite sequence of strips and half-exits, tSiui“1,2,...n, in the last exits Sn, the start of the

next half-exit, xn`1 can have any rational adjusted coordinates pa, bq where a, b are positive

integers, which means in particular it can have its adjusted coordinates to be an integer

multiple of pp, qq, or an integer multiple of p1, 1q. Therefore, let the adjusted coordinates

of the alternating strips be the ones with pip, iqq and pj, jq, i P N and j P N. The length of

this interval is

tan´1pp{qq ´ tan´1p1q

Since we are taking an countably infinite intersection, the resulting interval is a closed in-

terval and its length is exactly tan´1pp{qq ´ tan´1p1q for any rational number r “ p{q ą 1.

Suppose r P p1,8q an irrational number, let tpiqi uiPN be a sequence of rationals converges

uniformly to r. Similarly let the half of strips with adjusted coordinates lie on the x “ y

line in the template and the other alternating half of strips have adjusted coordinates

ppi{qiq, i P N. The lengths of the interval will again be

lim
iÑ8

tan´1p
pi
qi
q ´ tan´1p1q “ tan´1pp{qq ´ tan´1prq
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for any irrational number r “ p{q ą 1. Since D assumes the cardinality of the real, and we

showed by construction that a subset of it surjects onto the real interval p1,8q, therefore,

the set of all intervals has the cardinality of the real.

Likewise, To show that there are uncountably many isolated points, we again shows that a

subset of it surjects onto the real interval p0,8q, for each rational pq , let the two alternating

sets of strips have adjusted coordinates that lie on the p
q -line or a sequence of rationals

ppi{qiq, i P N, the rest of the argument is identical.

Suppose the length data is any given pa, b, c, dq, where the numbers|a|, |b|, |c|, |d| can be

rational or irrational. Then let the term ”rational” denote rational in terms of sum of

exponents of each side, i.e. the number of squares (or rectangles ) on each side of the strips

and the rest of the argument is identical.

The corollary from the proof above is the following:

Corollary 3.16. The cardinality of the set of isolated points in the dust is |R|; the cardi-

nality of the set of isolated intervals in the dust is |R|.

We will use this corollary to prove the homeomorphism of Tits boundary in Section 3.6.

Proposition 3.17. The dense subsets in D and in B8X are the following:

• The set of all points in D is a dense subset of D ; the set of all intervals in D is a

dense subset of D .

• D is a dense subset of B8X

Proof. By the construction of template the distinction between a point and an interval

depends on the ”tail behavior” of an itinerary. Since visual topology is characterized by

”fellow-travel”, we can form a sequence of points tξiu in D that limit to an interval ζ in D

by taking the ξi to have the first i blocks in the itinerary of ζ and then have the itinerary of

a point as its ”tail”. Thus the set of points in D is dense in D . Likewise for any ζ P D , let

tξiu be an infinite sequence of intervals such chat the first i blocks of ξi is the first i blocks
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in the itinerary of ζ, and the rest of the itinerary of ξ is that of an interval.

To show that D is dense in B8X. consider a finite-itinerary ray ξ in B8X. Let twiu be

an infinite sequence of reduced, finite words that limit to ξ. The words wi have the same,

finite itinerary for all i ě N for some N . Take twju, j “ 1, 2, 3... where wj “ wi´N such

that the sequence twju share the same, finite itinerary and limits of ξ. To find a sequence

of points in the dust that limits to ξ, consider the word w1padq
8. The itinerary of each

word is infinite and the sequence limits to ξ.

We also identify some subsets of D that does not change under certain length variation.

Specifically we exhibit a set of itineraries that always corresponds to points and a set of

itineraries that always corresponds to intervals.

3.5 Invariant Subsets of D

Having studied a specific subset of D whose G-equivariant topological type changes as

the lengths data change. We now provide some sufficient conditions for subsets of D to

have invariant G-equivariant topological type under lengths change. We begin with the

definitions related to the angle metric.

Definition 3.18. Let X be a complete CAT(0) metric space and let c : r0, as Ñ X

and c1 : r0, a1s Ñ X be two geodesic paths with cp0q “ c1p0q. Given t P p0, as and

t1 P p0, a1s, we consider the comparison triangle ∆pcp0q, cptq, c1pt1q and the comparison angle

=cp0qpcptq, c
1pt1qq. The (Alexandrov) angle between the geodesic paths c and c1 is the number

=c,c1 P r0, πs defined by:

=pc, c1q :“ lim sup
t,t1Ñ0

=pcptq, c1pt1qq “ lim
εÑ0

sup
0ăt,t1ăε

=pcptq, c1pt1qq

One can express =pc, c1q purely in terms of the distance function by noting that
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cosp=cp0qpcptq, c
1pt1qqq “

1

2tt1
pt2 ` t12 ´ dpcptq, c1pt1qq2q

Definition 3.19. Let X be a complete CAT(0) space. The angle between two geodesic

segments which have a common end point is defined to be the angle between the unique

geodesics which issue from this point and whose images are the given segments. If X is

uniquely geodesic, p ‰ x and p ‰ y, then the angle between the geodesic segments rp, xs

and rp, ys may be denoted =ppx, yq. The angle =pξ, ηq between ξ, η P B8X is defined to be:

=pξ, ηq “ sup
xPX

=xpξ, ηq

Definition 3.20. Let X be a complete CAT(0) space. and let BX be spaces of all equiva-

lence class of geodesic rays. The Tits metric, dT is defined as follows:

1. If ξ and η are points of BX which cannot be joined by a path which is rectifiable in

the angular metric, then dT pξ, ηq “ 8.

2. If ξ and η are at distance less than π apart are joined by a unique geodesic in pBX,=q,

so for =pξ, ηq ă π, then dT pξ, ηq “ =pξ, ηq

Proposition 3.21. If for some g P G, the path that traces the infinite word g8 traces out

the template of an infinite itinerary, then the boundary of the itinerary is always a point in

D under any lengths data.

Proof. By tracing out a template we mean the path from x0 to x1 along the two sides of

the rectangle S1 followed by the path from x1 to x2 along the two sides of the rectangle S2,

etc. Recall that the coordinates of an infinite itinerary is the sequence tpli, εiq : i “ 1, 2, 3...u

where pli, εiq measures the coordinate of xi with respect to xi´1.

li measures the length of the side that is labeled by xby (resp. xcy) and εi measures the

length of the sides labeled by xa, cy (resp. xb, dy).

If an infinite itinerary is traced by g8 for some g P G, then
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li “ l1, if i is odd;

li “ l2, if i is even;

εi “ ε1, if i is odd;

εi “ ε2, if i is even.

Therefore the adjusted coordinates are:

x0 : p0, 0q

x1 : pl1, ε1q

x2 : pl1 ` ε2, ε1 ` l2q

x3 : p2l1 ` ε2, 2ε1 ` l2q

x4 : p2l1 ` 2ε2, 2ε1 ` 2l2q

...

xi : ppk ` 1ql1 ` kε2, pk ` 1qε1 ` kl2q, if i “ 2k ` 1

xi : pkl1 ` kε2, kε1 ` kl2q, if i “ 2k

Limit of the tangent of the angles of geodesic rays passing through xeven is

lim
kÑ8

kε1 ` kl2
kl1 ` kε2

“
ε1 ` l2
l1 ` ε2
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Limit of the tangent of the angles of geodesic rays passing through xodd is

lim
kÑ8

pk ` 1qε1 ` kl2
pk ` 1ql1 ` kε2

“
ε1 ` l2
l1 ` ε2

Since the two limits are equal, the visual boundary component corresponds to this itinerary

is a point in D . When the lengths data change from pa, b, c, dq to pa1, b1, c1, d1q, the value of

l1, ε1, l2, ε2 change, while the limits are still equal and therefore the boundary component

remains a point for all lengths data.

We can further strengthen this proposition into the following statement:

Proposition 3.22. If an infinite itinerary has bounded coordinates, then its visual boundary

is always a point in D .

Proof. The coordinates of an infinite itinerary is defined as above. If an infinite itinerary

has bounded coordinates, then there is a positive real number R P R` such that

li ď R, for all i

εi ď R, for all i

Consider the diameter, in Tits metric, of the connected components of D . For the rest of

this chapter, let

=x0pp, qq

denote the angle at the point x0 of two geodesics, one emanates from x0 and reaches p, the

other eminates from x0 and reaches q. Given that the Croke-Kleiner space X is a uniquely

geodesic space, the angle =x0pp, qq is well-defined. Another
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The Euclidean geometry of the template forces that, for each template T and the sequence

of strips Si

diamT pB8T q ă =x0pxi, xi`1q, for all i

The angle =x0pxi, xi`1q is less than the ”visual angle” of the diameter of each strip at base

point x0.

diamT pB8T q ă =x0pxi, xi`1q ă =x0pdiampSiqq, for all i

The ”visual angle” of an object is the diameter of the object divided by the distance traveled

to reach the project. The diameter of each strip is bounded by:

a

R2 `R2 “
?

2R

The distance traveled to get to Si is i{2 times a scalar multiple of diampS1q ` diampS2q.

Therefore, it can be verified that

lim
iÑ8

?
2R

i{2pdiampS1q ` diampS2qq
“ 0

As we change the lengths data, pdiampS1q ` diampS2qq changes by a scalar factor, but the

above limit still goes to zero. Therefore for bounded strips the diamT pB8T q “ 0 for any

lengths data and hence the boundary is invariantly a point. Since there is a natural 1-1 map

from the points of Tits boundary to the points of visual boundary, the visual boundary of

such template is also a point.

Next we want to discuss further what other growth of the function plpiq, εpiq will result in

a point in the visual boundary. If there is a constant c ą 0 such that

fpxq ď cgpcx` cq ` c
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for all x in the domain, then we say f ĺ g. If f ĺ g and g ĺ f , then as functions f and

g are equivalent. A function grows linearly if it is equivalent to a linear function, and a

function grows polynomially if it is equivalent to a polynomial function.

Proposition 3.23. Any itinerary whose coordinate grows linearly corresponds to a point

and is invariant.

Proof. Similar to the previous proof, The dimension of the strips li, εi can be thought of as

functions of their indices, lpiq, εpiq If the dimension of the strips lpiq, εpiq grows linearly as

a function of i, then the distance traveled to Si is the partial sum of the strips that come

before it. the partial sum grows quadratically,

lim
nÑ8

?
2n

n2
“ 0

Therefore the Tits boundary is a point. If we change the length data, the numerator and

denominator in the limit both change by a scalar and the limit remains zero. Again we

invoke the bijection between the point set of Tits boundary and the point set of visual

boundary and conclude that the visual boundary is also a point.

Proposition 3.24. Any itinerary whose coordinate grows polynomially corresponds to a

point and is invariant.

Proof. As is with the previous proof we use the fact:

diamT pB8T q ă =x0pdiampSiqq, for all i

Since
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diamT pdiagonalpSiqq

“ lim
iÑ8

diagonalpSiq
a

pl1 ` l2 ` ...li´1q2 ` pε1 ` ε2 ` ...εi´1q2

“ lim
iÑ8

b

l2i ` ε
2
i

a

pl1 ` l2 ` ...li´1q2 ` pε1 ` ε2 ` ...εi´1q2

Definition 3.25. We say that a template or itinerary grows polynomially if and only if

li “ fpiq and εi “ gpiq where both fpiq and gpiq are polynomials of the same degree.

If a sequence grows polynomially of degree k, then its partial sum grows polynomially of

degree k ` 1 by discrete calculus, therefore the limit

lim
nÑ8

αnk

βnk`1
for some rational numbers α, β

“ lim
nÑ8

α

βn

“ 0

In the proof of the main theorem, for a n-self-similar template, both fpiq and gpiq grows

exponentially, and the function itself over its partial sum does not vanish as iÑ8, therefore

the boundary is dependent upon pl1, ε1, l2, ε2q. We understand that the proposition is not

a complete characterization. That is to say, not all exponentially growing template vary

the topological type under length change, i.e. there exists itinerary of ”weak” exponential

growth with G-equivariant homeomorphism type which is however invariant under lengths
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data change. In the example below, fpiq grows exponentially while gpiq is constant.

Example Consider the two strips have sides aε1 , bl1 , dε2 , cl2 . for some n P N we have

k “ 2m` 1 : lk “ nml1, εk “ ε1

k “ 2m` 2 : lk “ l2, εk “ nmε2

Therefore we have:

l1 “ l1, l3 “ nl1, l5 “ n2l1, l7 “ n3l1...

ε1 “ ε3 “ ε5 “ ε7...

l2 “ l4 “ l6 “ l8...

ε4 “ nε2, ε6 “ n2ε2, ε8 “ n3ε2...
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The adjusted coordinates are:

x0 : p0, 0q

x1 : pl1, ε1q

x2 : pl1 ` ε2, ε1 ` l2q

x3 : p2l1 ` ε2, pn` 1qε1 ` l2q

x4 : p2l1 ` pn` 1qε2, pn` 1qε1 ` 2l2q

x5 : p3l1 ` pn` 1qε2, pn
2 ` n` 1qε1 ` 2l2q

x6 : p3l1 ` pn
2 ` n` 1qε2, pn

2 ` n` 1qε1 ` 3l2q

x7 : p4l1 ` pn
2 ` n` 1qε2, pn

3 ` n2 ` n` 1qε1 ` 3l2q

x8 : p4l1 ` pn
3 ` n2 ` n` 1qε2, pn

3 ` n2 ` n` 1qε1 ` 4l2q

...

xi : pkl1 `
1´ nk´1

1´ n
ε2,

1´ nk´1

1´ n
ε1 ` kl2q, if i “ 2k

xi : ppk ` 1ql1 `
1´ nk´1

1´ n
ε2,

1´ nk

1´ n
ε1 ` kl2q, if i “ 2k ` 1

Limit of the tangent of the angles of geodesic rays passing through xeven is

lim
kÑ8

1´ nk´1

1´ n
ε1 ` kl2

kl1 `
1´ nk´1

1´ n
ε2

“
ε1
ε2
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Limit of the tangent of the angles of geodesic rays passing through xodd is

lim
kÑ8

1´nk

1´n ε1 ` kl2

pk ` 1ql1 `
1´nk´1

1´n ε2

“n
ε1
ε2

Compare the two limits,

ε1
ε2
ă n

ε1
ε2

The inequality holds when ε1 and ε2 change lengths. If the original template corresponds

to point, it will always a point; if the original template corresponds to an interval, it will

always be an interval.

Remark. By construction there is at least a countable, dense subset of components whose

homeomorphism types change under the G-equivariant map; meanwhile there is at least a

countable, dense subset of components whose homeomorphism types are invariant under the

G-equivariant map. The complete characterization of the invariant sets in D , their group

theoretical significance and what roles they play in other related boundaries such as the

Poisson boundary [AN11] and the contracting boundary, are possible directions for future

research that is highly interesting.

3.6 Revisit the Tits Boundary

Consider the Tits boundaries of the whole space BTX, BTXl. The cores are isometric

as shown in 3.2, the D in Tits topology is the union of an uncountable set of intervals

and an uncountable set of points. If lengths variation does not change the cardinality of

the uncountable sets, then the Tits boundaries are homeomorphic. We know that D is in
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bijection with the set of all infinite sequence of the natural numbers, which is the cardinality

of the real numbers. We also know that the set of points in D and the set of all intervals in

dust are both uncountable sets. The following two propositions would be sufficient in order

to prove that the Tits boundaries are homeomorphic:

Proposition 3.26. There is a bijection between the connected components of D in the

following sense:

1. There is a bijection between the sets of all intervals in dust of X and Xl.

2. There is a bijection between the sets of all points in dust of X and Xl.

Proof. Since the set D , by construction in Lemma 3.15, is in bijection with the set of all

infinite sequence of natural numbers, each number in the sequence denoting a block, D has

cardinality that of R. By the proof of Proposition 3.11 and by Corollary 3.12, the set of all

points as well as the set of all intervals surject on to the set of all real numbers. A subset of

the real numbers that surjects on to the set of real numbers is necessarily in bijection with

the set reals. Therefore, two such sets are in bijection to one another.

Hence we can conclude the following:

Theorem 3.27. The Tits boundaries of X and Xl are homeomorphic.

Proof. The Tits boundary of a Croke-Kleiner space necessarily consists of the core and the

dust D . The core components are isometric to one another. The dusts consist of isolated

points and isolated intervals. we showed in the previous proposition that there is a bijection

between the sets of isolated points and a bijection between the sets of isolated intervals.

Therefore the Tits boundaries are homeomorphic.

3.7 Open Questions and Conjectures

Question 1: Is B8X homeomorphic to B8Xl as topological spaces?

This was the original motivation of the project. In [CK00] with angle change, the spaces
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are shown to be different topological spaces, which settles the question of unique boundary.

However, changing angle changes the space greatly. for instance, Xθ is no longer a CAT(0)

cube space. If we respect the local, rectangular structure, then we are only able to show

unique boundary up to group equivariance. For geometers and topologists it remains highly

interesting whether two spaces whose only difference are the dimensions of the rectangles

have a topologically different ”space at infinity”.

Question 2: Complete characterization of D as topological spaces. Are Ds of Croke-

Kleiner spaces of different lengths data homeomorphic?

We know so far that D consists of an uncountable set of connected components. Each

connected component is either a point or an interval. Each connected component is the

limit of a sequence of connect components. The set of all point-sets is a dense subset. The

set 0f all interval-sets is also a dense subset.

In the course of studying the dust we considered the concept of ”cantorval”[Nit13]. Formally,

A symmetric Cantorval is a nonempty compact subset S of the real line such that

1. S is the closure of its interior (i.e., the nontrivial components are dense)

2. Both endpoints of any nontrivial component of S are accumulation points of trivial

(i.e., one-point) components of S.

The remarks above establish a full topological classification of subsum sets for summable

positive sequences, proven by Guthrie and Nymann:

Theorem 3.28. (Guthrie-Nymann) The subsum set of a positive summable sequence is one

of the following:

1. a finite union of (disjoint) closed intervals;

2. a Cantor set;

3. a symmetric Cantorval.
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A cantorval demonstrates a lot of the same topological properties that we observe in dust

however, we were never able to show that the dust embeds in R. If D were a cantorval,

then Question 2 would be answered because all cantorvals are homeomorphic.

Question 3: Complete characterization of invariant subspaces of dust under lengths vari-

ation.

We provide some necessarily conditions for a subset of dust to be invariant. In general it

remains open how to characterize a template that is invariant under length variation.

Question 4: Is there a map between the X and Xl that extends to a homeomorphism

between B8CorepXq and B8CorepXlq?

We conjecture that there is not a G-equivariant map between the spaces X and Xl that

extends to homeomorphisms on the visual boundary of the cores. If the conjecture is true,

then the next question to consider is that if we view X and Xl only as topological spaces,

is there any maps on the space that extends ”nicely” to the boundary.

Question 5: We prove in Section 3.6 that for this specific example of CAT(0) space, the

Tits boundaries of Xl and X are homeomorphic to one another. Since the angles in the

geometric data are π{2, for all the rational lengths change, the space Xl can be given a new

cubing such that it is a new CAT(0) cube complex. Therefore we can ask the question:

does a rank-1 CAT(0) cube complex have unique Tits boundary?



Chapter 4

Right-angled Coxeter Groups

The previous chapter provides an example of a right-angled Artin group which does not

have a unique equivariant boundary. It is still an open question whether the class of right-

angled Coxeter groups have unique boundary, or whether they have unique equivariant

boundary. To investigate the question of unique boundary, we consider the action of right-

angled Coxeter groups on the space constructed by Croke-Kleiner. Suppose the action is

geometric, we want to know that given one such right-angled Coxeter group, does varying

all the geometric data pθ1, θ2, θ3, a, b, c, dq changes the homeomorphism of its equivariant

boundary. The main result is that the right-angled Coxeter group that acts geometrically

on the Croke-Kleiner space does not have an equivariantly unique boundary. Therefore we

answer the question about the uniqueness of equivariant visual boundaries.

Specifically, we prove that unlike the case of right-angled Artin groups, the Croke-Kleiner

space does not support a geometric action by a right-angled Coxeter group if the three

angles on the tori θ1, θ2, θ3 are not fixed at π{2.

Take X as defined in Chapter 3. There are many embedded flats in X. Among them are

the flats that are universal covers of the tori Ti, which we call special flats. In this chapter

we prove that:

Theorem 4.1. Let W , a right-angled Coxeter group, act geometrically on the Croke-Kleiner

62
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complex and preserve special flats, then the angles θ1, θ2, θ3 must all be right angles.

This implies that the ”right-angled” in the terminology ”right-angled Coxeter group” turns

out to be literal and is consistent with the ”geometric” property of the group. Furthermore,

given the fact that if we fix the gluing angle of the Croke-Kleiner space at π/2 and change

the side lengths of the tori, the resulting boundaries are not equivariantly homeomorphic

to each other, we conclude the following:

Corollary 4.2. There exists right-angled Coxeter groups that does not have unique equiv-

ariant visual boundary.

Aside from answering the open question, this close examination of the interplay between

right-angled Coxeter actions and the CAT p0q geometry of the Croke-Kleiner space shows

that right-angled Coxeter groups can be more ”geometrically rigid” than its counterpart in

the class of right-angled Artin groups.

4.1 Proof of Theorem 1.5

In this section we restate and proof the main result of this chapter, Theorem 1.5:

Let G, an essential right-angled Coxeter group, acts geometrically on X, the universal cover

of the three-torus complex, then the intersecting angle on the middle torus must be a right

angle.

The proof makes use of the Bass-Serre tree defined as the nerve in the last chapter: let

each lift of Ti be projected down to a vertex. Two vertices are adjacent if and only if two

corresponding planes intersect along a line. The nerve is an infinite tree, TN in which every

vertex has countably infinite adjacent vertices. Each lift of T2 is adjacent to countably

infinite lifts of both T1 and T3; lifts of T1 or T3 are only adjacent to countably infinite lifts

of T3.

A strict fundamental domain is a closed set in which there is exactly one point in every orbit.

By O’Brien[O08], the action of a Coxeter group W on a space X has a strict fundamental

domain if and only if for every x P X and w P W , every path from x to w.x meets the
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Figure 4.1: The Nerve

fixed point set of X. Since the action is on a tree, this condition(which is called generalized

reflection) is satisfied, therefore there exists a strict fundamental domain of a right-angled

Coxeter group acting on its nerve.

4.2 The Gluing Theorem

To begin with, let the group be presented as following with a minimal generating set:

W “ ts1, s2, ...sn|s
2
i for all i, rsi, sjs for some pairs i, ju

The main theorem of this chapter is the following:

Theorem 4.3. Let W , a right-angled Coxeter group, act geometrically on the Croke-Kleiner

space and preserve special flats, then the intersection angle on the middle torus must be π
2 .

Recall a special flat is a flat that is a lift of Ti. For the remainder of the paper, we use

”planes” to refer to such flats. In order to prove the theorem, we start with lemmas about
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the action of the generators and the stabilizers of each plane.

Lemma 4.4. For the given complex, each generator of the right-angled Coxeter group acts

on the nerve tree without inversion.

Proof. In the nerve, we have vertices that are labeled by the torus of which they denote the

universal cover, by abuse of notation, the edges in the nerve are also labeled by either of

the following pairs:

tT2, T1u, tT2, T3u

Isometry in the space induces a homeomorphism on the boundary. The boundary of the

planes ĂT2 is a circle with four poles, the boundary of the planes ĂT1 and ĂT3 are circles with

two poles. Since an isometry of the space induces a homeomorphism on the boundary that

takes circles to circles and poles to poles, an isometry cannot invert edges.

In the following definitions we lay out O’Brien’s construction[O08] of a strict fundamental

domain:

Definition 4.5. For a group element w PW , let Xw be the fixed point set of w. Let TwpY q

be the set of components of X{Xw. If w “ si, we simply write Ti.

Let

T :“
ď

iPI

Ti

Let T denote a connected component of Ti, and let

T̃i :“ tT YXsi |T P Tu

The elements of T̃i we denote as T̃ :“ T YXsi .

We know that if si and sj does not commute, then Xsi XXsj “ φ. Moreover, since Xsj is

connected, there exists a unique component in Ti that contains Xsj , which we denote T yij ,

a yes-component, and a no-component is defined as Tnij :“ si.T
y
ij .

Let
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T̃ y :“
č

iPI

ď

jPklpiq

pT yij YX
siq

By this construction we have the following corollary: Let us take a generator and mark its

fixed point set in the Bass-Serre tree. Then there is exactly a strict fundamental domain

whose vertices are labeled by all the generators.

Lemma 4.6. Suppose a right-angled Coxeter group acts geometrically on the Croke-Kleiner

space and takes planes to planes. If a group element w fixes a plane rTi set-wise, suppose

w “ sksk´1...s2s1, then each si fixes rTi set-wise.

Proof. Without loss of generality, let s1 not fix the plane Ti, otherwise let w “ sksk´1...s2.

Let j be the smallest number such that the subword sjsj´1...s2s1 fixes the Ti. Consider

generators s1 and sj . In T0, sj and s1 each label a vertex, vsj and vs1 . T0 also contains

a lift of Ti, label it v0. Since T0 is a tree, there are unique paths pv0, vsj q and pv0, vs1q.

The word sj´1sj´2...s2 takes the edges pv0, vsj q to the edges pv0, vs1q. This contradicts the

assumption that T2 is a strict fundamental domain. Therefore, each si fixes rTi set-wise.

Now we can analyze the stabilizer subgroups of each Ti.

Proposition 4.7. Given the universal cover of Ti, denoted rTi consider the stabilizer sub-

group Stabp rTiq, then Stabp rTiq is generated by a (conjugate) of a subset of the generating set

ts1, s2, ...snu, respectively.

Proof. Each generator acts simplicially on the nerve tree of planes. Furthermore, let every

edge has length 1, then each group element acts isometrically on the tree. Each generator

is of order two. Therefore the fixed point set of each generator acting on the nerve tree

is either an induced subgraph or the midpoint of an edge. Lemma 5 rules out the latter case.

Since W acts cocompactly on the space, it acts cocompactly on the nerve. By Bass-Serre

theory, there exists a minimal finite tree that is the strict fundamental domain of W on the

nerve, which we denote by T . This tree is the fundamental domain of the group acting on
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this tree, therefore generators of W does not take points of T to points of T .

Since each generator acts on the nerve tree without inversion, take a generator and label

the set of vertices in the nerve tree that it fixes. O’Brien[O08] proves that there is a copy

of T whose vertices are labeled by the generators, not their conjugates, of the group. Take

this copy of T with the labeling and denote it T2. Consider the stabilizer subgroup of each

vertex in T2, since each group element that stabilizes a vertex of T2 is generated by a subset

of generators that stabilizes the vertex, we conclude that Stabp rTiq are special subgroups,

i.e. they are generated by a subset of generators.

How does Stabp rTiq act on rTi ? We claim the group acts isometrically, cocompactly.

Proposition 4.8. Stabp rTiqacts cocompactly and by isometries on the plane.

Proof. The group acts cocompactly on the the space. If K is a fundamental domain for

W ñ X, then

K X rTi

is the fundamental domain for the actions of Stabp rTiq. Therefore Stabp rTiq acts cocompactly

on the plane it stabilizes.

Next we study a right-angled Coxeter group acting cocompactly and by isometries on a

2-dimensional Euclidean plane. For a presentation of a right-angled Coxeter group

W “ ts1, s2, ...sn|s
2
i for all i, rsi, sjs for some pairs i, ju

We associate a defining graph, whose vertices are generators of W and edges are the

two-element subsets of the generating set that commutes. First one can rule out the defin-

ing graphs on less than or equal to three vertices since they either have 0, 2, or infinite ends.

Recall the Svarc-Milnor Lemma of group acting geometrically on Euclidean flats:



68

Proposition 4.9. (The Svarc-Milnor Lemma). Let X be a length space. If Γ acts properly,

cocompactly by isometries on X, then Γ is finitely generated and for any choice of base-point

x0 P X, the map y Ñ yx0 is a quasi-isometry.

Also recall Gromov’s Theorem [BH99]:

Theorem 4.10. If a finitely generated group is quasi-isometric to Zn then it contains Zn

as a subgroup of finite index.

Lemma 4.11 (Key Lemma). Suppose W is a right-angled Coxeter group acting cocompactly

and by isometries on the plane E2. Then we claim that W must be the direct product of two

copies of the infinite dihedral group.

Proof. We know that the group W has at least four generators. Since W contains Z2 as a

subgroup of finite index, it is not hyperbolic. By [Mou88], if Γ is the defining graph of W ,

then in Γ there exists induced subgraphs A,B such that xAy, xBy are infinite and A-join-B is

a subgraph of Γ. In particular, there exists two infinite order elements γ11 “ s1t1, γ
1
2 “ s2t2

such that the subgraph on the vertices s1, s2, t1, t2 is a join of two pairs of non-adjacent

vertices. The subgraph is a chordless 4-cycle, where s1 is adjacent to s2 and t2, and t1 is

adjacent to s2 and t2.

The actions of s1, t1, s2, t2 are order-2 isometries of the plane, which are either reflecting

across a straight line l, or rotate around a point p by π. Two such elements commute in

the following cases:

• l1 and l2 intersecting at right angle

• l X p ‰ φ

An infinite order action must be a composition of these order-2 isometries as one of the

following cases:

1. l X p “ φ

2. l1 X l2 “ φ
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3. p1 X p2 “ φ

In the Z2 subgroup, there are two elements of infinite order, both generators in one of

the three pairs of elements commutes with both generators of another one, not necessarily

different, of the three pairs.

(1) and (1), impossible since a point cannot simultaneously coincide with another point off

the line and be on the line, For the same reason, (1) and (3) is also impossible.

(1) and (2), impossible since there is only one straight line that passes perpendicularly

through another line and a point off that line;

(2) and (3), impossible, since one point cannot be on two parallel lines;

(3) and (3), impossible since one point cannot coincides with two points.

Therefore the only possibility is (2) and (2): two pairs of parallel lines intersecting at right

angle. The defining of this group consists of four vertices and four edges connecting up to

a four-gon.

To have this group as a subgroup of finite index, by the Finite Index Lemma [MRT07] we

must have in the defining graph a complete graph joined to the chord-less 4-cycle. This

is to say the generators not in the chord-less 4-cycle commutes with the four reflections.

By the previous argument, there cannot be order-2 symmetries of the plane that commutes

with all four reflections. Therefore, if a right-angled Coxeter group acts geometrically on a

plane, the actions of the group restricted to the plane is isomorphic to

G “ D8 ˆD8 “ă a, b, c, d|a2, b2, c2, d2, ra, cs, ra, ds, rb, cs, rb, ds ą

A direct corollary is the following,

Corollary 4.12. If a right-angled Coxeter group acts geometrically on a plane, then it is

isomorphic to D8 ˆD8. The D8 ˆD8 acts on the plane like two pairs reflections cross

lines. Each pair consists of two reflections whose fixed-point sets are parallel axes, and the
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two pairs of axes intersect at right angle.

Next we study how the stabilizer subgroups piece together and determine the gluing angle

of the complex.

Theorem 4.13. If a right-angled Coxeter group acts geometrically on the Croke-Kleiner

space and preserves special flats, then the angles θ1, θ2, θ3 must all be π{2.

Proof. Consider a special flat that is a lift of either T1 or T3, without loss of generality,

let it be T1. Each of these flats is adjacent to countably lifts of T2. The intersections we

can label l2,1. The l2,1s are cosets of Z and therefore are parallel, bi-infinite geodesic rays.

Since any nontrivial action, when restricted to a plane, is by reflection, there is necessarily

an axis of reflection. If an axis of reflection is at an angle θ ‰ 0, π{2 with the l2,1s, then the

reflection takes a copy of l2,1 to its image, which is not a copy of l2,1. Since the boundary

of l2,1 is a pair of cone points, and isometry of the space induces homeomorphisms on the

boundary, we arrive at a contradiction. therefore the axes of reflection is at angle 0 or

π{2 with the l2,1s. By Key Lemma, the reflection axes are two pairs of parallel lines, and

one pair is perpendicular to the other. therefore the reflection axes in a plane labeled by

T1, T3 is either parallel or perpendicular to the l2,1s. Furthermore, by Proposition 4.7, the

reflections are generators of the group W .

Now consider the special flats that are lifts of the middle torus T2. In these flats, there are

two sets of intersections with neighboring planes, labeled accordingly l2,1 and l2,3. All the

l2,1s are parallel to one another; all the l2,3s are parallel to one another. Consider the angle

θ between l2,1 and l2,3. Suppose θ ‰ π{2, then the only possibility for a set of four reflection,

configured in the way specified in Key Lemma, can take intersections to intersections is to

have them reflect across the diagonals of the unit parallelograms in the plane, as shown in

Figure 4.2. In Figure 4.2, the solid lines are l2,1 and l2,3, the dashed lines are the axes of

reflections.

In this case, it takes a two-letter word to reflect l2,1 onto itself across a point. We argued
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Figure 4.2: Gluing Theorem

in the first paragraph that there are generators that reflect l2,1 to itself across a point.

Since l2,1 is also in the flat that is a lift of T2, the same generator then act as reflection on

the corresponding T2 and its axis intersects l2,1. However there are already reflection axes

intersecting l2,1 as established in the previous paragraph and neither of them reflect l2,1

onto itself. Therefore we need to have a third reflection axis that is not parallel to the two

existing axes. This configuration contradicts the Key Lemma. Therefore, it is not possible

to have the intersection angle of l2,1 and l2,3 be θ ‰ π{2.

Remark. The main theorem states that if a right-angled Coxeter group acts geometrically

on a Croke-Kleiner space and preserves special flats, then the angle must be fixed at π
2 ,

therefore, the only parameters for the group action are the length data. We know that

changing the length data changes the G-equivariant homeomorphism type of the boundary,

it suffices to verify that changing the length data does not violates the requirement of a

isometric, properly discontinuous, and cocompact action.

Since we can vary the distances between two parallel reflecting axes on each plane, we

can indeed obtain actions of varied ”translation lengths” and the action is still geometric,

therefore, we can conclude from this and the previous chapter the following result:

Proposition 4.14. If a right-angled Coxeter group acts geometrically on the Croke-Kleiner

space rX, then changing the lengths data of the tori changes the equivariant type of it visual

boundary. There are uncountably many equivariant visual boundaries of of the space.



72

4.3 A Concrete Action

As discussed in the introduction of this chapter, we assumed without verifying that there

does exist a right-angled Coxeter group that acts geometrically on the Croke-Kleiner space.

In this section a specific RACG is given. In general there may be more than one right-

angled Coxeter groups that is quasi-isometric to the Croke-Kleiner space. Let W be the

right-angled Coxeter group defined by the following graph:

Figure 4.3: Defining graph of an RACG

Consider the Cayley graph of W with respect to this generating set. There are three

”diamonds”. Each ”diamond” in the defining graph corresponds to an H “ D8 ˆ D8

whose Caley graph is a Z ˆ Z lattice with each edge being replaced by a double-edge, i.e.

a pair of edges that shares starting and ending vertices. Three diamonds generates three

types of such double-edged lattices. These lattices are identified along double-edged Z´lines

according to the amalgamated product decomposition:

W “ H ˚D8 H ˚D8 H

We observe that the Caley graph embeds into the Croke-Kleiner space as its dual: each ver-

tex of the Cayley graph represent a unit square in the Croke Kleiner space and two vertices

of the Cayley graph are connected by a pair of double-edges if and only if the corresponding

two unit squares share a common edge in the Croke-Kleiner space. We observe that group

W acts in its own Cayley graph by reflecting through the mid-point of the double edges, and
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it is easy to check that the induced action on the Croke-Kleiner space in which it embeds

is indeed a geometric action.

In fact, we can observe by this construction that the Croke-Kleiner space is the Davis

Complex of the group W . A Davis Complex can be constructed from the defining graph as

follows:

1. Start with a a base vertex v0

2. Construct the 1-skeleton of a unit, n-dimensional cube, where n is the number of

vertices in the defining graph. We label all the edges by the vertices they corresponds

to. For each vertex in the defining graph, there are 2n´1 edges with that label.

3. For every complete subgraph on k vertices in the defining graph, fill all the corre-

sponding k-cubes in the lattice constructed previously. For each complete subgraph

of k vertices, there are 2n´k copies of cubes to fill in the lattice.

4. Take the universal cover of the previous cube complex.

We observe here that a pair of groups act on the same space X:

• a right-angled Artin group as its fundamental group

• a right-angled Coxeter group whose Davis complex is X

The defining graphs of them are as follows:

Γ0 Γ1

Figure 4.4: RAAG vs. RACG
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In fact this phenomenon is true in general as observed in [DJ00] by Davis and Januszkiewicz.

In this paper, for each right-angled Artin group, there is a corresponding right-angled

Coxeter group which can be created in the following steps, let Γ be the defining graph of

the right-angled Artin group:

1. Double the vertex set Γ, i.e. take two copies of the vertex set, label them with V1, V2;

let vertices of Γ be preimages of vertices of V1, V2;

2. v, v1 P V1 are adjacent if and only if their preimages are adjacent in Γ;

3. v, v1 P V2 are adjacent if and only if their preimages are adjacent in Γ;

4. v P V1, v
1 P V2 are adjacent if and only if their preimages are adjacent in Γ.

The resulting graph Γ1 determines uniquely[Rad03] a right-angled Coxeter group. [DJ00]

proves that both groups always acts geometrically on the Davis complex of the latter.



Chapter 5

Uniqueness of Right-angled

Coxeter Groups

An interesting project that occurred during the study documented in Chapter 4 is the fol-

lowing: what are all the right-angled Coxeter groups that acts geometrically on the given

Croke-Kleiner space? We know that all such groups are quasi-isometric to one another by

definition, but if we add the assumption that they are all right-angled Coxeter groups, can

more things be said about them as a collection? Are they all a finite index subgroup of

a certain group, or can they be constructed in a similar pattern, etc? The previous study

points to some vague notion of ”geometric rigidity”, but in this chapter the question is

open-ended and we start by investigating the action of right-angled Coxeter groups on an

infinite, proper tree. A priori, an interested reader can ask the same question about any

space of interest.

This is work in progress and the next natural step is to ask the question about the full

Croke-kleiner space.

75
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Figure 5.1: infinite, 4-valence tree

Start with the infinite tree:

The space is CAT p0q, 1-dimensional, 0-hyperbolic, and in many senses one of the first non-

trivial CAT p0q spaces to be act upon. We give a precise characterization of the RACGs

that is quasi-isometric to this space and provide a geometric proof to the following theorem:

Theorem 5.1. If a right-angled Coxeter group acts geometrically on T4, then it is an

amalgamated product of finite copies of groups of the form Z2 or Z2 ˆ Z2.

The statement is not true in reverse, i.e. there are groups that are amalgamated product

of finite copies of groups of the form Z2 or Z2 ˆ Z2 but does not act geometrically on T4,

for example:

pZ2 ˆ Z2q ˚ pZ2 ˆ Z2q

The proof is a straight forward application of O’Brien’s thesis [O08]. The thesis generalizes

Bass-Serre theory of group acting on trees. Specifically O’Brien gives conditions for the

existence of strict fundamental domain of right-angled Coxeter groups acting on a CAT p0q

space and constructs the strict fundamental domain if one does exists.

5.1 Proof

Suppose a right-angled Coxeter group W acts geometrically on T4. By O’Brien’s thesis

[O08], there exists a strict fundamental domain whose construction is laid out as follows.
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Definition 5.2. For an element w PW , let Xw be the fixed point set of w. Let TwpY q be

the set of components of X{Xw. If w “ si, we simply write Ti.

Let

T :“
ď

iPI

Ti

Let T denote a connected component of Ti, and let

T̃i :“ tT YXsi |T P Tu

The elements of T̃i we denote as T̃ :“ T YXsi .

We know that if si and sj does not commute, then Xsi XXsj “ φ. Moreover, since Xsj is

connected, there exists a unique component in Ti that contains Xsj , which we denote T yij ,

a yes-component, and a no-component is defined as Tnij :“ si.T
y
ij .

Let

T̃ y :“
č

iPI

ď

jPklpiq

pT yij YX
siq

By Mark O’Brien’s thesis there exist a finite subgraph T0 that is the strict fundamental

domain of the action of W on X. Moreover, if we mark out the fixed point sets of all

generators on T4, then there exists a image, g.T0 for some g, whose topological boundary

in T4 contains all the fixed point sets of the generators of W .

Proposition 5.3. The fixed point set of a an order-two action on T4 is one of the following:

• Mid-point of an edge

• a connected, spanning, finite subgraph of T4

• a connected, spanning, infinite subgraph of T4

Proof. The fixed-point set of a group element is the set

tx P X|g.x “ xu
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denoted by Xg. If X is a CAT p0q space, then Xg is a closed, convex CAT p0q subset of X,

finite or infinite. Suppose Xg is a finite subset Γ that is not a subgraph, i.e. there exists

in the topological boundary (with respect to T4) of Xg a point x that not a vertex of T4.

Since x P X then x is an interior point of an edge e. However any isometry of T4 takes e to

either to itself or to another edge. If the isometry takes e to itself, then x is the mid-point

of an edge; if an isometry takes e to another edge then the interior intpeq is either contained

in Xg or disjoint from Xg, and hence Xg is a finite subgraph.

Similarly if Xg is an infinite subset, it has to be an infinite subgraph as well.

Therefore T0 by construction is a finite subset of T4 that consists of edges and half-edges,

where half-edges denotes the segment between the mid-point of an edge together with the

midpoint and one end point.

Furthermore, consider the degree of the vertices in T0. We say an edge is incident to a

vertex if the vertex is one of its end vertices. If a vertex v P T0 has degree 3, then by con-

struction of T0 there is exactly one edge e1 incident to v that is not in the strict fundamental

domain. However the image of e1 under the generators whose fixed-point sets contribute to

the inclusion of v in T0 has to be one of the three edges, contradiction the definition of a

strict fundamental domain.

If a vertex v P T0 has degree one, then v is the fixed point set of special subgroup of order

4. A special subgroup of a right-angled Coxeter group of order 4 is necessarily Z2 ˆ Z2.

However, there is not an element of order 4 in Z2 ˆ Z2. which is another contradiction.

Therefore every vertex in T0 is of degree 2 or 4, every mid-point in T0 is of degree 1.

A mid-point necessarily has stabilizer subgroup Z2, and a degree-2 vertex has stabilizer

subgroup Z2 ˆ Z2. A degree-4 vertex subgroup has trivial stabilizer subgroup.
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The stabilizer subgroup of any half-edge is trivial since any isometry that fixes the half-edge

also fixes the whole edge and is the identity on the mid-point. By Bass-Serre theory, the

stabilizer subgroup of the half-edge embeds into the stabilizer subgroup of the mid-point.

The only subgroup of Z2 that is identity on the half-edge is the trivial group. Therefore

the stabilizer subgroup of each half-edge is the trivial group. The stabilizer subgroup of an

edge is Z2, which is an inversion of the edge.

Therefore, In T0, every degree 1 vertex has stabilizer groups Z2, every degree 2 vertex

has stabilizer group Z2 ˆ Z2, every degree 4 subgroups has trivial stabilizer group. Every

half-edge has trivial stabilizer subgroup. Every full edge’s stabilizer group is one of the two:

• If either of its end vertices is stabilized by the trivial group, then the edge’s stabilizer

group is trivial;

• If both its end vertices are stabilized by Z2 ˆ Z2, then the edge’s stabilizer group is

Z2

If a vertex v0 and both of its neighboring vertices v1, v2 are all of degree 2, with the edges

label e1 “ pv0, v1q, e2 “ pv0, v2q, then the edges groups Ge1 , Ge2 embeds into different copies

of Z2 in the stabilizer group of v0 which is Z2 ˆ z2.

Lastly, by Bass-Serre theory, the graph of groups of T0 is W .

For the remainder of the chapter we see a few examples of the main theorem. In the

examples we use ˝ to denote the mid-points and ‚ to denote the vertices.
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Example 1

Figure 5.2: Example 1

Since the stabilizer subgroup of a mid-edge point is Z2, and the stabilizer subgroup of a

valence-4 vertex in the fundamental domain is trivial, the right-angled Coxeter group is:

G “ Z2 ˚ Z2 ˚ Z2 ˚ Z2

“
4
˚
i“1
pZ2qi
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Example 2

Figure 5.3: Example 2

The stabilizer groups of vertex 1 and 3 are Z2, the stabilizer of 2 is Z2timesZ2. The edge

stabilizer groups embed into its corresponding vertex groups, hence the stabilizer groups

of half-edges are necessarily trivial. Therefore the right-angled Coxeter groups associated

with this strict fundamental domain is

G “ Z2 ˚ pZ2 ˆ Z2q ˚ Z2
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Example 3

Figure 5.4: Example 3

The mid-edge vertex groups are Z2. The valence-4 vertex has trivial stabilizer group. The

valence-2 vertex has stabilizer:

Z2 ˆ Z2

The edge groups embed into their corresponding vertex groups and hence are all trivial,

therefore the right-angled Coxeter group associated with this strict fundamental domain is:

G “ Z2 ˚ Z2 ˚ Z2 ˚ Z2 ˚ pZ2 ˆ Z2q

“
4
˚
i“1
pZ2qi ˚ pZ2 ˆ Z2q
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Example 4

Figure 5.5: Example 4

Every mid-edge vertex is stabilized by Z2. The two valence-4 vertices are stabilized by

trivial groups. The valence-2 vertex in the middle is stabilized by Z2 ˆ Z2. The two full

edges’ stabilizer groups should embed into their vertex groups and thus are both trivial.

Therefore the right-angled Coxeter group associated with this strict fundamental domain is

G “ Z2 ˚ Z2 ˚ Z2 ˚ Z2 ˚ Z2 ˚ Z2 ˚ pZ2 ˆ Z2q

“
6
˚
i“1
pZ2qi ˚ pZ2 ˆ Z2q
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Example 5

Figure 5.6: Example 5

Since every mid-edge point is stabilized by Z2, and every valence-4 vertex is stabilized by a

trivial group, the right-angled Coxeter group associated with this strict fundamental domain

is

G “ Z2 ˚ Z2 ˚ Z2 ˚ Z2 ˚ Z2 ˚ Z2

“
6
˚
i“1
pZ2qi



Notation Index

A partial list of mathematical symbols

T4 infinite, regular, 4-valence tree

TN locally countably infinite, regular, infinite tree

BX the space at infinity for X

B8X visual boundary

BTX Tits boundary

Xl the Croke-Kleiner space with nontrivial lengths data

CorepXq union of all circles

B union of all blocks

D the dust

W union of all barriers

Itpξq the itinerary of a geodesic ξ

Si Ă B8X the set of all geodesic rays that reaches the strip Si

and the half-exit between Si and Si`1, and stabilize in the barrier

that contains the half-exit

ś

n

˚G free product of n copies of the group G
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