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Gromov boundary of a d—hyperbolic
space

> A point in the boundary is a
geodesic ray or a family of
quasi-geodesic rays up to fellow
traveling.

> cone topology

Gromov boundary of a hyperbolic space is Ql-invariant.



Visual boundary of CAT(0) spaces
» geodesics, up to fellow travel.

> cone topology

—Croke-Kleiner: the visual boundary is not Ql-invariant.



Key: geodesics are Morse in a Gromov hyperbolic space.

A quasi-geodesic ray « is Morse if given any pair (g, Q), there exists constant
n(q, Q) such that all (g, Q)—quasi-geodesics whose endpoints are on + stays
inside the n(q, Q)-neighbourhood of ~.

Morse boundary(Charney-Sultan, Cordes, Cashen-Mackay): Morse geodesics.

—Not large enough from the point of view of random walk.



k-Morse boundary
Space: (X, 0) is a proper, geodesic space, with a fixed base-point o.

Points in the boundary: families of quasi-geodesic rays starting at o.

Fix a sublinear function (t). Let ||x|| = d(o,x). A k—neighbourhood around a
quasi-geodesic +y is a set of point x

Nia(v,n) = {x ] d(x,7) < n-s(lIx])}
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Figure: A k—neighbourhood of ~



A quasi-geodesic ray v is k—Morse if there exists a proper function m,, : R> = R
such that for any sublinear function x’ and for any r > 0, there exists R such
that for any (g, Q)—quasi-geodesic 8 with m,(q, Q) small compared to r, if

dX(BR7’7) S H/(R) then ﬂlf - Nrﬁ (’77 m’Y(q7 Q))

The function my will be called a Morse gauge of ~.



Equivalence class: given two quasi-geodesics «,  based at o, we say that
B ~ « if they sublinearly track each other: i.e. if
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Let 0, X denote the set of equivalence class of k—Morse quasi-geodesic rays,

equipped with coarse cone topology.

Theorem (Q-Rafi, Q-Rafi-Tiozzo)

Let X be a proper, geodesic metric space, then 0, X is a topological space that
is quasi-isometrically invariant, and metrizable.



Theorem (Q-Rafi-Tiozzo)

For sublinear functions x and k' where k(t) < k'(t) for any t > 0, we have
0. X C 0.+ X where the topology of 0, X is the subspace topology associated to
the inclusion. Further, letting 0X = U0, X, we obtain a topological space
that contains all ., X as topological subspaces.
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Figure: A tree of flats.



Random walk and Poisson boundaries
Let (S) be a symmetric generating set with a probability distribution u. A
random walk is a process on a group G where sample paths are s, s,,5;...,

s, € (S).

Figure: A random walk.

Definition

Given a finitely generated group and a probability measure p with finite
support, its Poisson boundary is the maximal measurable set to which almost
all sample paths converge, with hitting measure v arising from p.



Kaimanovich: Let G be a hyperbolic group, then Gromov boundary is a model
for it's associated Poisson boundary.
Theorem (Gekhtman-Q-Rafi)

Let X be a rank-1 CAT(0) space, and G ~ X geometrically. Then there exists
a k such that the Poisson boundary can be identified with 0,,G.



Proof idea:

A unit speed, parametrized geodesic ray 7 in X is said to be recurrent if there
is a number N > 0 such that for each R > 0 and 6 € (0,1) there is an Lo >0
such that for L > Lo length 6L subsegment of 7([0, L]) contains N-(strongly)
contracting subsegment of length at least R.

1. A generic sample path tracks a recurrent geodesic ray.
> Stationary measure: follow the proof of Baik-Gekhtman-Hamenstadt.
> Patterson Sullivan measure (defined by Ricks): Birkhoff ergodic theorem.

2. A recurrent geodesic ray is sublinearly Morse.



Mapping class groups

S: oriented surface of finite type
Map(S) := Homeo™ (S)/Isotopy.

Kaimanovich-Masur: The space of projective measured foliations with the
corresponding harmonic measure can be identified with the Poisson boundary
of random walks on the associated mapping class group.

Theorem (Q-Rafi-Tiozzo)

Let v be a finitely supported, non-elementary probability measure on Map(S).
Then for an integer p depending only on the topology of S and k(t) = logP(t),
we have

1. Almost every sample path (w,) converges to a point in 0. Map(S);

2. The k—Morse boundary (0. Map(S),v) is a model for the Poisson
boundary of (Map(S), u) where v is the hitting measure associated to the
random walk given by .



We now consider the set of points in £L that have logarithmically bounded
projection to all subsurfaces. Let 6 be a fixed set of filling curves on S once
and for all. Given a proper subsurface Y C S, let 9Y denote the multi-curve of
boundary components of Y and define

Y]l = ds(8,0Y).
Similarly, for x € Map(S), define

Ix|ls := ds (9, x(@)).

Definition
For a constant ¢ > 0, let L. be the set of points £ € £L such that

dy(0,€) < c - log]| Yl (11)

for every subsurface Y C S.



Theorem (Q-Rafi-Tiozzo)

the Poisson boundary can be identified with 0., G for the following groups.
> Right-angled Artin groups, x(t) = \/tlogt.
> Relative hyperbolic groups, x(t) = log t
> Mapping class groups, k(t) = logP t



Some properties of k-Morse geodesic ray in CAT(0) spaces

Definition

Let b be a geodesic ray and fix some t > 0,r > 0. Let p(r, t) denote the

infimum of the lengths of all paths from b(t — rx(t)) to b(t + rr(t)) which lie
outside the open ball of radius rx(t) about b(t). Given such a geodesic ray b,

we define the k-lower divergence of b to be growth rate of the function

divi(r) := pr(r, t).
t>ra(t)  K(t)
bis Morse | b € QognX | b€ d X
1- lower-divergence superlinear linear linear
log(t)-lower-divergence | superlinear | superlinear linear
\/t-lower-divergence superlinear | superlinear | superlinear

Q-Murray-Zalloum: The k-lower divergence of b is at least quadratic.




Alternative characterization of x-Morse elements: hyperplane geometry

Two hyperplanes hy, hy are:
Strongly separated: no hyperplane crossing both.
k-separated: the number of hyperplanes crossing both are bounded above by k.

k-well-separated: the number of crossing both and do not contain a facing
triple are bounded above by k.




Theorem (Q-Murray-Zalloum)

Let X be a locally finite cube complex. A geodesic ray b € X is k-contracting
if and only if there exists ¢ > 0 such that b crosses an infinite sequence of
hyperplanes h1, hy, ... at points b(t;) satisfying:

1) d(t,', t,'+1) < CK(t;+1).

2) hi, hit1 are ck(tiy1)-well-separated.

Corollary (Q-Murray-Zalloum)

k-Morse geodesic rays project to infinite diameter sets in the contact graph of
right-angled Artin groups.



k-Morse vs. k-contracting.

In CAT(0) space we use the nearest-point projection.

Definition

A set is D-contracting if there exists a constant D such that all disjoint ball
projects to sets of diameter at most D on the set. A set is contracting if it is
D-contracting for some D.

Definition
Similarly a set is k-contracting if there exists a constant ¢ such that each
disjoint ball B(x, r) is projected to sets of diameter at most ¢ - x(x).
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Figure: A sublinearly contracting geodesic ray

Example: tree of flats.



Theorem (Charney-Sultan)
In CAT(0) spaces, A geodesic ray is Morse if and only if it is contracting.

Theorem (Q-Rafi)

In CAT(0) spaces, k-Morse is equivalent to k-contracting.

Theorem (Q-Rafi-Tiozzo)

In proper geodesic spaces, sublinearly Morse is equivalent to sublinearly
contracting, but the sublinear functions may differ.



However, in many groups/spaces, nearest-point projection is not well
understood nor is it helpful to use. More generally,

Definition

Let (X, dx) be a proper geodesic metric space and Z C X a closed subset, and
let k be a sublinear function. A map 7z: X — Z is a k-projection if there exist
constants Ds, D>, depending only on Z and &, such that for any points x € X
and z € Z,

diamx({z} Unz(x)) < D1 - dx(x,z) + D> - k(x).

A k-projection differs from a nearest point projection by a uniform
multiplicative error and a sublinear additive error.

» Nearest-point projections, the projection we use in mapping class groups
(Duchin-Rafi) and in relatively hyperbolic group (Q-Rafi-Tiozzo) are
examples of k-projections.

» Since X is assumed to be proper, projections exist, not necessarily unique.



For a closed subspace Z of a metric space (X, d) and a k-projection 7 onto Z,
we say Z is k—weakly contracting with respect to 7 if there are constants
Ci, G, depending only on Z, such that, for every x,y € X

d(x,y) < Gd(x, Z) = dx(n(x),7(y)) < G - &(x).

> Axes of Pseudo-Anosov elements in mapping class groups are not known
to be contracting but they are weakly contracting. (Masur-Minsky,
Rafi-Verberne)

Theorem (Q-Rafi-Tiozzo)

Every k—weakly contracting set, with respect to a k-projection, is k-Morse.
Every k-Morse set is k'-weakly-contracting for some k’.



Definition of Coarse cone Topology

We define the set U(B,r) C X U d,X as follows.

> An equivalence class a € 9, X belongs to U(S, r) if for any
(g, Q)-quasi-geodesic a € a, where mg(q, Q) is small compared to r, we
have the inclusion

a|f g Nﬁ(ﬂ, mﬂ(qv Q))



Proof ideas for random walks

Sisto-Taylor: Projections systems.
» Relative hyperbolic groups
» Curve complex of subsurfaces in mapping class group.
> Hierarchically hyperbolic groups.
Let G be a group and let (S, Zo,{mz}zcs, M) be a projection system on G. Let

(wn) be a random walk on G. Then there exists C > 1 so that, as n goes to oo,

P( sup dz(1, w,) € [C " logn, Clogn]) — 1
zes

2. Maximality: the tracking is sublinear. Sisto, Tiozzo, Maher-Tiozzo,
Karlsson-Margulis, Q-Rafi-Tiozzo.



Question
» What are the “shapes” of 0, G for different G?
» Can 0, G be part of a compact space?

> When does a group G has a 0, G that can be identified with the Poisson
boundary?

Thank you!
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