Sublinearly Morse Boundary

Yulan Qing

based on joint projects with Ilya Gekhtman, Devin Murray, Kasra Rafi and Giulio Tiozzo, and Abdul Zalloum

October 2020

Gromov boundary of a $\delta-{\rm hyperbolic}$ space

- A point in the boundary is a geodesic ray or a family of quasi-geodesic rays up to fellow traveling.
- cone topology

Gromov boundary of a hyperbolic space is QI-invariant.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Visual boundary of CAT(0) spaces

- geodesics, up to fellow travel.
- cone topology

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー わらぐ

-Croke-Kleiner: the visual boundary is not QI-invariant.

Key: geodesics are Morse in a Gromov hyperbolic space.

A quasi-geodesic ray γ is Morse if given any pair (q, Q), there exists constant n(q, Q) such that all (q, Q)-quasi-geodesics whose endpoints are on γ stays inside the n(q, Q)-neighbourhood of γ .

Morse boundary(Charney-Sultan, Cordes, Cashen-Mackay): Morse geodesics.

-Not large enough from the point of view of random walk.

κ -Morse boundary

Space: (X, \mathfrak{o}) is a proper, geodesic space, with a fixed base-point \mathfrak{o} .

Points in the boundary: families of quasi-geodesic rays starting at o.

Fix a sublinear function $\kappa(t)$. Let $||x|| = d(\mathfrak{o}, x)$. A κ -neighbourhood around a quasi-geodesic γ is a set of point x

$$\mathcal{N}_{\kappa}(\gamma, \pmb{n}) := \{x \mid \pmb{d}(x, \gamma) \leq \pmb{n} \cdot \kappa(\|x\|)\}$$

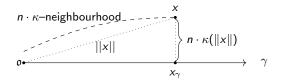


Figure: A κ -neighbourhood of γ

A quasi-geodesic ray γ is κ -Morse if there exists a proper function $m_{\gamma} : \mathbb{R}^2 \to \mathbb{R}$ such that for any sublinear function κ' and for any r > 0, there exists R such that for any (q, Q)-quasi-geodesic β with $m_{\gamma}(q, Q)$ small compared to r, if

$$d_X(eta_R,\gamma) \leq \kappa'(R)$$
 then $eta|_r \subset \mathcal{N}_\kappaig(\gamma,m_\gamma(q,Q)ig)$

*ロ * * ● * * ● * * ● * ● * ● * ●

The function m_{γ} will be called a Morse gauge of γ .

Equivalence class: given two quasi-geodesics α , β based at \mathfrak{o} , we say that $\beta \sim \alpha$ if they sublinearly track each other: i.e. if

$$\lim_{r\to\infty}\frac{d(\alpha_r,\beta_r)}{r}=0.$$

Let $\partial_{\kappa} X$ denote the set of equivalence class of κ -Morse quasi-geodesic rays, equipped with coarse cone topology.

Theorem (Q-Rafi, Q-Rafi-Tiozzo)

Let X be a proper, geodesic metric space, then $\partial_{\kappa}X$ is a topological space that is quasi-isometrically invariant, and metrizable.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Theorem (Q-Rafi-Tiozzo)

For sublinear functions κ and κ' where $\kappa(t) \leq \kappa'(t)$ for any t > 0, we have $\partial_{\kappa} X \subset \partial_{\kappa'} X$ where the topology of $\partial_{\kappa} X$ is the subspace topology associated to the inclusion. Further, letting $\partial X = \bigcup_{\kappa} \partial_{\kappa} X$, we obtain a topological space that contains all $\partial_{\kappa} X$ as topological subspaces.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Examples:

- ► Z²
- ► \mathbb{H}^2
- $\triangleright \mathbb{Z} \star \mathbb{Z}^2$

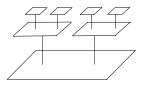


Figure: A tree of flats.

Random walk and Poisson boundaries

Let $\langle S \rangle$ be a symmetric generating set with a probability distribution μ . A random walk is a process on a group G where sample paths are $s_{r_1}s_{r_2}s_{r_3}..., s_{r_i} \in \langle S \rangle$.

Figure: A random walk.

Definition

Given a finitely generated group and a probability measure μ with finite support, its *Poisson boundary* is the maximal measurable set to which almost all sample paths converge, with hitting measure ν arising from μ .

Kaimanovich: Let G be a hyperbolic group, then Gromov boundary is a model for it's associated Poisson boundary.

Theorem (Gekhtman-Q-Rafi)

Let X be a rank-1 CAT(0) space, and $G \curvearrowright X$ geometrically. Then there exists a κ such that the Poisson boundary can be identified with $\partial_{\kappa}G$.

Proof idea:

A unit speed, parametrized geodesic ray τ in X is said to be recurrent if there is a number N > 0 such that for each R > 0 and $\theta \in (0, 1)$ there is an $L_0 > 0$ such that for $L > L_0$ length θL subsegment of $\tau([0, L])$ contains N-(strongly) contracting subsegment of length at least R.

- 1. A generic sample path tracks a recurrent geodesic ray.
 - ► Stationary measure: follow the proof of Baik-Gekhtman-Hamenstädt.
 - ▶ Patterson Sullivan measure (defined by Ricks): Birkhoff ergodic theorem.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

2. A recurrent geodesic ray is sublinearly Morse.

Mapping class groups

S: oriented surface of finite type

 $Map(S) := Homeo^+(S)/Isotopy.$

Kaimanovich-Masur: The space of projective measured foliations with the corresponding harmonic measure can be identified with the Poisson boundary of random walks on the associated mapping class group.

Theorem (Q-Rafi-Tiozzo)

Let μ be a finitely supported, non-elementary probability measure on Map(S). Then for an integer p depending only on the topology of S and $\kappa(t) = \log^{p}(t)$, we have

- 1. Almost every sample path (w_n) converges to a point in $\partial_{\kappa}Map(S)$;
- The κ-Morse boundary (∂_κMap(S), ν) is a model for the Poisson boundary of (Map(S), μ) where ν is the hitting measure associated to the random walk given by μ.

We now consider the set of points in \mathcal{EL} that have *logarithmically bounded projection* to all subsurfaces. Let θ be a fixed set of filling curves on S once and for all. Given a proper subsurface $Y \subsetneq S$, let ∂Y denote the multi-curve of boundary components of Y and define

$$\|Y\|_{S} := d_{S}(\theta, \partial Y).$$

Similarly, for $x \in Map(S)$, define

$$\|x\|_{S} := d_{S}(\theta, x(\theta)).$$

Definition

For a constant c > 0, let L_c be the set of points $\xi \in \mathcal{EL}$ such that

$$d_{Y}(\mathfrak{o},\xi) \leq c \cdot \log \|Y\|_{S} \tag{1.1}$$

(日) (日) (日) (日) (日) (日) (日) (日)

for every subsurface $Y \subsetneq S$.

Theorem (Q-Rafi-Tiozzo)

the Poisson boundary can be identified with $\partial_{\kappa}G$ for the following groups.

- Right-angled Artin groups, $\kappa(t) = \sqrt{t \log t}$.
- Relative hyperbolic groups, $\kappa(t) = \log t$
- Mapping class groups, $\kappa(t) = \log^{p} t$

Some properties of κ -Morse geodesic ray in CAT(0) spaces

Definition

Let b be a geodesic ray and fix some t > 0, r > 0. Let $\rho_{\kappa}(r, t)$ denote the infimum of the lengths of all paths from $b(t - r\kappa(t))$ to $b(t + r\kappa(t))$ which lie outside the open ball of radius $r\kappa(t)$ about b(t). Given such a geodesic ray b, we define the κ -lower divergence of b to be growth rate of the function

$$div_{\kappa}(r) := \inf_{t>r\kappa(t)} rac{
ho_{\kappa}(r,t)}{\kappa(t)}.$$

	b is Morse	$b \in \partial_{\log(t)}X$	$b \in \partial_{\sqrt{t}} X$
1- lower-divergence	superlinear	linear	linear
log(t)-lower-divergence	superlinear	superlinear	linear
\sqrt{t} -lower-divergence	superlinear	superlinear	superlinear

Q-Murray-Zalloum: The κ -lower divergence of b is at least quadratic.

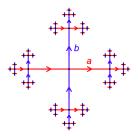
Alternative characterization of κ -Morse elements: hyperplane geometry

Two hyperplanes h_1 , h_2 are:

Strongly separated: no hyperplane crossing both.

k-separated: the number of hyperplanes crossing both are bounded above by k.

k-well-separated: the number of crossing both and do not contain a *facing triple* are bounded above by k.



Theorem (Q-Murray-Zalloum)

Let X be a locally finite cube complex. A geodesic ray $b \in X$ is κ -contracting if and only if there exists c > 0 such that b crosses an infinite sequence of hyperplanes $h_1, h_2, ...$ at points $b(t_i)$ satisfying:

- 1) $d(t_i, t_{i+1}) \leq c\kappa(t_{i+1}).$
- 2) h_i, h_{i+1} are $c\kappa(t_{i+1})$ -well-separated.

Corollary (Q-Murray-Zalloum)

 κ -Morse geodesic rays project to infinite diameter sets in the contact graph of right-angled Artin groups.

κ -Morse vs. κ -contracting.

In CAT(0) space we use the *nearest-point* projection.

Definition

A set is *D*-contracting if there exists a constant *D* such that all disjoint ball projects to sets of diameter at most D on the set. A set is contracting if it is *D*-contracting for some *D*.

Definition

Similarly a set is κ -contracting if there exists a constant c such that each disjoint ball B(x, r) is projected to sets of diameter at most $c \cdot \kappa(x)$.

Figure: A sublinearly contracting geodesic ray

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Example: tree of flats.

Theorem (Charney-Sultan)

In CAT(0) spaces, A geodesic ray is Morse if and only if it is contracting.

Theorem (Q-Rafi)

In CAT(0) spaces, κ -Morse is equivalent to κ -contracting.

Theorem (Q-Rafi-Tiozzo)

In proper geodesic spaces, sublinearly Morse is equivalent to sublinearly contracting, but the sublinear functions may differ.

However, in many groups/spaces, nearest-point projection is not well understood nor is it helpful to use. More generally,

Definition

Let (X, d_X) be a proper geodesic metric space and $Z \subseteq X$ a closed subset, and let κ be a sublinear function. A map $\pi_Z \colon X \to Z$ is a κ -projection if there exist constants D_1, D_2 , depending only on Z and κ , such that for any points $x \in X$ and $z \in Z$,

$$\operatorname{diam}_X(\{z\} \cup \pi_Z(x)) \leq D_1 \cdot d_X(x,z) + D_2 \cdot \kappa(x).$$

A κ -projection differs from a nearest point projection by a uniform multiplicative error and a sublinear additive error.

- Nearest-point projections, the projection we use in mapping class groups (Duchin-Rafi) and in relatively hyperbolic group (Q-Rafi-Tiozzo) are examples of κ-projections.
- ▶ Since X is assumed to be proper, projections exist, not necessarily unique.

For a closed subspace Z of a metric space (X, d) and a κ -projection π onto Z, we say Z is κ -weakly contracting with respect to π if there are constants C_1, C_2 , depending only on Z, such that, for every $x, y \in X$

$$d(x,y) \leq C_1 d(x,Z) \Rightarrow d_X(\pi(x),\pi(y)) \leq C_2 \cdot \kappa(x).$$

 Axes of Pseudo-Anosov elements in mapping class groups are not known to be contracting but they are weakly contracting. (Masur-Minsky, Rafi-Verberne)

Theorem (Q-Rafi-Tiozzo)

Every κ -weakly contracting set, with respect to a κ -projection, is κ -Morse. Every κ -Morse set is κ' -weakly-contracting for some κ' .

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Definition of Coarse cone Topology

We define the set $\mathcal{U}(\beta, r) \subseteq X \cup \partial_{\kappa}X$ as follows.

• An equivalence class $\mathbf{a} \in \partial_{\kappa} X$ belongs to $\mathcal{U}(\beta, r)$ if for any (q, Q)-quasi-geodesic $\alpha \in \mathbf{a}$, where $m_{\beta}(q, Q)$ is small compared to r, we have the inclusion

$$\alpha|_{\mathsf{r}} \subseteq \mathcal{N}_{\kappa}(\beta, \mathsf{m}_{\beta}(\mathsf{q}, \mathsf{Q})).$$

Proof ideas for random walks

Sisto-Taylor: Projections systems.

- Relative hyperbolic groups
- Curve complex of subsurfaces in mapping class group.
- Hierarchically hyperbolic groups.

Let G be a group and let $(S, Z_0, \{\pi_Z\}_{Z \in S}, \pitchfork)$ be a projection system on G. Let (w_n) be a random walk on G. Then there exists $C \ge 1$ so that, as n goes to ∞ ,

$$\mathbb{P}\big(\sup_{Z\in\mathcal{S}}d_Z(1,w_n)\in [C^{-1}\log n,C\log n]\big)\to 1$$

2. Maximality: the tracking is sublinear. Sisto, Tiozzo, Maher-Tiozzo, Karlsson-Margulis, Q-Rafi-Tiozzo.

Question

- What are the "shapes" of $\partial_{\kappa} G$ for different G?
- Can $\partial_{\kappa} G$ be part of a compact space?
- ▶ When does a group G has a ∂_κG that can be identified with the Poisson boundary?

Thank you!